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An EXPTIME-complete entailment problem in
separation logic ⋆

Nicolas Peltier

Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France

Abstract. Separation logic (SL) is extensively employed in verification to an-
alyze programs that manipulate dynamically allocated memory. The entailment
problem, when dealing with inductively defined predicates or data constraints,
is undecidable for SL formulas. Our focus is on addressing a specific fragment
of this issue, wherein the consequent is restricted to clauses of some particular
form, devoid of inductively defined predicates. We present an algorithm designed
to determine the validity of such entailments and demonstrate that the problem is
decidable and ExpTime complete under some conditions on the data theory. This
algorithm serves the purpose of verifying that the data structures outlined by a
given SL formula (the antecedent) adhere to certain shape constraints expressed
by the consequent.

1 Introduction

Separation logic (SL) [19] is a variant of bunched logic [18] introduced in program
verification for reasoning about programs that manipulate dynamically allocated mem-
ory. This logic employs a specific connective, called the separating conjunction and
denoted by ∗, to assert that two formulas hold on disjoint sections of memory, facil-
itating more concise specifications. The main advantage of SL is that it supports lo-
cal reasoning, meaning that program properties can be asserted and proven by refer-
encing only the portion of memory affected by the program, without considering the
global state of the system. The expressive power of the logic can be strongly aug-
mented by utilizing inductively defined predicates, enabling the definition of recursive
data structures of unbounded sizes, such as lists or trees. For example, the following
rules define a predicate lseg(x, y) denoting a list segment from x to y (with no data):
{lseg(x, y)⇐ emp ∧ x ≃ y, lseg(x, y)⇐ ∃z.(x 7→ (z) ∗ lseg(z, y))}. Informally, x, y, z
represent locations (i.e., memory addresses), emp asserts that the heap is empty, x 7→ (z)
asserts that location x is allocated and points to a tuple only containing location z, and
the separating conjunction x 7→ (z) ∗ lseg(z, y) indicates that the heap contains a list
segment lseg(z, y) along with an additional memory cell x pointing to z (implicitly en-
suring that x is distinct from all memory locations allocated in the list segment from z to
y). The first rule corresponds to the case where the list segment is empty (in which case
we must have x = y). These predicates can be either hard-coded or defined by the user
to handle custom data structures. In the fragment of separation logic known as symbolic
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heaps (formally defined later), satisfiability is decidable for formulas with inductively
defined predicates [2], but entailment is undecidable (entailment cannot be reduced to
satisfiability since the fragment does not include negations).

In this present paper, our focus lies on a specific fragment of the entailment prob-
lem in SL, and we show that this fragment is decidable and ExpTime-complete (under
some particular conditions on the data theory). These entailments exhibit dissymmetry:
the antecedent and consequent belong to distinct classes of formulas. Formal defini-
tions will be provided subsequently, but in essence, the antecedent is a symbolic heap
describing data structures of unbounded size (with constraints on the data contained
within those structures) whereas the consequent is a clause that articulates shape con-
straints over these structures, and assert conditions on the allocated and referenced lo-
cations and on the data stored in the structures. Such clauses may be used to assert that
a structure contains – or does not contain – some specific patterns. For example, the
following (valid) entailment problem asserts that, in all structures satisfying lseg(x, y),
all referenced locations are allocated, except for the one associated with y (⊤ denotes
the atom true and alloc(z′) states that z′ is allocated): lseg(x, y) |= ∀z∀z′ (¬(z 7→
(z′)∗⊤)∨z′ ≃ y∨alloc(z′)). Another instance expresses that each location is referenced
only once: lseg(x, y) |= ∀z∀z′∀z′′ ¬(z 7→ (z′′) ∗ z′ 7→ (z′′) ∗ ⊤). The latter is deemed
invalid as lseg(x, y) possesses models representing cyclic lists (where y is allocated,
and referenced twice). Now, consider a predicate dll(x, y, z) denoting a doubly linked
list segment (with data) from x to y (z denotes the element preceding x): {dll(x, y, z)⇐
emp ∧ (x ≃ y), dll(x, y, z) ⇐ ∃x′∃w (x 7→ (z,w, x′) ∗ dll(x′, y, x))}. Here, each lo-
cation refers to a tuple (x′,w, x′′) where x′ and x′′ are pointers to the previous and
next elements, respectively, and w is the data stored in the current cell. The (valid)
problem dll(x, y, z) |= ϕ, with ϕ is the formula: ∀x1∀x2∀x3∀x′1∀x′2∀w1∀w2 (¬(x1 7→

(x′1,w1, x2)∗ x2 7→ (x′2,w2, x3))∨ x′2 ≃ x1) ensures that the “previous” pointer of the suc-
cessor of any location x1 is indeed x1. The (non valid) problem dll(x, y, z) |= ψ where
ψ is ∀x1∀x2∀x3∀x′1∀x′2∀w1∀w2 (¬(x1 7→ (x′1,w1, x2) ∗ x2 7→ (x′2,w2, x3)) ∨ w1 < w2)
asserts that the list is sorted in strict ascending order.

Related Work A significant portion of research within automated reasoning in SL is
directed toward decidable fragments of entailment problems. As the entailment prob-
lem is undecidable when dealing with formulas with inductively defined predicates,
substantial effort has been expended to pinpoint decidable fragments and design cor-
responding proof procedures (see, e.g., [1,3,6,13,12,7]). Most works focus on formu-
las of some particular form, called symbolic heaps (defined as existentially quantified
conjunctions and separated conjunctions of atoms). A very general class of decidable
entailment problems (specifically for formulas involving no theory beyond equality)
is devised in [14], obtained by restricting the considered inductive definitions to so-
called PCE (for Progressing, Connected and Established) rules. The decidability result
rests upon the decidability of the satisfiability problem for monadic second-order logic
over graphs with bounded treewidth. A more recent advancement is the proposal of a
2-ExpTime algorithm for such entailments [17]. In [8] the optimality of this bound is
established, and in [9,10], novel algorithms are introduced, capable of handling more
expressive classes of inductive definitions. More recently, a proof procedure has been
devised [11] for the PCE fragment. In the pursuit of computational efficiency, less ex-



pressive fragments have been explored, leading to the development of more efficient
algorithms. For instance, in [15], a strict subclass of PCE entailments is identified, with
an ExpTime complexity derived through a reduction to the language inclusion problem
for tree automata [5]. Another example is found in [12], where an algorithm is devised
to handle various types of (potentially nested) singly linked lists, relying on a reduc-
tion to the membership problem for tree automata. A polynomial proof procedure was
also proposed for the specific case of singly linked lists [6]. The tractability result is
extended to more expressive fragments [4], incorporating formulas defined on a unique
nonlinear compositional inductive predicate with distinguished source, destination, and
static parameters. Recently [16], a polynomial-time cyclic proof procedure has been
introduced to efficiently solve the entailment problem, subject to certain conditions on
the inductive rules.

Our contribution diverges from previous work in two key aspects: on one hand, we
impose no syntactic restrictions on the considered inductive definitions1, which may in
particular contain data constraints (with some conditions on the data theory). On the
other hand, we concentrate on entailment problems where the consequents are simpler
than their corresponding antecedents, in the sense that they contain no inductive pred-
icates. It is important to note that, even if the considered inductive definitions satisfy
the PCE conditions of [14], the entailment problems we consider still do not fall in the
scope of the previously cited results, because the consequents are not symbolic heaps.
They cannot be expressed either as guarded formulas (in the sense of [17]).

2 Separation logic with inductive definitions

We define the syntax and semantics of SL with inductively defined predicates and data
constraints. Most definitions in this section are standard.

Basic notations. For every finite set S , card(S ) denotes the number of elements in S .
For every partial function f , dom( f ) denotes the domain of f . Partial functions will be
taken as relations, e.g., if x1, . . . , xn are pairwise distinct, then {(xi, yi) | i ∈ {1, . . . , n}}
denotes the function f of domain {x1, . . . , xn} such that f (xi) = yi for all i ∈ {1, . . . , n}
(∅ is the function with an empty domain). An extension of a partial function f to a set
S , is a function g such that dom(g) = dom( f ) ∪ S coinciding with f on dom( f ) (then f
is called a restriction of g to dom( f )). We sometimes identify tuples with sets when the
order and number of repetitions is unimportant, i.e., we may write x ⊆ S to state that
every component of the tuple x occurs in the set S , or y ∈ x to state that y occurs in x.

Syntax. Let S = {loc, data} be the set of sort symbols, where loc denotes locations
(i.e., memory addresses) and data denotes data. Let V be a countably infinite set of
variables and let C be a finite set of constant symbols. LetT = V∪C be the set of terms.
Every term x is associated with a unique sort sort(x) ∈ S, and T (s) denotes the set of
terms of sort s. Let Ps and Pd be two finite sets of predicate symbols, denoting spatial
predicates and data predicates, respectively. Each symbol in p ∈ Ps (resp. p ∈ Pd) is
associated with a unique profile pr(p) ∈ S∗ (resp. pr(p) ∈ {data}∗).

1 except from the fact that the right-hand side of the inductive rules must be a symbolic heap.



Definition 2.1 (Syntax of SL). A separation logic formula ϕ (or simply formula) is
built inductively as follows:

emp | | p(x1, . . . , xn) | u 7→ (v1, . . . , vk) | alloc(u) | ref(u) | ⊤ | u ≃ v |

(ϕ1 ∗ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ¬ψ | ∃xψ

where k, n ∈ N, p is a predicate in Ps ∪ Pd, of some profile (s1, . . . , sn), xi ∈ T (si),
u, v ∈ T (loc), vi ∈ T , x ∈ V and ϕ1, ϕ2, ψ are formulas.

The separating implication is not considered in our framework. Formal definitions will
be provided later, but the atoms alloc(x) and ref(x) are intended to state that x is
allocated and referenced in the heap, respectively. A data atom (resp. a spatial predicate
atom) is of the form p(x1, . . . , xn) where p ∈ Pd (resp. p ∈ Ps). A data literal is either a
data atom or its negation. A formula of the form u 7→ (v1, . . . , vk) is a points-to atom. A
spatial atom is either a points-to atom or a spatial predicate atom. A pure atom is either
a data atom or an equational atom x ≃ y or ⊤. A pure literal is either a pure atom or the
negation of a pure atom. We denote by fv(ϕ) the set of variables freely occurring in ϕ.
We assume (by α-renaming) that distinct quantifiers bind distinct variables and that the
set of free and bound variables are disjoint. A substitution is a partial function mapping
every variable x to a term of sort sort(x). For every substitution σ and expression
(term, tuple of terms or formula) ϕ we denote by ϕσ the expression obtained from ϕ by
replacing every free occurrence of a variable x ∈ dom(σ) by σ(x).

Inductive rules. The semantics of the spatial predicates is defined using inductive rules
of some particular form:

Definition 2.2 (Symbolic heaps and inductive rules). We recall that a symbolic heap
is a formula of the form ∃x[(α1 ∗ · · · ∗αn)∧

∧m
j=1 β j], where αi (for all i ∈ {1, . . . , n}) is a

spatial atom and β j (for all j ∈ {1, . . . ,m}) is a pure literal. A disjunctive symbolic heap
(DSH) is a formula of the form

∨n
i=1 ϕi where ϕi (for all i ∈ {1, . . . , n}) is a symbolic

heap. An inductive rule is an expression of the form p(x1, . . . , xn) ⇐ ξ where p is a
spatial predicate of profile (s1, . . . , sn), x1, . . . , xn are pairwise distinct variables of sort
s1, . . . , sn (respectively) and ξ is a DSH with fv(ξ) ⊆ {x1, . . . , xn}.

Let R be a finite set of inductive rules. We write ϕ {R ψ if ψ is obtained from the
formula ϕ by replacing one occurrence of a spatial atom p(x1, . . . , xn) by a formula
ξσ where p(y1, . . . , yn) ⇐ ξ is a rule in R and σ = {(yi, xi) | i ∈ {1, . . . , n}}. Then
{∗
R

denotes the reflexive and transitive closure of{R. We assume that the existential
variables in ξ are renamed to avoid any collision with variables already occurring in ϕ.

Semantics. Let L be a countably infinite set of locations and let D be an arbitrary set
of data. The domain of a sort s is D if s = data and L if s = loc. We assume that
every predicate p ∈ Pd of profile datan is mapped to a subset ⟨p⟩ of Dn, and that
every constant c of sort data is associated with an element ⟨c⟩ ∈ D. Note that the
interpretation of data constants and data predicates is fixed in our setting.



Definition 2.3 (SL Structures). A store s is a partial function mapping every term x
to an element of L if x is of sort loc or to an element of D if x is of sort data, where
C ⊆ dom(s) and s(c) = ⟨c⟩ if c ∈ C and sort(c) = data. A heap h is a partial
function mapping locations in L to tuples (ℓ1, . . . , ℓn) with n ≥ 0 and ℓi ∈ L ∪ D (for
all i ∈ {1, . . . , n}) such that dom(h) is finite. A structure is a pair (s, h) where s is a store
and h is a heap.

A location ℓ is allocated in h if ℓ ∈ dom(h) and an element e ∈ L ∪ D is referenced
in h if there exists ℓ ∈ dom(h) such that e ∈ h(ℓ). A variable x is allocated (resp.
referenced) in a structure (s, h) if s(x) is allocated (resp. referenced) in h. Two heaps
h1, h2 are disjoint if dom(h1) ∩ dom(h2) = ∅, in which case h1 ∪ h2 denotes the heap of
domain dom(h1) ∪ dom(h2), coinciding with hi on dom(hi) (for all i ∈ {1, 2}).

Definition 2.4 (Semantics of SL). Let R be a finite set of inductive rules. Let (s, h) be
a structure. For every formula ϕ with fv(ϕ) ⊆ dom(s), we write (s, h) |=R ϕ (and say that
(s, h) is an R-model of ϕ) if one of the following conditions holds:

– ϕ is ⊤; or ϕ is emp and h = ∅; or ϕ is x ≃ y and s(x) = s(y);
– ϕ = x 7→ (y1, . . . , yn) and h = {(s(x), s(y1), . . . , s(y)};
– ϕ = p(x1, . . . , xn), p ∈ Pd and (s(x1), . . . , s(xn)) ∈ ⟨p⟩;
– or ϕ = ¬ψ and (s, h) ̸|=R ψ;
– ϕ = ϕ1∨ϕ2 (resp. ϕ1∧ϕ2) and (s, h) |=R ϕi, for some i ∈ {1, 2} (resp. for all i ∈ {1, 2});
– ϕ = ϕ1 ∗ϕ2 and there exist disjoint heaps h1, h2 with h = h1 ∪ h2, and for all i ∈ {1, 2},

(s, hi) |=R ϕi;
– ϕ = ∃xψ and there exists an extension s′ of s with dom(s′) = dom(s) ∪ {x} and

(s′, h) |=R ψ;
– ϕ = alloc(x) and s(x) ∈ dom(h); or ϕ = ref(x) and ∃ℓ ∈ dom(h) s.t. s(x) ∈ h(ℓ);
– ϕ = p(x1, . . . , xn), p ∈ Ps and there is a formula ψ containing no spatial predicate

symbol such that ϕ{∗
R
ψ and (s, h) |=R ψ.

If S is a set of formulas, then (s, h) |=R S holds iff ∀ϕ ∈ S (s, h) |=R ϕ. If ϕ, ψ are
formulas, we write ϕ |=R ψ if the implication (s, h) |=R ϕ =⇒ (s, h) |=R ψ holds for
every structure (s, h) with dom(s) ⊇ fv(ϕ) ∪ fv(ψ).

Formulas are taken modulo associativity and commutativity of ∗ and ∧,∨, modulo neu-
trality of emp for ∗, modulo commutativity of ∃ (i.e. ∃x∃yϕ is equivalent to ∃y∃xϕ)
modulo contraction for ∧ and ∨ and modulo contraction of pure atoms for ∗ (i.e.,
ϕ ∗ ϕ ≡ ϕ if ϕ is pure, note that the contraction does not hold for spatial atoms). If
x = (x1, . . . , xn) (with n ≥ 0), we may write ∃x ϕ for ∃x1 . . .∃xn ϕ (if x is empty then
∃x ϕ is ϕ). For any formula ϕ, |ϕ| denotes the size of ϕ.

Example 2.5 (Sorted Lists). The rules below define an atom sls(x, y) describing sorted
lists starting at x, ending at a constant nil, and containing only elements bigger or equal
to y:

sls(x, y)⇐ x 7→ (nil) sls(x, y)⇐ ∃x′∃y′[x 7→ (x′, y′) ∗ sls(x′, y′) ∧ y′ ≥ y]

Each location (other than the last one) in the list points to a pair (ℓ, v) where ℓ de-
notes the next element and v is the stored value. The profile of sls is (loc, data).
The variables x, x′ are of sort loc and the variables y, y′ are of sort data. The formula
∃y, y′(sls(x, y) ∗ sls(x′, y′) ∧ y ≥ y′) ∨ emp is a DSH.



We make the following assumptions on the data theory, which are all essential to
the soundness of the results.

1. The set of data predicates Pd contains in particular the equality predicate ≈ inter-
preted as usual.

2. The satisfiability problem is decidable for conjunctions of data literals.
3. Every formula of the form ∃x ϕ where ϕ is a conjunction of data literals is equivalent

to a formula
∨n

i=1 ϕi, where ϕi (for all i ∈ {1, . . . , n}) is a conjunction of data literals,
with fv(ϕi) ⊆ fv(∃x ϕ).

Assumptions (1) and (2) are natural, but Assumption (3) is rather strong, as the set of
constants and the set of data predicates are both finite (of course, this cannot be over-
come since we want to get a decidable entailment problem with fixpoint computations).
The conditions are satisfied for instance by the theory of reals (or rational numbers)
with predicates ≈, <,≤.

3 The Entailment problem Ent(DSH,HC)

We now define the entailment problem we are considering in the present paper. As
explained in the introduction, this entailment problem is dissymmetric: the antecedent
and consequent belong to different fragments of SL. The antecedent is a disjunctive
symbolic heap, and the consequent is a universally quantified disjunction of literals
(with no inductive predicates) of some specific form:

Definition 3.1 (h-clauses). A h-atom is either a data atom, or a formula of the form
alloc(x), ref(x), x ▷◁ y (with ▷◁∈ {≃, ̸≃}), or a separating conjunction α1∗· · ·∗αn where
αi is either a points-to atoms or ⊤ (spatial predicate atoms are not allowed). Formulas
of the latter form are called spatial h-atoms. A h-literal is either a h-atom (positive h-
literal) or the negation of a h-atom (negative h-literal). The h-literal complementary to
some h-literal ϕ is either ¬ϕ if ϕ is positive or ψ if ϕ = ¬ψ. A h-clause (HC) is of the
form ∀x1 . . .∀xn ϕ, where ϕ is a disjunction of h-literals (ϕ may contain variables not
occurring in {x1, . . . , xn}).

Example 3.2. Consider the following h-clauses:

ξ1 : ∀x∀x′∀y′ (¬(x 7→ (x′, y′) ∗ ⊤) ∨ y′ ≥ y)
ξ2 : ∀x1∀x2∀y1∀y2∀x′ ¬(x1 7→ (x′, y1) ∗ x2 7→ (x′, y2) ∗ ⊤)
ξ3 : ∀x1∀x2∀x′1∀x′2∀y¬(x1 7→ (x′1, y) ∗ x2 7→ (x′2, y) ∗ ⊤)

With the conventions of Ex. 2.5, ξ1 asserts that the list contains no element strictly
lower than y, ξ2 states that every location is referenced at most once and ξ3 states that
all elements are pairwise distinct.

Definition 3.3 (Ent(DSH,HC)). The entailment problem Ent(DSH,HC) consists in de-
termining, given a finite set of inductive rules R, a disjunctive symbolic heap ξ and a
h-clause γ, whether the entailment ξ |=R γ holds.



Example 3.4. With the definitions of Examples 2.5 and 3.2, p(x, y) |=R ξi is an instance
of Ent(DSH,HC) for all i ∈ {1, 2, 3}. It is valid if i ∈ {1, 2} and not valid if i = 3. Addi-
tional instances of Ent(DSH,HC) can be found in the introduction. One specific instance
of Ent(DSH,HC) consists to test whether a given a symbolic heap ξ is established (in
the sense of [14]), i.e., that all the locations occurring in the heap of the models of ξ
are either allocated or equal to some free variable: ξ |=R ∀x[alloc(x) ∨ ¬ref(x) ∨ x ≃
y1 ∨ · · · ∨ x ≃ yn)], with {y1, . . . , yn} = {y ∈ fv(ϕ) | sort(y) = loc}.

4 Abstracting structures

The decision procedure operates by computing abstractions of the models of the an-
tecedent. Intuitively, these abstractions will encompass information pertaining to the
key characteristics of these models which is adequate for determining whether these
models satisfy the consequent. We firstly define a notion of an E-relation, denoting an
equality relation between terms:

Definition 4.1 (E-Relation). An E-relation ∼ (for a set of variables V ⊆ V) is an
equivalence relation on V ∪ C satisfying the following conditions: (i) if x ∼ y then
sort(x) = sort(y); and (ii) if x, y are constants of sort data then x ∼ y ⇐⇒ ⟨x⟩ =
⟨y⟩. For every term x, we denote by x↓∼ a unique representative of the equivalence class
of x, e.g., the minimal term y (w.r.t. to some arbitrary but fixed order on terms) such that
x ∼ y. This notation is extended to any formula ϕ, where ϕ ↓∼ denotes the formula
obtained form ϕ by replacing every term x by x ↓∼. A formula ϕ is ∼-normalized if
ϕ = ϕ↓∼. We denote by E(V) the set of E-relations for V.

If V is clear from the context, then we shall denote an E-relation ∼ by a set of equations
S , with the convention that ∼ is the smallest E-relation for V such that x ∼ y holds for
all (x ≃ y) ∈ S . We then define the notion of a consistent set, which denotes the set of
data atoms that are true in some specific structure.

Definition 4.2 (Consistency). For every set of variables V and E-relation ∼, we denote
by AD

∼ (V) the set of ∼-normalized data atoms ϕ such that fv(ϕ) ⊆ V. A subset S of
AD
∼ (V) is consistent (w.r.t. ∼ and V) if there exists an injective store s such that for all
∼-normalized data atoms α inAD

∼ (V): (s, ∅) |=R α ⇐⇒ α ∈ S .

Definition 4.3 (Abstraction). An abstraction is a tuple (V,∼, A,R, Φ, ∆) where V is a
set of variables, ∼∈ E(V), A and R are sets of ∼-normalized terms, Φ is a ∼-normalized
spatial h-atom and ∆ is a consistent subset ofAD

∼ (V).

Intuitively, (V,∼, A, ,R, Φ, ∆) encapsulates crucial information about a structure. The
set V denotes the variables in the domain of the store. The relation ∼ is the equality
relation between terms. The sets A and R respectively contain the sets of allocated and
referenced terms. The formula Φ is a spatial h-atom describing the part of the heap that
corresponds to locations and data associated with variables in V and abstracting away
the remainder of the heap. Finally, ∆ is the set of data atoms that are true in the consid-
ered model. The formalization of the relationship between structures and abstractions
is provided by Def. 4.4 and 4.6.



Definition 4.4. For every structure (s, h), for every set of variables V ⊆ dom(s) and for
every E-relation ∼, we denote by Φ∼(s, h) the h-atom Φ1

∼(s, h) ∗Φ2
∼(s, h), where:

– Φ1
∼(s, h) = α1 ∗ · · · ∗αn, where {αi | i ∈ {1, . . . , n}} is the set of atoms of the form x0 7→

(x1, . . . , xk) such that x0, . . . , xk are ∼-normalized terms in dom(s), s(x0) ∈ dom(h)
and h(s(x0)) = (s(x1), . . . , s(xk)) (if this set is empty then n = 0 and Φ1

∼(s, h) = emp).
– Φ2

∼(s, h) is emp if card(dom(h)) = n and ⊤ otherwise.

In particular, if h = ∅, then Φ∼(s, h) = emp ∗ emp = emp, and if dom(s) = ∅ and h , ∅
then Φ∼(s, h) = emp ∗ ⊤ = ⊤.

Example 4.5. Let L = N,D = Q and let h be the heap {(2, 1, 0.5), (1, 0,−0.5)}. Let s =
{(x, 2), (y, 1), (z1, 0.5), (z2,−0.5), (nil, 0)} and s′ = {(u, 1), (v, 1), (w,−0.5), (nil, 0)}.

Then Φ∼(s, h) is x 7→ (y, z1) ∗ y 7→ (nil, z2) and Φ∼(s′, h) is u 7→ (nil,w) ∗ ⊤
(assuming that the representative of the class of {u, v} is u).

Definition 4.6 (Abstraction of a structure). Let k ∈ N,W ⊆ V, Let (s, h) be a struc-
ture, and let A = (V,∼, A,R, Φ, ∆) be an abstraction. The abstraction A is called an
abstraction of (s, h) (writtenA▷ (s, h)) if all the following conditions hold. (1) dom(s) =
V ∪ C; (2) For all terms x, y ∈ V ∪ C, x ∼ y ⇐⇒ s(x) = s(y); (3) A is the
set of ∼-normalized terms in V ∪ C such that s(x) ∈ dom(h); (4) R is the set of ∼-
normalized terms of sort loc in V∪C such that there exists ℓ ∈ dom(h) with s(x) ∈ h(ℓ);
(5) Φ = Φ∼(s, h); (6) ∆ is the set of data atoms inAD

∼ (V), such that (s, ∅) |=R ϕ.

Note that, when the representative of each term equivalence class is fixed, each struc-
ture has a unique abstraction, where the components V,∼, A,R, Φ and ∆ are defined in
accordance with conditions (1)-(6).

Example 4.7. With the definitions of Ex. 4.5, and with Pd = {≈,≥}, the abstractions of
(s, h) and (s′, h) areA andA′, respectively, with:

A = ({x, y, z1, z2}, ∅, {x, y}, {y, nil}, x 7→ (y, z1) ∗ y 7→ (nil, z2), ∆)
∆ = {z1 ≥ z2, z1 ≈ z1, z1 ≥ z1, z2 ≈ z2, z2 ≥ z2}

A′ = ({u, v,w}, {u ≃ v}, {u}, {nil}, u 7→ (nil,w) ∗ ⊤, {w ≥ w,w ≈ w})

We show (see Lem. 4.10) that the truth value of a h-literal in a structure depends
solely on the structure’s abstraction. This allows for testing the validity of entailments
in Ent(DSH,HC) by solely considering abstractions (Prop. 4.11). For this purpose,
Def. 4.8 offers a simple criterion for determining whether an abstracted structure satis-
fies a particular h-literal or set of h-literals.

Definition 4.8. For all spatial h-atoms ϕ, ψ, we write ϕ ≺ ψ if ϕ and ψ are respectively
of the form (up to AC) ϕ1 ∗ ⊤ and ϕ1 ∗ ϕ2 (with possibly ϕ2 = emp). For all abstractions
A = (V,∼, A,R, Φ, ∆) and h-literal ϕ, A |= ϕ iff fv(ϕ) ⊆ V and one of the following
conditions holds: (1) ϕ = (x ≃ y) and x ∼ y; (2) ϕ = alloc(x) and x ↓∼∈ A; (3) ϕ =
ref(x) and x ↓∼∈ R; (4) ϕ ↓∼⪯ Φ; (5) ϕ ↓∼∈ ∆; or (6) ϕ = ¬ψ and A ̸|= ψ. For any
set of h-literals S ,A |= S iff ∀ϕ ∈ S A |= ϕ.



Example 4.9. With the definitions of Ex. 4.7, we have (for instance):

A |= {alloc(y), ref(y), x ̸≃ y, x 7→ (y, z1) ∗ ⊤, z2 ≱ z1, ¬(x 7→ (y, z1))}
A′ |= {alloc(v), ¬ref(u), u ≃ v, u 7→ (nil,w) ∗ ⊤, ¬emp}

Lemma 4.10. Let ϕ be a h-literal. If A ▷ (s, h) and dom(s) ⊇ fv(ϕ) then (s, h) |=R ϕ iff
A |= ϕ.

Proof. LetA = (V,∼, A,R, Φ, ∆). Note that, due toA ▷ (s, h), x ∼ y holds iff s(x) = s(y)
(for all x, y ∈ V ∪ C). For conciseness, we focus on the case where ϕ is a spatial h-atom
(the other cases are covered in App. A). By the previous remark, (s, h) |=R ϕ ⇐⇒

(s, h) |=R ϕ↓∼. By definition of h-atoms, ϕ↓∼ can be written on the form α1 ∗ · · · ∗αn ∗ β
where αi (for all i ∈ {1, . . . , n}) is a points-to atom xi 7→ (yi), and β is either ⊤ or emp.
Moreover, by Def. 4.6 (5), we have ∆ = Φ∼(s, h) , thus, by Def. 4.4, ∆ is of the form
α′1∗· · ·∗α

′
m∗β

′, where: {α′i | i ∈ {1, . . . ,m}} is the set of atoms of the form x′i 7→ (y′i) such
that x′i , y

′
i only contain ∼-normalized terms in V ∪ C, s(x′i ) ∈ dom(h), h(s(x′i )) = (s(y′i)),

and β′ is emp if card(dom(h)) = m and ⊤ otherwise. Note that by definition the atoms
α′i for i ∈ {1, . . . ,m} are pairwise distinct. We establish the double implication.

⇒ Assume that (s, h) |=R ϕ (hence (s, h) |=R ϕ↓∼). Then h =
⋃n

i=0 hi, where h0, . . . , hn are
pairwise disjoint heaps such that (s, hi) |=R αi (for all i ∈ {1, . . . , n}) and (s, h0) |=R β.
This entails that hi = {(s(xi), s(yi))} (for all i ∈ {1, . . . , n}), so that s(xi) ∈ dom(h)
and h(s(xi)) = (s(yi)). As αi is normalized, this entails that each atom αi necessarily
occurs in {α′1, . . . , α

′
m}. Assume by symmetry that αi = α

′
i for all i ∈ {1, . . . , n} (with

n ≤ m). If β = ⊤ then we get ϕ↓∼= (α1 ∗ · · · ∗αn) ∗⊤ and ∆ = (α1 ∗ · · · ∗αn) ∗ (α′n+1 ∗

. . . α′m ∗ β
′), so that ϕ ↓∼≺ ∆, whence A |= ϕ by Def. 4.8 (4). Otherwise (i.e., if β =

emp), we must have card(dom(h)) = n, which entails that m = n = card(dom(h)) (as
card(dom(h)) ≥ m by definition of {α′1, . . . , α

′
m}). Therefore, β′ = emp and ϕ ↓∼= ∆,

so thatA |= ϕ by Def. 4.8 (4).
⇐ Assume that A |= ϕ, i.e., by Def. 4.8, ϕ ↓∼⪯ ∆. We may assume by symmetry that

αi = α′i for all i ∈ {1, . . . , n} (with n ≤ m), and β is either β′ (with n = m) or ⊤.
By definition of the set {α′1, . . . , α

′
m}, we have h(s(x′i )) = s(y′i). As the atoms α′i are

pairwise distinct and ∼-normalized, this entails that the locations s(x′i ) are pairwise
distinct: indeed, if s(x′i ) = s(x′j) with i , j, then x′i = x′j as x′i , x

′
j are ∼ -normalized,

thus s(y′i) = s(y′j) hence y′i = y′j (as y′i , y
′
j are ∼-normalized), hence α′i = α

′
j, which

contradicts the fact that the atoms α′i are pairwise distinct. Consequently there exist
disjoint subheaps hi = {(s(x′i), s(y′i))} of h (for all i ∈ {1, . . . ,m}) such that (s, hi) |=R
α′i . If β = ⊤ then we get (s, h1 ∪ · · · ∪ hn) |=R α′1 ∗ · · · ∗ α

′
n = α1 ∗ · · · ∗ αn hence

(s, h) |=R α1∗· · ·∗αn∗⊤ (as h1∪· · ·∪hn ⊆ h) and the proof is completed. Otherwise we
must have β = β′ and n = m so that (s, h1∪· · ·∪hm) |=R α′1∗. . . α

′
m = α1∗. . . αn = ϕ↓∼.

For every formula ϕ and for every set of variablesW, we denote byAR(ϕ,W) the
set of abstractions of the models (s, h) that interpret exactly the variables in W, i.e.,
AR(ϕ,W) = {A | (s, h) |=R ϕ, dom(s) = W ∪ C, A ▷ (s, h)}. The following lemma
stems from Lem. 4.10 and from the definitions of Φ∼(s, h) andAR(ξ,W) (see App. B):

Lemma 4.11. For every h-clause γ, we denote by γ the set of h-literals complementary
to those occurring in γ. Let ξ |=R γ be an instance of Ent(DSH,HC), with fv(ξ)∪ fv(γ) ⊆
V. The entailment ξ |=R γ is valid iff for allA ∈ AR(ξ,V),A ̸|= γ.



5 Computing abstractions

We now show how to compute abstractions. To achieve this, we introduce two basic
operations on abstractions. The first one consists in removing a variable from V . If
A = (V,∼, A,R, Φ, ∆) and x ∈ V then we denote by A \ {x} the abstraction of the form
(V \ {x},∼′, A′,R′, Φ′, ∆′) where ∼′= {(u, v) | u ∼ v, u , x, v , x}, and:

– If there exists a term y , x such that x ∼ y then A′, R′, Φ′ and ∆′ are obtained from
A, R, Φ and ∆ respectively by replacing all occurrences of x by y↓∼′ .

– Otherwise, A′ = A \ {x}, R′ = R \ {x}, Φ′ is obtained from Φ by replacing every atom
containing x by ⊤ and ∆′ is the set of formulas in ∆ that do not contain x.

Example 5.1. With the definitions of Ex. 4.7 we have:

A \ {x} = ({y, z1, z2}, ∅, {y}, {y, nil},⊤ ∗ y 7→ (nil, z2), ∆)
A′ \ {u} = ({v,w}, ∅, {v}, {w, nil}, v 7→ (nil,w) ∗ ⊤, {w ≥ w,w ≈ w})
A′ \ {w} = ({u, v}, {u ≃ v}, {u}, {nil},⊤, ∅)

The second operation consists in computing the disjoint union of two abstractions. Let
Ai = (Vi,∼i, Ai,Ri, Φi, ∆i) be two abstractions (with i ∈ {1, 2}). The abstractionA1 ∗A2
is defined if V1 = V2, ∼1=∼2, A1 ∩ A2 = ∅ and ∆1 = ∆2, and in this case A1 ∗ A2 is
(V1,∼1, A1 ∪ A2,R1 ∪ R2, Φ1 ∗Φ2, ∆1).

Example 5.2. Consider the abstractionA of Ex. 4.7 together with:

A1 = ({x, x′, y, z1, z2}, ∅, ∅, ∅,⊤, ∆) A2 = ({x, y, z1, z2}, ∅, {x}, ∅,⊤, ∆)
A3 = ({x, y, z1, z2}, ∅, {nil}, {x}, nil 7→ (x), ∆)

Then A ∗ Ai is undefined if i = 1 (as A1 has a variable x′ that is not in A) or if i = 2
(asA andA2 both allocate x), andA ∗A3 is:

({x, y, z1, z2}, ∅, {x, y, nil}, {x, y, nil}, x 7→ (y, z1) ∗ y 7→ (nil, z2) ∗ nil 7→ (x), ∆)

Lemma 5.3 relates these operators to the corresponding operations on the abstracted
structures (the proof is given in App. C).

Lemma 5.3. The two following assertions hold:

1. If Ai ▷ (s, hi), for all i ∈ {1, 2}, dom(h1) ∩ dom(h2) = ∅ and A1 ∗ A2 is defined, then
A1 ∗ A2 ▷ (s, h1 ∪ h2).

2. If A ▷ (s, h), and s′ is the restriction of s to the variables distinct from x, then A \
{x} ▷ (s′, h).

Using the above operations on abstraction, we define a set of rules (Fig. 1) that
inductively compute the set of abstractions A∗

R
(ϕ,W), for all DSH ϕ. The first two

rules correspond to base cases, where ϕ is atomic. The first rule tackles the case where
ϕ = emp. In this case, both A and R are empty (as the heap is empty) and Φ is emp.
The second rule handles the case where ϕ is a points-to atom x0 7→ (x1, . . . , xn). Then
A contains the representative of x0 (as it is the only allocated location), R contains the
representatives of the location terms in x1, . . . , xn, and Φ is simply the ∼-normalized



form of ϕ. The next four rules cover conjunctions of the form ϕ ∧ α where ϕ is a
symbolic heap and α is either an equational literal or a data literal. In each case, one
only has to compute abstractions of ϕ and check whether α is satisfied. Note that it is
impossible to compute abstractions of α as the latter formula is not a symbolic heap.
Abstractions of existential quantifications ∃x ϕ are computed by removing the variable
x from the abstractions of ϕ using the operationA\ {x} defined above, and abstractions
of separating conjunctions ϕ1 ∗ ϕ2 are computed by combining abstractions of ϕ1 and
ϕ2 using the operator ∗. The last rules handle the case of disjunctions and inductive
definitions, respectively (the computation is straightforward in both cases).

Remark 5.4. Note that abstractions may contain variables not occurring in the consid-
ered formula, and are defined to associate a truth value with every equation and data
atom (this is why we may assume, when combining abstractions (Vi,∼i, Ai,Ri, Φi, ∆i)
using the operator ∗, that V1 = V2, ∼1=∼2 and ∆1 = ∆2). This design choice was made
for the sake of readability and conciseness, but it leads to some computational overhead,
as not all of these variables and atoms are necessarily relevant for evaluating the for-
mulas at hand. In practice, variables and constraints should be added on demand, when
they become necessarily to check that the premises of the rules in Fig. 1 are satisfied.

∆ ⊆ AD
∼ (V) ∼∈ E(V)

(V,∼, ∅, ∅, emp, ∆) ∈ A∗
R

(emp,V)

∼∈ E(V) ∆ ⊆ AD
∼ (V) Φ = {x0 ↓∼ 7→ (x1 ↓∼, . . . , xn ↓∼}

(V,∼, {x0 ↓∼}, {xi ↓∼| i ∈ {1, . . . , n}, sort(xi) = loc}, Φ, ∆) ∈ A∗
R

(x0 7→ (x1, . . . , xn),V)

x ∼ y (V,∼, A,R, Φ, ∆) ∈ A∗
R

(ϕ,V)
(V,∼, A,R, Φ, ∆) ∈ A∗

R
(ϕ ∧ (x ≃ y),V)

x ̸∼ y (V,∼, A,R, Φ, ∆) ∈ A∗
R

(ϕ,V)
(V,∼, A,R, Φ, ∆) ∈ A∗

R
(ϕ ∧ (x ̸≃ y),V)

α ∈ ∆ (V,∼, A,R, Φ, ∆) ∈ A∗
R

(ϕ,V)
(V,∼, A,R, Φ, ∆) ∈ A∗

R
(ϕ ∧ α,V)

α < ∆ (V,∼, A,R, Φ, ∆) ∈ A∗
R

(ϕ,V)
(V,∼, A,R, Φ, ∆) ∈ A∗

R
(ϕ ∧ ¬α,V)

A ∈ A∗
R

(ϕ,V)
A \ {x} ∈ A∗

R
(∃x ϕ,V \ {x})

∀i ∈ {1, 2}Ai ∈ A
∗
R

(ϕi,V) A1 ∗ A2 is defined
A1 ∗ A2 ∈ A

∗
R

(ϕ1 ∗ ϕ2,V)

A ∈ AR(ϕi,V) i ∈ {1, 2} fv(ϕ1 ∨ ϕ2) ⊆ V
A ∈ AR(ϕ1 ∨ ϕ2,V)

A ∈ A∗
R

(ϕ,V) p(x){R ϕ p ∈ Ps

A ∈ A∗
R

(p(x),V)

The formula α denotes a data atom. For all rules, the following additional condition applies:
(V,∼, A, Φ, ∆) ∈ AR(ϕ,V) only when V ⊇ fv(ϕ) and ∆ is consistent w.r.t. ∼ and V (this property
is decidable by Assumptions 1 and 2).

Fig. 1. Inductive rules for computing abstractions of a formula

Lemma 5.5 asserts that the rules for computing abstractions are correct and com-
plete, i.e., that the computed set of abstractions A∗

R
(ϕ,W) is indeed the set of all ab-



stractions of the models of ϕ. The result crucially relies on Assumption 3 (see App. D).

Lemma 5.5. For all DSH ϕ and allW ⊇ fv(ϕ),A∗
R

(ϕ,W) = AR(ϕ,W).

Lemmata 4.11 and 5.5 yield an algorithm for testing the validity of entailment ξ |=R γ
in Ent(DSH,HC), described in the proof of Th. 5.6.

Theorem 5.6. The problem Ent(DSH,HC) is decidable, and it is ExpTime-complete if
the satisfiability test is in ExpTime for data constraints.

Proof. The lower bound stems from the ExpTime-hardness of the satisfiability problem
for symbolic heaps [2] (with Pd = {≈}). The decision procedure runs as follows. Con-
sider an instance ξ |=R γ of Ent(DSH,HC). We first compute the set A∗

R
(ξ,V) using

the rules in Fig. 1, where V = fv(ξ) ∪ fv(γ). To this purpose, we only have to compute
the sets A∗

R
(ϕ,W) for formulas ϕ occurring either in ξ or in some instance of a rule

in R, where W contains all variables occurring in ξ, γ or R. By Lem. 5.5, we have
A∗
R

(ϕ,V) = AR(ϕ,V). Then, by Lem. 4.11, to test whether ξ |=R γ, it suffices to test
whetherA ̸|= γ holds for allA ∈ A∗

R
(ξ,V).

We now briefly analyze the complexity of the procedure. We first observe that the
number of formulas ϕ to consider is simply exponential w.r.t. |ξ|+ |R| (up to a renaming
of variables). The test A |= γ is decidable in polynomial time (see Def. 4.8). Further-
more, the size of the abstractions is polynomial in |ξ| + |γ| + |R|. Indeed, it is possible
to prove that it is sufficient to compute abstractions with variables occurring inW, so
that the number of terms is bounded by card(W∪C) ≤ |ξ|+ |γ|+ |R| thus the E-relation
∼ is of quadratic size, the sets A and R are of linear size and the set of data atoms ∆ is
of size O(card(Pd) × (|ξ| + |R|)n), where n denotes the maximal arity of the predicates
in Pd (which is fixed in the context). Finally, the size of points-to atoms is bounded by
|ξ| + |γ| + |R|, and the maximal number of points-to atom occurring in a spatial h-atom
is bounded by card(W ∪ C) (as the same term cannot be allocated twice, otherwise
the h-atom is trivially unsatisfiable). This entails that there is exponentially many such
abstractions (assuming, w.l.o.g., that every constant and inductive predicate occurs in ξ,
γ or R). Finally, it is straightforward to check that each rule in Fig. 1 can be applied in
exponential time w.r.t. the size of the abstractions (assuming the satisfiability problem
is in ExpTime for data constraints). Thus the algorithm runs in exponential time.

6 Conclusion

A new decidable fragment of the entailment problem in SL has been identified. It
is ExpTime-complete (if the satisfiability problem for data constraints is in ExpTime)
and incomparable with previously known decidable fragments. A natural follow-up in-
volves implementing the decision procedure and enhancing its efficiency, as outlined in
Rem. 5.4. Although the theoretical complexity of the procedure remains unaffected, this
approach has the potential to significantly improve the practical efficiency of the pro-
cedure by reducing the number of abstractions to be considered. One could also try to
relax the assumptions on the data theory, by imposing additional syntactic restrictions
on data literals.
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A Proof of Lemma 4.10

We handle the cases that have not been already covered in the body of the paper:

– If ϕ = (x ≃ y), then (s, h) |=R ϕ ⇐⇒ s(x) = s(y) (Def. 2.4). By Def. 4.6 (2),
s(x) = s(y) ⇐⇒ x ∼ y, and by Def. 4.8 (1) x ∼ y ⇐⇒ A |= ϕ.

– ϕ = alloc(x), then (s, h) |=R ϕ ⇐⇒ s(x) ∈ dom(h) (Def. 2.4). As s(x) = s(x ↓∼),
we get (s, h) |=R ϕ ⇐⇒ s(x ↓∼) ∈ dom(h). By Def. 4.6 (3), s(x ↓∼) ∈ dom(h) ⇐⇒
x↓∼∈ A (as x↓∼ is ∼-normalized by definition). By Def. 4.8 (2) we have x↓∼∈ A ⇐⇒
A |= alloc(x). Thus (s, h) |=R ϕ ⇐⇒ A |= ϕ.

– ϕ = ref(x), then (s, h) |=R ϕ ⇐⇒ ∃ℓ ∈ dom(h) s.t. s(x) ∈ h(ℓ) (Def. 2.4). As
s(x) = s(x↓∼), we get (s, h) |=R ϕ ⇐⇒ ∃ℓ ∈ dom(h) s.t. s(x↓∼) ∈ h(ℓ). By Def. 4.6
(4), we deduce (s, h) |=R ϕ ⇐⇒ x↓∼∈ R (as x↓∼ is ∼-normalized). By Def. 4.8 (3)
we get (s, h) |=R ϕ ⇐⇒ A |= ϕ.

– If ϕ is a data atom, then (s, h) |=R ϕ ⇐⇒ (s, ∅) |=R ϕ ↓∼ (as the truth value of ϕ
does not depend on the heap). By Def. 4.6 (6), we get (s, h) |=R ϕ ⇐⇒ ϕ ↓∼∈ ∆
(since ϕ ↓∼∈ AD

∼ (V), by definition, as ϕ ↓∼ is ∼-normalized and fv(ϕ ↓∼) ⊆ V), thus
by Def. 4.8 (5) (s, h) |=R ϕ ⇐⇒ A |= ϕ.

– If ϕ = ¬ψ, then by the previous items we get (s, h) |=R ψ ⇐⇒ A |= ψ. Moreover
(s, h) |=R ϕ ⇐⇒ (s, h) ̸|=R ψ (Def. 2.4) and A |= ϕ ⇐⇒ A ̸|= ψ by Def. 4.8 (6) so
that (s, h) |=R ϕ ⇐⇒ A |= ϕ.

B Proof of Lemma 4.11

By definition, ξ |=R γ iff (s, h) |=R ξ =⇒ (s, h) |=R γ holds for all structures (s, h)
where dom(s) ⊇ fv(ξ) ∪ fv(γ). By definition of γ, (s, h) |=R γ holds iff (ŝ, h) ̸|=R γ, for
all extensions ŝ of s to fv(γ) \ dom(s) (moreover, as we assume that the variables that
are bound in γ do not occur in fv(ξ), we have (ŝ, h) |=R ξ ⇐⇒ (s, h) |=R ξ). Thus
ξ |=R γ holds iff (ŝ, h) |=R ξ =⇒ (ŝ, h) ̸|=R γ holds for all structures (ŝ, h) where
dom(ŝ) = V . By definition of AR(ξ, fv(γ)), (ŝ, h) |=R ξ with dom(ŝ) = V iff there exists
an abstraction A ∈ AR(ξ,V) such that A ▷ (ŝ, h). By Lem. 4.10, for all such structures
(ŝ, h) and abstractions A, (ŝ, h) ̸|=R γ iff A ̸|= γ. Consequently, ξ |=R γ holds iff A ̸|= γ
for all abstractionsA ∈ AR(ξ,V).

C Proof of Lemma 5.3

Assertion 1. LetAi = (Vi,∼i, Ai,Ri, Φi, ∆i), h = h1∪h2, andA = (V,∼, A,R, Φ, ∆), with
(sinceA1∗A2 = A) V1 = V2 = V , ∼1=∼2=∼, A = A1∪A2, A1∩A2 = ∅, R = R1∪R2,Φ =
Φ1 ∗ Φ2, ∆1 = ∆2 = ∆. We have {x ↓∼| s(x) ∈ dom(h)} =

⋃2
i=1{x ↓∼| s(x) ∈ dom(hi)} =

A1 ∪ A2 (by Cond. 3 in Def. 4.6). Thus {x ↓∼| s(x) ∈ dom(h)} = A. Similarly, {x ↓∼|
∃ℓ ∈ dom(h) s.t. s(x) ∈ h(ℓ)} =

⋃2
i=1{x↓∼| ∃ℓ ∈ dom(hi) s.t. s(x) ∈ hi(ℓ)} = R1 ∪ R2 = R.

Finally, Φ∼(s, h) = α1 ∗ · · · ∗αn ∗Φ
2
∼(s, h), where {α1, . . . , αn} is the set of ∼-normalized

atoms v0 7→ (v1, . . . , vk) such that h(s(v0)) = (s(v1), . . . , s(vn)) and Φ2
∼(s, h) = emp if

card(dom(h)) = n and ⊤ otherwise. Similarly, Φ∼(s, hi) = αi
1 ∗ · · · ∗α

i
ni
∗Φ2
∼(s, hi), where

{αi
1, . . . , α

i
ni
} is the set of ∼-normalized atoms v0 7→ (v1, . . . , vk) such that hi(s(v0)) =



(s(v1), . . . , s(vn)) and Φ2
∼(s, hi) = emp if card(dom(hi)) = ni and ⊤ otherwise. As h is

the disjoint union of h1 and h2, {α1, . . . , αn} =
⋃2

i=1{α
i
1, . . . , α

i
ni
} with n = n1 + n2, thus

α1∗· · ·∗αn = α
1
1∗· · ·∗α

1
n1
∗α2

1∗· · ·∗α
2
n2

. Moreover,Φ2
∼(s, h) = ⊤ iff card(dom(h)) > n, i.e.,

iff card(dom(hi)) > ni for some i ∈ {1, 2}, thus Φ2
∼(s, hi) = Φ2

∼(s, h1) ∗ Φ2
∼(s, h2) (up of

neutrality of emp and contraction of⊤). Consequently,Φ∼(s, h) = Φ∼(s, h1)∗Φ∼(s, h2) =
Φ1 ∗Φ2 = Φ andA ▷ (s, h).

Assertion 2. LetA = (V,∼, A,R, Φ, ∆) andA \ {x} = (V \ {x},∼′, A′,R′, Φ′, ∆′).

– If s(x) = s(y) for some y ∈ (V \ {x} ∪ C then A′, R′, Φ′ and ∆′ are identical to A, R,
Φ and ∆, up to the replacement of the variable x by y↓∼, and it is straightforward to
check that all the conditions of Def. 4.6 hold. ThusA \ {x} ▷ (s′, h).

– Now assume that s(x) < s((V \ {x}) ∪ C). This entails that u ↓∼= u ↓∼′ for all terms
u ∈ (V \ {x}) ∪ C. We show that all the conditions of Def. 4.6 hold.
1 As A ▷ (s, h), we have dom(s) = V ∪ C. By definition dom(s′) = dom(s) \ {x} =

(V ∪ C) \ {x} = (V \ {x}) ∪ C.
2 For all u, v ∈ (V \ {x}) ∪ C, we have u ∼ v ⇐⇒ s(u) = s(v), (as A ▷ (s, h)).

Moreover u ∼ v ⇐⇒ u ∼′ v (as ∼′ is the restriction of ∼ to pairs not containing
x), and, since s′ is the restriction of s to variables other than x, s(u) = s′(u) and
s(v) = s′(v). Thus u ∼′ v ⇐⇒ s′(u) = s′(v).

3 Let u be a ∼′-normalized term in (V\{x})∪C. Then u ∈ V∪C and u is ∼-normalized
(since s(x) < (V \ {x}) ∪ C), hence u ∈ A ⇐⇒ s(u) ∈ dom(h). As u , x,
u ∈ A′ ⇐⇒ u ∈ A and s′(u) = s(u). Consequently u ∈ A′ ⇐⇒ s′(u) ∈ dom(h).

4 We prove in the same way that for all ∼′-normalized terms of sort loc u ∈ (V \
{x}) ∪ C, u ∈ R′ ⇐⇒ ∃ℓ ∈ dom(h) s.t. s′(u) ∈ h(ℓ).

5 It is clear that all atoms in Φ1
∼(s′, h) also occur in Φ1

∼(s, h), since s′ is a restriction
of s and u↓∼= u↓∼′ for all terms in (V \ {x}) ∪ C. If Φ1

∼(s′, h) = Φ1
∼(s, h), then by

Def. 4.4 we also haveΦ2
∼(s′, h) = Φ2

∼(s, h), so thatΦ∼(s′, h) = Φ∼(s, h). Otherwise,
we must have Φ2

∼(s′, h) = ⊤, so that Φ∼(s′, h) may be obtained from Φ∼(s, h) (up
to contraction ⊤ ∗ ⊤ = ⊤) by replacing all atoms containing x by ⊤.

6 Let ϕ ∈ AD
∼′

(V \ {x}). Then we have ϕ ∈ AD
∼ (V), thus ϕ ∈ ∆ ⇐⇒ (s, ∅) |=R ϕ. As

x < fv(ϕ), we get (s, ∅) |=R ϕ ⇐⇒ (s′, ∅) |=R ϕ and ϕ ∈ ∆ ⇐⇒ ϕ ∈ ∆′, so that
ϕ ∈ ∆′ ⇐⇒ (s′, ∅) |=R ϕ.

D Proof of Lemma 5.5

A∗
R

(ϕ,W) ⊆ AR(ϕ,W)

We need to establish a stronger inductive lemma, formalized as follows.

Lemma D.1. A store s is compatible with a set of variables V, an E-relation ∼ and a set
of ∼-normalized data atoms ∆ if the three following conditions hold: (i) dom(s) = V∪C;
(ii) for all x, y ∈ V ∪ C, x ∼ y ⇐⇒ s(x) = s(y); and (iii) for all ψ ∈ AD

∼ (V),
(s, ∅) |=R ψ ⇐⇒ ψ ∈ ∆.

For every abstraction A = (V,∼, A,R, Φ, ∆) ∈ A∗
R

(ϕ,V) and every store s compati-
ble with V,∼ and ∆, there exists a heap h such that (s, h) |=R ϕ andA ▷ (s, h).



Lem. D.1 entails that A∗
R

(ϕ,W) ⊆ AR(ϕ,W). Indeed, if an abstraction A = (V,∼
, A, ,R, Φ, ∆) is in A∗

R
(ϕ,W) then necessarily V =W and ∆ is consistent w.r.t. ∼ and

V , thus there exists a store s such that for all α ∈ AD
∼ (V): (s, ∅) |=R α ⇐⇒ α ∈ ∆. As ∆

is ∼-normalized, this store may be transformed into a store ŝ compatible withW,∼ and
∆ by letting: ŝ(x) = s(x↓∼), for all terms x ∈ W∪C. By Lem. D.1, we deduce that there
exists a heap h such that (ŝ, h) |=R ϕ andA ▷ (ŝ, h), so thatA ∈ AR(ϕ,W) by definition.

Proof (of Lemma D.1). The proof is by induction on A∗
R

(ϕ,V). We distinguish several
cases, according to the rule in Fig. 1 used to derive the conclusionA ∈ A∗

R
(ϕ,V).

– Assume that ϕ = emp, A = R = ∅, Φ = emp, with ∆ ⊆ AD
∼ (V) and ∼∈ E(V). Taking

h = ∅, we get (s, h) |=R ϕ. Moreover, by Def. 4.4 Φ∼(s, h) = emp, so thatA ▷ (s, h) by
Def. 4.6 (as dom(h) = ∅).

– Assume that ϕ = ψ ∧ (x ≃ y) and A ∈ A∗
R

(ψ,V), with ∆ ⊆ AD
∼ (V), ∼∈ E(V) and

x ∼ y. By the induction hypothesis, there exists a heap h such that (s, h) |=R ψ and
A ▷ (s, h). As ∼∈ E(V) and s is compatible with ∼, we also have (s, h) |=R x ≃ y, so
that (s, h) |=R ϕ.

– The proof is similar if ϕ is of the form ψ ∧ x ̸≃ y or ψ ∧ α where α is a data literal.
– Assume that ϕ = x0 7→ (x1, . . . , xn), A = {x0 ↓∼}, R = {xi ↓∼| i ∈ {1, . . . , n}, sort(xi) =
loc} and Φ = x0 ↓∼ 7→ (x1 ↓∼, . . . , xn ↓∼). Let h = {(s(x0), . . . , s(xn))}. By defini-
tion, (s, h) |=R ϕ. Moreover, by Def. 4.4 we have Φ∼(s, h) = s(x0 ↓∼) 7→ (s(x1 ↓∼
, . . . , s(xn ↓∼)) = ϕ↓∼, dom(h) = {s(x0)} = s(A), and {x ∈ V ↓∼| ∃ℓ ∈ dom(h) s.t. s(x) ∈
h(ℓ)} = s(R). ThusA ▷ (s, h).

– Assume that ϕ = ∃x ϕ′,A = A′ \ {x}, withA′ = (V ′,∼′, A′,R′, Φ′, ∆′) ∈ A∗
R

(ψ,V ∪
{x}). We first construct an extension ŝ of s to {x} that is compatible with ∼′ and
∆′. This is straightforward if x is of sort loc, as L is infinite: if x ∼ y for some
y , x then we let ŝ(x) = s(y), otherwise, ŝ(x) is some arbitrary chosen location
not occurring in the image of s. If x is of sort data, we assume that ŝ does not
exist and we derive a contradiction. The assumption entails that (s, ∅) falsifies the
formula ψ = ∃x

∧
ρ∈∆′ ρ ∧

∧
ρ∈AD

∼ (V ′)\∆′ ¬ρ. As A′ is an abstraction, ∆ is necessarily
consistent w.r.t. V ′,∼′, hence ψ admits a model (s′, ∅). By Assumption 3, there exists
a formula ψ′ that is equivalent to ψ and contains no quantifier, with fv(ψ′) ⊆ fv(ψ).
By definition, ψ′ only contains atoms in AD

∼ (V). Since s is compatible with V,∼, ∆,
(s, ∅) and (s′, ∅) coincide on all atoms in AD

∼ (V), which entails that (s, ∅) |=R ψ′,
i.e., (s, ∅) |=R ψ, which contradicts our assumption. Thus ŝ necessarily exists. By the
induction hypothesis, this entails that there exists a heap h such that (ŝ, h) |=R ϕ′ and
A′ ▷ (ŝ, h). Then (s, h) |=R ϕ, and by Lem. 5.3 (2),A ▷ (s, h).

– Assume that ϕ = ϕ1 ∗ ϕ2, with Ai = (Vi,∼i, Ai,Ri, Φi, ∆i) ∈ A∗R(ϕi,V) (for all i ∈
{1, 2}) and A = A1 ∗ A2. Note that since A1 ∗ A2 is defined we must have Vi = V ,
∼i=∼, ∆i = ∆ and A1 ∩ A2 = ∅. By the induction hypothesis, there exist heaps hi (for
all i ∈ {1, 2}) such that (s, hi) |=R ϕi, andAi ▷ (s, hi). By renaming locations if needed,
we may assume that h1 and h2 share no location, other than those in the image of s.
As A1 ∩ A2 = ∅, and Ai = {x↓∼| s(x) ∈ dom(hi)} (by Cond. 3 in Def. 4.6)), this entails
that h1 and h2 are disjoint. By Lem. 5.3 (1) we getA ▷ (s, h1 ∪ h2).

– Assume that ϕ = ϕ1 ∨ ϕ2, withA ∈ A∗
R

(ϕi,V) (for some i ∈ {1, 2}). By the induction
hypothesis there exists a heap h such that (s, h) |=R ϕi andA ▷ (s, h). This entails that
(s, h) |=R ϕ hence the proof is completed.



– Assume that ϕ is a spatial predicate atom, ϕ {R ψ, and A ∈ A∗
R

(ψ,V). Then there
exists a heap h such that (s, h) |=R ψ and A ▷ (s, h). This entails that (s, h) |=R ϕ thus
the proof is completed.

AR(ϕ,W) ⊆ A∗
R

(ϕ,W)

LetA = (V,∼, A, ,R, Φ, ∆) ∈ AR(ϕ,V). By definition, there is a structure (s, h) such that
(s, h) |=R ϕ, A ▷ (s, h) and dom(s) = V ∪ C. By definition of the semantics of inductive
predicates, there is a (minimal) natural number κ(ϕ) such that ϕ {κ(ϕ)

R
ϕ′, ϕ′ contains

no spatial predicates and (s, h) |=R ϕ′. We show thatA ∈ A∗
R

(ϕ,V) by induction on the
pair (κ(ϕ), |ϕ|). We distinguish several cases according to the form of ϕ.

– If ϕ = emp, then by definition h = ∅. AsA ▷ (s, h), we get, by Def. 4.6, A = R = ∅,
and Φ = Φ∼(s, ∅) = emp. ThenA ∈ A∗

R
(ϕ,V) using the first rule in Fig. 1.

– If ϕ is a points-to atom x0 7→ (x1, . . . , xn), then by definition h = (s(x0), . . . , s(xn)).
As A ▷ (s, h), s is compatible with ∼, hence s(xi ↓∼) = s(xi) (for all i ∈ {0, . . . , n}).
Thus h = (s(x0 ↓∼), . . . , s(xn ↓∼)). Moreover, A = {x0 ↓∼} and R = {xi ↓∼| i ∈
{1, . . . , n}, sort(xi) = loc}. By Def. 4.4, we have Φ∼(s, h) = x0 ↓∼ 7→ (x1 ↓∼
, . . . , xn ↓∼), so thatA ∈ A∗

R
(ϕ,W) using the second rule in Fig. 1.

– if ϕ is of the form ψ∧ x ≃ y, then (s, h) |=R ψ (with κ(ψ) = κ(ϕ) as no inductive rule
applies on x ≃ y), {x, y} ⊆ dom(s) and s(x) = s(y). Since A ▷ (s, h), this entails that
(by Def. 4.6) that x ∼ y. By the induction hypothesis, we deduce thatA ∈ A∗

R
(ϕ,W)

so thatA ∈ A∗
R

(ϕ,W) using the third rule in Fig. 1.
– The proof is similar if ϕ = ψ ∧ α and α is a disequation (using the fourth rule in

Fig. 1) or a data literal (using the fifth or sixth rule depending on the sign of α).
– Assume that ϕ = ∃xψ. There exists a formula ϕ′ with no inductive predicate such

that ϕ {κ(ϕ)
R

ϕ′ and (s, h) |=R ϕ. This entails that ψ {κ(ϕ)
R

ψ′ with ϕ′ = ∃xψ′, and
there exists an extension ŝ of s to {x} such that (ŝ, h) |=R ψ′, hence (ŝ, h) |=R ψ. Let
A′ be the (necessarily unique, if the representative of each variable is fixed) abstrac-
tion such thatA′▷(ŝ, h). By the induction hypothesis, we haveA′ ∈ A∗

R
(ψ,W∪{x}),

so thatA′ \ {x} ∈ A∗
R

(ϕ,W) using the seventh rule in Fig. 1. By Lem. 5.3 (2) we get
A′ \ {x} ▷ (s, h), and using the unicity of the abstraction of a structure, we deduce
thatA = A′ \ {x}, henceA ∈ A∗

R
(ϕ,W).

– Assume that ϕ = ϕ1 ∗ϕ2. Then there exist heaps h1, h2 such that (s, hi) |=R ϕi (for all
i ∈ {1, 2}) and h = h1 ∗ h2. It is clear that κ(ϕ) = κ(ϕ1) + κ(ϕ2), so that κ(ϕi) ≤ κ(ϕ)
for all i ∈ {1, 2}. LetAi be be the abstraction of (s, hi). By the induction hypothesis,
we have Ai ∈ A

∗
R

(ϕi,W), so that A1 ∗ A2 ∈ A
∗
R

(ϕ,W) using the eighth rule in
Fig. 1. Using Lem 5.3 (1) and the unicity of the abstraction of (s, h), we deduce that
A ∈ A∗

R
(ϕ,W).

– Assume that ϕ = ϕ1 ∨ ϕ2. Then (s, hi) |=R ϕi, for some i ∈ {1, 2}. We get A ∈
A∗
R

(ϕi,W), so thatA ∈ A∗
R

(ϕ,W) by the penultimate rule in Fig. 1.
– Assume that ϕ is a spatial predicate atom. Then there exists a formula ψ such that
ϕ {R ψ, with (s, h) |=R ψ and κ(ψ) = κ(ϕ) − 1. This entails, by the induction
hypothesis, thatA ∈ A∗

R
(ψ,W), so thatA ∈ A∗

R
(ϕ,W), using the last rule in Fig. 1.


	An EXPTIME-complete entailment problem in separation logic 

