
HAL Id: hal-04618309
https://hal.science/hal-04618309v1

Submitted on 20 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some techniques for reasoning automatically on
co-inductive data structures

Nicolas Peltier

To cite this version:
Nicolas Peltier. Some techniques for reasoning automatically on co-inductive data structures. Journal
of Logic and Computation, 2024, 34 (3), pp.429-464. �10.1093/LOGCOM/EXAD028�. �hal-04618309�

https://hal.science/hal-04618309v1
https://hal.archives-ouvertes.fr

Some Techniques for Reasoning Automatically on

Co-Inductive Data Structures

Nicolas Peltier
Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France

Abstract

Some techniques are proposed for reasoning on co-inductive structures.
First, we devise a sound axiomatization of (conservative extensions) of
such structures, thus reducing the problem of checking whether a for-
mula admits a co-inductive model to a first-order satisfiability test. We
devise a class of structures, called regularly co-inductive, for which the ax-
iomatization is complete (for other co-inductive structures, the proposed
axiomatization is sound, but not complete). Then, we propose proof cal-
culi for reasoning on such structures. We first show that some of the
axioms mentioned above can be omitted if the inference rules are able to
handle rational terms. Furthermore, under some conditions, some other
axioms may be replaced by an additional inference rule that computes
the solutions of fixpoint equations. Finally, we show that a stronger com-
pleteness result can be established under some additional conditions on
the signature.

1 Introduction

In automated reasoning, a lot of attention has been given to the handling of
inductive data structures, i.e., of structures defined as the least fixpoint of some
monotonic operator. Standard approaches use rewriting techniques [7, 8, 10, 16]
and more recent works combine inductive reasoning with efficient proof proce-
dures such as the superposition calculus [13, 14, 17] or SMT-solving [15, 24].
Cyclic proof systems are also used [9]. Comparatively, the problem of reason-
ing automatically on co-inductive structures did not receive as much attention.
Co-induction (see, e.g., [25]) is dual to induction and allows one to reason on
structures defined as the greatest fixpoint of an operator, such as streams or in-
finite trees. Co-inductive structures are usually defined by considering a specific
set of function symbols called constructors and allowing for infinite terms built
on such constructors. Such structures are ubiquitous in mathematics and com-
puter science. We briefly mention some existing approaches (with no pretension
to exhaustivity). Co-inductive datatypes have been integrated in proof assis-
tants such as Isabelle/HOL (see for instance [5]). The theorem prover CVC4
[4] and the program verification tool Dafny [19] both offer some support for
reasoning on co-inductive datatypes. Co-induction can be integrated in logical
calculi by using suitable explicit co-induction schemes [23] and/or cyclic proof
systems [12]. Cyclic co-inductive proof systems have also been considered in
rewrite logic [21]. Co-induction is also useful in logic programming: in [26],

1

logic programs combining induction and co-induction are considered, and in [1]
a language for programming with infinite structures defined by observations is
proposed and its operational semantics is defined.

While most existing approaches to automatize co-inductive reasoning devise
specific inference rules and proof procedures, the approach we investigate in the
present paper is different: it consists in reducing co-inductive reasoning to first-
order reasoning. The goal is to allow for the combination of co-induction with
standard logical reasoning and to enable the use of the most efficient systems de-
veloped for first-order theorem proving. The approach is related to that of [22],
in which a complete first-order axiomatization of infinite trees is introduced, but
our framework is more general, as it allows for defined functions and predicates.
We emphasize that we do not aim at capturing co-inductive reasoning in its full
generality: our aim is only to make theorem provers able to handle infinite data
structures, where the equality predicate is defined co-inductively.

Our approach is similar to that of [6], in which axioms and superposition-
related inference rules are proposed to reason on co-inductive data structures.
However, the axioms and rules in [6] only capture some specific properties of co-
inductive data structures (listed in Section 3.5), in particular the fact that every
fixpoint equation (defined on constructors) admits a unique solution. The proof
procedure in [6] is complete only w.r.t. these properties. It is not always able,
for instance, to prove that two bisimilar terms (i.e., two terms that agree on all
positions) are equal. For example, if c denotes a constructor, then the procedure
is able to derive the equality a ≈ b from the axioms {a ≈ c(a, a), b ≈ c(b, b)},
by detecting that a and b are both solutions of the same fixpoint equation
x ≈ c(x, x), which entails that these two terms must be equal, but it is not
able to derive the same equality from the set of axioms {a ≈ c(a, b), b ≈ c(b, a)},
although it is clear that the axioms entail that a and b are bisimilar terms, hence
they should be equal by the co-induction principle. Such an equality can only
be established by mutual co-induction.

In this paper, we devise new techniques for reasoning on co-inductive struc-
tures that capture additional properties of these structures (compared with [6])
and in particular that are able to infer that bisimilar terms are equals. We focus
on finitely branching trees, and we design a finite axiomatization of conserva-
tive extensions of co-inductive structures, and we prove that it is sound and
complete w.r.t. a class of structures that we call regularly co-inductive. This
result allows one to reduce the problem of checking that a formula admits a
regularly co-inductive interpretation to a first-order satisfiability check, which
can be performed by any first-order theorem prover. The proposed axiomatiza-
tion can also be used to reason on co-inductive structures that are not regularly
co-inductive. In this case, it is sound, but not complete (no complete first-order
axiomatization exists for co-inductive structures, see Proposition 46). We prove
that the obtained proof procedure is strictly more general than that of [6], in
the sense that there exist formulas that cannot be proven using the axioms and
inference rules in [6], but that can be established using the axioms proposed in
the present work. Conversely, the structures we consider fulfill all the axioms in
[6] (with the exception of the axiom stating that the domain is infinite, which
may be falsified in some trivial cases).

Building on these results, we then define resolution-based proof calculi for co-
inductive reasoning. The idea is to replace some of the previously defined axioms
by suitable inference rules. First, we prove that, if the unification algorithm is

2

able to cope with rational terms, then some of the axioms may be omitted –
namely those asserting the existence of an interpretation for each rational term.
Second, if every constructor admits at most one argument of some co-inductive
sort (which entails that all infinite terms admit at most one infinite branch) then
the axioms asserting the unicity of the interpretation of a rational term can also
be omitted and replaced by a new inference rule that computes the solution of
fixpoint equations. Finally, we identify a class of formulas for which satisfiability
for co-inductive and regularly co-inductive structures coincides, which increases
the applicability of the proposed approach.

2 Formulas with Infinite Terms

In the present section, we define the syntax and semantics of infinite terms and
formulas built on them. We also devise conditions on interpretations ensuring
that such terms can be associated with a unique value.

2.1 Syntax

We recall some necessary definitions about infinite terms1. Let S be a finite
set of sort symbols, partitioned into two sets: S = Sci ∪ Sst, with Sci ∩ Sst = ∅.
The symbols in Sci and Sst are the co-inductive sorts and the standard sorts,
respectively. Let Σ be a finite set of function symbols (signature). Each symbol
in Σ is associated with a unique profile in S+. We write f : s1, . . . , sn → s (with
s1, . . . , sn, s ∈ S) to state that the profile of f is (s1, . . . , sn, s). The natural
number n is the arity of f and is denoted by #(f), and s is its co-domain. A
function of arity 0 is called a constant symbol. Let C be a set of constructors,
such that C ⊆ Σ and the co-domain of each symbol c ∈ C is in Sci. Without loss
of generality, we assume (by reordering arguments if needed) that the profile of
every constructor c is of the form s1, . . . , sn, s

′
1, . . . , s

′
m → s, with n ≥ 0, m ≥ 0,

{s1, . . . , sn} ⊆ Sci and {s′1, . . . , s′m} ⊆ Sst. The number n is denoted by #ci(c)
(note that #ci(c) ≤ #(c) = n +m). We assume that there exists at least one
sort s ∈ Sci with two distinct constructors of co-domain s (this assumption is for
technical convenience only and simplifies the proof of Theorem 26 as explained
in footnote 4; it can be enforced if needed by adding a fresh sort symbol s and
two distinct constructors c :→ s and d :→ s). Let V be a set of variables. Each
variable is associated with a unique sort symbol s and we denote by Vs the set
of variables of sort s.

A position is an element of N∗. We denote by |p| the length of the position
p, by ε the empty position and by p.q the concatenation of the positions p and
q. For any i, j ∈ N ij denotes the position i.i (j times). If p and q are
(possibly infinite) sequences, we write p ⪯ q (resp. p ≺ q) to state that p is a
prefix (resp. a strict prefix) of q.

Terms are (possibly infinite) trees labeled by function symbols or variables,
and satisfying some syntactic conditions. Formally, they can be viewed as func-
tions mapping positions to symbols (this approach is standard, see for instance
[11]):

1Some more abstract formulations are possible, however, they do not suit our purposes,
since our goal is to eventually define rules operating on concrete terms.

3

Definition 1 (Term). A term t is a partial function from N∗ to Σ∪V satisfying
the following conditions:

• The domain of t is closed under prefixes, i.e., if p ∈ dom(t) and q ⪯ p
then q ∈ dom(t).

• If t(p) = f ∈ Σ then: p.i ∈ dom(t) ⇐⇒ i ∈ {1, . . . ,#(f)}.

Let sort t be the total function of domain dom(t) defined as follows: sort t(p)
def
= s

if t(p) ∈ Vs or if t(p) is a function of co-domain s. The term t is well-typed
if, for every position p such that t(p) = f : s1, . . . , sn → s and for every
i ∈ {1, . . . ,#(f)}, we have sort t(p.i) = si. If t is well-typed then sort t(ε) is
called the sort of t.

A branch in t is a (possibly infinite) sequence of natural numbers π such
that, for every position p: p ⪯ π =⇒ p ∈ dom(t), and π ≺ p =⇒ p ̸∈ dom(t).

A term t is ground if t(p) ̸∈ V holds for all p ∈ dom(t), finite iff dom(t)
is finite, and admissible if non-constructor functions occur only finitely often
along all branches in the term, i.e., for every infinite branch π in t, there exists
a position p ≺ π such that, for every position q: p ⪯ q ≺ π =⇒ t(q) ∈ C.
Note that every finite term is admissible. A term t is called a constructor term
if for all p ∈ dom(t): t(p) ∈ C ∪ V. A position p is a constructor position in t
if t(q) ∈ C for all q ≺ p.

Example 2. Let t be the term such that dom(t) = {2i, 2i.1 | i ∈ N}, t(22×i) = c,
t(22×i+1) = d, t(22×i.1) = x, and t(22×i+1.1) = a (with c, d ∈ C). We have
t = c(x, d(a, t)), and this term may be depicted graphically as follows:

c

x d

a

If a ̸∈ C, then ε, 2, 2.2, . . . are constructor positions in t (but not 1 or 2.1).

The following definition is useful to define the notion of a subterm:

Definition 3. For every function f mapping positions to some codomain and
for every position p ∈ dom(f), we denote by f |p the function defined as follows:

dom(f |p)
def
= {q | p.q ∈ dom(f)} and for every q ∈ dom(f |p): f |p(q)

def
= f(p.q).

Proposition 4. If t is a well-typed term and p ∈ dom(t), then t|p is a well-typed
term, and sort t|p = sort t|p. In particular, t|p is of sort sort t(p).

Proof. Immediate.

We shall silently assume, in the remainder of the paper, that all the consid-
ered terms are admissible and well-typed.

4

Definition 5. A term t is a subterm of a term s if t = s|p, for some position
p ∈ dom(s). It is proper if p ̸= ε. The term s is rational if it admits finitely
many pairwise distinct subterms, in which case we denote by size(s) the number
of pairwise distinct subterms in s.

Example 6. The term t of Example 2 has 4 subterms: t, x, a and the term
s = t|2 = d(a, c(x, s)) that can be depicted as follows:

d

a c

x

We have size(t) = size(s) = 4 and size(x) = size(a) = 1.

A term may be a proper subterm of itself, in which case it is necessarily
infinite. The set of ground rational admissible terms of sort s is denoted by T g

s .

Let T g def
=

⋃
s∈S T g

s . As usual, we denote by t[s]p the term obtained from t by
replacing the subterm at position p by s, formally defined as follows.

Definition 7. For all functions t, s mapping positions to symbols and for ev-
ery position p ∈ dom(t), we denote by t[s]p the function defined as follows:
dom(t[s]p) = {q ∈ dom(t) | p ̸⪯ q} ∪ {p.q | q ∈ dom(s)}; t[s]p(q) = t(q) if
q ∈ dom(t) and p ̸⪯ q; and t[s]p(p.q) = s(q) if q ∈ dom(s).

Proposition 8. If t, s are well-typed terms, p ∈ dom(t) and sorts(ε) = sort t(p)
then t[s]p is a well-typed term, and sort t[s]p = sort t[sorts]p.

Proof. Immediate.

As usual, if ti is a term of sort si (for i = 1, . . . , n) and f : s1, . . . , sn →
s, then f(t1, . . . , tn) denotes the term t such that dom(t)

def
= {ε, i.p | i ∈

{1, . . . , n}, p ∈ dom(ti)}, t(ε)
def
= f , and for all i = 1, . . . , n and p ∈ dom(ti):

t(i.p)
def
= ti(p). It is clear that t|i = ti.

We assume that Sst contains a special sort bool such that there is no function
f : s1, . . . , sn → s with si = bool for some i = 1, . . . , n. If f : s1, . . . , sn → bool

then f is called a predicate symbol. We assume that the signature contains one
symbol ≈s: s, s → bool for each s ∈ S \ {bool}, used in infix notation. The
index is often omitted, i.e., if t and s are two terms of sort s, then we write
t ≈ s instead of t ≈s s.

Definition 9 (Formulas). The set of formulas is inductively defined as follows:
a formula is either a term of sort bool (called an atom), or an expression of the
form (ϕ1 ∨ ϕ2), ¬ϕ or ∃x.ϕ, where ϕ1, ϕ2, ϕ are formulas, and x is a variable.
As usual ∀x.ϕ, ϕ1 ∧ ϕ2, ϕ1 ⇒ ϕ2, and ϕ1 ⇔ ϕ2 are shorthands for ¬∃x. ¬ϕ,
¬(¬ϕ1 ∨¬ϕ2), ¬ϕ1 ∨ϕ2, and (ϕ1 ⇒ ϕ2)∧ (ϕ2 ⇒ ϕ1), respectively. A formula is
finite (resp. rational) if it contains no infinite (resp. irrational) term.

In practice input formulas will usually be finite. Infinite rational formulas
will be produced from finite ones by the inference rules in Section 4.

5

2.2 Semantics

We define the semantics of the language and we introduce restricted classes
of interpretations, called (regularly) co-inductive. Informally, a (regularly) co-
inductive structure interprets constructors as injective functions with disjoint
ranges, and fulfills additional conditions ensuring that every (rational) term can
be associated with a unique value.

Definition 10. An interpretation I is a function mapping every sort symbol
s to a non empty set sI (with boolI = {⊤,⊥}), every variable x ∈ Vs to
an element xI of sI and every function symbol f : s1, . . . , sn → s to a total
function fI from sI1 , . . . , s

I
n to sI , where ≈Is is the equality on s, i.e., ≈Is =

{(ζ, ζ) | ζ ∈ sI}. If t is finite, then we denote by [t]I the value of the term t in
I, defined inductively on t, as usual. An interpretation I ′ is an associate of I
if I and I ′ coincide on all symbols except (possibly) on variables.

Infinite terms will be interpreted as the solutions of (mutual) fixpoint equa-
tions, for instance the interpretation of the infinite term t such that t = c(t) is
the fixpoint of the function cI . To ensure that the interpretation is well-defined,
we need to ensure that all such equations admit a unique solution. This moti-
vates the following definition.

Definition 11. Let I be an interpretation and let t be a term. A labeling
function for t w.r.t. I is a function µ mapping every position p ∈ dom(t) to an
element of sort t(p)

I satisfying the following conditions, for every p ∈ dom(t):

1. t(p) ∈ V =⇒ µ(p) = t(p)I (note that t(p)I is defined since t(p) is a
variable);

2. t(p) = f : s1, . . . , sn → s =⇒ µ(p) = fI(µ(p.1), . . . , µ(p.n)) (by Defini-
tion 1, p.i ∈ dom(t), for all i = 1, . . . , n).

It is regular if it satisfies, moreover, the following property:

3. For every subterm s of t, the set {µ(p) | t|p = s} is finite.

It is easy to check that every finite term admits exactly one labeling function
(w.r.t. every interpretation), which may be defined by induction on the position,
using Conditions 1 and 2 in Definition 11, and that this function is trivially
regular. The rôle and the importance of Condition 3 will be discussed in Section
5. We will show that completeness cannot be obtained if this condition is
removed, except if the signature satisfies some additional conditions.

Example 12. Let t = c(x, t) be an infinite term with c : s, s→ s ∈ C. Let I be
the interpretation with sI = Z, cI(x, y) = x + y and xI = 0. Then dom(t) =
{2i.1, 2i | i ≥ 0} with t|2i = t and t|2i.1 = x, and the function µ such that
µ(2i.1) = 0 and µ(2i) = 1 is a labeling function (since µ(2i.1) = xI and µ(2i.1)+
µ(2i.2) = 0+1 = µ(2i)). It is regular, as its range is finite. If J is an associate
of I such that xJ = 1, then t admits no regular labeling function. Indeed,
assume that such a function ν exists. We have ν(2i) = cI(ν(2i.1), ν(2i.2)) =
1 + ν(2i.2) > ν(2i+1), hence the set {ν(2i) | i ≥ 0} = {ν(ε) − i | i ≥ 0} is
infinite.

A labeling function for a term t defines a labeling function for every subterm
of t:

6

Proposition 13. Let t be a term and let µ be a (regular) labeling function for
t w.r.t. an interpretation I. For every p ∈ dom(t), the function µ|p (as defined
in Definition 3) is a (regular) labeling function for t|p.

Proof. Immediate.

Definition 14. An interpretation is C-normal if it satisfies the following con-
ditions:

1. For all constructors c, cI is injective.

2. The ranges of distinct constructors are disjoint: if c : s1, . . . , sn → s and
d : t1, . . . , tm → t are distinct constructors, then for all ζi ∈ sIi (for i =
1, . . . , n) and ξj ∈ tIj (for j = 1, . . . ,m), cI(ζ1, . . . , ζn) ̸= dI(ξ1, . . . , ξm).

3. All elements of co-inductive sorts must lie in the range of some construc-
tor, i.e., for all s ∈ Sci, and for all ζ ∈ sI , there exist c : s1, . . . , sn → s ∈
C and ζi ∈ sIi (for i = 1, . . . , n) such that ζ = cI(ζ1, . . . , ζn).

Definition 15. An interpretation I is co-inductive if it is C-normal and if, for
every (admissible, possibly non rational) term t and for every associate J of I,
there exists exactly one labeling function tJ for t w.r.t. J .

An interpretation I is regularly co-inductive if it is C-normal and if, for
every (admissible) rational term t and for every associate J of I, there exists
exactly one regular labeling function tJ for t w.r.t. J .

In both cases, the interpretation of the term t in I is then defined as follows:

[t]I
def
= tI(ε).

Proposition 16. All co-inductive interpretations are regularly co-inductive.

Proof. Let I be a co-inductive interpretation. Let t be an admissible regular
term and let J be an associate of I. By definition, there exists a unique labeling
function tJ for t w.r.t. J . Moreover, tJ is regular: indeed, for all subterms s
of t and for all positions p, q in t with t|p = t|q = s, by Proposition 13, tJ |p and
tJ |q are labeling functions for s, thus by unicity tJ (p) = tJ (q). Consequently,
the set {tJ (p) | t|p = s} is a singleton (hence is finite).

The converse of Proposition 16 does not hold (see Section 5). Note that the
definition of [t]I that is given in Definition 15 coincides with the usual one if t
is finite. A co-inductive interpretation associates a value to each (admissible)
term, and a regularly co-inductive interpretation interprets only rational terms.
We emphasize that a term may admit several labeling functions in a regularly
co-inductive interpretation, provided exactly one of them is regular (see Section
5 for more details). Any interpretation I on standard sorts can be extended
into a regularly co-inductive interpretation by interpreting terms of a sort in
Sci as rational terms defined on a signature containing all constructors and all
elements of the domain of I.

The truth value (⊤ or ⊥) of a formula ϕ in an interpretation I is denoted
by [ϕ]I and defined inductively as usual, with the proviso that rational formu-
las can be interpreted only in interpretations that are regularly co-inductive,
and arbitrary (i.e., not necessarily rational) formulas can be interpreted only in
co-inductive interpretations (finite formulas may be interpreted in all interpre-
tations):

7

• If ϕ = P (t1, . . . , tn) then [ϕ]I = ⊤ iff P I([t1]
I , . . . , [tn]

I) = ⊤.

• If ϕ = (ϕ1 ∨ ϕ2) then [ϕ]I = ⊤ iff [ϕi]
I = ⊤, for some i = 1, 2.

• If ϕ = ¬ψ then [ϕ]I = ⊤ iff [ψ]J = ⊥.

• If ϕ = ∃x.ψ then [ϕ]I = ⊤ iff there exists a associate J of I that coincides
with I on all variables other than x such that [ψ]J = ⊤.

We write I |= ϕ if [ϕ]J = ⊤ for every associate J of I.

Proposition 17. Let I be a regularly co-inductive interpretation. For every
rational term t = f(t1, . . . , tn) we have [t]I = fI([t1]

I , . . . , [tn]
I).

Proof. By definition, [t]I = µ(ε) where µ is the regular labeling function for t.
By Condition 2 in Definition 11, we deduce [t]I = fI(µ(1), . . . , µ(n)). Moreover,
by Proposition 13, µ|i is a regular labeling function for ti, thus µ(i) = µ|i(ε) =
[ti]
I . Hence [t]I = fI([t1]

I , . . . , [tn]
I).

3 Axiomatization

We devise a finite axiomatization of regularly co-inductive interpretations, thus
reducing the problem of determining whether a formula admits a regularly co-
inductive model to a standard satisfiability test in first-order logic.

3.1 New Symbols

The signature is extended as follows. We assume that the sets Sst and Σ contain
the following symbols, not occurring in the initial formula:

• two standard sort symbols nat and pos that are meant to denote natural
numbers and positions, respectively.

• two standard function symbols e :→ pos and ··· : nat, pos → pos that are
meant to denote the empty position and the cons operation of positions,
respectively.

• one predicate symbol ≪: pos, pos → bool, denoting the (strict) length
order on positions, and one constant symbol i for every i ∈ {1, . . . , N},
with N = max{#(c) | c ∈ C}.

• two predicate symbols Es : s, s → bool and Cs : s, s, pos → bool for
every sort s ∈ Sci. Es(x, y) states that x and y share the same head
constructor symbol and the same set of non co-inductive arguments, and
Cs(x, y, z) states that x and y are not bisimilar, i.e., that ¬Et(x

′, y′) holds
for terms x′, y′ of sort t occurring at position z in x and y, respectively.

• one sort symbol s̃ ∈ Sst and two functions λs : pos→ s̃ and τs : s→ s̃ for
every sort symbol s ∈ Sci, and one function c̃ : s̃1, . . . , s̃m, sm+1, . . . sn → s̃

for all c : s1, . . . , sn → s ∈ C, with m = #ci(c). Following a similar
approach as in [6], these function symbols will be used to encode con-
structor contexts. The term λ(p) denotes a “link” to the position p.
Intuitively, λ(p) will be eventually interpreted as the term occurring at

8

position p in the considered context, which will allow us to encode infinite
terms. The term τ(x) will denote a trivial constructor context that is
constantly identical to x. Let S̃ci = {s̃ | s ∈ Sci}. For instance, the term
c̃(λ(ε), c̃(λ(ε), τ(y))) will denote a context of the form c(x, c(x, y)), where
x is linked to the root of the term.

• a predicate symbol Ss,t : s, t, pos → bool for each pair of sorts {s, t} ⊆
Sci ∪ S̃ci, that is meant to denote the subterm relation, restricted to terms
of a sort in Sci ∪ S̃ci (i.e., Ss,t(x, y, z) holds iff y is a subterm of sort t

occurring at position z in x).

• one predicate symbol Vs : s̃, s→ bool, for all s ∈ Sci. Intuitively, V (x, y)
states that y is the value of the constructor term encoded by x, where
every occurrence of λ is interpreted arbitrarily (the interpretation of λ
will be specified later, see Axiom 13 below). For instance, the atom
V (c̃(λ(ε), c̃(λ(ε), τ(y))), c(x1, c(x2, y))) will hold, regardless of the value
of x1 and x2.

The symbols ··· and ≪ are written in infix notation. The symbols c̃ with c ∈ C
will sometimes be called “constructors”, although their co-domain is not in Sci.
As for ≈, the indices s, t in the above symbols will often be omitted, since they
can be recovered from the arguments. Let Ω be the set of symbols defined as
follows:

Ω
def
= {nat, pos, e, ···, λs, τs, s̃, c̃, i,≪, Ss,t, Es, Cs, Vs | s, t ∈ Sci, 1 ≤ i ≤ N, c ∈ C}

A term or a formula is Ω-independent if it contains no symbol in Ω and no term
of a sort in Ω.

3.2 Axioms

We denote by A the set of all formulas induced by schemata (1)-(14) below.
Free variables are implicitly universally quantified, and empty disjunctions and
conjunctions are always false and true, respectively. Axiom 1 states that the
constructors are injective.

c(x1, . . . , xn) ≈ c(y1, . . . , yn)⇒
n∧

i=1

xi ≈ yi (1)

for all constructors c : s1, . . . , sn → s, where xi, yi (1 ≤ i ≤ n) are pairwise
distinct variables of sort si.

Axiom 2 states that the range of the constructors are pairwise disjoint:

c(x1, . . . , xn) ̸≈ d(y1, . . . , ym) (2)

for all sorts s ∈ Sci and for all distinct constructors c : s1, . . . , sn → s, d :
t1, . . . , tm → s, where xi (1 ≤ i ≤ n) and yj (1 ≤ j ≤ m) are pairwise distinct
variables of sort si and tj .

Axiom 3 states that all the elements of the domain of a co-inductive sort are
in the range of some constructor.∨

c:s1,...,sn→s∈C
∃xc1 . . . ∃xcn. x ≈ c(xc1, . . . , xcn) (3)

9

for all s ∈ Sci, where x denotes a variable of sort s and xci are pairwise distinct
variables of sort si, also distinct from x.

Axiom 4 states that a position is either of the form e or i ··· y, for some
i = 1, . . . , N and Axiom 5 states that the cons operator on positions is injective
(x, y are distinct variables of sort pos).

x ≈ e ∨
N∨
i=1

∃y. x ≈ i ··· y (4)

j ··· x ̸≈ k ··· y ∧ (j ··· x ≈ j ··· y ⇒ x ≈ y)
(for all distinct numbers j, k in {1, . . . , N}) (5)

Note that the axiom e ̸≈ i ··· x is not needed2.
Axioms 6 and 7 define the semantics of S(x, y, z), by induction on z (i ranges

over {1, . . . ,#ci(c)} in Axiom 7 because we only consider subterms of a sort in
Sci).

S(x, y, e)⇔ x ≈ y (6)

for all sorts s ∈ Sci ∪ S̃ci, where x, y are distinct variables of sort s.

z ̸≈ e⇒

S(c(x1, . . . , xn), y, z)⇔ #ci(c)∨
i=1

∃w. (z ≈ i ··· w ∧ S(xi, y, w))

 (7)

for all sorts s, t ∈ Sci ∪ S̃ci and for all constructors c : s1, . . . , sn → s, where
x1, . . . , xn, y, z, w are pairwise distinct variables of sort s1, . . . , sn, t, pos, pos,
respectively.

Axiom 8 defines the semantics of ≪. The symbols x, y, z, w are pairwise
distinct variables of sort pos.

x≪ y ⇔

∃z.∃w
N∨
i=1

y ≈ i ··· z ∧ (x ≈ z ∨ x≪ z ∨
N∨
j=1

(x ≈ j ··· w ∧ w ≪ z))

 (8)

Intuitively, x ≪ y holds when x and y are of the form i1 ··· . . . ··· in ··· x′ and
j1 ··· . . . ··· jm ··· x′, respectively, with m > n. This axiom may seem a bit peculiar,
as we assume that x and y end with the same arbitrary position x′ rather than
with the empty position ε. This is required because non standard interpretations
exist, where positions are not interpreted as finite sequences. Consequently, one
cannot assume that all positions end with ε, and using a base case such that
x ≈ ε ∧ y ̸≈ ε would not be sufficient (see Examples 19 and 20).

Axioms 9 and 10 define the semantics of E and C, respectively3.

2Intuitively, positions are mainly used for defining the subterm relation S. The semantics
of S(x, y, e) is defined by Axiom 6 and Axiom 7 covers the inductive case. Since the latter
formula takes z ̸≈ e as an hypothesis, there cannot be any overlap between these two axioms.

3Note that it is not useful to specify the semantics of E(x, y) when x, y have distinct heads,
although we could assume that E(x, y) is false in this case. Indeed ¬E(x, y) will be used only
to prove that x ̸≈ y holds, but if x and y have distinct constructor heads, then the result is
immediate by Axiom 2.

10

E(c(x1, . . . , xn), c(y1, . . . , yn))⇔
n∧

i=1+#ci(c)

(xi ≈ yi) (9)

for all s ∈ Sci and for all constructors c : s1, . . . , sn → s, where xi, yi are pairwise
distinct variables of sort si (for i = 1, . . . , n).

C(x, y, z)⇔
∨

t∈Sci

∃xt,∃yt. (S(x, xt, z) ∧ S(y, yt, z) ∧ ¬E(xt, yt)) (10)

for every s ∈ Sci, where z is a variable of sort pos, x, y are pairwise distinct
variables of sort s and xt, yt are pairwise distinct variables of sort t, also distinct
from x, y.

Note that the subterms xi, yi of a sort in Sci are not taken into account
in Axiom 9. For instance, if c is a constructor of profile t → s with s, t ∈
Sci, and ζi = cI(ξi) (for all i = 1, 2), for some interpretation I and elements
ζ1, ζ2, ξ1, ξ2 then E

I(ζ1, ζ2) is true, regardless of the value of ξ1 and ξ2. Omitting
co-inductive arguments is essential to ensure that C properly axiomatizes non
bisimilarity. For instance, assume that d : s→ s is a constructor (with s ∈ Sci)
and consider an interpretation I with two distinct elements ζ ′1, ζ

′
2 such that

ζ ′i = dI(ζ ′i) (for all i = 1, 2). If co-inductive arguments were to be considered in
Axiom 9 then EI(ζ ′1, ζ

′
2) would be equivalent to ζ ′1 ≈ ζ ′2, hence would be false,

thus CI(ζ ′1, ζ
′
2, e) would be true (by Axiom 10). However, it is clear that ζ ′1 and

ζ ′2 are bisimilar.
Axiom 11 states that C(x, y, z) holds only if x and y are distinct.

C(x, y, z)⇒ x ̸≈ y (11)

for all s ∈ Sci, where z is a variable of sort pos, x, y are pairwise distinct variables
of sort s.

Axiom 12 gives the semantics of V , i.e., defines a mapping from the terms
encoding constructor contexts to terms in the initial signature:

V (x, y)⇔ ∃z.(x ≈ λ(z)) ∨ x ≈ τ(y)∨

(
∨

c:s1,...,sn→s∈C
∃xc1, . . . , xcn, yc1, . . . , ycn. (x ≈ c̃(xc1, . . . , xcn) ∧ y ≈ c(yc1, . . . , ycn)

∧
#ci(c)∧
i=1

V (xci , y
c
i) ∧

n∧
i=#ci(c)+1

xci ≈ yci)) (12)

for all sorts s ∈ Sci, where x, y, z are pairwise distinct variables of sorts s̃, s
and pos, and for all c : s1, . . . , sn → s, xci , y

c
i (1 ≤ i ≤ n) are pairwise distinct

variables (also distinct from x, y), yci is of sort si and x
c
i is of sort s̃i if i ≤ #ci(c)

and si otherwise.
Note that V (λ(x), y) always holds. The link to the position denoted by x is

expressed by Axiom 13. This axiom states that every infinite term has a value.
To this aim, we assert that all constructor contexts have a value y in which

11

every occurrence of λ(z) is interpreted as the term at position z in y:

∃y. V (x, y) ∧
∧

t∈Sci

∀z∀w∀xt∀yt∀y′t.(S(x, λ(z), w) ∧ S(y, yt, z) ∧ S(x, xt, z)∧

S(y, y′t, w)⇒ yt ≈ y′t) (13)

for all s ∈ Sci, where x and y are of sort s̃ and s, respectively, z, w are distinct
variables of sort pos, xt is a variable of sort t̃, distinct from x, and yt, y

′
t are

distinct variables of sort t, also distinct from y.
The atom S(x, xt, z) may seem redundant, but it is useful to ensure that z

is a finite position (see the proof of Theorem 26 for more details).
Finally, Axiom 14 states that distinct terms x, y of the same sort cannot be

bisimilar, which is expressed by asserting that there exists a position z such that
C(x, y, z) holds. We also assert that this position is a minimal one with respect
to the order ≪. This will allow us to simulate a form of inductive reasoning
(see Example 20 below and the proof of Theorem 30).

x ̸≈ y ⇒ ∃z. (C(x, y, z) ∧ ∀z′. (z′ ≪ z ⇒ ¬C(x, y, z)) (14)

for all s ∈ Sci, where x, y are pairwise distinct variables of sort s, z, z′ are
pairwise distinct variables of sort pos.

3.3 Examples

Before establishing the soundness and completeness of the axiomatization, we
provide examples of application. We first show how Axiom 13 can be used to
assert that a rational term has a value.

Example 18. Let c, d be constructors of profile s, s→ s. Let t = c(c(t, s), x) be
an infinite term, with s = d(s, t). This term is depicted graphically as follows:

c

c x

d

Let t′ be the finite term of sort s̃: t′ = c̃(c̃(λ(e), d̃(λ(p), λ(e))), τ(x)), with p =
1···2···e. The term t′ can be viewed as a representation of the infinite term t, where
the subterms λ(e) and λ(p) correspond to links to the subterms at positions ε
and 1.2, respectively. These links are intended to denote “loops” inside the term.
Let ζ ′ = [t′]I . By Axiom 13, if I is a model of A, then there exists an element
ζ such that V I(ζ ′, ζ) is true. By (several applications of) Axiom 12, this entails
that ζ is of the form cI(cI(ζ1, d

I(ζ2, ζ3)), x
I), for some elements ζ1, ζ2 and ζ3.

Let z = 1.1.e. By Axioms 6 and 7, SI(ζ ′, λ(e), zI), SI(ζ, ζ, eI) , SI(ζ ′, ζ ′, eI)
and SI(ζ, ζ1, z

I) must be true thus ζ = ζ1 (by the second part of Axiom 13).
Similarly, by letting z = 1.2.1.e and z = 1.2.2.e, respectively, we get ζ|1.2 = ζ2

12

and ζ = ζ3. This entails that ζ is a possible interpretation of the infinite term
t.

As shown in the proof of Lemma 29, the same idea can be applied to any
rational term. Next, we show how Axiom 14 can be used to assert that two
bisimilar terms are equal.

Example 19. Let t = c(t) be an infinite term. Let I be a model of A and
assume that there exist two distinct elements ζ1, ζ2 such that ζi = cI(ζi) (for
i = 1, 2), yielding two different values for the term t. By Axiom 14, as by
hypothesis ζ1 ̸= ζ2, there exists a minimal (w.r.t. ≪I) element ξ of sort pos
such that CI(ζ1, ζ2, ξ) holds. By Axiom 10, this entails that there exist ζ ′i such
that SI(ζi, ξ, ζ

′
i) is true (for all i = 1, 2) and EI(ζ ′1, ζ

′
2) is false. We exploit

the fact that ξ is minimal w.r.t. ≪I to derive a contradiction. This effectively
simulates an application of the induction principle on the set of positions:

• If ξ = eI , then, using Axiom 6, we get ζi = ζ ′i (for all i = 1, 2). Thus
EI(ζ1, ζ2) is false, which contradicts Axiom 9 (as ζ1 and ζ2 have the same
constructor head c and no non co-inductive argument).

• Otherwise, by Axiom 4, ξ must be of the form i ··· Iξ′, and by Axioms 5
and 7, necessarily i = 1 and SI(ζi, ξ

′, ζ ′i) must be true (as by hypothesis
ζi = cI(ζi)). Thus CI(ζ1, ζ2, ξ

′) is true, which contradicts the minimality
of ξ, as (by Axiom 8) ξ′ ≪I ξ.

The same idea is used in Lemma 28 to show that every rational term admits
at most one regular labeling function. We provide another example, that is
similar but slightly more complex.

Example 20. We show how the equation a ≈ b may be derived from a ≈ c(a, b)
and b ≈ c(b, a) using the above axioms (if c is a constructor). Assume that
a ≈ b does not hold. From Axiom 14, we deduce that there exists a ≪-minimal
element p such that C(a, b, p) holds. By Axiom 10, this entails that there exist
x, y such that S(a, x, p) and S(b, y, p) hold and E(x, y) does not hold. If p ≈ e
holds then we get (using Axiom 6) x ≈ a ≈ c(a, b) and y ≈ b ≈ c(b, a) thus
¬E(c(a, b), c(b, a)) which contradicts Axiom 9 (since #ci(c) = 2). Therefore
p ̸≈ e holds and (by Axiom 4) p is of the form i ··· q (for i ∈ {1, . . . , N}). Note
that by Axiom 8, q ≪ p holds. By Axioms 5 and 7, we have either i = 1 or
i = 2, and we derive (using the equations a ≈ c(a, b) and b ≈ c(b, a)): either
S(a, x, q) and S(b, y, q), or S(b, x, q) and S(a, y, q). By Axiom 10, this entails
in both cases that C(a, b, q) is true, which contradicts the minimality of p.

3.4 Soundness and Refutational Completeness

We now prove that the proposed axiomatization is sound and complete w.r.t.
regularly co-inductive interpretations, in the sense that a formula admits a reg-
ularly co-inductive model iff it admits a model in which all the above axioms
are true. Since all co-inductive interpretations are also regularly co-inductive,
the axiomatization is also sound for co-inductive interpretations, but it is not
complete w.r.t. those: if A∪ {ϕ} is unsatisfiable then ϕ admits no regularly co-
inductive interpretation (hence no co-inductive interpretation), and if A∪{ϕ} is
satisfiable, then ϕ admits a regularly co-inductive interpretation, that is possibly
not co-inductive.

13

We first extend the notations t(p) and t|p to elements of the domain of an
interpretation:

Definition 21. For every interpretation I satisfying Axioms 1 and 2, and for

every element ζ in the domain of I, ζ|p is inductively defined as follows: ζ|ε
def
= ζ,

ζ|i.p
def
= ξ, iff ζ = cI(ζ1, . . . , ζn) with c ∈ C, ξ = ζi|p and i = 1, . . . , n. Note that

ξ is well-defined since c is unique (by Axiom 2) and cI is injective (by Axiom
1), however the function p 7→ ζ|p is partial. We write ζ(p) = c if ζ|p is of
the form cI(ζ1, . . . , ζn). Note that this entails that ζ|p is of a sort in Sci. We
denote by dom(ζ) the set of positions such that ζ(p) is defined. An element ζ
is rational if the set of elements of the form ζ|p is finite. We write ζ ∼= ζ ′ if ζ
and ζ ′ are bisimilar, i.e., dom(ζ) = dom(ζ ′) and for every position p ∈ dom(ζ):
ζ(p) = ζ ′(p) and #ci(ζ(p)) < i ≤ #(ζ(p)) =⇒ ζ|p.i = ζ ′|p.i.

Proposition 22. Let I be an interpretation satisfying Axioms 1 and 2, and let
ζ be an element of the domain of I. If ζ(p) = c then ζ|p = cI(ζ|p.1, . . . , ζ|p.n).

Proof. The proof follows immediately from Definition 21.

Proposition 23. Let I be a regularly co-inductive interpretation. Let t be a
term and let p ∈ dom(t). [t]I |p = [t|p]I .

Proof. The proof is by an immediate induction on p (using Proposition 17).

Proposition 24. If I satisfies Axioms 1, 2 and 3 then for every element ζ of
the domain of I: p ∈ dom(ζ) iff ζ|p is defined and of a sort in Sci.

Proof. This is immediate, since Axiom 3 entails that ζ|p (if defined) must be of
the form cJ (ζ1, . . . , ζn) for some c ∈ C, thus ζ(p) = c.

We first prove that the axiomatization is sound. We need the following
lemma:

Lemma 25. Let I be an interpretation and let ζ, ζ ′ be distinct elements of the
domain of I. Assume that the set {ζ|p | p ∈ P} with P = {p | p ∈ dom(ζ)∧ (p ̸∈
dom(ζ ′) ∨ ζ|p ̸= ζ ′|p)} is infinite. There exists an infinite branch π such that,
for every position p ≺ π: p ∈ P , and |q| ≥ |p| holds for all positions q such that
ζ|q = ζ|p and ζ ′|q = ζ ′|p. Such a branch is called direct (for the pair (ζ, ζ ′)).

Proof. Note that P is closed under prefix. We first construct infinite sequences
of positions p0 ≺ p2 ≺ . . . and of infinite sets Γ0 ⊇ Γ2 ⊇ . . . of elements of
the domain of I, in such a way that the following invariant (⋆) is satisfied,
for every j ≥ 0: for every ξ ∈ Γj , there exists a position q(j, ξ) such that
pj .q(j, ξ) ∈ P , ζ|pj .q(j,ξ) = ξ, and |r| ≥ |pj | + |q(j, ξ)| holds for all positions

r ∈ P such that ζ|r = ξ. Initially, p0
def
= ε, Γj is the set of elements ξ such

that ξ = ζ|q for some position q ∈ P , and q(0, ξ) is any position of minimal
length in P such that ζ|q(0,ξ) = ξ. It is clear that ⋆ is satisfied for j = 0.
Now, assume that pj and Γj have been constructed and that ⋆ holds for j.
By definition, each position in q(j, ξ) (with ξ ∈ Γj) is either ε or of the form
i.q′(j, ξ), for some i ∈ {1 . . . N} and position q′(j, ξ). For every i = 1, . . . , N ,
we denote by Γi

j the set of elements ξ ∈ Γj such that q(j, ξ) = i.q′(j, ξ). Since

Γj is infinite, there exists i ∈ {1, . . . , N} such that Γi
j is infinite. We define:

pj+1
def
= pj .i, Γj+1

def
= Γi

j and q(j + 1, ξ)
def
= q′(j, ξ), for all ξ ∈ Γi

j . We now show

14

that property ⋆ holds for j + 1. Let ξ ∈ Γj+1. Since Γj+1 = Γi
j ⊆ Γj , we have

ξ ∈ Γj hence by the induction hypothesis we get ζ|pj .q(j,ξ) = ξ, pj .q(j, ξ) ∈ P
and ∀r ∈ P : ζ|r = ξ =⇒ |r| ≥ |pj | + |q(j, ξ)|. By definition, pj+1 = pj .i,

q(j, ξ) = i.q′(j, ξ) and q(j + 1, ξ)
def
= q′(j, ξ), thus we get ζ|pj .i.q′(j,ξ) = ξ, i.e.,

ζ|pj+1.q(j+1,ξ) = ξ, with pj+1.q(j + 1, ξ) ∈ P , and ∀r ∈ P : ζ|r = ξ =⇒ |r| ≥
|pj+1|−1+ |q′(j, ξ)|+1 = |pj+1|+ |q′(j, ξ)| = |pj+1|+ |q(j+1, ξ)|. Thus ⋆ holds.

Now consider the infinite branch π such that pj ≺ π, for all j ≥ 0 (such a
branch exists since pj ≺ pj+1, for all j ≥ 0). Note that we must have pj ∈ P ,
for all j ∈ N (otherwise we cannot have pj .q(j, ξ) ∈ P for any ξ ∈ Γj). Assume
that there exist positions p ≺ π and q such that ξ = ζ|p = ζ|q, ζ ′|p = ζ ′|q and
|q| < |p|. By definition, p = pj , for some j ≥ 0. Consider any element χ ∈ Γj .
By ⋆, we have ζ|pj .q(j,χ) = χ, thus, since ζ|pj

= ξ, we get ξ|q(j,χ) = χ, and
using the fact that ξ = ζ|q, we deduce: ζ|q.q(j,χ) = χ. Moreover q.q(j, χ) ∈ P , as
pj .q(j, χ) ∈ P , with ζ|pj = ζ|q, ζ ′|pj = ζ ′|q. Since χ ∈ Γj , this entails (by ⋆) that
|q.q(j, χ)| ≥ |pj |+ q(j, χ)|, i.e., |q| ≥ |pj |, which contradicts our assumption.

Theorem 26. (Soundness) For every Ω-independent rational formula ϕ, if ϕ
admits a regularly co-inductive model, then the set {ϕ} ∪ A is satisfiable.

Proof. We show that every regularly co-inductive model of ϕ may be extended
into a model of the above axioms. The proof is more involved than expected,
because interpreting the symbols in a “canonical” way (following the explana-
tions given above) is actually not sufficient. The positions and the subterm
relation must be interpreted in a non standard way. Indeed, to satisfy Axiom
14, we must ensure that for all distinct elements ζ, ζ ′, there exists a position p
such that ζ and ζ ′ differ at p. But finite positions satisfying this property do
not always exist, as the considered interpretation is not necessarily co-inductive:
ζ and ζ ′ may be bisimilar and distinct. As we will see, this is possible only if
at least one of the elements ζ, ζ ′ is rational, as otherwise I cannot be regularly
co-inductive. To overcome this issue, we add (for all bisimilar elements ζ, ζ ′

such that ζ or ζ ′ is not rational) a special position p in the domain, and we
assert that the subterms occurring at p in ζ and ζ ′ are κ0 and κ1, respectively,
where κ0 and κ1 are arbitrary elements with distinct constructor heads. This
special position will be defined as a tuple (0, ε, ζ, ζ ′). To understand the rôle of
the first two components, one needs to keep in mind that all the other axioms
must be fulfilled as well, in particular Axioms 4 and 7. By Axiom 4, the posi-
tion (0, ε, ζ, ζ ′) must correspond to some branch π = (i1, . . . , in, . . .) in both ζ
and ζ ′, and by Axiom 7, κ0 and κ1 must be subterms of ζ|i1,...,in and ζ ′|i1,...,in
(for all n ∈ N). The branch π must be infinite, as ζ, ζ ′ are bisimilar. We will
denote by (n, ε, ζ, ζ ′) the position of κ0 and κ1 in ζ|i1,...,in and ζ ′|i1,...,in respec-
tively, and we shall define the cons operation on positions in such a way that
in+1 ··· (n+1, ε, ζ, ζ ′) = (n, ε, ζ, ζ ′). We also define the relation SJ in such a way
that κ0 and κ1 occur in ζ|i1,...,in and ζ ′|i1,...,in at position (0, ε, ζ, ζ ′). However,
this is not sufficient to fulfill the axioms, as the cons operation must be defined
also for positions outside of the branch π, e.g., for the positions i.(n+1, ε, ζ, ζ ′),
with i ̸= in+1. To overcome this issue, we will make use of the second compo-
nent and define i ··· (n, ε, ζ, ζ ′) as (n, i, ζ, ζ ′), if i ̸= in+1. Similarly, i ··· (n, p, ζ, ζ ′)
will be defined as (n, i.p, ζ, ζ ′), if p ̸= ε. The definition of SJ can be adapted to
take these cases into account. Finally, we must also ensure that the position p
is minimal. This is here where Lemma 25 comes into play. It ensures (assuming

15

that one of the elements, say ζ, is not rational) that the branch π can be chosen
in such a way that it is direct for (ζ, ζ ′), so that, for all n, i1.in is a minimal
position of ζ|i1.....in and ζ ′|i1.....in in ζ, ζ ′, respectively. As we shall see, this
property entails that p is indeed minimal w.r.t. ≪I .

Let I be a regularly co-inductive model of ϕ. We construct a model J of
{ϕ} ∪ A as follows. I and J coincide on all symbols not occurring in Ω. This
entails that J |= ϕ, since ϕ is Ω-independent (hence by definition contains no
symbol in Ω). Let κ0 and κ1 be arbitrary domain elements of the same sort
occurring in the range of distinct constructors4. LetS be the set of ordered pairs
(ζ, ξ) satisfying the following properties: ζ ̸= ξ, dom(ζ) = dom(ξ), ζ(p) = ξ(p)
for all p ∈ dom(ζ) and (ζ, ζ ′) admits a direct infinite branch π(ζ, ζ ′) (if several
direct infinite branches in ζ exist then π(ζ, ζ ′) denotes one of them, chosen
arbitrarily). We denote by π(ζ, ζ ′)i the i-th number in the (infinite) sequence
π(ζ, ζ ′) (starting at 1, i.e., π(ζ, ζ ′)0 is undefined). Note that by Conditions 1, 2
and 3 in Definition 14 (respectively), Axioms 1, 2 and 3 necessarily hold in I,
hence in J . We then fix the interpretation of the symbols in Ω.

• natJ
def
= {1, . . . , N}, with iI

def
= i.

• posJ contains all positions as well as all tuples of the form (i, p, ζ, ξ) where
p is a position, (ζ, ξ) ∈ S and i ∈ N. Intuitively, (0, ε, ζ, ξ) will denote the
minimal position at which ζ and ξ differ.

• eJ
def
= ε.

• For all i = 1 . . . , N , (i ··· J p) def
= i.p if p is a position, and if p = (j, q, ζ, ξ)

then (i···J p) def
= (j−1, q, ζ, ξ) if q = ε, j > 0 and π(ζ, ζ ′)j = i, and otherwise

(i ···J p) def
= (j, i.q, ζ, ξ). The cons operation ···J may be extended to the case

where the left operand is a finite position by an immediate induction.

• p ≪J q ⇐⇒ ∃p′, i1, . . . , in, j1, . . . , jm s.t. m > n, p = i1 ··· J . . . in ···
J p′ and q = j1 ··· J . . . jm ··· J p′.

• s̃J is the set of finite terms built on the signature containing all the
symbols in C̃, the symbols λ and τ , all elements in posJ and all elements
in some set tI with t ̸∈ S̃ci (viewed as constants of sort t). Every n-
ary function symbol f ∈ {c̃, λ, τ | c ∈ C} is interpreted as the mapping:
x1, . . . , xn 7→ f(x1, . . . , xn).

• SJ (χ, ρ, p) is true iff p is a position and χ|p = ρ, or if p = q···J (i, ε, ζ, ξ)
with (ζ, ξ) ∈ S, r ≺ π(ζ, ζ ′), i = |r|, and either ρ = κ0 and χ|q = ζ|r or
ρ = κ1 and χ|q = ξ|r.

• V J (ζ, ξ) is true iff ζ is of the form λ(p), or ζ = τ(ξ), or there exists a
constructor c such that ζ = c̃(ζ1, . . . , ζn), ξ = cJ (ξ1, . . . , ξn), ζi = ξi for all
i = #ci(c) + 1, . . . , n and V J (ζi, ξi) for all i = 1, . . . ,#ci(c) (the definition
is well-founded since ζi and ζ are finite terms and size(ζi) < size(ζ)). We
remind that the size of a rational term is the number of pairwise distinct
subterms occurring in it.

4Such elements exist since we assumed that there is least one sort s ∈ Sci with two distinct
constructors of co-domain s.

16

• EJ (ζ, ξ) is true iff there exists a constructor c such that ζ = cI(ζ1, . . . , ζn),
ξ = cI(ξ1, . . . , ξn) and ζi = ξi for i = #ci(c) + 1, . . . , n.

• CI(ζ, ξ, p) is true iff there exist ζ ′, ξ′ such that SI(ζ, ζ ′, p), SI(ζ, ξ′, p) are
true and EI(ζ ′, ξ′) is false.

For instance, assume that the signature contains a constructor c : s → s,

with sI = Z and cI(x)
def
= x + 1. Then 0 and 1 (as all elements i, j ∈ Z)

are bisimilar. The branch π(0, 1) is 1.1. . . . Then the tuple (0, ε, 0, 1) de-
notes the special position at which 0 and 1 differ, and SI(0, (0, ε, 0, 1), κ0),
SI(1, (0, ε, 0, 1), κ1) are true. As −1 = 0|1 and 0 = 1|1, SI(−1, (1, ε, 0, 1), κ0)
and SI(0, (1, ε, 0, 1), κ1) and also true, and, more generally, SI(−i, (i, ε, 0, 1), κ0)
and SI(1−i, (i, ε, 0, 1), κ1) are true. We have (0, ε, 0, 1) = 1···J (1, ε, 0, 1) = 1···J 1···
J (2, ε, 0, 1) = · · · = 1n···J (n, ε, 0, 1), for all n ∈ N. Furthermore, 1···J (0, ε, 0, 1) =
(0, 1, 0, 1) and 2···J (1, ε, 0, 1) = (1, 2, 0, 1), 3···J 2···J (1, ε, 0, 1) = (1, 3.2, 0, 1), etc.
Now, consider an element ξ = dI(−1,−1), where d : s, s → s is a constructor.
We have −1 = ξ|1 = ξ|2, thus SI(ξ, (0, ε, 0, 1), κ0) and SI(ξ, (1, 2, 0, 1), κ0) hold.

From the above definition, it is straightforward to check that Axioms 4, 5,
6, 8, 9, 10, 12 hold. We now check that Axioms 7, 11, 13 and 14 hold.

7 Let ζ = cJ (ζ1, . . . , ζn), and assume that χ ̸= eJ , i.e., χ ̸= ε.

• Assume that SJ (ζ, ξ, χ) is true. If χ is a finite position then by
definition of SJ we get ζ|χ = ξ, so that χ must be of the form i.ρ
with i ∈ {1, . . . , n} and ζi|ρ = ξ, hence SJ (ζi, ξ, ρ) is true (since ρ
is also finite). Assume that χ is a tuple q···J (i, ε, ζ ′, ξ′). Then we
get ξ = κ0 and ζ|q = ζ ′|r or ξ = κ1 and ζ|q = ξ′|r with i = |r|,
r ≺ π(ζ ′, ξ′). Assume by symmetry that the first disjunct holds. Let
j = π(ζ ′, ξ′)i+1. By definition (since |r| = i), we have r.j ≺ π(ζ ′, ξ′)
and ζ|q.j = ζ ′|r.j . If q = ε, then let ρ′ = (i+1, ε, ζ ′, ξ′). By definition
of ···J , we have j ··· J ρ′ = (i, ε, ζ ′, ξ′) = ρ, and by definition of SJ ,
SJ (ζi, ξ, ρ

′) is true (since |r.j| = i+1). Otherwise, we have q = k.q′,
with ζk|q′ = ζ ′|r. Let ρ′′ = q′···J (i, ε, ζ ′, ξ′), we have ρ = j ··· J ρ′′. By
definition of SJ , SJ (ζk, ξ, ρ

′′) is true.

• Now, assume that SJ (ζj , ξ, ρ) holds, and that χ = j ··· J ρ. If ρ is
a finite position then we get ζj |ρ = ξ, so that ζ|χ = ξ, and thus
SJ (ζ, ξ, χ) is true. Otherwise, ρ = q···J (i, ε, ζ ′, ξ′). Then we get
either ξ = κ0 and ζj |q = ζ ′|r or ξ = κ1 and ζj |q = ξ′|r with i = |r|
and r ≺ π(ζ ′, ξ′). Moreover, ζj |q = ζ|j.q and χ = j.q···J (i, ε, ζ ′, ξ′).
Thus SJ (ζ, ξ, χ) is true.

11 Assume that there exist ζ, ξ such that CJ (ζ, ζ, ξ) holds. This entails
that there exist χ, ρ such that EJ (χ, ρ) is false and both SJ (ζ, χ, ξ) and
SJ (ζ, ρ, ξ) are true. Using the fact that EJ (χ, ρ) is false and Axioms 3,
9, 2 and 1, it is easy to show that χ ̸= ρ. If ξ is a finite position, then
by definition of SJ we have ζ|ξ = χ and ζ|ξ = ρ, which contradicts the
fact that χ ̸= ρ. Otherwise, we must have {χ, ρ} = {κ0, κ1} (by definition
of SJ) and ξ is necessarily of the form (i, p, ζ ′, ξ′) with (ζ ′, ξ′) ∈ S. By
definition of SJ , we have ζ|p = ζ ′|r = ξ′|r, with |r| = i, which contradicts
the fact that π(ζ ′, ξ′) is direct.

17

13: Consider any sort s ∈ Sci and any element t in s̃J . By definition, t is a
finite term built on the signature described above. We assume that for
every element ζ ∈ tI with t ̸∈ S̃ci occurring in t there exists a variable x
such that xI = ζ (this is without loss of generality since there are finitely
many such elements ζ and there always exists some associate of I such
that the property holds). We define a function ω() mapping every subterm
s of t to an infinite term, defined as follows.

(a) If s = c̃(s1, . . . , s2) then ω(s)
def
= c(ω(s1), . . . , ω(sn)).

(b) If s = λs(p), then ω(s)
def
= ω(t|p) if t(p) is a constructor of co-domain

s, otherwise ω(s) is defined arbitrarily.

(c) If s = τ(u) then ω(s) = x, where xI = u.

(d) Otherwise, ω(s) = x, where xI = s.

Note that ω(s) is well-defined, since the symbol occurring at root position
in ω(s) is set by the above definition, either immediately, or, in the sec-
ond case, at the next recursive call. Thus every position in the term is
eventually defined. Furthermore, by definition every subterm of ω(t) is of
the form ω(s) for some subterm s of t, hence ω(t) is necessarily rational,
since t is finite. Note that for every constructor position p in t, we have
ω(t)|p = ω(t|p) (this follows from the first item above by an immediate
induction on p).

Let ζ = [ω(t)]I . It is straightforward to verify (by an easy induction
on t) that V J (t, ζ) is true. Furthermore, if SJ (t, λ(p), q), SJ (ζ, χ, p),
SJ (t, ρ, p) and SJ (ζ, χ′, q) are true, then by definition of SJ , necessar-
ily p and q must be finite constructor positions in t, and we must have
t|q = λ(p), ρ = t|p, χ′ = ζ|q and χ = ζ|p. By Proposition 23, we get:
χ = [ω(t)]I |p = [ω(t)|p]I = [ω(t|p)]I . By definition of the function ω(),
necessarily ω(λ(p)) = ω(t|p), and using again Proposition 23, we obtain:
ζ|q = [ω(t)]I |q = [ω(t)|q]I = [ω(t|q)]I = [ω(λ(p))]I = [ω(t|p)]I = ζ|p.
Hence χ = χ′. Thus Axiom 13 is satisfied.

14: Let ζ, ξ be distinct elements of some sort s ∈ Sci. We have to prove that
there exists a ≪J -minimal element χ such that CJ (ζ, ξ, χ) is true. If
there exists a finite position p ∈ dom(ζ)∩dom(ξ) such that EJ (ζ|p, ξ|p) is
false, then it suffices to define χ as the length-minimal position p such that
EJ (ζ|p, ξ|p) is false. Since tuples cannot be lower than p w.r.t. ≪I , it is
clear that χ is indeed minimal. Now, assume that no such position exists.
We prove that dom(ζ) = dom(ξ). By symmetry, we only have to check
that dom(ζ) ⊆ dom(ξ). Assume the contrary, and let p be a position of
minimal length such that p ∈ dom(ζ) and p ̸∈ dom(ξ). By Proposition 24,
Axiom 3, since ζ and ξ are of a sort in Sci, necessarily ε ∈ dom(ζ)∩dom(ξ),
hence p ̸= ε. Consequently, p = q.i, and by minimality of p, q ∈ dom(ζ)∩
dom(ξ). Moreover, by the assertion above we have ζ(q) = ξ(q), thus ζ|q
and ξ|q must be of the form c(ζ1, . . . , ζn) and c(ξ1, . . . , ξn), for some c ∈ C.
Since q.i ∈ dom(ζ), ζ|p is defined, hence i ∈ {1, . . . , n}, thus ξ|p must
be defined. Moreover, ζ|p and ξ|p are of the same sort, which entails
by Proposition 24 that p ∈ dom(ξ), contradicting our hypothesis. Thus
dom(ζ) = dom(ξ), and for every position p ∈ dom(ζ): ζ(p) = ξ(p).

Consider the term t defined as follows:

18

• if p ∈ dom(ζ) then t(p)
def
= ζ(p),

• if ζ|p = c(ζ1, . . . , ζn), with c : s1, . . . , sn → s, i = 1, . . . , n and
p.i ̸∈ dom(p) then t(p.i) = xζ,i, where xζ,i denote pairwise distinct
variables of sort si, with x

J
ζ,i = ζ|p.i.

It is easy to check that t is a well-founded term and that the functions:
tK and tL such that tK(p) = ζ|p and tL(p) = ξ|p satisfy Conditions 1
and 2 in Definition 11. If both ζ and ξ are rational, then necessarily t is
rational and the sets {ζ|p, p ∈ dom(t)} and {ξ|p | p ∈ dom(t)} are both
finite. In this case, Condition 3 is also satisfied, and tK and tL are reg-
ular labeling functions for t. By unicity of the regular labeling function
(Definition 15), we deduce that tK(ε) = tL(ε), thus ζ = ξ. Otherwise,
one of the elements ζ or ξ is irrational. Assume by symmetry that ζ is
irrational. By definition, as ζ ̸= ξ, and ζ and ξ are bisimilar, the set
{ζ|p | p ∈ N∗, ζ|p ̸= ξ|p} is also infinite. By Lemma 25 the pair (ζ, ξ) ad-
mits a direct branch π(ζ, ξ), which entails that (ζ, ξ) ∈ S. By definition
SJ (ζ, κ0, (0, ε, ζ, ξ)) and S

J (ξ, κ1, (0, ε, ζ, ξ)) are both true. Since, by def-
inition of κ0, κ1, E

J (κ0, κ1) is false, this entails that C
J (ζ, ξ, (0, ε, ζ, ξ)) is

true. Now assume that CJ (ζ, ξ, χ)) holds, for some position χ such that
χ ≪J (0, ε, ζ, ξ). Then χ must be of the form q···J (i, ε, ζ, ξ), with i ∈ N
and |q| < i, and (0, ε, ζ, ξ) = r···J (i, ε, ζ, ξ) with r ≺ π(ζ, ξ) and |r| = i.
Since π(ζ, ξ) is direct, we have ζ|r ̸= ξ|r. By Axiom 10, SJ (ζ, κ0, χ) and
SJ (ξ, κ1, χ) must be true. This entails that ζ|q = ζ|r and ξ|q = ξ|r, and
since π(ζ, ξ) is direct, we deduce that |q| ≥ |r| = i, which contradicts the
previous assertion. Hence Axiom 14 is satisfied.

We now prove that the axiomatization is complete. To this purpose, we show
that every model of A is regularly co-inductive. The proof is decomposed into
several lemmata.

Lemma 27. Every interpretation satisfying Axioms 1, 2 and 3 is C-normal.

Proof. Conditions 1, 2 and 3 in Definition 14 stem immediately from Axioms 1,
2 and 3 respectively.

Lemma 28. Let I be a C-normal interpretation satisfying Axioms 4, 5, 6, 7,
8, 9, 10, 11 and 14. Every rational term t admits at most one regular labeling
function w.r.t. I.

Proof. Assume that there exist a rational term t and two distinct functions µ
and ν satisfying Conditions 1, 2 and 3 in Definition 11. Let p be a position such
that µ(p) ̸= ν(p). Since t is rational, we may assume, w.l.o.g., that p is chosen in
such a way that size(t|p) is minimal. If t(p) is a variable x, then by Condition 1,
we get µ(p) = xI and ν(p) = xI , so that µ(p) = ν(p), contradicting the above
assumption. Thus µ(p) ∈ Σ. Let f = µ(p) and let k be the arity of f . By
definition of a term, necessarily p.i ∈ dom(t), for all i = 1, . . . , k.

Assume first that t|p is not a proper subterm of itself. Then, we must have
size(t|p.i) < size(t) for all i = 1, . . . , k. By minimality of size(t|p), we deduce
that µ(p.i) = ν(p.i) holds for all i = 1, . . . , k. By Condition 2 in Definition 11,

19

we get µ(p.i) = fI(µ(p.1), . . . , µ(p.k)) and ν(p.i) = fI(ν(p.1), . . . , ν(p.k)), so
that µ(p) = ν(p), which contradicts our assumption.

Consequently, we may assume that t|p is a proper subterm of itself, i.e.,
there exists q such that t|p.q = t|p. Since t is admissible, the only symbols
that can occur infinitely many times along a position in t are constructors, thus
necessarily t(r) ∈ C for all positions r such that t|p.q = t|p and p ⪯ r ⪯ q.
Note that this entails that t|p is of a sort in Sci. Let ζ = µ(p) and ζ ′ = ν(p).
Since ζ ̸= ζ ′ and ζ, ζ ′ are of a sort in Sci, we deduce, using Axiom 14, that
there exists an element ξ such that CI(ζ, ζ ′, ξ) is true and that CI(ζ, ζ ′, ξ′) is
false, for all ξ′ such that ξ′ ≪I ξ. Since CI(ζ, ζ ′, ξ) is true, using Axiom 10,
we deduce that there exist χ, χ′ such that SI(ζ, χ, ξ) and SI(ζ ′, χ′, ξ) are true,
and EI(χ, χ′) is false. We now show, by induction on n, that for all n ≥ 0,
there exist ξn and a constructor position pn = i1. . . . , in in dom(t|p) such that
ξ = i1

I ··· I . . . ··· IinI ··· Iξn, SI(µ(p.pn), χ, ξn) and SI(ν(p.pn), χ′, ξn) are true (†).

• The proof for n = 0, is immediate, by taking ξ0 = ξ (p0 = ε in this case).

• Assume that the property holds for some n ≥ 0. If ξn = eI , then we get
(using † and Axiom 6) that χ = µ(p.pn) and χ′ = ν(p.pn). Since p.pn
is a constructor position, necessarily t(p.pn) = c ∈ C, thus we get (by
Condition 2 in Definition 11): µ(p.pn) = cI(µ(p.pn.1), . . . , µ(p.pn.m)) and
ν(p.pn) = cI(ν(p.pn.1), . . . , ν(p.pn.m)), with m = #(c). Moreover, for all
i > #ci(c), we have size(t|p.pn.i) < size(t|p.pn

) = size(t|p) (since t|p.pn.i

cannot be of a sort in Sci hence cannot occur infinitely often along some
position in t), thus (by minimality of size(t|p)) we deduce that µ(p.pn.i) =
ν(p.pn.i), for all i = #ci(c)+1, . . . ,m. However, since EI(µ(p.pn), ν(p.pn))
is false, this contradicts Axiom 9. Therefore, ξn ̸= eI , hence by Axiom
4, we deduce that ξn = in+1

I ··· Iξn+1, for some in+1 ≤ N . Let pn+1 =
i1. . . . , in+1. Using Assertions † in the inductive hypothesis together with
Axioms 4 and 7, we deduce that in+1 ≤ m and that SI(µ(p.pn+1), χ, ξn+1)
and SI(ν(p.pn+1), χ

′, ξn+1) are true. By Axiom 10, this entails (using the
fact that EI(χ, χ′) is false) that CI(µ(p.pn+1), ν(p.pn+1), ξn+1) is true.
If t|p does not occur in t|p.pn+1 then we have, by minimality of size(t|p),
µ(p.pn+1) = ν(p.pn+1). Since CI(µ(p.pn+1), ν(p.pn+1), ξn+1) is true, this
contradicts Axiom 11. Thus t|p must occur in t|p.pn+1

, which entails that
pn+1 is a constructor position.

Since the property holds for all n ≥ 0 necessarily t|p occurs infinitely often in the
sequence t|p.pn . By Condition 3, the sets {µ(p.pn) | t|p.pn = t} and {ν(p.pn) |
t|p.pn = t} are both finite, thus the set of pairs {(µ(p.pn), ν(p.pn)) | t|p.pn = t} is
also finite. Consequently, there exist numbers k < l such that µ(p.pk) = µ(p.pl),
ν(p.pk) = ν(p.pl), and t|p.pk

= t|p.pl
= t. By †, we deduce that S(µ(p.pk), χ, ξl)

and SI(ν(p.pk), χ
′, ξl) are true. Using Axiom 7, this entails that SI(µ(p), χ, ξ′)

and SI(ν(p), χ′, ξ′) are also true, with ξ′
def
= i1 ··· . . . ··· ik ··· ξl thus by Axiom 10,

CI(µ(p), ν(p), ξ′) must be true. However, since l > k, by Axiom 8, we have
ξ′ ≪I ξ = i1 ··· . . . ··· il ··· ξl, thus this contradicts the fact that ξ is a ≪J -minimal
element such that CI(ζ, ζ ′, ξ) is true.

Lemma 29. Let I be a C-normal interpretation satisfying Axioms 4, 5, 6, 7,
8, 12 and 13. Every rational term t admits at least one regular labeling function
tI w.r.t. I.

20

Proof. Let t be a term. The function tI is defined by associating t with a
finite constructor context obtained by replacing the constructors c by c̃, the
subterms u not containing t by τ(u) and by replacing some subterms occurring
along infinite branches by a link to a previous position (using the symbol λ).
Axiom 13 ensures that this constructor context can be mapped to an element
of the domain satisfying all the required properties. More formally, we assume,
w.l.o.g., that a regular labeling function uI exists for all terms u such that
size(u) < size(t). For every position p = i1. . . . , in we denote by p̂ the term
i1 ··· . . . ··· in ··· e. We distinguish two cases.

• Assume first that t is not a proper subterm of t. If t is a variable x
then dom(t) = {ϵ} and the function tI can be straightforwardly defined
as follows: tI(ϵ) = xI . We thus assume that t is a compound term
f(t1, . . . , tn). Necessarily (since t is not a proper subterm of t), t cannot
occur in ti, and size(ti) < size(t) which entails that ti admits a regular
labeling function µi. By definition, every position in dom(t) is either ε or
of the form i.p, with i = 1, . . . , n and p ∈ dom(ti). The function t

I is then

defined as follows: tI(ε)
def
= fI(µ1(ε), . . . , µn(ε)), and tI(i.p)

def
= µi(p),

for all i = 1, . . . , n and p ∈ dom(ti). We check that the conditions of
Definition 11 are satisfied:

1: By definition, if t|q = x ∈ V, then q ̸= ε (since t is not a variable),
thus q = i.p, with i = 1, . . . , n and p ∈ dom(ti). Moreover, ti|p = x,
hence, since µi satisfies Condition 1, we get ti|p(p) = xI , so that
tI(p) = xI .

2: Let q be a position in dom(t) such that t|q = g, for some m-ary
function symbol g. If q = ε then g = f and, by definition of
tI : tI(ε) = fI(µ1(ε), . . . , µn(ε)) = fI(tI(1), . . . , tI(n)). Otherwise,
q = i.p with i = 1, . . . , n and p ∈ dom(ti) hence since µi satisfies
Condition 2, we get µi(p) = gI(µi(p.1), . . . , µi(p.m)). By definition
of tI , this entails that tI(q) = gI(tI(q.1), . . . , tI(q.m)).

3: Let s be a term. Since every function : µi (i = 1, . . . , n) fulfills
Condition 3, the set {µi(p) | ti|p = s} is finite, thus {µi(p) | ti|p =
s, i = 1, . . . , n} is also finite. By definition of tI , this entails that the
set {tI(i.p) | t|i.p = s, i = 1, . . . , n} is finite, hence the set {tI(q) |
t|q = s} is also finite (since there is only one position q = ε that is
not of the form i.p).

• Now, assume that t is a proper subterm of t. Since all terms are admissible,
this entails that t is of a sort s ∈ Sci and has a constructor head. We denote
by<lex the lexicographic order on position. Note that p ≺ q =⇒ p <lex q.
By the above assumption, all subterms s of t such that size(s) < size(t)
admit a regular labeling function sI , thus may be associated with an
interpretation [s]I . We assume that, for every such subterm s, there
exists a variable xs such that xIs = [s]I . This does not entail any loss
of generality since there are finitely many such terms, hence there exists
an associate of I satisfying the property (and coinciding with I on all
variables in t). Let τ be a function (implicitly depending on t) mapping
every position p ∈ dom(t) to a term, inductively defined as follows:

– τ(p)
def
= xt|p if t|p is of a sort in Sst.

21

– τ(p)
def
= τ(xt|p) if t is not a subterm of t|p and t|p is of a sort in Sci.

– τ(p)
def
= c̃(τ(p.1), . . . , τ(p.n)) if t|p = c(s1, . . . , sn) and there is no

position q <lex p such that t|q = t|p.

– τ(p)
def
= λ(q) if the previous condition does not hold and q is the

minimal (w.r.t. <lex) position such that t|p = t|q.

Let P be the set of positions such that τ(p) is a term of some head c̃. By
definition of τ , it is clear that for every subterm t′ of t that contains t,
P contains exactly one position p such that t|p = t′ (this position is the
minimal one w.r.t. <lex).

Let s = τ(ϵ). It is straightforward to check that s is well-typed. More-
over, since t is rational, necessarily s is finite. Indeed, by the pigeonhole
argument, if an infinite branch exists in t, then necessarily there are two
positions p and q such that t|p = t|q and p ≺ q. This entails that p <lex q
so that τ(q) is of the form λ(r) (for some position r ≤lex p). Consequently,
s has a value in I, and we may define: ζ = [s]I . By using Axiom 13, we
deduce that there exists an element ξ such that V I(ζ, ξ) is true and for
all positions p, q, and for all elements ξ′, ξ′′, ζ ′, if SI(ξ, ξ′, p̂), SI(ξ, ξ′′, q̂),
SI(ζ, ζ ′, p̂), and SI(ζ, λI(p̂), q̂) are true, then ξ′ = ξ′′. By definition of
s, this entails that for all positions p, q such that size(t|p) = size(t) and
t|p = t|q, we have ξ|p = ξ|q (‡).
Since V I(ζ, ξ) is true, it is easy to check, using Axiom 12, that for every
position p ∈ P , we have p ∈ dom(ξ) and ξ(p) = t(p), and that, if moreover
p.i ∈ dom(t) and size(t|p.i) < size(t), then s|p.i is either xt|p.i or τ(xt|p.i),

so that ξ|p.i = xIt|p.i = [t|p.i]I (⋆).

The function tI is defined as follows.

– if p = q.r where q is some prefix minimal position such that size(t|q) <
size(t), then tI(p)

def
= t|Iq (r).

– Otherwise, we define tI(p)
def
= ξ|q, where q is the (unique) position in

P such that t|p = t|q.

We check that Conditions 1, 2 and 3 are satisfied.

1 Assume that t|p = x. Then size(t|p) < size(t), thus tI(p) = t|Iq (r)
for some positions q, r such that p = q.r. Since t|q(r) = x and t|Iq
satisfies Condition 1, we deduce that tI(p) = xI .

2 Assume that t(p) is an n-ary function symbol f . If t|p does not con-
tain t then tI(p) = t|Iq (r), with p = q.r. Moreover, none of the terms

t|p.i may contain t, thus tI(p.i) = t|Iq (r.i). Since t|Iq satisfies Condi-

tion 2, we deduce that tI(p) = fI(tI(p.1), . . . , tI(p.n)). If t|p contains
t we have tI(p) = ξ|q, where q is the <lex -minimal position such that
t|q = t|p. By Proposition 22, we deduce tI(p) = fI(ξ|q.1, . . . , ξ|q.n).
Let i = 1, . . . , n. If size(t|p.i) = size(t), then tI(p.i) = ξ|r, where r ∈
P and t|r = t|p.i. Moreover, by Property ‡ above we have ξ|r = ξ|q.i
(since t|r = t|p.i = t|q.i), thus tI(p.i) = ξ|q.i. If q.i ∈ P , then we have
tI(q.i) = ξ|q.i, hence tI(p.i) = ξ|q.i (since t|q.i = t|p.i). Otherwise,
we have (by the property ⋆ above) ξ|q.i = [t|q.i]I = [t|p.i]I = tI(p.i).

22

Consequently, tI(p) = fI(tI(p.1), . . . , tI(p.n)).

3 Let s be a term. Since every function tIq fulfills Condition 3, every

set {t|Iq (r) | t|q.r = s} is finite. Furthermore, the set of the prefix
minimal positions q in t such that t is not a subterm of tq is also
finite. Since P is finite, this entails that {tI(p) | t|p = s} is finite.

Theorem 30. (Completeness) Every model of A is regularly co-inductive.

Proof. The proof follows from Lemmata 27, 28 and 29.

3.5 Comparison with Fixpoint Axioms

We compare our approach with that of [6]. We remind that the structures
considered in [6] are defined by the following axioms: exhaustiveness (every
term must occur in the range of some constructor, identical to Axiom 3 in the
present paper), distinctness (the ranges of the constructors are pairwise distinct,
Axiom 2), injectivity (every constructor is injective, Axiom 1), existence and
uniqueness of fixpoints, and infinity (the domain of every sort s is infinite).
This set of axioms is denoted by A⋆ (we refer to [6] for formal definitions).
Given an interpretation I, the axioms for unicity and existence of fixpoints hold
iff for every finite constructor term t distinct from x, the equation x ≈ t has
only one solution, i.e., for every associate J of I there exists a unique element
ζ such that ζ = [t]J{x←ζ}, where J {x ← ζ} denotes the associate of I with
xJ{x←ζ} = ζ and yJ{x←ζ} = yI for all y ̸= x. We may assume, w.l.o.g., that
the only subterms occurring in t and not containing x are variables (since any
such term can be replaced by a fresh variable interpreted in the same way).

It is clear that regularly co-inductive interpretations satisfy all these axioms,
except (possibly) the infinity axiom. The infinity axiom is not necessary sat-
isfied: if for instance C contains a unique constructor c : s → s, then there
exists only one term, namely the infinite term t = c(t), and the domain of s is
necessarily of cardinality 1. However the infinity axiom is satisfied under some
rather natural conditions on the signature:

Definition 31. A signature Σ is non trivial if for all s ∈ Sci, there exist two
constructors c, d of co-domain s, with #ci(c) ̸= 0 or #ci(d) ̸= 0.

Lemma 32. If the signature Σ is non trivial, for every C-normal interpretation
I and every s ∈ Sci, s

I is infinite.

Proof. Consider any sort s ∈ Sci. We construct a sequence of constructor terms
ti (for i ∈ N) of sort s, by induction on the set of positions as follows. Let p be
a position and assume that ti(q) has been constructed for all positions q ≺ p,
where p is a position in dom(ti) such that ti(p) is undefined. Then ti|p must be
of some sort t (if p = ε then s = t, otherwise the sort t is fixed by the symbol
occurring at the predecessor of p: if this symbol has profile s1, . . . , sn → s′

and p is of the form q.j with j = 1, . . . , n, then t = sj). If t ̸∈ Sci, then we let
ti(p) = x, where x is an arbitrarily chosen variable of sort t. If t ∈ Sci and i = |p|
then we let ti|p = c(x1, . . . , xn), where c is a (fixed for a given t) constructor
of co-domain t and of arity n, and x1, . . . , xn are arbitrarily chosen variables of
the appropriate sorts. Finally, if t ∈ Sci and i ̸= |p| then we let t(p) = d, where

23

d is a constructor of co-domain t, distinct from c, and such that #ci(d) > 0.
Note that such a pair of constructors (c, d) exists for all sorts t since Σ is non
trivial. Then all the positions p.i with i = 1, . . . ,#(d) are added in dom(ti).
By construction, ti necessarily contains a position pi of length i, moreover, for
all i, j with i < j, we have ti(q) = tj(q) for all q ≺ pi, and ti(pi) ̸= tj(pi). Thus
[ti]
I ̸= [tj]

I , since the constructors are injective and have disjoint ranges. Hence
sI must be infinite.

This entails that for every formula ϕ, if {ϕ} ∪ A⋆ is unsatisfiable then ϕ
admits no regularly co-inductive interpretation (if the signature is non trivial),
thus {ϕ} ∪ A is also unsatisfiable (by Theorem 30). Conversely, we show that
the axioms considered in the present work are strictly stronger than A⋆:

Theorem 33. There exists a formula ϕ such that {ϕ}∪A⋆ is satisfiable, but ϕ
admits no regularly co-inductive model.

Proof. Consider the formula

ϕ = a1 ≈ c(a1, b1) ∧ b1 ≈ d(a1, b1) ∧ a2 ≈ c(a2, b2) ∧ b2 ≈ d(a2, b2) ∧ a1 ̸≈ a2

where c : s, s → s and d : s, s → s are constructors and a1, a2, b1, b2 ̸∈ C. It
is clear that ϕ admits no regularly co-inductive model (otherwise the infinite
term t = c(t, s) with s = d(t, s) would admit two distinct regular labeling
functions). Let I be the interpretation defined as follows. The domain sI is
a subset (defined inductively below) of the set of ground infinite terms t built
on the signature f i, with f ∈ {c, d} and i ∈ N (i.e., constructors decorated by
exponents). Note that all such ground terms are infinite terms, since there is
no constant symbol. We denote by ρ(t) the number i such that t(ε) is of the
form f i with f ∈ {c, d}. For instance if t denotes the tree:

c1

d0

then ρ(t) = 1 and ρ(t|2) = 0. The exponents on the constructors will be useful
to ensure that the constants a1 and a2 can be interpreted as different elements,
more precisely each constant ai will be interpreted as a term with exponent i:

ai = ci

di

24

Before defining the domain [s]I of s, we actually define the interpretation of
the function symbols [c]I and [d]I . For technical convenience, these functions
will be defined on any ground term built on the signature defined above (even
if it is not in sI). The interpretations of c and d can be considered as the
restrictions of [c]I and [d]I to the set [s]I which is defined afterwards:

• If t, t′ are ground terms and f ∈ {c, d} then [f]I(t, t′) is defined as follows:

[f]I(t, t′)
def
= f i(t, t′), where i = max(ρ(t), ρ(t′)) if t or t′ contains a subterm

of the form fmax(ρ(t),ρ(t′))(t, t′); and i = max(ρ(t), ρ(t′)) + 1 otherwise.

For instance, if t = c0(t, t) and t′ = d0(t′, t′), then we get: ρ(t) = ρ(t′) = 0
and [c]I(t, t′) = c1(t, t′), as neither t nor t′ contains c0(t, t′). In contrast, if
t = c0(t, t′) and t′ = d0(t, t′), then we get: [c]I(t, t′) = c0(t, t′) = t.

The domain sI is constructed as follows (using Item 1 as the base case):

1. sI contains the infinite terms ti, t
′
i (for all i = 1, 2) defined as follows:

ti
def
= ci(ti, t

′
i) and t′i

def
= di(ti, t

′
i), and we let [ai]

I def
= ti and [bi]

I def
= t′i.

Note that, by definition of [f]I , we have [c]I(ti, t
′
i) = ci(ti, t

′
i) = ti and

[d]I(ti, t
′
i) = di(ti, t

′
i) = t′i.

2. If t is a finite constructor term (satisfying the condition above) with x ∈
V(t) and x ̸= t, J is an associate of I and ζ ̸= [t]J{x←ζ} holds for all
ζ ∈ {t1, t2, t′1, t′2} and for all subtrees ζ of yJ , with y ∈ V(t) \ {x}, then
we add in sI the term t (and all its subterms) obtained from t as follows:
every occurrence of x is replaced by t, every variable y ̸= x is replaced by
[y]J and every symbol f is replaced by f i, where i = 0 if t contains no
variable other than x and otherwise i = 1 + max({ρ(yJ) | y ∈ V(t), y ̸=
x}). By construction, t = [t]J{x←t}, i.e., t is a solution of the fixpoint
equation x ≈ t. Thus this condition ensures that every fixpoint equation
admits at least one solution, by adding one such solution in the domain.
The conditions ensure that the domain does not already contain such a
solution.

3. If t, t′ ∈ sI then [f]I(t, t′) ∈ sI (for f ∈ {c, d}). This condition ensures
that [s]I is closed under [c]I and [d]I . Note that it adds new elements in
the domain only if t, t′ do not already contain [f]I(t, t′), hence if [f]I(t, t′)
does not properly occur in itself.

To illustrate Item 2, assume that Item 1 has already been applied and consider
the term t = c(x, x) (the associate J is irrelevant here since t contains no
variable other than x). Since none of the terms t1, t2, t

′
1, t
′
2 is a solution of

x ≈ c(x, x), the term t = c0(t, t) is added in [s]I . Afterwards, one might also

consider the term t′ = c(y, x), with the associate [y]J
def
= t (note that considering

this associate is possible only after t is added into the domain). Here the term
t′ = c1(t, t′) could be added as a solution of the equation x ≈ c(y, x), but this
is prevented by the condition ζ ̸= [t]J{x←ζ} in Item 2, as t is already a solution
of this equation. However, we may also consider the same term t′ with the

associate [y]J
′ def
= t1, which triggers the addition of the term t′′ = c1(t1, t

′′) into
the domain. The key point here is that one needs to include sufficiently many
trees in the domain to ensure that every fixpoint equation admits a solution, but
at the same time one cannot keep all infinite trees, as otherwise some equations
will have several solutions.

25

It is straightforward to verify that [c]I is injective, that cI , dI have disjoint
domains, that every term in sI is of the form [f]I(t, t′) with f ∈ {c, d} and
t, t′ ∈ sI and that sI is infinite. By Item 2, every fixpoint equation admits a
solution. By Item 1, we have I |= ϕ. It only remains to prove that the solution
of every fixpoint equation is unique. Let t be a term and let x be a variable
properly occurring in t. Let J be an associate of I. Let ζi (for i = 1, 2) be
distinct solutions of the fixpoint equation x ≈ t, i.e., ζi = [t]J{x←ζi} (for all
i = 1, 2) and ζ1 ̸= ζ2. We distinguish several cases.

• If ζi (for some i = 1, 2) is introduced in sI by Item 3, then it is clear that
ζi cannot be a proper subterm of ζi, hence ζi cannot be the solution of a
fixpoint equation. Thus this case cannot occur.

• If both ζ1 and ζ2 are introduced by Item 1 then, since ζ1 and ζ2 have
no common subterm, necessary t contains no variable other than x. But
then t necessarily contains at least one subterm of the form f(x, x) (with
f ∈ {c, d}), thus [t]J{x←ζi} contains a subterm f j(ζi, ζi). This case cannot
occur since ζi = [t]J{x←ζi} and ζi contains no such subterm.

• Assume that both ζ1 and ζ2 are introduced by Item 2 on some terms si
and associates Ji of I. Let Pi be the set of positions in ζi such that ζi|p
is a proper subterm of ζi. As ζi = [t]J{x←ζi}, we have, for all positions p
in t:

– If t|p does not contain x then ζi|p = [t|p]J .
– If t|p = x then ζi|p = ζi.

– Otherwise ζi(p) must be of the form t(p)ki , with ki = ρ(ζi).

This entails that ζ1 and ζ2 only differ by their exponents. Moreover, by
Item 2, either ki = 0 and Pi = ∅, or ki = max({ρ(ζi|p) | p ∈ Pi})+1. Thus,
if P1 = P2, then necessarily ζ1 = ζ2, which contradicts our assumption.
Therefore P1 ̸= P2, and we may assume, by symmetry, that there exists a
position p ∈ P1\P2. Then (by the above assumption on fixpoint equations)
t|p must be a variable y, and ζ1 occurs in y

J2 . Thus ζ1 is introduced before
ζ2. As the converse cannot simultaneously hold, necessarily P1 ⊃ P2,
which entails that we have ρ(ζ2|p) = ρ(ζ2|q) ⇒ ρ(ζ1|p) = ρ(ζ1|q), for all
positions p, q. Since ζ2 = [s2]

J{x←ζ2}, we get ζ1 = [s2]
J{x←ζ1}, which

contradicts the condition in Item 2.

• If ζi is introduced by Item 2 on some term si, and ζ3−i is introduced by
Item 1, then, as ζi and ζ3−1 only differ by the value of exponents, and ζ3−i
has only one exponent, we get ζ3−i = [si]

J{x←ζ3−i}, which is impossible,
by definition of Item 2.

4 A Resolution Proof Procedure to Handle Co-
Inductive Data Structures

Building on the previous results, we devise proof calculi for reasoning with co-
inductive structures. We first show (see Theorems 41 and 44) that the axioms

26

ensuring the existence of a regular labeling function (Lemma 29) can be omitted
if rational terms are directly handled by the proof procedure and unification
algorithm. The notions of literals, clauses etc. are defined as usual (where
atoms are defined on rational terms), see for instance [20]. The empty clause is
denoted by □.

Definition 34. A substitution σ is a function mapping every variable x to a
rational term xσ of the same sort as x. We denote by dom(σ) the set of variables
x such that xσ ̸= x, and by id the substitution such that dom(id) = ∅. For every
variable x and for every term t of the same sort as x, we denote by {x ← t}
the substitution of domain {x} mapping x to t. tσ is the term obtained from t
by replacing every occurrence of a variable x in t by xσ. We denote by σθ the
composition of σ and θ and we write σ ≥ θ if θ = ση, for some substitution η.
A substitution σ is a unifier of two terms t and s if tσ = sσ. It is well-known
that every unifiable pair of terms admits a most general unifier5 (mgu), that is
unique up to a renaming of variables, i.e., a unifier that is maximal w.r.t. ≥.
For every clause C we denote by Ig(C) the set of ground instances Cσ of C. If

S is a set of clauses then Ig(S)
def
=

⋃
C∈S Ig(C).

We denote by E the axioms of equality, defined as follows:

(x ≈ x) ∧ (x ≈ y ⇒ y ≈ x) ∧ (x ≈ y ∧ y ≈ z ⇒ x ≈ z) (15)

for all sorts s, where x, y and z are pairwise distinct variables of sort s;

(

n∧
i=1

xi ≈ yi)⇒ f(x1, . . . , xn) ≈ f(x1, . . . , xn) (16)

for all f : s1, . . . , sn → s ∈ Σ (with s ̸= bool) where xi, yi (for i ∈ {1, . . . , n})
are pairwise distinct variables of sort si;

(

n∧
i=1

xi ≈ yi) ∧ P (x1, . . . , xn)⇒ P (y1, . . . , yn) (17)

for all P : s1, . . . , sn → s ∈ bool, where xi, yi (for i ∈ {1, . . . , n}) are pairwise
distinct variables of sort si.

Let ⪰ be a partial order6 among atoms, that is total on ground atoms and
closed under substitution, i.e., α ⪰ β =⇒ ασ ⪰ βσ, for all atoms α, β and for
all substitutions σ. We denote by ≻ the associated strict order, i.e., α ≻ β ⇐⇒
(α ⪰ β ∧ α ̸= β). The order ⪰ is extended to literals as follows. For all atoms
α, β: ¬α ≻ α and α ≻ β =⇒ ¬α ≻ ¬β. Let sel be a selection functionmapping
every clause C to a (possibly empty) set of negative literals in C. We assume
to simplify technicalities that sel is liftable, i.e., lσ ∈ sel(Cσ) =⇒ l ∈ sel(C)
holds for all literals l, clauses C and substitutions σ. A literal l is eligible in a
clause C if either l ∈ sel(C) or sel(C) = ∅ and l is maximal in C (w.r.t. ⪰).
The first two inference rules are standard (see, e.g., [20, 3]). Eligible literals
are highlighted with a grey background. We assume as usual that the premises
share no variables.

5The mgu may be computed by using usual unification algorithms, where the occur check
rule is restricted to non constructor positions.

6i.e., a transitive, antisymmetric and reflexive relation.

27

Resolution (Res):
α ∨ C ¬β ∨D

(C ∨D)σ
if σ = mgu(α, β), ασ is eligible in (α∨C)σ and ¬βσ is eligible in (¬β∨D)σ.

Factorisation (Fact):
α ∨ β ∨ C
(α ∨ C)σ

if σ = mgu(α, β), ασ is eligible in (α ∨ β ∨ C)σ.

Proposition 35. If lσ is eligible in (l ∨ C)σ then l is eligible in l ∨ C.

Proof. This follows immediately from the fact that ⪰ is closed under substitu-
tion and that sel is liftable.

We now define a new inference rule, called Cycle, to identify fixpoint equa-
tions and infer their solutions. For instance, if the equation t ≈ c(t) holds with
c ∈ C, then the rule will compute the infinite term u = c(c(. . . (. . .)) and will
derive the equation t ≈ u.

Definition 36. For all terms t and for all constructor positions p in t, t[⟲]p
denotes the (unique) term such that t[⟲]p = t[t[⟲]p]p, formally defined as fol-

lows: dom(t[⟲]p)
def
= {pn.r | n ≥ 0, r ∈ dom(t), p ̸⪯ r} and t[⟲]p(q)

def
= t(r) if

q = pn.r, n ≥ 0, r ∈ dom(t) and p ̸⪯ r.

Proposition 37. Let t be a term and let σ be a substitution. If p ∈ dom(t)
then t[⟲]pσ = (tσ)[⟲]p.

Proof. Immediate.

Definition 38. A term t is a p-term if p is a constructor position in t and for
every position q ∈ dom(t) such that q ̸≺ p, we have t(q) ∈ V. Note that this
entails that t is finite and that all the functions occurring in t are constructors.

For instance, if c, d are constructors and x, y, z are variables, then the term
c(x, d(y, z)) is a 2.2-term and a 2.1-term but not a 1-term or a 2-term. The rule
Cycle is defined as follows:

Cycle (Cyc):
t ≈ s ∨ C

(tθ ≈ (sθ)[⟲]p ∨ Cθ)σ
if σ = mgu(tθ, sθ|p), (t ≈ s)θσ is eligible in (t ≈ s ∨ C)θσ and either

p ∈ dom(s) and θ = id ; or p = q.r, q ∈ dom(s), s|q = x, and θ = {x ← u} for
some r-term u of the same sort as x.

Note that Cycle applies in two ways, either at some position p in s (first
case above), or at some position p that is “below” a variable occurring at some
position q in s (second case). This is meant to ensure that the rule is “liftable”,
in the sense that the applications of the rule on some non ground clause C
simulate all applications on ground instances of C (see Lemma 40).

Example 39. Given the clause f(a) ≈ c(x, y)∨P (y) (with c ∈ C), Cyc may be
applied on the position 2 in c(x, y), with substitution id and unifier {y ← f(a)},
yielding f(a) ≈ t ∨ P (f(a)), where t is the infinite term t = c(x, t). But it may
be also applied (for instance) on the position 2.2 and 2-term c(z, w), yielding:
f(a) ≈ s ∨ P (c(z, f(a))), with s = c(x, c(z, s)).

28

Note that the rule Cyc is infinitely branching (since the position p is of
arbitrary length). It is defined in such a way that it is “liftable”, in the following
sense:

Lemma 40. If a clause C is deduced from a ground instance Dσ of some clause
D by one application of the rule Cyc, then there exists an application of Cyc on
D that yields a clause E such that C = Eθ, for some ground substitution θ.

Proof. Note that the application of Cyc on Dσ uses the substitution id since by
hypothesis Dσ contains no variable. By definition, D is of the form (t ≈ s)∨D′,
(t ≈ s)σ is eligible in (t ≈ s∨D′)σ, sσ|p = tσ, and C = tσ ≈ sσ[⟲]p ∨D′σ. We
distinguish two cases.

• p ∈ dom(s). In this case, we have sσ|p = s|pσ, thus s|p and t have an mgu
η, with σ = ηθ. Moreover, by Proposition 35, (t ≈ s)η is eligible inDη. We
may thus apply the rule Cyc on D, with the position p and the substitution
id , yielding: E = tη ≈ s[⟲]pη ∨D′η. We have Eθ = tσ ≈ s[⟲]pσ ∨D′σ.
By Proposition 37, s[⟲]pσ = sσ[⟲]p, hence Eθ = C.

• p ̸∈ dom(s). Since p ∈ dom(sσ), necessarily there exist positions q, r
such that p = q.r and s|q is a variable x. Let u be the term obtained
from xσ by replacing all subterms occurring at some position p′ with
p′ ̸≺ r by fresh, pairwise distinct, variables. Since p is a constructor
position in s, u is an r-term. Moreover, it is clear that there exists a
substitution σ′ such that uσ′ = xσ, so that {x ← u}σσ′ = σσ′. By
definition, the term s{x ← u}|p is a variable occurring in u (hence not
occurring in D). Thus s{x ← u}|p and t admit an mgu η. Furthermore,
there exists a substitution θ such that σσ′ = ηθ, since tσσ′ = tσ = sσ|p =
s{x ← u}σσ′|p = s{x ← u}|pσσ′. By Proposition 35, (t ≈ s){x ← u}η
is eligible in D{x ← u}η. We may thus apply the rule Cyc on D, with
the position p = q.r, the r-term u and the substitution {x← u}, yielding:
E = t{x ← u}η ≈ s{x← u}[⟲]pη ∨D′{x ← u}η. We have Eθ = t{x ←
u}ηθ ≈ s{x← u}[⟲]pηθ ∨D′{x← u}ηθ. Since {x← u}σ′σ = σ′σ we get
(using Proposition 37): Eθ = tσ ≈ sσ[⟲]p ∨D′σ = C.

We write S ⊢R C if C is deducible from premises in S by some rule in the set R
(in a single step), and S ⊢∗R C if there exists a sequence C1, . . . , Cn (with n ≥ 1)
such that Cn = C and S ∪{C1, . . . , Ci} ⊢R Ci+1 holds for every i = 0, . . . , n− 1.

Theorem 41. The rules Res, Fact and Cyc are sound (w.r.t. regularly co-
inductive interpretations), i.e., if S ⊢{Res,Fact,Cyc} C then every regularly co-
inductive model of S is a model of C. In particular, if S ⊢∗{Res,Fact,Cyc} □ then
S admits no regularly co-inductive model.

Proof. The soundness of the rules Res and Fact is routine (see for example [20])
and the addition of rational terms has no impact on it. We only provide the
proof for the rule Cyc (the second statement follows by an immediate induction
on the length of the derivation). Let (t ≈ s[⟲]p ∨ C)θσ be a clause deduced
from a clause t ≈ s ∨ C ∈ S using Cyc. We assume that θ = id . Indeed, if θ
is of the form {x ← u} for some r-term u with p = q.r and s|q = x, then it is
clear that the clause (t ≈ s[⟲]p ∨ C)θσ can also be obtained by applying Cyc

29

on the premise tθ ≈ sθ ∨Cθ, with the same position p and mgu σ and with the
substitution id (since by definition p is a position in sθ). Since the considered
premise is a logical consequence of t ≈ s ∨ C, the result follows.

Let I be a regularly co-inductive model of S. Since all variables in a clause
are universally quantified, we deduce that I |= (t ≈ s ∨ C)σ, thus either I |=
(t ≈ s)σ or I |= Cσ (we remind that interpretations also interpret variables). If
I |= Cσ then I |= (t ≈ s[⟲]p∨C)σ and the proof is completed. If I |= (t ≈ s)σ,
we have [tσ]I = [sσ]I , and by definition of σ, s|pσ = tσ.

Let u = s[⟲]pσ. We define a function µ mapping positions in u to elements
of the domain of I as follows. By definition of s[⟲]p, every position q in u can
be uniquely decomposed as a position of the form pn.r, for some n ≥ 0 and

some position r ∈ dom(sσ), with p ̸⪯ r. Then we set: µ(q)
def
= [sσ|r]I . We show

that µ is a regular labeling function, i.e., that it satisfies Conditions 1, 2 and 3
in Definition 11.

1 Assume that u|q is a variable x. Then u|q = sσ|r = x and [sσ|r]I = xI .

2 Assume that u|q is function symbol f (of some arity m). Then we have
sσ|r = f and for every i = 1, . . . ,m, r.i is a position in sσ, with [u|q]I =
[sσ|r]I = fI([sσ|r.1]I , . . . , [sσ|r.m]I). If r.i ̸= p, then q.i = pn.(r.i) with
p ̸⪯ r.i, thus we get u|q.i = sσ|r.i. If r.i = p then we have p.i = pn+1.ε,
so that [u|q.i]J = [sσ]I . Since [tσ]I = [sσ]I we get [u|q.i]J = [tσ]I , thus
[u|q.i]J = [s|pσ]I = [s|r.iσ]I as s|pσ = tσ. Thus in both cases, we have
[u|q.i]J = [s|r.iσ]I , and consequently, [u|q]J = fI([u|r.1]I , . . . , [u|r.m]I).

3 Let u′ be a term. Since s and σ are rational, the set of terms sσ|r is
finite. Thus the image of µ is necessarily finite, and in particular the set
{µ(q) | u|q = u′} is finite.

By unicity of the regular labeling function, we get µ(ϵ) = [u]I , hence [u]I =
[sσ]I = [tσ]I . Thus I |= (t ≈ s[⟲]p ∨ C)σ.

Following [2], completeness is defined w.r.t. the usual notion of redundancy,
that must, in our context, be defined w.r.t. a notion of propositional interpre-
tation (as equality is not built-in).

Definition 42. A propositional interpretation is a set of ground literals I such
that, for every ground atom α: α ∈ I ⇐⇒ ¬α ̸∈ I. For every ground clause
C, we write I ||=C if C contains a literal in I. For every non ground clause
C, we write I ||=C if I ||=D, for all D ∈ Ig(C), and for every set of clauses
S, I ||=S if I ||=C holds for all C ∈ S. We write S ||=C if the implication
I ||=S =⇒ I ||=C holds for all propositional interpretations I.

Definition 43. (Saturated sets) Let S be a set of clauses. A ground clause
C is redundant w.r.t. S if there exist clauses C1, . . . , Cn ∈ Ig(S) such that
C ⪰ Ci (for all i = 1, . . . , n) and {C1, . . . , Cn} ||=C. A non ground clause C is
redundant w.r.t. S if all its ground instances are redundant. A set of clauses is
saturated w.r.t. a set of rules R if every clause C such that S ⊢R C is redundant
in S.

Theorem 44. Let S be a set of clauses that is saturated w.r.t. {Res, Fact} and
that contains the equality axioms, as well as Axioms 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11 and 14 (as defined in Section 3.2). If □ ̸∈ S then S admits a regularly
co-inductive model.

30

Note that Rule Cyc and Axioms 12, 13 are not needed.

Proof. The model is constructed in a standard way from saturated sets (see,
e.g., [3]), except that the domain is the set of rational ground terms. This is
sufficient to guarantee that every term has a regular labeling function. Lemmata
27 and 28 are used to prove that the constructed model is C-normal and that
labeling functions are unique, respectively.

More precisely, we define a propositional interpretation M satisfying the
assertionM||= Ig(S) inductively as follows (this part of the proof is standard,
but it is repeated here to ensure that the paper is self-contained).

• A positive literal α is in M iff there exists a clause α ∨ C ∈ Ig(S) such
that for all literals l ∈ C, α ≻ l and l ̸∈ M.

• A negative literal ¬α is inM iff α ̸∈ M.

Note that the definition of M is well-founded. We show that every clause
C ∈ Ig(S) contains a literal in M. Let C be the minimal clause in Ig(S) not
satisfying this condition (where clauses are ordered using the multiset extension
of the order ⪰ on literals). Since □ ̸∈ S, C contains an eligible literal, hence by
definition of Ig(S) C is of the form (l∨C ′)σ, where l∨C ′ ∈ S and lσ is eligible
in (l ∨ C ′)σ. We distinguish two cases.

• If l is a negative literal ¬α, then, since lσ ̸∈ M, necessarily ασ ∈M, and
by definition of M, there exists a clause β ∨D ∈ S and a substitution θ
such that ασ = βθ,M ̸ ||=Dθ and βθ ≻ Dθ. Then α and β have an mgu
η and there exists γ such that ηγ = σθ (we assume w.l.o.g. that l ∨ C ′
and β ∨ D share no variable). By Proposition 35, the literals lη and αη
are eligible in (l ∨ C ′)η and (β ∨ D)η, respectively. We deduce that the
clause (C ′ ∨ D)η is deducible from l ∨ C ′ and α ∨ D by Res. Since S is
saturated, in particular, there exist clauses C1, . . . , Cn ∈ Ig(S) such that
(C ′∨D)ηγ ⪰ Ci and {C1, . . . , Cn} ||=(C ′∨D)ηγ. Since lσ ≻ βθ ≻ Dθ, we
have C ≻ (C ′ ∨D)ηγ, so that C ≻ Ci, for all i = 1 . . . , n. By minimality
of C, we getM||=Ci (for all i = 1, . . . , n), thusM||=(C ′ ∨D)ηγ. Since
M ̸ ||=Dηγ = Dθ, this entails that M||=C ′ηγ, hence M||=C , which
contradicts our assumption.

• If l is a positive literal, then, since lσ is eligible in C, it must be max-
imal. We cannot have lσ ≻ C ′σ (as otherwise we would have lσ ∈ M
by definition of l). Thus C ′ is of the form l′ ∨ C ′′, with l′σ = lσ. This
entails that l and l′ have an mgu θ, with σ = θη. Then the rule Fact

can be applied on l ∨ l′ ∨ C ′′, yielding: lθ ∨ C ′′θ. Since S is saturated,
there exist clauses C1, . . . , Cn ∈ Ig(S) such that lθγ ∨ C ′′θγ ⪰ Ci (for
i = 1, . . . , n) and {C1, . . . , Cn} ||= lθγ ∨ C ′′θγ. Since C ≻ lθγ ∨ C ′′θγ we
deduce by minimality of C that M||=Ci (for all i = 1, . . . , n), so that
M||= lθγ ∨ C ′′θγ ≡ C, which contradicts our assumption.

Let ∼ be the relation on ground terms defined as follows: t ∼ s iff t ≈ s ∈M.
Since S contains all the equality axioms andM||= Ig(S), it is clear that ∼ is a
congruence. We denote by [t]∼ the equivalence class of the term t. We define
an interpretation I as follows:

31

• For every s ∈ S, sI is the set of equivalence classes of ground rational
terms of sort s. We assume that none of these sets is empty. This is not
restrictive since dummy function symbols can always be added into the
signature if needed.

• For all n-ary function symbols f : s1, . . . , sn → s and for all elements ζi
in sIi (i = 1, . . . , n), fI(ζ1, . . . , ζn) is defined as the equivalence class of
f(t1, . . . , tn), where ti is an element of ζi. Note that fI(ζ1, . . . , ζn) does
not depend on the choice of the ti ∈ ζi, since ∼ is a congruence.

• For all n-ary predicate symbol P : s1, . . . , sn and for all elements ζi in
sIi (i = 1, . . . , n), P I(ζ1, . . . , ζn) is true iff P (t1, . . . , tn) ∈ M, for some
ti ∈ ζi.

The interpretation of variables is irrelevant since all variables are quantified
universally. Note that for every associate J of I, and for every variable x, there
exists a ground term t of the same sort as x such that xJ is the equivalence
class of t. We denote by σJ the substitution mapping every variable x to such a
term t (chosen arbitrarily). For every (possibly non ground) term t, we define:

[t]J
def
= [tσJ]∼. By definition of the interpretation of predicate symbols in I,

this entails that, for every ground finite literal l, [l]J = ⊤ ⇐⇒ lσJ ∈ M
(†). We have to prove that the mapping t 7→ [t]J can indeed be associated with
a regular labeling function, defined as follows: for every term t, and for every

position p, µ(p)
def
= [t|pσJ]∼ (thus in particular, µ(ε) = [t]J as requested by

Definition 15). We check that µ fulfills Conditions 1, 2 and 3 in Definition 11.

1 Assume that t|p = x ∈ V. By definition µ(p) = [t|pσJ]∼ = [xσJ]∼ = [x]J

(by definition of σJ).

2 Assume that t(p) = f ∈ Σ. Then µ(p) = [t|pσJ]∼ Let n be the arity
of f . By definition we must have, for all i = 1, . . . , n: p.i ∈ dom(t) and
µ(p.i) = [t|p.iσJ]∼. By definition of I, fI([t|p.1σJ]∼, . . . , [t|p.nσJ]∼) =
[f(t|p.1σJ , . . . , t|p.nσJ)]∼ = [t|pσJ]∼. Thus µ(p) = fI(µ(p.1), . . . , µ(p.n)).

3 By definition, for every subterm s of t the set {µ(p) | t|p = s} = {[sσJ]∼}
is of cardinality 1.

We show that I |= S. Consider any clause C ∈ S such that I ̸|= C. By
definition, I admits an associate J such that [C]J = ⊥. Since CσJ is ground,
CσJ ∈ Ig(S), thusM||=CσJ . Therefore, C is of the form l∨D, with lσJ ∈M.
By †, we get [l]J = ⊤, contradicting the previous assertion.

This entails that I satisfies Axioms 1, 2 and 3, hence by Lemma 27, I is
C-normal. Moreover, I also satisfies Axioms 4, 5, 6, 7, 8, 9, 10, 11 and 14,
hence by Lemma 28 every term admits at most one regular labeling function.
Consequently, I is a regularly co-inductive model of S.

In the particular case where #ci(c) ≤ 1 for all constructors c ∈ C, the axioms
ensuring the unicity of the regular labeling function can also be omitted, if the
rule Cyc is used:

Theorem 45. Assume that #ci(c) ≤ 1, for all constructors c ∈ C. Let S be
a set of clauses that is saturated w.r.t. {Res, Fact, Cyc} and that contains the
equality axioms as well as Axioms 1, 2, 3. If □ ̸∈ S then S admits a regularly
co-inductive model.

32

Proof. The proof is similar to that of Theorem 44, hence we focus on the parts
from which it departs. The interpretation I is constructed in the same way,
and we prove as it is done previously that I is C-normal (using Axioms 1, 2, 3)
and that every term admits a regular labeling function. We only have to check
that for every term t and for every associate J of I, t admits only one regular
labeling function w.r.t. J . We show that µ(ε) = [t]J holds for every regular
labeling function µ for t w.r.t. J . Since (by Proposition 13) the result holds for
all subterms of t, this proves that µ(p) = [t|p]J holds for all p ∈ dom(t), which
entails that the regular labeling function is unique. We establish the result by
induction on size(t). We distinguish two cases.

• Assume first that t is not a proper subterm of t. If t is a variable, then nec-
essarily µ(ε) = xJ , by Condition 1 in Definition 11, thus µ(ε) = [t]J . Oth-
erwise, t = f(t1, . . . , tn) with f ∈ Σ and size(ti) < size(t) for i = 1, . . . , n
(since t is not a subterm of ti). Let µi (for i = 1, . . . , n) be the function

defined as follows: µi(p)
def
= µ(i.p). By Proposition 13, µi is a regular label-

ing function for ti, and by the induction hypothesis, we get µi(ε) = [ti]
J .

By Condition 2 in Definition 11 we have µ(ε) = fJ (µ(1), . . . , µ(n)) =
fJ (µ1(ε), . . . , µn(ε)) = fJ ([t1]

J , . . . , [tn]
J) = [f(t1, . . . , tn)]

J = [t]J .

• Now, assume that t is a proper subterm of t, i.e., there exists a position
p such that t|p = t. Then the infinite sequence p.p. . . . , is a branch in t
and every symbol t(q) with q ⪯ p occurs infinitely often along this branch.
Since t is admissible, this entails that t(q) ∈ C, for all q ⪯ p. Since
#ci(c) ≤ 1, for all constructors c ∈ C, we must have p = 1k, for some k > 0
and for every i ≥ 0 and j > 1 such that 1i.j ∈ dom(t), the sort of t|1i.j is
not in Sci. This entails that t is not a subterm of t|1i.j (otherwise t would
not be admissible, since the non constructor symbol t(1i.j) would occur
infinitely many often along some branch). Thus size(t|1i.j) < size(t), and
by the induction hypothesis we get µ(1i.j) = [t|1i.j]J .
By Condition 3 in Definition 11, and using the pigeonhole argument, nec-
essarily there exist two constructor positions p1, p2 in {1i | i ≥ 0} such
that: p2 = p1.p

′ with p′ ̸= ε, t|p1
= t|p2

, and µ(p1) = µ(p2). Let s
be any ground term in the equivalence class µ(p2) (w.r.t. the relation
∼ defined in the proof of Theorem 44), and let u = t[s]p2

. By defini-
tion, [u|p2]

J = µ(p2), and by Condition 2 in Definition 11, we have, for
every q ≺ p2, µ(q) = f(µ(q.1), . . . , µ(qm)), with f = t(q) = u(q) and
m = #(f). By an easy induction on q, this entails that for every q ⪯ p2:
[u|q]J = µ(q). In particular, [u|p1

]J = µ(p1) = µ(p2), thus [u|p1
]J = [s]J .

Let v = u|p1
. Note that v|p′ = u|p1.p′ = u|p2

= s. We have [v]J = [s]J ,
so that [vσJ]

I = [s]I , where σJ denotes the substitution mapping every
variable x to any ground term inside xI (note that s is ground hence
its interpretation does not depend on the interpretation of the variables,
hence [s]I = [s]J).

By definition of I, since [vσJ]I = [s]I , we have vσJ ∼ s and (vσJ ≈ s) ∈
M (where ∼ and M are defined as in the proof of Theorem 44), hence
Ig(S) contains a clause of the form vσJ ≈ s ∨ C, where M ̸ ||=C and
vσJ ≈ s ≻ C. Since v|p′ = s, the rule Cyc is applicable on this clause
(with the position p′ and substitution id), yielding: s ≈ vσJ [⟲]p′ ∨ C.
Since S is saturated w.r.t. Cyc, by Lemma 40, Ig(S) is also saturated

33

w.r.t. Cyc, and the latter clause must be redundant w.r.t. Ig(S). This
implies that Ig(S) ||= s ≈ vσJ [⟲]p′ ∨ C. It is easy to check that ||= ⊆|=,
thus we get Ig(S) |= s ≈ vσJ [⟲]p′ ∨ C, and (since I |= S), I |= s ≈
vσJ [⟲]p′ ∨C, so that I |= s ≈ vσJ [⟲]p′ (sinceM ̸ ||=C and by definition
I |= l ⇐⇒ M||= l holds for all literals l, so that I ̸|= C). Since
p′ ∈ dom(v), we have (by Proposition 37) vσJ [⟲]p′ = v[⟲]p′σJ . Thus
[s]J = [s]I = [v[⟲]p′σJ]

I = [v[⟲]p′]J . By an easy induction on the
position p2, we deduce that [u]

J = [t[v[⟲]p′]p2
]J . Moreover, it is clear that

v[⟲]p′ = t|p1 = t|p2 , so that t[v[⟲]p′]p2 = t. We get µ(ε) = [u]J = [t]J .

5 Handling Non-regular Labeling Functions

We now discuss the importance of Condition 3 in Definition 11 and we show
that it can be discarded in some cases. The previous results depend crucially
on the fact that only regular labeling functions are considered in Definition 15.
More precisely, if all (rational) terms admit a unique labeling function w.r.t.
I then necessarily these labeling functions are regular (see Proposition 16),
but Definition 15 does not prevent a term from admitting non regular labeling
functions. For instance, if prec : int → int ∈ C, with intI = Z ∪ {∞},
precI(x) = x− 1 for all x ∈ Z and precI(∞) =∞, then the term t = prec(t) =
prec(prec(. . .) . . .) admits a unique regular labeling function µ defined as follows:

µ(p)
def
= ∞ for all p ∈ dom(t), but it also admits infinitely many non regular

labeling functions µi (with i ∈ Z): µi(p)
def
= i + |p|, for all p ∈ dom(t). If

non regular labeling functions were considered in Definition 15 then none of
the above completeness results would hold. In fact, Proposition 46 shows that
no sound and complete axiomatization of the co-inductive structures possibly
exists:

Proposition 46. The problem of testing whether a given formula is satisfiable
in some co-inductive interpretation is not co-semi-decidable.

Proof. The proof is by reduction from the halting problem (for Turing ma-
chines). We encode the configurations of a Turing machine as triples

(x, tape(yi, . . . , tape(y1, end) . . .), tape(yi+1, . . . , tape(yn, end) . . .))

where end is a constant, tape is a binary standard function, x denotes the state,
y1, . . . , yn denotes the content of the tape and i denotes the position of the head
inside the tape. Let next be a constructor and let run be a non constructor.
Every transition of the Turing machine can be associated with an equation of
the form run(x) ≈ next(run(x′)), where x and x′ encode the initial and final
configurations of the transition, respectively. A transition (q, a) → (q′, b, r)
(where r denotes a move to the right in the tape, q and q′ are the initial
and final states, respectively, and a, b are the symbols read and written on
the tape, respectively), corresponds to the equation: run(q, x, tape(a, y)) ≈
next(run(q′, tape(b, x), y)) whereas a transition (q, a)→ (q′, b, l) yields the equa-
tion: run(q, tape(z, x), tape(a, y)) ≈ next(run(q′, x, tape(z, tape(b, y)))). The
equation end ≈ tape(B, end) is also added, where B is the blank symbol,
to enable tape extensions. Final states q are associated with the equation:

34

run(q, x, y) ≈ stop, where stop is a constructor constant. The considered ma-
chine terminates on some configuration encoded by u iff the above equations
have a model I (satisfying the conditions of the proposition) in which u ̸≈ t
holds, with t = next(t) = next(next(. . .) . . .). Indeed, if the machine termi-
nates then the model may be constructed as follows: the domain is N ∪ {∞},
nextI(i) = i + 1 if i ∈ N, nextI(∞) = ∞, stopI = 0, and every term run(v) is
interpreted as the length of the run from v (or∞ if the machine does not termi-
nate). It is straightforward to check that all the above equations are satisfied and
that the model satisfies the conditions of the proposition (the only infinite term
t is mapped to ∞, which is the only solution of the equation nextI(∞) = ∞).
Conversely, if the machine does not terminate then one gets an infinite sequence
of (encodings of) configurations si such that s0 = u and si ≈ next(si+1) holds,
for all i ≥ 0. Then the function mapping every position 1i in dom(t) to the
interpretation of the term si is a labeling function for t, and by unicity of the
labeling function, this entails that s0 ≈ t holds, i.e., u ̸≈ t cannot hold. Note
that the proof does not work for regularly co-inductive interpretations, since the
considered labeling function is not necessarily regular. The proof follows from
the fact that the halting problem is not decidable.

We show that this theoretical limitation can be overcome in some cases, by
identifying a class of clause sets for which the restriction to regular functions
is not necessary. More precisely we prove that every set belonging to this class
and admitting a regularly co-inductive model also admits a model in which
every (arbitrary) term in fact admits exactly one regular labeling function and,
moreover, in which every labeling function is actually regular. This strengthens
the completeness results in Sections 3.4 and 4 by showing that they apply to a
more focused class of structures. The class is defined by the following condition:

Definition 47. The set of finite sorts is the least subset of S satisfying the
following property: if for all function symbols f : s1, . . . , sn → s, and for all
i = 1, . . . , n, si is finite, then s is finite. A signature is Sci-finite, if for all
function symbols f : s1, . . . , sn → s such that s ∈ Sci and f ̸∈ C, all the sorts
s1, . . . , sn are finite.

In particular, a sort s is finite if all the function symbols of range s are
constants (taking n = 0 in Definition 47). The signature is Sci-finite if the
considered clause set is the clausal form of a formula ∃x1 . . . ∃xnϕ, where the
existential quantifiers inside ϕ bind only variables of sorts in Sst and the only
function symbols with a co-domain in Sci occurring in ϕ are constructors and
constant symbols (after Skolemization the variables xi will be replaced by new
constant symbols, possibly of some sort in Sci, note that we assume, w.l.o.g.,
that all the non-constructor symbols in the signature occur in ϕ, so that the
condition of Definition 47 is trivially satisfied). We need the following:

Proposition 48. If s is finite, then the set T g
s is finite. If the signature is

Sci-finite, then the set of ground terms t such that t ∈ T g
s for some s ∈ Sci and

t(ε) ̸∈ C is finite.

Proof. The first statement is proven by an easy induction on the set of finite
sorts. The second statement follows immediately.

Theorem 49. Assume that the signature is Sci-finite. If a clause set S admits
a regularly co-inductive model, then it admits a co-inductive model.

35

Proof. Let I be a regularly co-inductive model of S. We consider the restriction
J of I to ground terms, formally defined as follows.

• For every s ∈ S, sJ def
= {[t]I | t ∈ T g

s }. We assume that for every sort s,
T g
s is not empty, so that sJ ̸= ∅ (this property can be enforced if needed

by adding fresh constant symbols of profile → s for all sorts s).

• For every function symbol f : s1, . . . , sn → s, and for all ζi ∈ sJi ,

fJ (ζ1, . . . , ζn)
def
= fI(ζ1, . . . , ζn). Note that fI(ζ1, . . . , ζn) ∈ sJ , since

by definition every element ζi is of the form [ti]
I , with ti ∈ T g

si
, so that

fI(ζ1, . . . , ζn) = fI([t1]
I , . . . , [tn]

I) = [f(t1, . . . , tn)]
I , with f(t1, . . . , tn) ∈

T g
s .

• The interpretation of variables is fixed arbitrarily. By definition, every
variable x of sort s is mapped to an element [tx]

J , with tx ∈ T g
s , and we

denote by σJ the substitution mapping every variable x to tx.

Since J is a restriction of I, necessarily every universal formula that is satisfied
by I is also satisfied by J . Hence J satisfies Axiom 1,2 and 3, i.e., J is C-
normal. Moreover, for every term t, there exists at most one regular labeling
function for t w.r.t. J (it is clear that the unicity of the regular labeling function
can be stated as an infinite set of universal formulas). Finally, it is easy to check,
as it is done in the proof of Theorem 44, that every term t admits a regular

labeling function, defined as follows: µ(p)
def
= [t|pσJ]J . Since the interpretation

of variables are arbitrarily, the previous properties hold for all associates of J ,
hence J is regularly co-inductive.

Let t be a term, and let µ be a labeling function for t w.r.t. I. We show that µ
is regular. Assume for the sake of contradiction that the set {µ(p) | p ∈ dom(t)}
is infinite. This entails that there exists a branch p in t such that the set
{µ(q) | q ⪯ p} is infinite. Necessarily pmust be infinite, and since t is admissible,
there exists a position q ≺ p such that t(r) ∈ C, for all positions r such that
q ⪯ r ≺ p. It is clear that the set {µ(r) | q ⪯ r ≺ p} is infinite. We now consider
the set of elements Γ containing µ(q) and all the elements [s]J with s ∈ T g

s ,
s ∈ Sci and s(ε) ̸∈ C. Note that Γ is finite, by Proposition 48. Let δ be a partial
function mapping every element ζ to an arbitrarily chosen regular ground term
u such that u(ε) ∈ C and [u]J = ζ (if such a term exists, otherwise δ(ζ) is
undefined). Let ∆ be the set of elements of the form [u]J , where u is a subterm
of some term δ(ζ), with ζ ∈ Γ. Since Γ is finite and all the considered terms are
rational, ∆ is also finite. We prove that µ(r) ∈ ∆ for every r such that q ⪯ r ≺ p,
which contradicts the fact that {µ(r) | q ⪯ r ≺ p} is infinite. Note that, by
definition of q, t|r = c(t1, . . . , tn), with c ∈ C. By definition of a labeling function
(Condition 2 in Definition 11), necessarily µ(r) = cI(µ(r.1), . . . , µ(r.n)). By
definition of J , every µ(r.i) is of the form [si]

J , for some si ∈ T g, so that
µ(r) = cI([s1]

J , . . . , [sn]
J) = [c(s1, . . . , sn)]

J . Thus δ(µ(r)) must be defined,
for all positions r such that q ⪯ r ≺ p. The proof is by induction on the position
r. We distinguish two cases.

• Assume that r = q. Then by definition of Γ, µ(r) = µ(q) ∈ Γ. Since
δ(µ(r)) is defined, we deduce that [δ(µ(r))]J ∈ ∆, with µ(r) = [δ(µ(r))]J .
Thus µ(r) ∈ ∆.

36

• Assume that the property holds for some position r ≺ p. Then there
exists a subterm s of some ground rational term δ(ζ) such that ζ ∈ Γ
and µ(r) = [s]J . We show that the property also holds for every position
r.i ≺ p (with i ∈ N). We distinguish two cases (let c = t(r)).

– s = d(s1, . . . , sm), where d ∈ C. Since µ(r) = cI(µ(r.1), . . . , µ(r.n))
and J is C-normal, necessarily c = d and n = m (since the con-
structors have pairwise disjoint ranges), and [si]

J = µ(r.i) (since the
constructors are injective). As si is a subterm of δ(ζ), the proof is
completed.

– Otherwise, we have s ∈ T g
s for s ∈ Sci and s(ε) ̸∈ C, so that

[s]J ∈ Γ. Since δ(µ(r)) is defined, δ([s]J) is defined. Since µ(r) =
cI(µ(r.1), . . . , µ(r.n)) and the constructors have disjoint ranges, the
term δ([s]J) must be of the form c(u1, . . . , un), and since cJ is in-
jective we must have [ui]

J = µ(r.i). By definition ui is a subterm of
δ([s]J), hence the proof is completed.

6 Conclusion

New axioms and proof procedures have been devised to reason on co-inductive
data structures, and soundness and completeness results have been established.
These completeness results have been proven to be strictly stronger than those
in [6]. The axioms allow one to reduce the co-inductive satisfiability problem
to a standard first-order satisfiability test. The advantage is that any first-
order theorem prover can be used for this purpose, with no specific tuning.
The proof procedures allow one to get rid of some of the axioms, but on the
other hand the integration of the inference rules into existing provers is not
straightforward. We emphasize that the proposed techniques are not restricted
to regularly co-inductive structures: soundness is ensured for all co-inductive
structures. Regularly co-inductive interpretations are considered mainly to pro-
vide a precise characterization of the class of structures for which the method
is refutationally complete (by Proposition 46, it cannot be complete for all co-
inductive structures).

We wish to mention two interesting lines of future work. First, the calculus
defined in Section 4 has the drawback that it offers no built-in support for
equational reasoning (the equality axioms must be added in the considered
clause set). This is of course not ideal and one can hope that superposition proof
procedures [2] could be defined instead of resolution calculi. This, however, is
not straightforward since such proof procedures rely heavily on the existence of
reduction orders, the definition of which is not clear for infinite terms (since a
term can be a proper subterm of itself). Second, the rule Cyc has an important
drawback: it is infinitely branching, meaning that infinitely many clauses may
be derived from a given premise. Beside the efficiency problem, this hinders the
integration of this rule into existing saturation-based provers. To overcome this,
one could use variables denoting contexts, which avoids having to “guess” such
contexts when the rule is applied. Such variables may be seen as second-order
variables, interpreted in some particular way. While second-order unification

37

is undecidable in general, context unification is decidable [18]. It is not clear
however whether this result extends to infinite terms.

Acknowledgments

The author wishes to thank anonymous reviewers who provided numerous in-
sightful comments on an earlier version of the paper.

References

[1] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Co-
patterns: programming infinite structures by observations. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 27–38. ACM, 2013.

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
3(4):217–247, 1994.

[3] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 19–99. Elsevier and MIT Press, 2001.
doi:10.1016/b978-044450813-3/50004-7.

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings of
the 23rd International Conference on Computer Aided Verification (CAV
’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah.

[5] Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy, Martin
Desharnais, Mathias Fleury, Johannes Hölzl, Ondrej Kuncar, Andreas
Lochbihler, Fabian Meier, Lorenz Panny, Andrei Popescu, Christian Ster-
nagel, René Thiemann, and Dmitriy Traytel. Foundational (co)datatypes
and (co)recursion for higher-order logic. In Clare Dixon and Marcelo Finger,
editors, Frontiers of Combining Systems - 11th International Symposium,
FroCoS 2017, Braśılia, Brazil, September 27-29, 2017, Proceedings, volume
10483 of Lecture Notes in Computer Science, pages 3–21. Springer, 2017.

[6] Jasmin Christian Blanchette, Nicolas Peltier, and Simon Robillard. Su-
perposition with datatypes and codatatypes. In Didier Galmiche, Stephan
Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th In-
ternational Joint Conference, IJCAR 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, volume 10900 of Lecture Notes in Computer Science, pages 370–387.
Springer, 2018. doi:10.1007/978-3-319-94205-6_25.

[7] Adel Bouhoula, Emmanuel Kounalis, and Michaël Rusinowitch. Spike,
an automatic theorem prover. In Andrei Voronkov, editor, Logic Pro-
gramming and Automated Reasoning,International Conference LPAR’92,

38

https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1007/978-3-319-94205-6_25

St. Petersburg, Russia, July 15-20, 1992, Proceedings, volume 624 of Lec-
ture Notes in Computer Science, pages 460–462. Springer, 1992. doi:

10.1007/BFb0013087.

[8] Robert S. Boyer and J. Strother Moore. A theorem prover for a compu-
tational logic. In Mark E. Stickel, editor, 10th International Conference
on Automated Deduction, Kaiserslautern, FRG, July 24-27, 1990, Pro-
ceedings, volume 449 of Lecture Notes in Computer Science, pages 1–15.
Springer, 1990. doi:10.1007/3-540-52885-7_75.

[9] James Brotherston. Cyclic proofs for first-order logic with inductive defini-
tions. In B. Beckert, editor, Automated Reasoning with Analytic Tableaux
and Related Methods, volume 3702 of Lecture Notes in Computer Science,
pages 78–92, 2005.

[10] Alan Bundy. The automation of proof by mathematical induction. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, pages 845–911. Elsevier and MIT Press, 2001.

[11] Arnaud Carayol, Christof Löding, and Olivier Serre. Automata on infinite
trees with equality and disequality constraints between siblings. In Martin
Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 227–236. ACM, 2016.

[12] Liron Cohen and Reuben N. S. Rowe. Integrating induction and coinduc-
tion via closure operators and proof cycles. In Nicolas Peltier and Viorica
Sofronie-Stokkermans, editors, Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part I, volume 12166 of Lecture Notes in Computer Science, pages 375–394.
Springer, 2020. doi:10.1007/978-3-030-51074-9_21.

[13] Simon Cruanes. Superposition with structural induction. In Clare Dixon
and Marcelo Finger, editors, Frontiers of Combining Systems - 11th In-
ternational Symposium, FroCoS 2017, Braśılia, Brazil, September 27-29,
2017, Proceedings, volume 10483 of Lecture Notes in Computer Science,
pages 172–188. Springer, 2017. doi:10.1007/978-3-319-66167-4_10.

[14] Mnacho Echenim and Nicolas Peltier. Combining induction and saturation-
based theorem proving. J. Autom. Reason., 64(2):253–294, 2020. doi:

10.1007/s10817-019-09519-x.

[15] Stephan Falke and Deepak Kapur. Rewriting induction + linear arithmetic
= decision procedure. In Bernhard Gramlich, Dale Miller, and Uli Sat-
tler, editors, Automated Reasoning, volume 7364 of LNCS, pages 241–255.
Springer Berlin Heidelberg, 2012. URL: http://dx.doi.org/10.1007/
978-3-642-31365-3_20, doi:10.1007/978-3-642-31365-3_20.

[16] Jürgen Giesl and Deepak Kapur. Decidable classes of inductive theorems.
In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, IJCAR,
volume 2083 of LNCS, pages 469–484. Springer, 2001.

39

https://doi.org/10.1007/BFb0013087
https://doi.org/10.1007/BFb0013087
https://doi.org/10.1007/3-540-52885-7_75
https://doi.org/10.1007/978-3-030-51074-9_21
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/s10817-019-09519-x
https://doi.org/10.1007/s10817-019-09519-x
http://dx.doi.org/10.1007/978-3-642-31365-3_20
http://dx.doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20

[17] Márton Hajdú, Petra Hozzová, Laura Kovács, and Andrei Voronkov. In-
duction with recursive definitions in superposition. In Formal Methods
in Computer Aided Design, FMCAD 2021, New Haven, CT, USA, Oc-
tober 19-22, 2021, pages 1–10. IEEE, 2021. doi:10.34727/2021/isbn.

978-3-85448-046-4_34.

[18] Artur Jez. Deciding context unification. J. ACM, 66(6):39:1–39:45, 2019.
doi:10.1145/3356904.

[19] K. Rustan M. Leino and Michal Moskal. Co-induction simply - automatic
co-inductive proofs in a program verifier. In Cliff B. Jones, Pekka Pih-
lajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th In-
ternational Symposium, Singapore, May 12-16, 2014. Proceedings, volume
8442 of Lecture Notes in Computer Science, pages 382–398. Springer, 2014.
doi:10.1007/978-3-319-06410-9_27.

[20] A. Leitsch. The resolution calculus. Springer. Texts in Theoretical Com-
puter Science, 1997.

[21] Dorel Lucanu and Grigore Rosu. CIRC : A circular coinductive prover. In
Till Mossakowski, Ugo Montanari, and Magne Haveraaen, editors, Alge-
bra and Coalgebra in Computer Science, Second International Conference,
CALCO 2007, Bergen, Norway, August 20-24, 2007, Proceedings, volume
4624 of Lecture Notes in Computer Science, pages 372–378. Springer, 2007.
doi:10.1007/978-3-540-73859-6_25.

[22] Michael J. Maher. Complete axiomatizations of the algebras of finite, ra-
tional and infinite trees. In Proceedings of the Third Annual Symposium
on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July
5-8, 1988, pages 348–357. IEEE Computer Society, 1988.

[23] Alberto Momigliano and Alwen Fernanto Tiu. Induction and co-induction
in sequent calculus. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs, International Workshop,
TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Pa-
pers, volume 3085 of Lecture Notes in Computer Science, pages 293–308.
Springer, 2003. doi:10.1007/978-3-540-24849-1_19.

[24] Andrew Reynolds and Viktor Kuncak. Verification, Model Checking, and
Abstract Interpretation: 16th International Conference, VMCAI 2015,
Mumbai, India, January 12-14, 2015. Proceedings, chapter Induction for
SMT Solvers, pages 80–98. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2015. URL: http://dx.doi.org/10.1007/978-3-662-46081-8_5,
doi:10.1007/978-3-662-46081-8_5.

[25] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2012. URL: http://www.worldcat.org/isbn/
9781107003637.

[26] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic
programming: Extending logic programming with coinduction. In Lars
Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors,
Automata, Languages and Programming, 34th International Colloquium,

40

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.1145/3356904
https://doi.org/10.1007/978-3-319-06410-9_27
https://doi.org/10.1007/978-3-540-73859-6_25
https://doi.org/10.1007/978-3-540-24849-1_19
http://dx.doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-662-46081-8_5
http://www.worldcat.org/isbn/9781107003637
http://www.worldcat.org/isbn/9781107003637

ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596
of Lecture Notes in Computer Science, pages 472–483. Springer, 2007.

41

	Introduction
	Formulas with Infinite Terms
	Syntax
	Semantics

	Axiomatization
	New Symbols
	Axioms
	Examples
	Soundness and Refutational Completeness
	Comparison with Fixpoint Axioms

	A Resolution Proof Procedure to Handle Co-Inductive Data Structures
	Handling Non-regular Labeling Functions
	Conclusion

