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Abstract

Shared Autonomous Electric Vehicles (SAEVs) are pivotal for future transportation,

o�ering both promise and challenges upon integration with the power grid. This symbiosis

augments power system �exibility, stability and reliability through Vehicle-to-Grid (V2G)

services, and optimize transportation e�ciency. However, it ampli�es the demand for robust

charging infrastructure and electricity power during peak periods. This paper proposes a

framework employing a sequential receding horizon optimization approach to manage SAEV

mobility and charging dynamics. Focused on maximizing transportation service quality while

ensuring power grid stability, the model accommodates dynamic trip requests and electricity

generation, utilizing a rolling horizon algorithm. Notably, the study explores the potential

of SAEVs in fortifying the integration of renewable energy resources (RES) into the power

grid. Our research strives to equip policymakers and system planners with a robust tool for

crafting e�cient and sustainable future urban transportation and energy systems.
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1. Introduction

Increasing car ownership and usage is exacerbating tra�c and parking congestion, as

well as greenhouse gas emissions and air pollution (Zhou et al., 2020). Car-sharing services

are expected to mitigate these problems (Ikezoe et al., 2020; Wang and Liao, 2021). More

bene�ts can be o�ered if car-sharing is served by autonomous electric vehicles, such as the

elimination of the time spent on parking and the improvement of the availability, accessi-

bility, and a�ordability of sharing services (Iacobucci et al., 2018a; Vosooghi et al., 2019).

Shared autonomous electric vehicles (SAEVs) are expected to become a cornerstone for fu-

ture transportation, with signi�cant impacts on urban mobility and energy consumption

(Grazia Speranza, 2018). According to Fulton (2018), SAEVs could cut transportation en-

ergy use by 70%, CO2 emissions by 80%, and transportation costs by 40%, achieving savings

approaching $5 trillion per year globally by 2050, compared to the current private vehicle

ownership dominant transportation system. However, the proliferation of SAEVs could im-

pose a signi�cant charging burden on the grid, increasing localized power load �uctuations,

as well as operational di�culties and higher operating costs for power system dispatch due

to the uncertainty of when and where SAEVs are charged (Yao et al., 2022). The electri�-

cation of the transportation system leads to changes on the demand side of the grid system;

meanwhile, the increasing renewable energy mandates are leading to the replacement of

large-scale, slow-ramping, and dispatchable power plants with smaller non-dispatchable re-

newable energy resources (RES) such as solar and wind power plants on the generation side

(Abdin and Zio, 2018). Concerns regarding environmental protection and sustainable de-

velopment have resulted in there being a critical need for cleaner energy (Azzopardi, 2014).

According to the �World Energy Outlook 2022�, the share of global renewable energy re-

sources in electricity supply was 29% by 2021, and it was expected to increase to at least

43% by 2035 and 65% by 2050 (IEA, 2022). However, the amount of electricity produced

from these sources �uctuates greatly over time (Heide et al., 2010), and their forecast is

often unpredictable (Mwasilu et al., 2014). This poses a signi�cant challenge when it comes

to integrating renewable energy resources into the power grid system (Anees, 2012). The
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intermittency of renewable energy supply can easily disrupt the power grid's balance and

lead to supply security risks. E�orts must, therefore, be undertaken to manage the power

grid system in a reliable and cost-e�ective manner.

It is predicted that the widespread adoption of EVs could serve as one of the demand

responses that can signi�cantly facilitate the integration of intermittent renewable energy

resources in the grid if they are managed well (Motta et al., 2023). EVs can absorb the

surplus power through di�erent charging schemes or can deliver power to the grid in low

power availability scenarios, therefore leveling the power grid operations (Richardson, 2013).

This is achieved via the proper development of vehicle-to-grid (V2G) schemes. However,

regular or private EVs are individually owned, which makes them generally unavailable

for demand response at all times. In contrast, SAEVs are managed by centralized control

systems that can e�ciently adjust to power demand and supply changes by integrating real-

time data from the power grid and the vehicle �eet. This makes them easier to control

and optimize for fast, large-scale demand response, potentially enabling easier and higher

penetration of renewable energy resources by increasing grid �exibility (Fernandes et al.,

2012).

There are many studies addressing the V2G-power system integration problem at var-

ious levels, including di�erent kinds of regulatory, technical, or pricing practices (Wolinetz

et al., 2018). However, these studies extensively focus on privately owned vehicles with

predictable charging locations and patterns. However, when it comes to SAEVs, both travel

and charging activities are uncertain and dynamic, necessitating careful consideration in

�eet operations since an unplanned charging strategy could also a�ect the service availabil-

ity of SAEVs, resulting in higher passenger waiting times and less vehicle utilization (Zhang

and Chen, 2020; Vosooghi et al., 2019). Hence, some recent research works developed trans-

portation models of SAEV that consider factors in the power grid to investigate the bene�ts

of co-managing both systems simultaneously. This includes managing aspects such as the

electricity price, layout of charging infrastructure, and the power grid service (Iacobucci

et al., 2018b). However, the potential of SAEVs to improve power grid stability and fa-
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cilitate larger integration of intermittent renewable energy has been largely overlooked. In

addition, existing studies addressing V2G integration in transportation models do not take

into account the detailed con�gurations and constraints in the power grid, such as capac-

ity constraints, transmission line topologies, and related parameters. Properly modeling

these aspects is crucial to achieving accurate results in the co-management of the electri�ed

transportation system and the power grid. By considering these elements, SAEV can be

optimized to operate without compromising the stability and reliability of the grid.

To investigate new control and optimization algorithms to better manage the integration

of SAEVs and renewable energy resources into the power grid, in this paper, we extend the

SAEV model proposed in Zhang et al. (2016) by coupling it with a DC Optimal Power Flow

(DC-OPF) model representing detailed power grid operations. Furthermore, we incorporate

the intermittency of renewable generation within the optimization framework by adding

variables that record the charging demand of vehicles and the gap between energy demand

and supply, as well as several power grid variables and constraints, including demand and

generation balance, generation limits, ramp rate limits, voltage angle limits, and power �ow

limits. The SAEV-power system (SAEV-PS) coupled model is formulated as a mixed integer

linear program (MILP) that e�ciently meets the traveler's needs while ensuring power grid

stability. Additionally, we consider dynamic trip requests and electricity generation that vary

over time and propose a rolling horizon optimization algorithm to solve this optimization

problem. For this, the problem is decomposed into several subproblems that are sequential

in time.

The rest of the paper is organized as follows. A literature review and the paper contri-

butions are presented in Section 2. The model developed is described in detail in Section 3.

The solution algorithm is explained in Section 4. In Section 5, we build a case study using

Beijing's tra�c, grid, and climate data. Furthermore, we apply the model and algorithm to

the case study and conduct calculations for the model validation, the demonstration of the

potential of SAEVs in improving the integration of renewable energy resources into the grid,

the comparison between the SAEV transportation model and the SAEV-PS coupled model,
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and a sensitivity analysis on key model parameters such as discharging rate, consumption

rate and battery capacity. The results are discussed in Section 6, illustrating the usefulness,

necessity and e�ciency of our proposed modeling and optimization framework in �nding

optimal solutions for the coupled SAEV-power grid management problem. Finally, Section

7 presents our conclusions and future work.

2. Literature review and paper contributions

This section reviews the relevant literature on managing EVs and SAEVs �eet operations.

We show that existing literature focuses on optimizing the mobility performance of SAEVs

but neglects the impact of managing charging behavior on the power grid performance. Re-

versely, we show that most of the literature that considers the co-management optimization

of EV charging and its impact on the power grid does not take into account the detailed

modeling of transportation demand patterns. Some literature provides an integrated ap-

proach to modeling and optimizing the SAEV-power grid integration but does not provide

a modeling framework to evaluate the impact of SAEVs on the integration of intermittent

renewable energy sources. This section comprehensively reviews existing studies covering

these topics and summarizes the research gaps and our original contributions.

2.1. Optimizing mobility performance of SAEV

A large body of literature on the operation of SAEVs has focused on optimizing the

SAEV mobility performance. Generally, in this case, the impact of the charging behavior

on electric power systems is overlooked. Some research works used agent-based models to

simulate the transport operation of SAEVs (Bischo� and Maciejewski, 2016; Liu et al., 2018;

Zhang et al., 2015). Other works developed mathematical programming models to represent

the operation of SAEVs and optimize the transportation behaviors of vehicles (Ma et al.,

2017; Li et al., 2016; Kang and Levin, 2021). Their results indicate the signi�cant potential

bene�ts of SAEVs in improving mobility and sustainability in the current transportation

system, but the charging behavior's impact on electric power systems is ignored.
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2.2. Vehicle-grid integration problems

Although SAEVs have been demonstrated to be e�cient in terms of transportation

performance, their high adoption rate in the transportation system can result in a �peak

on peak� e�ect on the power grid (Huang et al., 2013). This phenomenon, along with the

intermittency of renewable energy production, could lead to severe power system instabilities

(Abdin and Zio, 2019; Abdin et al., 2022), as observed in southern Norway in 2017 (Noel

et al., 2017). Several research works have focused on studying the impact of EVs on the grid

and provided charging management strategies, which gives valuable insights into vehicle-

grid integration problems. However, most studies focus on the case of managing privately-

owned vehicles, which have predictable travel patterns due to personal mobility needs and

preferences (Yi and Bauer, 2016; Khodayar et al., 2013; Xu and Pan, 2012; Ding et al.,

2022; Han et al., 2010; Sun et al., 2019). As a result, in these research works, vehicles'

charging demands are often treated as exogenous stochastic inputs following a priori-de�ned

probability distributions.

2.3. Vehicle-grid integration problems of SAEV

In contrast, SAEVs are operated by mobility service providers and are shared among

multiple users, which means they require not only charging management but also mobil-

ity management, referred to as Autonomous Mobility-on-Demand (AMoD) problem. This

problem includes vehicle assignment and relocation management, involving matching the

right vehicle to the proper customer demand and de�ning the optimal vehicle trajectory

from one location to another to balance supply and demand (Özkan, 2020; Bélanger et al.,

2019). Therefore, regarding vehicle-grid integration in the context of SAEV, some research

developed transport models of SAEV that consider power grid variables to investigate the

co-management of both systems. This includes considering electricity prices, which re�ect

demand pressures on the grid in the time dimension, and the layout and location of charging

infrastructure to optimize stress on the grid in the spatial dimension. Additionally, some

studies explore the potential for SAEVs to provide grid services, such as operating reserves

and grid storage, with energy demand determined by mobility behaviors.
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For instance, Iacobucci et al. (2018a) optimizes the operation of SAEV in a node-based

map considering electricity price and grid reserve capacity requirements. The vehicles in the

model are assigned to trip requests by a Hungarian algorithm. A heuristic-based demand-

response strategy based on electricity price signals from the grid is used for charging. The

study found that incorporating electricity prices into the charging strategy of SAEVs can

lower the cost of their transport, and SAEVs can potentially serve as operating reserves for

the grid. Chen et al. (2016) optimizes the operation of SAEV in a graph-based area under

various scenarios of vehicle range and charging infrastructure layout based on an agent-based

model. The greedy search algorithm is applied to dispatch SAEV to trip requests and charg-

ing stations, and the most e�cient relocation strategy combination proposed by Fagnant and

Kockelman (2014) is used to optimize vehicle relocation. The results demonstrate that the

layout of the charging infrastructure and the range of the vehicles signi�cantly in�uence the

vehicle �eet size. The study in Vosooghi et al. (2020) presents a framework for simulating

SAEVs and their charging infrastructure in a cell-based map using an agent-based model

that assumes dynamic demand and network congestion. A dispatching algorithm developed

by Bischo� and Maciejewski (2016) allocates vehicles to trips. The simulation examines

various factors, such as locations of charging stations, type and number of charging outlets,

SAEV battery capacity, and battery swapping technology. The results show that the perfor-

mance of SAEVs is highly dependent on the charging infrastructure. The study presented

in Bauer et al. (2018) developed an agent-based model to simulate SAEVs in a node-based

district. The model assigns trips to the nearest available vehicle and relocates idle vehicles

within a 10-minute radius of trip requests. An iterative process was used to optimize the

positioning of charging stations, starting with chargers located on all nodes and eliminating

the least used chargers in each iteration. Through sensitivity analysis, the study determined

the optimal battery size and number of charging stations required to minimize the costs

associated with the operation of SAEVs.Loeb et al. (2018) presents an optimization model

that evaluates the performance of the SAEV system in a node-based region. The simula-

tion considers various factors such as battery range, charging time, �eet size, and charging
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station placement to identify optimal strategies for maximizing system performance. Fur-

thermore, a dynamic tra�c assignment algorithm presented by W Axhausen et al. (2016)

was employed to optimize customers' trip patterns. The study reveals that charging stations

become scarce as vehicle range increases. Zhang et al. (2016) proposes a mathematical pro-

gramming model to optimize the mobility service of SAEVs in a node-based tra�c network.

The problem is formulated as a mixed-integer linear program (MILP) and solved using a

model predictive control (MPC) approach. The objectives of the problem are to maximize

the service to all waiting customers and relocate SAEVs in an e�cient manner. The model

also considers charging constraints, with the placement of charging stations pre-set and dif-

ferent charging speeds compared. The study compares the proposed MPC algorithm with

other vehicle dispatch algorithms and demonstrates its advantages of computational time

and solution quality. Iacobucci et al. (2019) builds upon the work proposed in Zhang et al.

(2016) by considering the charging and discharging of SAEVs and electricity prices. The

results indicate that SAEVs have the potential to o�er adequate energy storage to the grid

and avoid grid congestion through dynamic pricing. A summary of the models and the

elements considered in the relevant literature is provided in Table.1.

Table 1: Summary of the relevant literature on vehicle-grid integration problems of SAEV.

Formulation Road net Power grid Electricity
price

Charging infrastructure Power grid ser-
vice

Iacobucci et al.
(2018a)

Nearest neigh-
bor assign-
ment

Yes, based on
nodes

No Yes The position of charging sta-
tion

operating re-
serve

Chen et al.
(2016)

Agent-based Yes, based on
graph

No No The position of charging sta-
tion and the type of chargers

No

Vosooghi et al.
(2020)

Agent-based Yes, based on
cells

No No The position of charging sta-
tion, the type of chargers and
the number of outlets

No

Bauer et al.
(2018)

Agent-based Yes, based
on nodes and
with tra�c
condition

No No The position of charging sta-
tion, the type and the number
of chargers

No

Loeb et al.
(2018)

Agent-based Yes No No The position of charging sta-
tion and the type of chargers

No

Zhang et al.
(2016)

MILP Yes, based on
nodes

No No Charging rate No

Iacobucci et al.
(2019)

MILP Yes, based on
nodes

No Yes No Energy stor-
age
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2.4. Contributions

In conclusion, several studies have investigated the mobility performance of SAEVs and

demonstrated the proposed models' e�ciency in optimizing transportation-related decisions.

However, those studies have typically overlooked the impact of SAEV charging on the power

grid, and explicit modeling of the power system is not considered. Given that a high share

of EVs may pose signi�cant challenges to the power grid, much research has been conducted

on the vehicle-grid integration problem, but most have focused on private vehicles and the

charging scheduling problem. These studies typically ignore the transportation modeling of

the vehicle and treat the vehicle's charging demands as exogenous stochastic inputs, which

is unacceptable when it comes to SAEVs because mobility performance needs to be guaran-

teed when their charging strategy is managed. Hence, some works studied the operational

management of SAEVs by considering the electric price, charging infrastructure, and grid

services based on the transportation model of SAEV. However, to the best of our knowledge,

no existing study has considered a modeling and optimization approach that considers the

co-management of SAEVs with the power system, particularly to study the potential of this

co-management on the integration of intermittent renewable energy sources. Therefore, this

study attempts to address these knowledge gaps and has the following contributions:

� First, we propose a novel modeling and optimization framework to manage the cou-

pled SAEV mobility service and its interaction with the electric power grid. Our novel

modeling approach focuses on analyzing the potential of SAEVs to improve the inte-

gration of renewable energy in the power grid. The model provides novel extensions

of state-of-the-art SAEV transportation models, including �exible charging state vari-

ables and adapted objective functions. Additionally, it is coupled with a DC optimal

power �ow model (DC-OPF model) by adding several power grid variables and con-

straints, including demand and generation balance, generation limit, ramp rate limit,

voltage angle limit, and power �ow limit. These considerations improve the model and

�ll the gap in the �eld.

� Second, we propose a rolling horizon solution algorithm capable of solving the resulting
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mathematical programming model under realistic sequential and dynamic trip requests

and renewable energy availability scenarios. While the algorithm shares similarities

with the traditional rolling horizon algorithm, it had not previously been applied to

the speci�c problem that integrates transportation system and power grid within a

dynamic setting. The proposed rolling horizon algorithm is shown to be capable of

achieving optimal solutions with high computational e�ciency.

� Third, using the proposed framework, a real-world case study based on the Taxi GPS

data, power grid con�guration, and climate data of Beijing in China is employed to

demonstrate the usefulness, necessity and e�ciency of our proposed modeling and

optimization framework, as well as the potential of SAEV to help integrate renewable

energy resources into the grid. The results give valuable insights into the topic of

optimal management of electri�ed mobility systems and electric power grids.

3. Model

This section presents the model developed in our work. We provide novel extensions to

the SAEV AMoD model presented in Zhang et al. (2016) to integrate the DC-OPF model

and the AMoD problem within a single optimization. Table 2 summarizes the variables,

parameters, and sets used in the model. The variables are divided into two categories: state

variables and decision variables. The state variables re�ect the state of the system over time,

and the decision variables represent the control actions to be optimized. Figure 1 illustrates

the decision-making process of a single vehicle, showcasing the evolution of all state variables

pertaining to the vehicle. This includes decisions regarding movement or parking, charging

and discharging, as well as the changes in energy levels over time.

3.1. Shared autonomous electric vehicle (SAEV) operational model

The SAEV operational model is proposed to minimize the number of waiting passengers,

with penalty terms to ensure vehicles do not rebalance for no reason. This is shown in Eq.(1),

where t represents the time steps within the set T , N represents the set of nodes, and V
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Figure 1: The decision-making process of the vehicle k
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Table 2: Variables and parameters

Sets Data type De�nition
T Set of time t
N Set of nodes i
V Set of vehicles k

Parameters

ci,j,t Integer
Number of new customers starting at node i

with destination j at time t
cdi,t Real Number The charging demand at node i at time t

di,j,t Integer
Number of waiting customers starting at node i

with destination j at time t
αch, αdc, αcon ∈ [0, 1] Electricity charging, discharging and consumption rate

τi,j Integer Distance between node i and j measured by time step
ρd Positive Real The weight of objective term

φω , φsg Positive Real The penalty weight of penalty terms
gmax
i Positive Real limitation of electricity generation at node i
θ̄ Positive Real limitation of di�erence in voltage angle

χi,j Positive Real Inductance of arc between node i and j
¯fi,j Positive Real limitation of power �ow

RDi, RUi Positive Real limitation of generation ramp rate
e Positive Real Battery Capacity

State Variables
uk
i,t Binary Parking status of vehicle k at time t

qkt ∈ [0, 1] Charging level of vehicle k at time t
pkt Binary Moving status of vehicle k at time t

fi,j,t Real Number The power �ow in grid arc between node i and j at time t
cdki,t Real Number The charging demand of vehicle k at node i at time t

cdSAEV
i,t , cdRet

i,t Real Number The charging demand of SAEV and residents

Decision Variables
waki,t Binary Waiting status of vehicle k at time t

υk
i,j,t Binary Travelling decision of vehicle k from node i to node j at time t to pick-up passengers

ωk
i,j,t Binary Travelling decision of vehicle k from node i to node j at time t to rebalance

chk
i,t Binary Charging decision of vehicle k at time t

dcki,t Binary Discharging decision of vehicle k at time t

gi,t Real Number The electricity generation at node i at time t
gconi,t , grewi,t Real Number The generation of conventional energy and RES

θi Real Number Voltage angle at ndoe i
sgi,t Real Number Electricity spillage at node i at time t

represents the set of vehicles. ρd is the weight of objective term. ϕω is the penalty weight.

min
i,j∈N

t=0,1···T
k∈V

ρd
∑
t,i,j

di,j,t + φω

∑
i,j,k,t

τi,jω
k
i,j,t (1)

di,j,t denotes the number of waiting passengers at time t who want to travel from node

i to node j. The state evolution of this variable is expressed by Eq.(2). The number of

waiting passengers at the next time step t + 1 equal to the number of currently waiting

passengers, plus the number of newly arrived passengers ci,j,t, minus the sum of picked-up

passengers
∑

k∈V υki,j,t. υ
k
i,j,t is a binary decision variable which is equal to 1 when vehicle k
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picks up a passenger from node i to node j at time t, otherwise it is 0.

di,j,t+1 = di,j,t + ci,j,t −
∑
k∈V

υki,j,t (2)

Similarly, the binary variable ωk
i,j,t denotes the rebalancing decision of vehicle k. Rebal-

ancing is a process by which idle vehicles adjust their positions to improve their services'

e�ciency. In contrast to privately owned electric vehicles, this is the most distinctive feature

of autonomous vehicles.

The vehicle's moving status can be tracked by the binary variable pkt . It equals 1 when

vehicle k moves from t−1 to t. The evolution expression is formulated by Eq.(3), where τi,j

represents the distance (in terms of time steps) between nodes i and j. If there are decisions

to pick up a passenger or rebalance itself for vehicle k at time t, the addition of the term,∑
i,j∈N (υki,j,t + ωk

i,j,t), represents the transition of pkt from 0 to 1. If the vehicle k is moving

from node i with a mission assigned τi,j ago, it would stop at node j next time step. Hence,

the subtraction of the term,
∑

i,j∈N (υki,j,t−τi,j
+ ωk

i,j,t−τi,j
), account for the change from 1 to

0.

pkt+1 = pkt +
∑
i,j∈N

(υki,j,t + ωk
i,j,t)−

∑
i,j∈N

(υki,j,t−τi,j + ωk
i,j,t−τi,j ) (3)

Eq.(4) adds (τi,j)max to the time subscript of decision variables to solve the problem

when t− τi,j is negative. Here, (τi,j)max signi�es the maximum distance between all pairs

of nodes. Although this adjustment may result in a discrepancy between the subscripts of

decision variables and other variables (for instance, at the initial time step where t equals

0, the subscript of υki,j,t+(τi,j)max
is (τi,j)max while that of other variables is 0), it does not

disrupt the synchrony of time, thereby maintaining the logical integrity of Eq.(3). Decision

variables preceding the initial time are simply set to 0 during testing to ensure they do not

impact calculations within the target time horizon.

pkt+1 = pkt +
∑
i,j∈N

(υki,j,t+(τi,j)max
+ ωk

i,j,t+(τi,j)max
)

−
∑
i,j∈N

(υki,j,t+(τi,j)max−τi,j
+ ωk

i,j,t+(τi,j)max−τi,j
)

(4)
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The variable p records the movement status of the vehicle, but not its speci�c location

while in motion, which is irrelevant for our purposes. However, we do require knowledge of

the stopping location in order to calculate the charging demand in that area. Therefore, we

introduce the binary variable uki,t to capture this information. When vehicle k is waiting at

the node i from t− 1 to t, it is set to 1. The evolution expression is formulated in Eq. (5).

It should be noted that uki,t and pkt cannot be equal to one simultaneously, as described in

Eq. (10). If vehicle k decides to travel a passenger or rebalance at time t, then uki,t+1 will

become 0.

uki,t+1 = uki,t −
∑
j∈N

(υki,j,t+(τi,j)max
+ ωk

i,j,t+(τi,j)max
)

+
∑
j∈N

(υkj,i,t+(τi,j)max−τj,i
+ ωk

j,i,t+(τi,j)max−τj,i
)

(5)

To make the charging process more �exible, vehicles are assigned three state variables,

chki,t, dc
k
i,t and waki,t, simulating three di�erent behaviors when waiting at a node. All three

variables are binary. The variable chki,t = 1 indicates that vehicle k charges while waiting

at node i. dcki,t and waki,t denotes discharging and waiting without charging nor discharging,

respectively. A new constraint is added since the vehicle can only be in one state while

waiting at a charging node. This is formulated in Eq.(6).

uki,t = chki,t + dcki,t + waki,t (6)

The electricity level of vehicle k is recorded with variable qkt , which varies between 0 and

1, indicating an empty and a full battery, respectively. The evolution is expressed by Eq.(7).

αch, αdc and αcon are, respectively, the charging rate, discharging rate, and consumption

rate. They are de�ned as the percentage of energy evolution within a single time step relative

to the battery capacity. The �rst part of Eq.(7) ensures that the charging level is limited

to the upper and lower bounds. The term αconp
k
t+1 represents the electricity loss incurred

while the vehicle is in motion. Constraints (8) and (9) guarantee that the vehicle cannot

charge when the battery is fully charged and that it cannot discharge when the battery is
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empty.

qkt+1 = min{max{qkt + αch

∑
i∈N

chki,t+1 − αdc

∑
i∈N

dcki,t+1, 0}, 1} − αconp
k
t+1 (7)

∑
i∈N

chki,t+1 ≤ M(1− qkt ) (8)

∑
i∈N

dcki,t+1 ≤ Mqkt (9)

Eqs.(10) to (14) are logical constraints in the model. Eq.(10) constraints each vehicle to

be either moving or waiting. Eq.(11) speci�es that a vehicle is either moving a passenger

or rebalances. Eq.(12) limits the number of passengers to be transported to the maximum

number of passengers waiting at a node. Eqs. (13) and (14) ensure that the charging level

of a vehicle is su�cient to cover its travel to the required destination.

∑
i∈N

uki,t + pkt = 1 (10)

∑
i∈N

uki,t+1 +
∑
j∈N

(
υki,j,t+(τi,j)max

+ ωk
i,j,t+(τi,j)max

) = 1 (11)

∑
k∈V

υki,j,t+(τi,j)max
≤ di,j,t + ci,j,t (12)

qkt ≥ υki,j,t+(τi,j)max
αconτi,j (13)

qkt ≥ ωk
i,j,t+(τi,j)max

αconτi,j (14)

3.2. DC Optimal Power Flow Model (DC-OPF model)

In this part, a DC-OPF model is introduced. The concept of optimal power �ow is

proposed for preventing transmission line overloads in the power grid (Carpentier, 1979).

In its classical version, this is a nonlinear, nonconvex optimization problem that is di�cult

to solve. Due to the computational di�culty of the OPF problem, some approximation

methods exist in the literature. One of the most frequently used approximation methods

is the DC-OPF model (Aigner et al., 2022), where the constraints are as follows: Eq.(15)
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limits the electricity generation of each node. Eq.(16) balances the charging demand cdi,t

and the electricity generation gi,t. Eq.(17) constrains the ramp rate of generation between

consecutive time steps. Eq.(18) sets the power �ow magnitude and direction between nodes

based on the di�erence in voltage angles and the susceptance of the transmission line. The

maximum �ow in each transmission line is limited by Eq.(19) in both power �ow directions.

Similarly, the voltage angle is constrained within the physical limits set in Eq.(20). Finally,

the voltage angle for the selected reference node is set to zero, as indicated by Eq.(21).

Eq.(22) balances the charging demand cdi,t, power �ow fi,t and the electricity generation

gi,t at each node i.

gmin
i ≤ gi,t ≤ gmax

i (15)∑
i∈N

(cdi,t − gi,t) = 0 (16)

RDi ≤ gi,t+1 − gi,t ≤ RUi (17)

−2θ̄ ≤ θi,t − θj,t − χi,jfi,j,t ≤ 2θ̄ (18)

−f̄i,j ≤ fi,j,t ≤ f̄i,j (19)

−θ̄ ≤ θi,t ≤ θ̄ (20)

θiref = 0 (21)

gi,t + fiin ,t − fiout,t − cdi,t = 0 (22)

3.3. Vehicle-grid Integration (VGI) model

To connect the SAEV model with the DC-OPF model, charging demand variables are

added to the model and the expression is presented in Eq.(23). We assume that cdSAEV
i,t

increases when any vehicle is charged at node i from t to t + 1 and decreases when it is

discharged. Node i is equivalent to a generator if cdi,t is a negative value, which provides

electricity for other load nodes.

cdSAEV
i,t = e

(∑
k∈V

(
qkt+1 − qkt

)
chki,t+1 +

∑
k∈V

(
qkt+1 − qkt

)
dcki,t+1

)
(23)

16



Considering the intermittency of renewable energy electricity generation, variables record-

ing the excessive electricity generation or electricity spillage, sgi,t, are added in our VGI

model. If sgi,t is negative, it means the power grid cannot meet the consumption, and an

electricity shortage occurs. The electricity generation variables gi,t are separated into two

parts: one is from renewable energy, grewi,t , and the other, gconi,t is from conventional genera-

tors such as coal and natural gas. The penetration rate of renewable energy in the power

grid is determined by the proportion of grewi,t in gi,t. Except for the charging demand of

SAEV, residential charging demand, cdreti,t is considered as well. With these new variables,

Eq.(16) and (22) are changed to (24) and (25). Eq.(26) constrains the charging behavior of

SAEVs that they cannot charge when the power grid lacks energy. One more penalty term is

added to the objective function, shown in Eq.(27). With this term, SAEVs are incentivized

to stabilize the power grid's imbalance between power generation and consumption.

∑
i∈N

(
cdSAEV

i,t + cdreti,t − gconi,t − grewi,t − sgi,t
)
= 0 (24)

grewi,t + gconi,t + fiin,t − fiout,t − cdreti,t − cdSAEV
i,t − sgi,t = 0 (25)

chki,t+1sgi,t ≥ 0 (26)

min
i,j∈N

t=0,1···T
k∈V

ρd
∑
i,j,t

di,j,t + φω

∑
i,j,k,t

τi,jω
k
i,j,t+(τi,j)max

+ φsg

∑
i,t

| sgi,t | (27)

3.4. Linearization

There are two types of nonlinear constraints in the model. To facilitate the calculation,

these nonlinear constraints are converted to linear constraints by a disjunctive constraints

method.

The state evolution of vehicles' electricity level as Eq.(7) Is converted into Eqs.(28)�(40).

z1
k
t ≥ αch

∑
i∈N

chki,t+1 − αdc

∑
i∈N

dcki,t+1 (28)

z1
k
t ≥ 0 (29)
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z1
k
t ≤ αch

∑
i∈N

chki,t+1 − αdc

∑
i∈N

dcki,t+1 +M
(
1− u1

k
t

)
(30)

z1
k
t ≤ Mu1

k
t (31)

z2
k
t ≤ 1 (32)

z2
k
t ≤ qkt + z1

k
t (33)

qkt + z1
k
t ≤ z2

k
t +M

(
1− u2

k
t

)
(34)

1 ≤ z2
k
t +M

(
1− u3

k
t

)
(35)

u2
k
t + u3

k
t ≥ 1 (36)

u1
k
t ∈ {0, 1} (37)

u2
k
t ∈ {0, 1} (38)

u3
k
t ∈ {0, 1} (39)

qkt+1 = z2
k
t − αconp

k
t+1 (40)

The expression of charging demand as Eq.(23) Is converted into Eqs.(41) to (46).

cdi,t =
∑
k∈V

cdki,te (41)

cdki,t ≤ M
(
chki,t+1 + dcki,t+1

)
(42)

cdki,t ≥ −M
(
chki,t+1 + dcki,t+1

)
(43)

cdki,t ≤ qkt+1 − qkt +M
(
1− chki,t+1 + dcki,t+1

)
(44)

cdki,t ≥ qkt+1 − qkt −M
(
1− chki,t+1 + dcki,t+1

)
(45)

0 ≤ cdki,t ≤ 1 (46)
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4. Solution Method

The idea of the rolling horizon algorithm is to solve the problem over a chosen planning

horizon and use current prediction but to �x and e�ectively apply only a part of the optimized

decisions. Then, for the next step, the system state and the predictions are updated, as in

real-life situations, and the problem is solved again on the shifted planning horizon (Étienne

Cuisinier et al., 2022). Figure 2 illustrates the process of the rolling horizon algorithm.

Before optimizing, three parameters of the horizon are selected. The schedule horizon (SH)

is the planning time horizon of the main problem. The prediction horizon (PH) is the time

horizon of considered prediction information taken into account by SAEVs when making a

decision. The control horizon (CH) determines how far is the adopted optimized decisions

to control the SAEVs into the future. The yellow area in Figure 2 denotes the end states of

control, which, after optimization, are passed into the green area, being the initial states in

the next optimization. By recording all states of control, we can get the results of the main

problem.

Speci�cally, we apply the method to our model, and the calculation steps are as shown in

Figure 3. After the horizons parameters are selected along with the initial state variables and

all the parameters in Table 2, the coupled system states within the SH are calculated. Using

the rolling horizon algorithm, the problem is decomposed into a number of subproblems,

which are solved sequentially. The values of SH and CH determine the number of iterations.

At each iteration, we pass the end state within the control range of the previous one into

the initial state (line 3 in pseudocode) or input the initial state (line 5). Afterward, the

subproblem is computed (line 7), and the system state variables within the control range are

recorded (line 8). Figure 3 shows how the state passes between two iterations or subproblems.

For example, in the �rst iteration, we set the initial charging level of vehicle k to 0.2,

qkt1 = 0.2, and obtain the change of energy level in the next Tph steps by calculating the �rst

subproblem. The energy level at the TCh step is passed to the next iteration as the initial

energy level, qkt2=0 = qkt1=Tch
, and the states of the system before Tch are saved as the results

of the main problem from t = 0 to t = Tch − 1, Qk
t=0→Tch−1 = qkt1=0→Tch−1. The same is

19



done for the subsequent iterations.

Figure 2: Rolling horizon algorithm

In contrast to the model predictive control algorithm in Zhang et al. (2016), the method

here is not only used for the behavioral control of SAEVs but also conveys the state of the

grid system. Relying on a rolling horizon algorithm can help to divide a large optimization

problem into smaller ones (Étienne Cuisinier et al., 2022). However, although the solution

obtained in each prediction horizon is optimal for its subproblem, the results probably are

suboptimal for the main problem since information outside the PH is not taken into account.

Therefore, PH must be carefully chosen. According to Kopanos and Pistikopoulos (2014),

the PH value depends on the problem's characteristics. So, we will discuss the choice of PH

as well as CH in the next section considering the model and scenario.

5. Case study

In this section, we present a scenario for evaluating the usefulness of our proposed mod-

eling framework for managing the interdependent SAEV mobility service and power grid

system. We propose a case study based on the city of Beijing, China. The aim is to build a

realistic scenario that assesses the potential of using SAEVs to facilitate the integration of

20



Figure 3: Rolling horizon algorithm pseudocode
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renewable energies into the power grid.

We selected the central region of Beijing as the study area: the Hai Dian, Shi Jing Shan,

Feng Tai, Xi Cheng, Dong Cheng, and Chao Yang districts. The centroids of each district are

considered to be the origin/destination of the trips in the SAEV system, and the Euclidean

distance between them is assumed to be the average distance between two districts so that a

simpli�ed 6-node tra�c map is generated, as shown in Figure 4. The graph's colors indicate

the travel demand between node pairs daily. The travel demand patterns are calculated using

the real Taxi GPS dataset from the Python package TransBigData (Yu and Yuan, 2022).

More details are available in Appendix A, along with the selection of vehicle parameters.

Figure 4: Simpli�ed tra�c node map with OD-pairs aggregation

Based on the grid structure of Beijing at the distribution level and some reasonable

assumptions, we synthesized a simpli�ed grid as shown in Figure 5. The red nodes in the

�gure are the centroids of the districts, which means we ignore the power transmission within

the regions and simplify the distribution of power stations. The connecting lines represent

the sum of power transmission lines between regions, where the main line type is 220 Kv. In

Appendix B, we detail the synthesis process and the selection of the grid system parameters.

Further, we present the renewable energy capacity factor calculation based on climate data

in Appendix C. Multiplying the capacity factor by the installed capacity of the renewable

energy source gives the predicted electricity production values, which provides a calculation

22



scenario for the potential analysis of SAEV to help the grid integration of renewable energy

resources.

Figure 5: The synthetic power grid in Beijing

When using the rolling horizon algorithm, the original problem is decomposed into a

number of subproblems. The choice of PH and CH plays an important role in the perfor-

mance of our algorithm. We choose PH = 4 and CH = 1, according to the process described

in Appendix D.

6. Results and discussion

In this section, we use the rolling horizon algorithm to compute the results based on the

case study as described before. We further discuss and analyze the results. All computational

experiments are performed on a MacBook running macOS Monterey 12.4, using the Apple

M1 chip, 8 GB of RAM, and Gurobi 9.5.1 is used as MIP solver.
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6.1. Objective function weight and penalties

Before the calculation, we also need to set the weight and penalties of the objective

function. In Zhang et al. (2016), the objective function weight is set to 1 by default, and the

penalty weight of vehicle rebalancing is set to a small value. In our model, we set the weight

of the objective term of SAEV based on the Beijing Taxi service price, as shown in Table

3. The rebalancing cost of SAEV is set to 1 Yuan/Km, which is a reasonable value based

on the service price. Thus, the objective term represents the potential bene�t yet to be

gained, and the second penalty term represents the economic cost of rebalancing. the SAEV

always makes the choice of maximizing the economic bene�t. As for the penalty term for

interaction with the grid, we set it to a small value of 0.0001 to prioritize the transportation

service for SAEVs.

Table 3: Travel price

Distance ≤ 3 Km 3-15 Km ≥ 15 Km
Price 10 yuan 2 yuan/Km 3 yuan/Km

6.2. Model validation

In this part, we calculate a regulation problem described in Zhang et al. (2016). The

regulation problem veri�es the analytic stability of the model and algorithm, and the proof

process is extensively detailed in that paper. We also undertake a charging rate impact

experiment, which serves two primary purposes: First, it allows us to explore the in�uence

of the vehicle charging rate on the system's service performance. Second, it serves as a

validation test to prove the robustness of our model and algorithm in the presence of external

disturbances (travel demands). This part a�rms the viability of our model and algorithm

for further experiments. It is necessary to state that in the calculation, in order to scale the

SAEV system to the grid system, we use a factor of 100, i.e., the behavior of one vehicle in

our model represents the behavior of 100 SAEVs in reality. Thus, in this paper, one electric

vehicle (representing 100 vehicles with 100 kWh battery capacity) may lead to a 10 MWh

charging demand for the grid. This is reasonable statistically, considering the geographic
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scale and temporal resolution we set. In the subsequent discussion, we only present the

vehicle number that has been multiplied by the scaling factor for the sake of description

consistency. The parameter settings for the calculations are summarized in Table 4.

Table 4: Parameters settings in the model validation

Experiment Model validation Impact of charging rate
Time Resolution (min) 30 30

Initial Energy 0.2 0.2
Vehicle Number 1800 1200
Charging Rate 0.06 0.06/0.12/0.25/0.4

Discharging Rate - 0.25
Consumption Rate 0.3 0.3
Battery Capacity 100 100
Travel Demand 7500 initial passengers Dynamic pattern in Appendix A
RES Penetration - -

Power Grid Con�guration - Scenario in Appendix B

In the regulation problem calculation, the time resolution is set to 30 minutes, with

charging and consumption power at 12 kW and 6 kW, respectively. The initial energy storage

of the SAEV is established at 20 kWh, with a battery capacity of 100 kWh, resulting in an

initial energy level of 0.2. According to the de�nition, the charging rate can be expressed

by Eq.(47).

ChargingRate =
ChargingPower × TimeResolution

BatteryCapacity
(47)

Therefore, the charging rate is 0.06. It's the same for consumption rate, which is 0.03.

Each node starts with a distribution of 300 SAEVs and 7500 passengers waiting to be picked

up and dropped o� at the other 5 nodes. New travel demand is not considered here. The

results are shown in Figure 6. The decrease in travel demand over time demonstrates the

analytic stability of the SAEV model and algorithm. The fastest decrease happens at node 2

and the slowest at node 6, which demonstrates the geographical features in our Beijing case.

Node 2 denotes the center region, Xicheng district, which is close to other nodes, and node

6 denotes the peripheral one, Hai Dian district, which is rather far from others. Figure 6b

shows the evolution of the state of charge of the SAEV system, in which the charge of SAEVs

changes periodically, causing periodic pauses in the decrease of demands. The consistency

between the calculation results and input data, as well as the relationships among variables,
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further con�rm the correctness of the model.

(a) Number of waiting customers at each station (b) State of charge of vehicles

Figure 6: Results of the regulation problem

We also explored the impact of charging rate on the transport service of the SAEV

system, which, according to the literature, varies with regards to the chargers used. In this

test, the average waiting time (AWT) was de�ned as a measure of the transport performance

of the SAEVs and is represented by Eq.(48).
∑

i,j,t di,j,t denotes the sum of the waiting

passengers recorded every 30 minutes until time t, multiplied by 30 minutes, which further

denotes the total length of time passengers have been waiting. This is then divided by the

total number of travel demands to obtain the average waiting time for a passenger.

AWT = 30min×
∑

i,j,k di,j,k∑
i,j,k ci,j,k

(48)

We calculated the charging power at 12 Kw, 24 Kw, 50 Kw, and 80 Kw, which cor-

responds to charging rates of 0.06, 0.12, 0.25, and 0.4, respectively as per Eq.(47). Each

node is assigned 200 SAEVs for this test with an initial charging rate of 0.2. To ensure a

robust analysis, we utilized a random selection process to generate 10 distinct travel demand

patterns for 1200 Taxis. For each charging rate scenario, we input these travel demand char-

acteristics and conducted 10 separate calculations. The calculation results are shown in the

box plot in Figure 7. The length of the box indicates the range of the 10 calculation results,

and the orange line segment in the middle represents the median value of the calculation
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results.

It can be seen that the result of AWT of 0 exists for all four charging rates we set,

which indicates that the SAEV system can perfectly solve the travel demand characteristics

faced at this point. However, when the charging rate is set to 0.06, the median AWT equals

40.5 min, and the highest value exceeds 250 min, which suggests that the SAEV system

performs poorly in most cases when the charging rate is 0.06. When the charging rate is

doubled to 0.12, the median AWT value drops to 10.9 min, which is 73% less than before,

and the maximum value decreases to about 100 min. This indicates that the increase in

charging rate enhances the quality of service of the SAEV system. We further increase the

rate to 0.25 and 0.4, and although the maximum value of AWT still decreases signi�cantly,

the median AWT gradually stabilizes at around 10 minutes. This is because for the case of

low travel demand, the charging rate of 0.12 is already able to satisfy the charging demand

of the SAEV system, and the waiting time is mainly caused by the incongruity between

travel demand characteristics and vehicle distribution and thus is no longer a�ected by the

charging rate. These �ndings are consistent with those in the literature (Zhang et al., 2016;

Chen et al., 2016; Vosooghi et al., 2020; Bauer et al., 2018)

Figure 7: Average Waiting Time (AWT) with di�erent charging rates

6.3. Integration of renewable energy sources (RES) in the power grid

This section explores the potential of SAEVs to help grid integration of renewable energy

sources. The coupled system is simulated under di�erent scenarios, including di�erent re-
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newable energy penetration rates and SAEV �eet sizes. The renewable energy penetration

rate is calculated by the installed capacity of renewable energy resources divided by the

overall generation capacity of the power system. It should be noted that the renewable en-

ergy sources we consider include both wind and solar-PV energy, and their installed capacity

ratio is assumed to be 1 to 1. This ratio a�ects the power production characteristics of the

grid system as does the installed capacity, since the capacity factors for wind and solar vary

considerably. However, the e�ect of this factor is not considered in this paper because it

is not relevant to the subject of this paper, and therefore, the ratio is always kept as 1 to

1. Additionally, the �eet size of SAEV depends on the number of vehicles, as we assume

that the SAEV system will face a dynamic travel demand, calculated from the Taxi GPS

dataset, as done in section 6.2. To ensure a robust analysis, we generated 10 distinct travel

demand patterns and conducted 10 separate calculations for each scenario. The resulting

average value forms the basis for all subsequent discussions. The parameter settings for the

calculations are summarized in Table 5.

Table 5: Parameters settings in the integration of RES in the power grid

Experiment Performance in di�erent �eet sizes Performance in di�erent RES penetration
Time Resolution (min) 30 30

Initial Energy 0.2 0.2
Vehicle Number 0/4200/4800/5400 0/4800/5400/7200
Charging Rate 0.25 0.25

Discharging Rate 0.25 0.25
Consumption Rate 0.3 0.3
Battery Capacity 100 100
Travel Demand Dynamic pattern in Appendix A Dynamic pattern in Appendix A
RES Penetration 4.1% Increasing from 3.9%

Power Grid Con�guration Scenario in Appendix B Scenario in Appendix B

In the test, we �xed the penetration of renewable energy in the grid at 4.1% and calcu-

lated the performance of the coupled system in terms of tra�c service and power balance

for di�erent �eet sizes, 4200, 4800, and 5400 SAEVs. More speci�cally, 140 MW of installed

conventional generation capacity is replaced by renewable energy sources, including 70 MW

of solar PV and 70 MW of wind power. Based on the assumption of distributed installations,

they are distributed in di�erent areas according to the area ratio. The hourly generation of

renewable energy sources is shown in Figure 8a (green line), where the generation pattern is
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similar to the hourly capacity factor of solar-PV since wind energy is very low in our case.

To overcome the intermittency of renewable energy sources, the grid constantly adjusts the

generation of conventional energy sources, reducing them when there is more renewable

energy production and increasing them when the opposite is true. In this way, the grid

balances production and consumption, e�ectively using conventional plants as a backup for

renewable energy generation. Without the involvement of SAEV, the grid can be balanced

for most of the day when the renewable energy penetration is 4.1%, but as shown in 8b, an

energy shortage occurs between 19:00 and 21:00. From the comparison of generation and

consumption in Figure 8a, the reason is that the low production of renewable energy does

not match the high consumption during this time, and the conventional power plants cannot

do much even if they maintain their maximum output. The largest power shortage is 11.87

MW.

(a) Hourly generation (b) Hourly load

Figure 8: Hourly generation and load without SAEVs

First, a �eet of 4200 SAEVs is considered. According to the vehicle parameters, the

charging and discharging rates are set to 0.25, which means that the SAEVs use fast charging

technology. The consumption rate was set to 0.03. The system started operation at 00:00

when the initial energy levels of the SAEVs were all set to 0.2. This is a reasonable estimate

since the energy levels of the vehicles are usually low after a day of work.

The obtained results reveal key insights into SAEVs' behavior when interacting with

the grid. Figure 9a shows the variation in average travel demand and waiting customers
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throughout the day. Notably, there is a distinct cuto� in travel demand at 10:00, with low

demand before and high demand after. With a renewable energy penetration of 4.1%, 4200

SAEVs e�ciently meet most of the demand. However, from 18:00 to 22:00, the number of

waiting customers increased signi�cantly, peaking at 1100, due to power shortages in the

grid system.

Figure 9b depicts the SAEV charging process, revealing that before the power shortage,

the system peaks at 32 MW to prepare for the crisis. Despite the energy shortage, most

SAEVs prioritize passenger transportation over grid energy supply during crisis hours. As

a result, only 2.5 MW is discharged between 19:00 and 19:30, leaving a signi�cant 11.87

MW power shortage. As the grid system lacks the capacity to recharge SAEVs during this

period, some vehicles are unable to replenish energy after transporting passengers, causing

an increase in waiting passengers. After the crisis, the SAEV system requires time to

recharge, leading to additional waiting periods. In summary, with a �eet size of 4200, the

SAEV system fails to support grid integration of 4.1% renewable energy and degrades its

own transportation service levels.

Next, we increased the �eet size to 4800 and 5400 by adding 100 and 200 SAEVs at each

node, respectively, and calculated the operation results. Figure 10 compares the scenarios

for three di�erent �eet sizes and when no SAEVs are involved. To focus on the period around

the power shortage, we present only the calculated results from 18:00 to 23:00. The graph on

the right records the value of the power shortage in the grid system, where zero indicates a

balanced supply and demand, and -8 indicates an 8 MW power demand exceeding the actual

supply. Observing the graph, we �nd that the travel demand can be met with a �eet size of

4800, and the maximum shortage is reduced to 9.5 MW, although the problem is not fully

resolved. However, with a �eet size of 5400 vehicles, the SAEV system exhibits excellent

performance in both tra�c and grid aspects. Not only is the travel demand satis�ed, but the

power system also experiences no shortages. Consequently, the SAEV system with a �eet

size of 5400 SAEVs can safely support the integration of 4.1% of renewable energy sources

into the grid.
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(a) Hourly number of waiting customers (b) Hourly charging demand of vehicles

Figure 9: Performance of SAEV system with 4200 SAEVs

(a) Hourly number of waiting customers (b) Hourly energy shortage of power grid

Figure 10: Performance of SAEV system with di�erent SAEV �eet size

In the next test, we �x the �eet size and adjust the renewable energy resources pene-

tration rate until the grid system does not experience power shortages. Table 6 gives the

acceptable renewable energy sources penetration rates for the grid system with the help of

SAEV �eets of di�erent sizes. In our case, the grid utilizes conventional energy as a backup

source and can safely integrate 3.9% of renewable energy itself. Even with the help of 4800

SAEVs, the penetration rate cannot be further increased. As mentioned before, when the

�eet size is 4200 and 4800, SAEVs are busy transporting customers and do not have much

excess energy to feed the grid. In addition, when the �eet size increases to 5400, the accept-
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able penetration rate is 4.1%, which increases to 4.4% when there are 7200 SAEVs. The

above shows that SAEV systems have great potential to help integrate renewable energy

into the grid, and the larger the �eet size, the more renewable energy can be connected to

the grid. However, an increase in �eet size results in higher investment costs, and scaling up

without substantial bene�ts to the grid system would be impractical. Setting the �eet size

to exactly match the travel demand (4800 SAEVs) would lower investment costs; however,

failing to assist the grid e�ectively could lead to additional expenses. Hence, it would be in-

teresting to value vehicles and the grid in �nancial terms to evaluate the economic viability.

This will be subject to investigation in future work.

Table 6: Acceptable penetration rate of RES in di�erent SAEV �eet sizes

No SAEV 4800 SAEVs 5400 SAEVs 7200 SAEVs
3.9% 3.9% 4.1% 4.4%

6.4. Model comparison and sensitivity analysis

In this part, we conducted a comparison between the isolated SAEV transportation

model and the coupled model incorporating the power grid, focusing on the scenario de-

scribed in the preceding subsection, which involves 4200 vehicles and a 4.1% penetration of

renewable energy, and also a sensitivity analysis to the discharging rate, consumption rate

and battery capacity of SAEVs. The parameter settings for the calculations are summarized

in Table 7.

Figures 11 illustrate the comparison of the number of waiting customers and the evolu-

tion of vehicle charging demand during key time intervals. From the Figure 11a, it is evident

that SAEVs consistently meet all travel demands, resulting in zero waiting customers at all

times. This outcome is rational, as SAEVs maintain a steady charging pro�le una�ected

by constraints from the power grid, as depicted in the Figure 11b. Even during periods of

electricity shortage, from 19:00 to 21:00, SAEVs continue charging, ensuring they always

possess ample energy reserves to meet incoming travel demands. In contrast, the charging

pattern of SAEVs in the coupled model displays notable �uctuations. This di�erence high-

lights the importance of considering the coupled model. Neglecting the constraints of the
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Table 7: Parameters settings in the model comparison and sensitivity analysis

Experiment
Isolated model

vs coupled model
Discharging rate Consumption rate Battery capacity

Time Resolution (min) 30 30 30 30
Initial Energy 0.2 0.2 0.2 0.2
Vehicle Number 4200 4200 4200 4200
Charging Rate 0.25 0.25 0.25 0.25

Discharging Rate 0.25 0.06/0.12/0.25/0.4 0.25 0.25
Consumption Rate 0.3 0.3 0.01/0.03/0.06/0.09 0.03
Battery Capacity 100 100 100 60/80/100/120

Travel Demand
Dynamic pattern
in Appendix A

Dynamic pattern
in Appendix A

Dynamic pattern
in Appendix A

Dynamic pattern
in Appendix A

RES Penetration 4.1% 4.1% 4.1% 4.1%

Power Grid Con�guration
Scenario

in Appendix B
Scenario

in Appendix B
Scenario

in Appendix B
Scenario

in Appendix B

power grid poses a risk of overestimating the service performance of SAEVs. Furthermore,

the charging patterns of SAEVs may not synchronize with the operational dynamics of the

power grid, potentially imposing additional strain on the power system.

(a) Hourly number of waiting customers (b) Hourly charging demand of vehicles

Figure 11: Performance of SAEV system calculated by di�erent model

A sensitivity analysis was also performed on the coupled model to examine the impact

of key parameters on SAEV service e�ciency, speci�cally focusing on average waiting time

(AWT) for customers and the discharging capacity of vehicles to the power grid. Each

parameter was tested across four di�erent vehicle numbers (4200, 4800, 5400, and 7200).
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The analysis of charging rate was previously performed in the model validation section. The

e�ects of varying vehicle discharging rates are depicted in Figure 12a. It's observed that a

higher discharging rate leads to increased discharging electricity from SAEVs as expected,

but it also raises the AWT due to reduced available energy caused by the higher discharging

energy. Figure 12b illustrates the in�uence of di�erent consumption rates, which exhibit a

strong correlation with AWT and a negative correlation with discharging capacity. Unlike

consumption rate, battery capacity appears to primarily a�ect discharging capacity with

minimal impact on AWT, as shown in Figure 12c. The results of the sensitivity analysis

further underscore the importance of integrating considerations from both the transportation

and power systems. For instance, when selecting the discharging rate for SAEVs, it's crucial

to strike a balance between both aspects. Battery capacity should be increased in accordance

with its relation to discharging capacity, even though it has little e�ect on travel service

e�ciency. Moreover, from the result of consumption rate, it is evident that when designing

SAEVs, striving for lower energy consumption is always an excellent choice.

7. Conclusion

The existing body of research on the combined management of Shared Autonomous

Electric Vehicles (SAEVs) considering electric power systems constraints presents a signif-

icant gap with regard to providing comprehensive modeling, optimization, and assessment

approaches that consider both transportation and electric power systems. This de�ciency

has led to an oversimpli�cation of grid-related aspects, often focusing on problems related to

planning charging infrastructure. Consequently, the broader scope of SAEV contributions

to grid integration, particularly in facilitating the incorporation of renewable energy sources,

has been largely overlooked.

The present study presents a structured modeling and optimization framework that

considers both transportation and grid systems and explores the potential of SAEVs to

enhance the integration of renewable energy sources into the grid. To achieve this, the study

extends the existing SAEV Mobility-on-demand mode in Zhang et al. (2016) by coupling it

with a DC-Optimal Power Flow power system model.
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Some speci�c operation scenarios are designed based on the collected data on tra�c,

power grid, and climate in Beijing. Using the parameters in the scenarios as inputs to

the model, we calculate the operation results of the coupled system under these scenarios.

The validity of the model is illustrated by the calculation of the regulation problems and

charging rate impact experiments. By examining the relationship between the penetration

rate of renewable energy sources to the grid system and the size of the SAEV �eet, we

illustrate that SAEVs have the potential to help connect renewable energy sources to the

grid. Additionally, we compare the performance of the isolated SAEV transportation model

with the SAEV-PS coupled model to underscore the necessity of considering the latter.

Furthermore, a sensitivity analysis is performed on the coupled model to assess the impact

of key parameters on SAEV service e�ciency. It should be emphasized that the modeling

and optimization framework presented in this paper can be easily generalized to case studies

other than the one chosen in our paper, making it adaptable to a diverse set of scenarios.

However, for some expansive scenarios, the current approach in this paper may encounter

computational barriers. To address this, we plan to employ approximate dynamic program-

ming to reformulate the framework for scalability. Future endeavors will extend beyond,

incorporating the impact of climate change and extreme weather in the model. This ex-

tension aims to cultivate a more resilient management strategy for the SAEV-grid coupled

system, providing indispensable policy insights over an extended timeframe.
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(a)

(b)

(c)

Figure 12: Sensitivity of Average Waiting Time (AWT) of customers and discharging capacity of vehicles
for di�erent parameters: (a) discharging rate; (b) consumption rates; (c) battery capacity.
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