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Highlights

Regularization errors introduced by the one-fluid formulation in the
solution of two-phase elliptic problems

Daniel Fuster, Yassine Mimoh

• Formulation of the problem of the error estimation introduced by the
regularization of fluid properties on the solution of elliptic equations for
multiphase flow problems.

• Derivation of a first order model for the estimation of regularization errors.

• Analysis of the structure of regularization errors using analytical examples.

• Investigation of the relevance of regularization errors in numerical solu-
tions of the Laplace/Poisson equation for problems in the presence of two
phases.
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Abstract

This manuscript discusses the structure of the errors in the solution of elliptic
problems introduced by the regularization of the fluid properties discontinuity
in a small region of finite size. By using a multiscale approach, the problem of
the error calculation is splitted into an outer problem, where the regularization
region is replaced by a sharp interface, and an inner local one dimensional
problem that eventually imposes effective jump conditions across the interface
for the outer problem. Except in some particular cases, the use of regularization
techniques introduces first order errors in the solution imposing an error flux
jump that is proportional to the tangential Laplacian of the averaged solution
and an error jump that is proportional to the normal flux, both multiplied by
a prefactor that depends on the averaging rule used. In general, the optimal
averaging procedure is shown to depend on the structure of the problem at
hand. The errors introduced by standard arithmetic and harmonic averages
are obtained for various analytical and numerical examples which are used to
discuss the nature of the errors introduced and the importance of first order
errors in the solution. The influence of the ratio between the regularization
thickness and the grid size is also investigated in numerical implementations of
the one-fluid model.

Keywords: multiphase systems, one-fluid model, regularization techniques,
error estimation

1. Introduction

The development of numerical methods for the simulation of complex mul-
tiphase flows is a topic of intense research due to the large amount of industrial
and enviromental applications involved. This open research field faces different
challenges when trying to numerically capture the influence of discontinuities
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on the structure of the solution. One method to account for the influence of
fluid properties discontinuities on the solution is to introduce effective averaged
quantities. This strategy has attracted the attention of many researchers with
different objectives. For periodic systems, homogeneization techniques allow to
define effective fluid properties that model the acoustic response of multiphase
systems theoretically [5, 18, 37] and also numerically [2, 29]. In the context
of solid mechanics, homogeneization techniques are also very popular to model
the response of systems with inclusions [15]. Some other local homogeneization
approaches for diluted bubbly systems have been proven both to reproduce well
the influence of individual bubbles on a liquid and to predict the averaged re-
sponse of bubble screens [21] and bubble clusters [9].

The use of averaged methods to replace the existence of discontinuities also
finds application in communities developping Direct Numerical Simulation tech-
niques for multiphase flow problems. Due to the difficulties to treat the appear-
ance of discontinuities in multidimensional numerical methods, some regular-
ization methods have become very popular in order to replace the discontinu-
ity by a rapidly varying function over a few number of cells. Regularization
techniques are typically justified invoking either local volume averaging, time
averaging, or classical statistical averaging principles based on ergodicity the-
ories [8]. Although some approaches propose to use modified equations in the
regularization region [6, 17], many approaches simply consist in replacing the
discontinuous coefficients by a given averaging rule and a smoothing function.
Due to their simplicity and robustness, methods based on the advection of a
Level Set function or the fraction of a reference fluid have been extensively de-
veloped by scientific and industrial communities and implemented in commercial
and open-source scientific CFD codes that are nowadays extensively used for a
wide spectrum of applications (see [4, 22, 23, 28, 35, 36] just to mention a few).
These methods resort to the definition of effective properties in a thin region
around the actual interface position introducing localized sources to capture the
jump of primitive variables and their flux across and interface when present. For
example, the Volume of fluid method (VOF) is typically associated to the one-
fluid approach [24, 32] (also known as whole-fluid approach [26]) to solve the
Navier-Stokes equations introducing averaged properties and localized sources
that only regularize the discontinuity between cells neighbouring the predicted
interface location, being possible to find also methods regularizing the solu-
tion in larger stencils [34]. Other families of methods based on the Level Set
function [3, 30], typically smear the variations in a region that occupies several
cells. These methods have been shown to provide accurate results for problems
involving heat transfer problems [19], electrodydrodynamics [31] and compress-
ible multiphase flows [10, 25, 27] among many other examples. However, despite
the wide use of these family of methods by CFD communities, there is still an
open debate about the correct choice of the averaging procedure [11, 14] and the
convenience to introduce correction terms at the interface. Although theoretical
arguments are usually given to defend a particular choice, usually the lack of a
systematic discussion about the errors introduced by the method and averaging
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Figure 1: Schematic view for a two-dimensional problem of the different definitions used for
the analysis of the errors generated by the regularization of the diffusion coefficients into a
region of thickness ∆.

rule chosen to regularize the interface prevents quantifying the impact of a given
choice for a particular problem. For instance, it is known that the harmonic
mean provides exact results for the solution of one-dimensional elliptic equations
[32], but a rigorous and detailed analysis of the errors introduced with this type
of approaches in a general case are less common. Understanding the error in-
troduced by the regularization approach is important for the optimal choice of
the averaging proceduces [31], the development of efficient adaptive mesh refine-
ment strategies capable to reduce the error present in the solution [1, 7, 13, 33]
and the development of more accurate methods capable to compensate for the
errors introduced in the solution when regularizing the coefficients [12]. In this
work we propose to take a step forward in this direction and to push forward
a model able to capture the errors introduced by any given averaged procedure
to represent the influence of a sharp interface for the solution of elliptic problems.

The manuscript is structured as follows. The general problem is presented
in Section 2, while the equations representing the regularization errors are pre-
sented in Section 3. Section 4 presents first order solutions for flat interfaces
before discussing the effect of curvature in Section 5. In Section 6, various
problems with analytical solutions for both the discontinuous and regularized
problem are used to asses the correctness and accuracy of the first order mod-
els. Finally we discuss the relevance of these regularization errors in numerical
solutions as a function of the ratio between the grid size and the regularization
thickness before the conclusions and perspectives are presented.
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2. Problem setup

In this work we consider the problem of a Poisson equation with discontin-
uous coefficients

∇ · (Di∇φi) = si, (1)

with i=1,2 and null jump conditions on the field variables and the flux across
the interface

[[φ]] = 0, [[D∇φ · n]] = 0, x = xI

where n is the normal to the interface located at xI and the jump is defined as
[[φ]] = φ2 − φ1.

We want to evaluate the error of any averaged procedure based on the defi-
nition of averaged quantities such that the ODE to be solved becomes

∇ · (D̃∇φ̃) = s̃, (2)

where D̃ is an arbitrary continuous coefficient that varies [[D]] over a charac-
teristic small distance ∆ which spatial structure depends on a regularization
function f(n) bounded between 0 and 1 (see figure 1). The regularization func-
tion depends on the signed distance function n and it is assumed to only vary in
a compact and narrow region with a thickness n2−n1 around the exact position
of a sharp interface. The value of ∆ is defined as the characteristic length in
which the coefficients vary significantly so that although the model allows set-
ting independently the values of n1, n2 and ∆, it will be convenient for practical
purposes to approximate n1 ≈ −∆/2 and n2 ≈ ∆/2 irrespective of the thickness
of the actual region where f varies. This may be important in order to extend
the results of these analyses to methods based on the introduction of hyperbolic
tangent or other regularization functions with no compact support [35]. In this
work, we will particularize some of the general expressions found to the case
where errors are introduced by a linear variation of the phase field

f =

 1, n < n1

0.5− n
∆ , n1 ≤ n ≤ n2

0, n > n2

(3)

with n1 = −∆/2 and n2 = ∆/2.

3. General error equation

The equation describing the error introduced by the regularization of the
discontinuous coefficients

εi = φi − φ̃,

can be obtained by subtracting eq. 1 from eq. 2

∇ · (Di∇εi) = Sεi , (4)
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where Sε is a source of error localized in the region of space where the coefficients
have been regularized and expressed as a function of the regularized solution φ̃

Sεi ≡ ∇ · ((D̃ −Di)∇φ̃) + si − s̃. (5)

Note that the error is subdivided into two regions where by convention i = 1
applies to the region n ≤ 0 while i = 2 applies to n ≥ 0.

Jump conditions need to be specified to solve equation 4. It is straightfor-
ward to see that the error is continuous everywhere in the domain including the
surface defined by the exact position of the interface xI ,

[[ε]] = 0 x = xI . (6)

The normal flux is continous everywhere except at the position of the exact
interface position, where the definition of the error imposes

D1
∂ε1
∂n

= D1
∂φ1

∂n
−D1

∂φ̃

∂n
, x = xI ,

D2
∂ε2
∂n

= D2
∂φ2

∂n
−D2

∂φ̃

∂n
, x = xI .

Subtracting both expressions and imposing the continuity of fluxes in the sharp
approach we finally obtain that the jump condition of the error flux at n=0 can
be expressed as a function of φ̃ as

[[D
∂ε

∂n
]] = −[[D]]

∂φ̃

∂n
, x = xI . (7)

Equation 4 with the jump conditions 6-7 and null Dirichlet boundary con-
ditions across the domain limits allow us to obtain the error introduced by the
regularization of a sharp interface by the introduction of a smooth transition
region.

In the limit of a thin regularization region compared to the large scale L0

associated with the problem at hand (e.g. ∆/L0 → 0) we separate the problem
into an outer region including the bulk regions defined by f=1 and f=0, and the
inner problem where the local error ε̃ is defined inside the regularized region
with the associated lengthscale ∆.

The inner problem can be written locally for point xI using generalized
orthogonal coordinates where a local curvilinear coordinate system (ξn, ξt1 , ξt2)
is defined such that ξn is normal to the isolines of D̃ and ξt1 and ξt2 denote two
tangential orthogonal directions. The resulting Poisson equation (equation 4)

1

hξt1hξt2hξn

∂

∂ξn

(
hξt1hξt2
hξn

Di
∂ε̃i
∂ξn

)
= Sεi −DiLt(ε̃i) (8)
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needs to be solved with the jump conditions at n=0 (e.g. ξn = ξI) imposed by
equations 6-7, where hξt1hξt2hξn represent the metric factors in the local system
of coordinates and the tangential Laplacian operator is defined as

Lt(ε̃) ≡ ∇ · (∇ε̃− (∇ε̃ · n)n).

The problem for the outer error ε′ at kth order is reduced to a pure Laplace
equation

∇ · (Di∇ε′(k)
i ) = 0, (9)

where the interface is replaced by an infinitely thin interface with effective jump
conditions to be found by matching the outer and inner solution at the edges of
the regularization region

ε
′(k)
1 (n→ 0) = ε̃

(k)
1 (n = n1), (10)

ε
′(k)
2 (n→ 0) = ε̃

(k)
2 (n = n2), (11)

such that
[[ε′(k)]] = ε̃

(k)
2 (n = n2)− ε̃(k)

1 (n = −n1);

[[D∇ε′(k) · n]] = D2(∇ε̃(k) · n)

∣∣∣∣
n2

−D1(∇ε̃(k) · n)

∣∣∣∣
n1

.

This procedure can be followed to derive the error of more complex equations
as for example the transient diffusion-reaction equation included in appendix
Appendix A (eq. A.4).

In what follows we will derive expressions for the structure of the inner so-
lution and the jump conditions required in the outer problem of steady state
solutions. Because the correct treatment of the errors associated to the regu-
larization of the source term are related to the exact structure of it, we restrict
ourselves to the discussion of cases where the source term is known (s̃i = si).
The analysis of the errors introduced by the regularization of the source is left
for future works, although the extension to integrable sources is straightforward.

4. Approximated solutions for flat surfaces

For flat surfaces, we can find the error generated by a flat surface εf,i rewrit-
ting equation 8 as

∂

∂n

(
Di
∂ε̃f,i
∂n

)
=

∂

∂n

(
(D̃ −Di)

∂φ̃

∂n

)
+ (D̃ −Di)Lt(φ̃)−DiLt(ε̃f,i), (12)

which can be integrated along the normal direction to obtain a one-dimensional
first order differential equation for the structure of the regularization error flux
around xI

Di
∂ε̃f,i
∂n

= (D̃ −Di)
∂φ̃

∂n
+

∫ n

0

((D̃ −Di)Lt(φ̃)−DiLt(ε̃f,i))dn+ cf,i,(13)
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where, using D̃0 to denote the averaged coefficient at n=0, the integration con-
stant cf,i is defined as

cf,i ≡ Di
∂ε̃f,i
∂n

∣∣∣∣
n=0

− (D̃0 −Di)
∂φ̃

∂n

∣∣∣∣
n=0

. (14)

Using the jump condition of the derivative at this point (eq. 7), this constant
is readily shown to be equal in both subregions

cf ≡ cf,1 = cf,2.

The integration of equation 13 leads us to expressions for the error distribu-
tion inside the regularization region

ε̃f,i(n) = di + n
cf
Di

+

∫ n

0

J̃n

(
1

Di
− 1

D̃

)
dn

+

∫ n

0

(∫ n′

0

(
D̃

Di
− 1

)
Lt(φ̃)dn

)
dn′ −

∫ n

0

(∫ n′

0

Lt(ε̃i)dn

)
dn′

(15)

where J̃n = D̃ ∂φ̃
∂n is used to denote the normal flux and di is an integration

constant that by continuity of the error across n = 0 satisfies

d1 = d2. (16)

In the following, we will decompose the error and the variable φ̃ as

εi = ε
(0)
i + ε

(1)
i ∆ + ε

(2)
i ∆2 + ....

φ̃ = φ̃(0) + φ̃(1)∆ + φ̃(2)∆2 + ....

to obtain simplified expressions at a desired order for the error jump conditions
of the outer problem and the structure of the inner error.

4.1. Leading order approximation for flat surfaces

The jump conditions for the outer problem can be found at leading order
from the evaluation of equations 13-15 at both edges of the regularization region.
It is straighforward to see from equation 13 that

[[D
∂ε
′(0)
f

∂n
]] = 0 (17)

provided that∫ 0

n1

(D̃ −D1)Lt(φ̃)dn+

∫ n2

0

(D̃ −D2)Lt(φ̃)dn ≈ O(∆). (18)
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To obtain the error jump, we need to obtain the normal flux across the
normal direction in the regularization region from the integration of equation 2.
When ∫ n2

n1

(s̃− D̃Lt0(φ̃))dn = O(∆), (19)

we readily obtain

∂J̃n
∂n

= s̃(0)− D̃(0)Lt0(φ̃(0)) +O(∆). (20)

where Lt0(φ̃(0)) denotes the leading order contribution of the tangential Lapla-
cian operator applied to φ̃(0) evaluated at n = 0. The result is that within the
regularization region the normal flux

J̃n = D̃
∂φ̃

∂n
= J̃

(0)
n,0 +O(∆), (21)

is constant across the normal direction at leading order. With this result and
subtracting equation 15 evaluated at the edges of the regularization region we
find

[[ε
′(0)
f ]] = 0. (22)

provided that∫ 0

n1

J̃n

(
1

D1
− 1

D̃

)
dn+

∫ n2

0

J̃n

(
1

D2
− 1

D̃

)
dn ≈ O(∆). (23)

Because the jump conditions across the interface are both zero (eqs. 22-17),
when no error is introduced through the domain boundaries the error in both
the outer and inner region are both null

ε̃
(0)
f (−∆/2 ≤ n ≤ ∆/2) = ε

′(0)
f (x) = 0.

It is worth mentioning that conditions 18-19-23 are necessary conditions
to obtain convergence for the regularized problem. Although this does not
constitute a general proof of convergence for arbitrary definitions of D̃, for non-
singular sources and for definitions of the regularized coefficient where D̃(x) > 0,
both the normal flux and the tangential Laplacian will be continuous and in-
finitely differentiable functions implying that the regularized method converges
if the definition of D̃ satisfies∫ n2

n1

dn

D̃
≈ O(∆),

∫ n2

n1

D̃dn ≈ O(∆).

We also note that although the normal flux is constant around xI at leading
order, the normal derivative of the regularized solution varies across the regu-
larization zone at the dominant order. Taking advantage from the fact that the
flux of the regularized solution converges to that of the sharp problem we can
obtain local estimations of the gradients at both sides of the interface as

∂φ1

∂n

∣∣∣∣
n=0

≈ D̃

D1

∂φ̃

∂n
,

∂φ2

∂n

∣∣∣∣
n=0

≈ D̃

D2

∂φ̃

∂n
.
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4.2. First order expressions for flat surfaces

The jump conditions across the interface is approximated at first order from
equations 13-15 obtaining

[[D
∂ε′f
∂n

]] =

∫ 0

n1

(D̃ −D1)Lt(φ̃)dn+

∫ n2

0

(D̃ −D2)Lt(φ̃)dn+O(∆2)

[[ε′f ]] =

∫ 0

n1

J̃n

(
1

D1
− 1

D̃

)
dn+

∫ n2

0

J̃n

(
1

D2
− 1

D̃

)
dn+O(∆2).(24)

As we have seen before, the normal flux and the surface Laplacian is continu-
ous and constant across the regularized region in the normal direction at leading

order, thus the expressions for the jump conditions for ε
(1)
f,i can be written for

any definition of the regularization function f(n) as

[[D
∂ε
′(1)
f

∂n
]] = C1Lt0(φ̃(0)) (25)

[[ε
′(1)
f ]] = C2J̃

(0)
n,0. (26)

When the regularization function can be approximated by eq. 3, the expressions
for C1 and C2 are

C1 ≡
∫ 1

0

D̃df − D1 +D2

2
, C2 ≡

1

2

(
1

D1
+

1

D2

)
−
∫ 1

0

df

D̃
. (27)

It is readily shown that the arithmetic mean

D̃ = D1f +D2(1− f)

does not introduce any error flux source at the interface at first order at expenses
of introducing an error jump

[[D
∂ε
′(1)
f

∂n
]] = 0, (28)

[[ε
′(1)
f ]] = J̃

(0)
n,0

(
− ln(D2/D1)

[[D]]
+

1

2

(
1

D1
+

1

D2

))
. (29)

On the other hand the use of the harmonic mean

1

D̃
=

f

D1
+

1− f
D2

,

guarantees the continuity of the error across the interface at expenses of intro-
ducing an error flux source that depends on the tangential Laplacian operator
applied on the regularized solution

[[D
∂ε
′(1)
f

∂n
]] =

(
−D1 +D2

2
+
D1D2

[[D]]
ln

(
D2

D1

))
Lt0(φ̃), (30)

[[ε
′(1)
f ]] = 0. (31)
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The solution of the Laplace problem with the jump conditions above allows
obtaining the error field in the bulk regions. Once the error of the outer prob-

lem ε
′(1)
f has been computed, the error inside the regularization region can be

obtained at first order from eq. 15 as

ε̃
(1)
f (n) =

 ε
′(1)
f,1 (n→ 0) + J̃

(0)
n,0

1
∆

∫ n
n1

(
1
D1
− 1

D̃

)
dn, n1 ≤ n ≤ 0,

ε
′(1)
f,2 (n→ 0)− J̃ (0)

n,0
1
∆

∫ n2

n

(
1
D2
− 1

D̃

)
dn, 0 ≤ n ≤ n2.

(32)

Thus, the errors inside the regularization region can be represented as a func-
tion of the dimensionless distance n/∆ (directly related to the parameter f),
the leading order contribution of the normal flux across the interface (which is
constant across the normal direction) and a constant imposed by the solution
at point xI of the outer problem (note that we can use the errors jump condi-

tion to eliminate either ε
′(1)
f,1 (n → 0) or ε

′(1)
f,2 (n → 0)). One important remark

is that the errors inside the diffuse interface region are first order irrespective
of the choice of the averaged procedure chosen. In particular for regularization
functions satisfying

∂f

∂n
= − 1

∆
+O(1), n = 0

the local error can be reconstructed from the outer solution when using the
arithmetic mean as

ε̃
(1)
f,arith(f) =


ε
′(1)
f,1 (n→ 0) + J̃

(0)
n,0

(
1−f
D1
−

ln
(
D̃
D1

)
[[D]]

)
, 0.5 ≤ f ≤ 1

ε
′(1)
f,2 (n→ 0)− J̃ (0)

n,0

(
f
D2

+
ln
(
D̃
D2

)
[[D]]

)
, 0 ≤ f ≤ 0.5

(33)

while for the harmonic mean we find

ε̃
(1)
f,harm(f) = ε

′(1)
f,1 (n→ 0) +

{
J̃

(0)
n,0(1− f)2 [[D]]

2D1D2
, 0.5 ≤ f ≤ 1

J̃
(0)
n,0f

2 [[D]]
2D1D2

, 0 ≤ f ≤ 0.5.
(34)

where in this later case we know from eq. 31 that the error jump across the

interface of finite thickness is continuous ε
′(1)
f,1 (xI) = ε

′(1)
f,2 (xI). It is worth noting

that in the case of the harmonic mean the error difference between the edge of
the regularized region and n=0 is symmetric while it is not symmetric in the
case of the arithmetic mean, the error jump being significantly larger in the
region occupied by the fluid with lower diffusivity.
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4.3. Second order expressions for flat surfaces

For completeness, we provide second order accurate expressions of the effec-
tive jump conditions introduced by the regularization of the coefficients

[[D
∂ε′f
∂n

]] =

∫ 0

n1

(D̃ −D1)Lt(φ̃)dn+

∫ n2

0

(D̃ −D2)Lt(φ̃)dn

− ∆D1

∫ 0

n1

Lt(ε̃(1)
f,1)dn−∆D2

∫ n2

0

Lt(ε̃(1)
f,2)dn+O(∆3)

[[ε′f ]] =
∆

2
cf

(
1

D2
+

1

D1

)
−
∫ n2

0

∫ n2

n′

(
D̃

D2
− 1

)
Lt(φ̃)dndn′ +

∫ 0

n1

∫ n′

n1

(
D̃

D1
− 1

)
Lt(φ̃)dndn′

+

∫ 0

n1

J̃n

(
1

D1
− 1

D̃

)
dn+

∫ n2

0

J̃n

(
1

D2
− 1

D̃

)
dn+O(∆3) (35)

where the first order variations of the normal and tangential derivatives across
the normal direction need to be accounted for and a first order estimation of
the constant cf is

cf ≈ J̃ (1)
n,0∆ = J̃n,0 − J̃ (0)

n,0.

Note that second order corrections can be obtained subtracting first error ex-
pressions from the equations above.

In one-dimensional problems, the harmonic mean leads to null jump condi-
tions when solving the Laplace equation. Indeed this result applies to arbitrary
order implying that, consistent with reasonings based on the discretization of
the equation [32], harmonic mean provides exact solutions in the bulk regions in
1D. In the case of the arithmetic mean, second order errors introduce an error
flux source only for multidimensional problems.

5. Curvature effects

In a general situation the influence of curvature needs to be discussed. For
that, the general equation for the inner error (equation 8) is expressed using
curvilinear coordinates as

∂

∂n

(
Di
∂ε̃i
∂n

)
+KDi

∂ε̃i
∂n

+DiLt(ε̃i) =
∂

∂n

(
(D̃ −Di)

∂φ̃

∂n

)
+ (D̃ −Di)Lt(φ̃) +K(D̃ −Di)

∂φ̃

∂n

where the normal derivative is ∂
∂n ≡

1
hξn

∂
∂ξn

and K is defined as

K ≡ 1

hξnhξt1hξt2

∂

∂n

(
hξt1hξt2

)
.

For the point xI , the principal curvatures κ1 and κ2 allow us to find an approx-
imation of the local orthogonal coordinates by defining a local polar coordinate

11



system in 2D (Appendix B.1) or an oblate spheroidal coordinate system in
3D (Appendix B.2) for which the isoline of ξn at xI , corresponding to the
point (ξn, ξt1 , ξt2) = (ξI , 0, 0), is tangent to the surface. In this local system
the local values of the metric factors can be readily computed obtaining that
K = κ0 +O(∆), where κ0 is the value of the curvature in two-dimensional cases
(Appendix B.1), and twice the principal curvature with the smallest absolute
value in three dimensional cases (Appendix B.2). Thus, in a general case the
presence of curvature introduces an additional error source with respect to a flat
surface. For first order estimations of the error and error flux jump conditions
required for the outer problem we can use the simplified equation

Di
∂2ε̃i
∂n2

+ κ0Di
∂ε̃i
∂n

= κ0(D̃ −Di)
∂φ̃

∂n
+

∂

∂n

(
(D̃ −Di)

∂φ̃

∂n

)
+ (D̃ −Di)Lt(φ̃) +O(κ0∆).

The general solution for the normal error flux can be expressed in terms of
integrals from the exact location of the interface (e.g. n = 0) as

Di
∂ε̃i
∂n

= e−κ0n

[
ci +

∫ n

0

∂

∂n

(
eκ0n

′
(D̃ −Di)

∂φ̃

∂n

)
dn′ +

∫ n

0

eκ0n
′
(D̃ −Di)Lt(φ̃)dn′

]
+O(κ0∆2)

which can be simplified for first order error estimations of the normal flux as

Di
∂ε̃i
∂n

= ci(1−κ0n)+

(
(D̃ −Di)

∂φ̃

∂n
− (1− κ0n)(D̃0 −Di)

∂φ̃

∂n

∣∣∣∣
n=0

)
+Lt0(φ̃(0))

∫ n

0

(D̃−Di)dn+O(∆2)

where we recall that D̃0 = D̃(n = 0) and ci is an integration constant. The
structure of the error inside the regularization problem can be obtained at first
order from the direct integration of the above expression as

ε̃i = di +
ci
Di
n+

∫ n

0

(
1

Di
− 1

D̃

)
J̃ndn+

(
1

Di
− 1

D̃0

)
J̃n,0 +O(∆2)

Imposing the jump conditions to obtain the jump of the integration constants
and following the same procedure than before it is easy to show that the jump
conditions for the error and normal error flux for the outer problem are zero
at leading order, while the expressions at first order remain unchanged with
respect to the expressions found for a flat interface

[[D
∂ε′

∂n
]] = [[D

∂ε′f
∂n

]] +O(∆2),

[[ε′]] = [[ε′f ]] +O(∆2).

Remarkably, curvature does not play any role in first order estimations of the
jump conditions for the outer problem, the correction due to the presence of
curvature appearing only in the second order estimation of the effective jump
conditions required for the resolution of the outer problem and the second order
representation of the inner error.
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Figure 2: Solution of the 1D Laplace equation for Dr = 10 using the arithmetic mean for two
different values of the regularization region. With dashed lines we represent the solution of
the problem with discontinuous coefficients.

6. Analytical examples

We discuss now the behavior of the error for particular problems where
it is possible to obtain the exact solution of the problem with discontinuous
coefficients as well as the regularized problem. These solutions allow us to
obtain analytical expressions for the exact error at arbitrary order and to discuss
the accuracy of the approximations introduced by the first order expressions
obtained previously.

6.1. 1D Laplace equation

The first example considered is the one-dimensional Laplace equation

∂

∂x

(
Di
∂φi
∂x

)
= 0

which in the regions of contant diffusivity has as fundamental solution

φi = aix+ bi. (36)

Arbitrarily setting n = x, D1 = 1 and D2 = Dr in a domain x ∈ [−1 : 1], the
analytical solution of the discontinuous problem is{

φ1 = Dr(1+x)
Dr+1 x ≤ 0,

φ2 = Dr+x
Dr+1 x > 0.

(37)

The solution of the regularized problem

∂

∂x

(
D̃
∂φ̃

∂x

)
= 0

13
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Figure 3: 1D Laplace problem. Dr = 10. Comparison of the error field for ∆ = 1/32 using
the arithmetic mean and the harmonic mean. Left: Error distribution in the entire domain.
Right: Error distribution inside the regularization region.

still obeys eq. 36 in the outer regions, while inside the regularized region the
solution takes the form

φ̃ = c̃1 + c̃0

∫
dx

D̃

with ã1, ã2, b̃1, b̃2, c̃0 and c̃1 constants to be determined. Setting the boundary
conditions at the domain limits and the continuity of φ̃ and the normal flux
across the edges x = ±∆/2, we obtain a linear system of six equations that
define the constants once a function D̃(f) is imposed. The exact expressions
obtained for the arithmetic and harmonic mean are included in Appendix C.
An example of the exact solution of the discontinuous coefficient problem and
the regularization problem using the arithmetic mean is shown in figure 2. We
clearly see that the solution of the regularized problem converges to that of
the discontinuous problem by matching the two linear profiles across the region
with diffused interface. Figure 3 compares the structure of the error using the
arithmetic and harmonic mean, which is markedly different upon the averaging
rule chosen. In this case, the solution is only exact in the bulk regions when the
harmonic mean is used as predicted theoretically. From 2(left) we can clearly
see that the error in the outer regions is well represented by a linear profile. An
approximation at first order is obtained as

ε′i = (ai − ãi)x+ bi − b̃i = −(ã
(1)
i x+ b̃

(1)
i )∆ +O(∆2).

where the values of the coefficients at first order (ã
(1)
i , b̃

(1)
i ) can be obtained from

the jump conditions of the error and the error flux (eqs. 28-29) and by imposing
zero Dirichlet boundary conditions for the error at x = ±1. The final system of
linear equations

[[ε′(1)]] = b̃
(1)
2 − b̃

(1)
1 = J̃

(0)
n,0

(
ln(Dr)
Dr−1 −

1
2

(
1 + 1

Dr

))
,

[[D ∂ε′(1)

∂x ]] = Drã
(1)
2 − ã

(1)
1 = 0,

ã
(1)
1 − b̃

(1)
1 = 0,

ã
(1)
2 + b̃

(1)
2 = 0,

(38)
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Figure 4: 1D Laplace problem. Dr = 10. Arithmetic mean. Spatial structure of the exact
error divided by the thickness of the regularization region, ε/∆, for different values of ∆. Left:
Error field in the entire domain. Right: Structure of the error inside the regularization region
as a function of x/∆. First order errors dominate the error of the solution. The structure
of ε(x)/∆ outside the regularization region is nearly independent of ∆. The errors inside the
regularization region tend to a unique function when represented as a function of x/∆.

can be solved with the leading order contribution of the normal flux,

J̃
(0)
n,0 =

Dr

Dr + 1
.

The error at x = ±∆/2 is given by b
(1)
i , while the error in the inner regions can

be reconstructed using the outer solution and the simplified expressions for the
local inner error (eq. 32).

First order errors are present inside the regularized region irrespective of the
averaging rule chosen. For the example chosen, the largest errors are found in
the case of the arithmetic mean where, unlike the case of the harmonic mean,
the error distribution is not symmetric around n=0 (see figure 3). For this par-
ticular problem, the error introduced by the arithmetic mean at n=0 is smaller
than in the case of the harmonic mean, the difference increasing as the diffusiv-
ity difference increases.

Figure 4(left) represents the exact error field obtained with the artihmetic
mean for Dr = 10. The error is scaled by ∆ to clearly see the appearance of a
discontinuity as ∆ approaches to zero as theoretically predicted by equation 28.
The error in the bulk regions is shown to be always first order and its structure
in the bulk regions does not depend on the interface thickness, but only on the
values of Dr. A parametric study of the the influence of Dr on the error jump
predicted with equation 28 and the total error jump between x = ±∆/2 shows
that the model works well irrespective of the value of Dr chosen (figure 5). Inside
the regularized region (figure 4-right), the error profiles obtained for different
values of ∆ can be represented by a unique function using the dimensionless
coordinate x/∆, which is directly related to f , showing the universality of the
structure of the error function inside the regularization region. As theoretically
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Dr using the arithmetic for ∆ = 0.01.

predicted, the error presents a cusp at n=0 irrespective of the averaging rule
used and the error difference between the edge of the regularization region and
the error at the center is larger in the region with smallest diffusivity when using
the arithmetic mean.

6.2. 1D Poisson equation

We discuss now the numerical errors associated to the solution of the pre-
ceeding setup for the case of the Poisson equation with uniform source

∂

∂x

(
Di
∂φi
∂x

)
= 1.

We consider homogeneous zero Dirichlet boundary conditions as the influence
of any other Dirichlet boundary conditions can be captured by the solution of a
decoupled Laplace equation problem. As previously, we arbitrarily set D1 = 1
and D2 = Dr. The general solution of this equation in the bulk regions is

φi =
1

2Di
x2 + aix+ bi

where the solution for the problem with discontinuous coefficients gives

a1 = a2Dr =
Dr − 1

2(1 +Dr)
, b1 = b2 =

−1

1 +Dr
. (39)

For the regularized problem, the fundamental solution in each bulk region
must be matched with that inside the interface, where the general solution takes
the form

φ̃ = c̃1 + ∆c̃0

∫ 1

f

df ′

D̃
+ ∆2

∫ 1

f

1− f ′

D̃
df ′, − ∆

2
≤ x ≤ ∆

2
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region thickness.

As before, we obtain a linear system of equations setting the boundary con-
ditions and matching the values of φ̃ and the flux at x = ±∆

2 ,

−1 1 0 0 0 0
−∆

2 1 0 −1 0 0
1 0 −1 0 0 0

0 0 −∆
∫ 1

0
df ′

D̃
−1 ∆

2 1

0 0 −1 0 Dr 0
0 0 0 0 1 1





ã1

b̃1
c̃0
c̃1
ã2

b̃2

 =



−0.5
−∆2/8

∆/2

∆2
∫ 1

0
1−f ′

D̃
df ′ −∆2/(8Dr)

∆/2
− 0.5
Dr


Figure 6 shows the structure of the exact error for both the arithmentic and

the harmonic mean. The error is linear in the bulk regions, scaling with ∆ for
the case of the arithmetic mean while in the case of the harmonic mean the
errors in the outer region converge to zero faster. As previously, the values of
the first order errors generated by the arithmetic mean can be obtained from the

solution of the system of equations 38 where J
(0)
n,0 = Dr−1

2(Dr+1) , while, consistent

with theoretical predictions, in the case of the harmonic mean first order errors
are zero in the bulk regions

ã
(1)
1,harm = b̃

(1)
1,harm = ã

(1)
2,harm = b̃

(1)
2,harm = 0.

The importance of second order errors can be discussed using equation 24
and subtracting the first order estimation. Using the approximation

J̃ (0)
n = J

(0)
n,0 +

∂J̃
(0)
n

∂n

∣∣∣∣
0

n+O(n2).

we can conclude that second order errors in the error jump become larger than

17



10
-4

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

∆
c

Dr

Figure 7: Poisson problem. Theoretical estimation of the critical regularization size ∆c beyond
which second order errors control the solution as a function of Dr

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-4

10
-3

10
-2

10
-1

ε

∆

n=-∆/2

n=∆/2

n=0

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-4

10
-3

10
-2

10
-1

ε

∆

n=-∆/2

n=∆/2

n=0

Figure 8: Poisson problem. Convergence curves for the exact error (dots) at n = −∆/2,∆/2, 0
for the artihmetic mean (left) and the harmonic mean (right). Dr = 1.1 (∆c = 0.009). The
solid lines represent the predictions obtained from the solution of the first order model.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

ε

∆

n=-∆/2

n=∆/2

n=0

10
-10

10
-8

10
-6

10
-4

10
-2

10
-4

10
-3

10
-2

10
-1

ε

∆

n=-∆/2

n=-∆/2

n=0

Figure 9: Poisson problem. Convergence curves for the exact error (dots) at n = −∆/2,∆/2, 0
for the artihmetic mean (left) and the harmonic mean (right). Dr = 10 (∆c = 1.78). The
solid lines represent the predictions obtained from the solution of the first order model.

18



first order errors when

|C1J̃
(0)
n,0∆| �

∣∣∣∣∣C3
∂J̃

(0)
n

∂n

∣∣∣∣
0

∆2

∣∣∣∣∣
where C1 has been defined in eq. 27 and C3 is a constant that also depends on
the averaging rule

C3 ≡
−[[D]]

8D1D2
−
∫ 1

0

0.5− f
D̃

df.

This unequality can can be rewritten as a condition for ∆ as

∆� ∆c =

∣∣∣∣∣∣∣∣
C1

C3

J̃
(0)
n,0

∂J̃
(0)
n

∂n

∣∣∣∣
0

∣∣∣∣∣∣∣∣
where the normal flux derivative can be expressed as a function of the source
using eq. 20 and the ratio C1/C3 depends on the average rule chosen and the
diffusivity ratio. For this particular problem ∆c takes small values for values of
Dr close to one (see figure 7). The convergence analysis for Dr = 1.1 clearly
shows that when ∆ > ∆c the errors in the bulk regions are controlled by second
order errors independently of the choice of the average (figure 8). Only at
n=0 first order errors dominate the solution, which are well predicted by the
simplified model represented with a black solid line for both the arithmetic
mean (equation 33) and the harmonic mean (equation 34). For a sufficiently
thin regularization region thickness, ∆ � ∆c, the convergence of the error in
the bulk regions in the case of the arithmetic mean is degraded to first order and
the first order solution given by the solution of equation 38 works well. For large
values of Dr (figure 9), first order errors dominate the solution for all values of
the interface thickness using the arithmetic mean, the largest errors found at
the edge of the regularization region with the lowest diffusivity (fluid 1). These
errors are well captured by the first order model proposed. As in the previous
case, the harmonic mean generates second order errors in the bulk regions, first
order errors being only visible inside the regularization region and reaching a
maximum at n=0 which is well predicted theoretically.

6.3. 2D Laplace equation with a planar interface

We consider now the stationary problem of heat transfer in a 2D rectangular
domain (x, y) ∈ ([−0.5, 0.5], [0, 1]) with a discontinuity of the diffusion coefficient
Di at x = 0 (e.g. n=x) and the following boundary conditions

φ2(1/2, y) = f(y), φ1(−1/2, y) = 0, φi(x, 0) = 0, φi(x, 1) = 0.

We arbitrarily set D1 = 1 and D2 = Dr where, for the sake of simplicity,
we restrict ourselves to cases where Dr > 1. In the bulk regions, the general
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solution can be obtained using separation of variables: φ(x, y) = X(x)Y (y).
Using the boundary conditions it can be readily shown that the only non-zero
solutions correspond to the modes

Yn(y) = sin(kny), kn = nπ,

Xn(x) = ane
nπx + bne

−nπx.

The general solution on each side of the box is then a the superposition of
the modes Xn(x)Yn(x)

φi(x, y) =

+∞∑
n=1

(
an,ie

knx + bn,ie
−knx

)
sin(kny),

where the coefficients can be obtained imposing for each mode the boundary
conditions on the right and left boundaries and imposing the continuity of fluxes
and the field φi across the interface. This gives the following linear system of
equations 

e−kn/2 ekn/2 0 0
0 0 ekn/2 e−kn/2

1 1 −1 −1
1 −1 −Dr Dr



an,1
bn,1
an,2
bn,2

 =


0
Fn
0
0


that can be readily solved to find the coefficients (an,1, bn,1, an,2, bn,2) for each
mode from the decomposition of the boundary condition into

f(y) =

∞∑
n=1

Fn sin(kny).

In the following we will restrict ourselves to the discussion of the case n = 1
and Fn = 1, as this example is sufficient to discuss the structure of the er-
rors generated in a two dimensional problem. Figure 10 shows two examples of
the structure of the solution with discontinuous coefficients for Dr = 1.5 and
Dr = 105 where we can clearly see how the tangential derivatives at the inter-
face become large as Dr is increased.

When the jump on the coefficients is regularized, the structure of the solution
in the regularized region remains to be obtained. In this case the Laplace
equation can be written as

∂D̃

∂x

∂φ̃

∂x
+ D̃

(
∂2φ̃

∂x2
+
∂2φ̃

∂y

)
= 0.

Using the same separation of variables as before we find:

∂2X̃
∂x2 + ∂D̃

∂x
1
D̃
∂X̃
∂x − k

2
nX̃ = 0, (40)

which unlike the expression above involves a damping factor that is dependent
on the choice of the regularization function. In a general case, the second
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Figure 10: Laplace 2D: Structure of the solution with discontinuous coefficients for n = 1 for
(left) Dr = 1.5 and (right) Dr = 105.

equation can be rewritten as a Sturm-Liouville problem where the solutions can
be obtained from the eigenvalues of the following linear operator:

L = − 1

D̃

d

dx

[
D̃

d

dx

]
Equation 40 can be rewritten as a Bessel ODE in the particular case of the
arithmetic mean

ζ2 ∂
2X̃

∂ζ2
+ ζ

∂X̃

∂ζ
− ζ2X̃ = 0

where we have used an additional change of variables

ζ = kn∆

(
x

∆
+

1 +Dr

2[[D]]

)
= kn∆

D1f +D2(1− f)

[[D]]
.

This equation admits two eigenvalues, a Bessel’s modified function of the first
kind I0 and Bessel’s modified function of the second kind K0. The general
solution of the problem in the regularization region can therefore be written as

φ̃arith(f) =

+∞∑
n=1

[
ãn,∗I0 (ζ) + b̃n,∗K0 (ζ)

]
sin(kny).

Imposing the continuity of φ and its flux at the two edges of the diffuse zone and
the boundary conditions the coefficients of the solution can be obtained from
the solution of the following linear system



e−
kn
2 e

kn
2 0 0 0 0

0 0 0 0 e
kn
2 e−

kn
2

−e−∆ −e+
∆ I

(1)
0,∆ K

(1)
0,∆ 0 0

−e−∆ e+
∆ I

(1)
1,∆ −K(1)

1,∆ 0 0

0 0 I
(2)
0,∆ K

(2)
0,∆ −ekn ∆

2 −e−kn ∆
2

0 0 I
(2)
1,∆ −K(2)

1,∆ −ekn ∆
2 e−kn

∆
2





ãn,1
b̃n,1
ãn,∗
b̃n,∗
ãn,2
b̃n,2

 =


0
1
0
0
0
0
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Figure 11: Error fields generated by the solution of the regularized 2D Laplace problem with
a flat interface. Dr = 10, ∆ = 10/256. Left: Arithmetic mean: Right: Harmonic mean.

where we have introduced the following notations for clarity

I
(i)
0,∆ = I0

(
kn∆

Di

[[D]]

)
, K

(i)
0,∆ = K0

(
kn∆

Di

[[D]]

)
,

I
(i)
1,∆ = I ′0

(
kn∆

Di

[[D]]

)
, K

(i)
1,∆ = −K ′0

(
kn∆

Di

[[D]]

)
.

For the harmonic mean a similar procedure can be followed to find the
solution inside the regularization region

φ̃harm(f) = −
+∞∑
n=1

{
an,∗χI1 [knχ] + bn,∗χK1 [knχ]

}
sin(kny)

where

χ = ∆
D1(1− f) +D2f

[[D]]
. (41)

As previously, the values of the coefficients can be also found by solving the
linear system of equations built with the boundary conditions and the matching
of the solution and its flux at the edges of the regularization region.

Figure 11 shows an example of the error fields generated by the arithmetic
and harmonic mean for Dr = 10. The structure of the exact error function along
y = 0.5 is depicted in figure 12. As theoretically predicted by eqs. 33-34, the
error jump in the arithmetic mean tends to be larger in the region of smaller
diffusivity while it remains symmetric in the case of the harmonic mean. In
this case the errors introduced by the harmonic mean are also first order as a
consequence of the two-dimensional nature of the problem. The structure of
the error in the regularization region is similar to that reported for the previous
problems, where the first order approximation (eqs. 33 and 34) captures remak-
ably well the structure of the error inside the regularization region for different
values of ∆ (figure 12 right). Figure 13 shows the total error measured with the
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Figure 12: 2D Laplace problem. Dr = 10. Left: Spatial structure of the exact error divided
by the thickness of the regularization region at y = 0.5 obtained with the arithmetic mean
(continuous line) and the harmonic mean (dashed line). Right: Zoomed view inside the
regularization region. The black line represents the prediction of the structure of the inner
error predicted by the first order model.
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Figure 13: 2D Laplace problem for a flat interface. Convergence rate of the exact analytical
error as a function of the thickness of the regularization region (∆) using the arithmetic mean
(red) and harmonic mean(blue). Dr = 10.
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Figure 14: 2D Laplace problem for a flat interface. Arithmetic mean. Left: Exact error jump
between n1 = −∆/2 and n2 = ∆/2 obtained analytically for all values of y and different values
of the interface thickness ∆ for two different values of the diffusivity ratio. Right: Re-scaled
error jump using the theoretical prediction for all values of y. With line the predictions of the
theoretical model.
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Figure 15: 2D Laplace problem for a flat interface. Arithmetic mean. Exact error flux jump
between n1 = −∆/2 and n2 = ∆/2 obtained analytically for all values of y and different
values of the interface thickness ∆ for two different values of the diffusivity ratio.

L1 norm as a function of the regularization size thickness. Both the arithmetic
and the harmonic mean introduce first order regularization errors in the outer
regions. Remarkably in this case the error jump introduced by the arithmetic
mean is shown to be beneficial in order to minimize the total error contained in
the solution. This example clearly shows that the optimal choice of the regular-
ization function is problem dependent and cannot be concluded that, at least
in the continuum limit considered here, there is a universal optimal choice (e.g.
we cannot guarantee that the harmonic mean will introduce always less error
than the arithmetic mean).

Figure 14(left) depicts the effective error jump across the interface when
varying ∆ using the arithmetic mean. Different values of y are represented,
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Figure 16: Same results of figure 14 when using the Harmonic mean
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Figure 17: Same results of figure 15 when using the Harmonic mean

both for a small and very large value of the diffusivity. As predicted theoreti-
cally, the error jump shows first order convergence. Figure 14right proves that
it is possible to collapse all the values of the error jump along y and for the two
values of Dr using the first order scaling defined by eq. 26, where the leading or-
der contribution of the normal flux is used and the prefactor C2 is defined in eq.
27. In addition, figure 15 confirms that the arithmetic mean introduces second
order convergence errors in the effective error flux jump condition across an in-
terface of finite size for Dr = 1.5 and even third order convergence for Dr = 105

and sufficiently large values of ∆, this contribution being negligible at first order.

In the case of the harmonic mean (figure 16) second order convergence for
the effective error jump condition for the outer problem is displayed. The con-
vergence curves for the error flux jump for all values of y shown in figure 17(left)
show that, as expected, the harmonic mean provides first order convergence re-
sults for the error flux jump in the outer problem. The first order estimation is
well predicted by eq. 25 using the value of the surface Laplacian evaluated at
the interface position and the prefactor C1 defined in eq. 27 (figure 17right).
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6.4. 2D Laplace equation with a curved interface

In order to evaluate the influence of the curvature of the interface on the
model, we consider now a particular solution of the Laplace problem where an
ellipsoid defines an embeded interface. In this case, we can write the Laplacian
equation in elliptic-cylinder coordinates as

∂

∂η

(
D
∂φ

∂η

)
+D

∂2φ

∂Ψ2
= 0

where the change of coordinates is

x/a = cosh(η) cos(Ψ)

y/a = sinh(η) sin(Ψ)

We set a=1 and define the interface as the isoline of ηI . This value imposes the
curvature of the interface which can be parametrized as a function of Ψ as

κa =

√
2 sinh(2ηI)

(cosh(2ηI)− cos(2Ψ))3/2
.

We look for solutions satisfying the following Dirichlet boundary condition at a
distance far from the ellipsoid defined by η = η∞,

φ = cos(Ψ), η = η∞.

As in the preceding example, we restrict ourselves to symmetric solutions
where separation of variables exist such that

φi = (aie
η + bie

−η) cos(Ψ).

The system of equations for the sharp representation of the interface is con-
structed imposing the boundary conditions and the continuity of φ and its nor-
mal flux across the interface

a1 = b1, (42)

a2e
η∞ + b2e

−η∞ = 1, (43)

a1e
ηI + b1e

−ηI = a2e
ηI + b2e

−ηI , (44)

D1(a1e
ηI − b1e−ηI ) = D2(a2e

ηI − b2e−ηI ). (45)

In the regularized problem, we introduce the following regularization func-
tion

f = 0.5− η − ηI
∆η

where ∆η is constant. In the physical space, the thickness varies along the
interface introducing two characteristic thickness along the y=0 and x=0 axis

∆1 = cosh(ηI + 0.5∆η)− cosh(ηI − 0.5∆η) ≈ sinh(ηI)∆η
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∆2 = sinh(ηI + 0.5∆η)− sinh(ηI − 0.5∆η) ≈ cosh(ηI)∆η

which can be expressed in terms of the local value of the curvature as

κ∆1 =
∆η

tanh(ηI)
, κ∆2 = ∆η tanh(ηI).

To find the physical value of the regularization thickness ∆ for a given point
of the interface (ηI ,ΨI), we find the distance to this point to the edges of the
regularization region defined at η = ηI ± ∆η/2 along the normal direction to
the interface.

The general solution of the solution inside the regularization region is similar
to the one previously found for the 2D Laplace problem for a flat interface. For
the arithmetic mean

φ̃arith(η,Ψ) =


(a1e

η + b1e
−η) cos(Ψ) η < ηI(

ã∗I0 (ζ) + b̃∗K0 (ζ)
)

cos(Ψ) ηI −∆η/2 ≤ η ≤ ηI + ∆η/2

(a2e
η + b2e

−η) cos(Ψ) η > ηI

where ζ =
∆ηD̃(η)

[[D]] . The constants in the regularization region are found as be-

fore by writing matching conditions at η = ηI±∆η/2 similarly to the preceeding
case for a flat interface.

Figure 18(left) represents the solution obtained for the sharp problem using
the arithmetic mean where D1 = 1 (the inner fluid diffusivity) and D2 = 10
(bulk diffusivity). The domain limits are defined by η∞ = 2 and the sharp in-
terface position is defined at ηI = 0.1. The structure of the error introduced by
the regularization of the coefficients for ∆η = 0.1 tanh(ηI) (figure 18right) shows
how the error becomes larger in the inner fluid, being the error discontinuous
across the interface as in previous cases.

A systematic investigation of the error jump across the diffuse interface in
the normal direction for two different values of D2 and vaying thickness ∆η

is presented in figure 19(left), where in the x-axis we represent the physical
thickness ∆ for various points lying in the interface (note that the physical
value of ∆ varies across the interface for a constant value of ∆η). The results of
the error jump introduced between both edges of the regularization region for all
the points considered can be collapsed into a single curve using the theoretical
model proposed (figure 19right) showing that the curvature does not have a
significant influence on the errors generated. Figure 20 depicts the jump on the
normal error fluxes across the normal direction in the same locations and values
of ∆η,

[[D
∂ε′

∂n
]] = D2

∂ε̃

∂n

∣∣∣∣
n2

−D1
∂ε̃

∂n

∣∣∣∣
n1
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Figure 18: Top: Structure of the solution with discontinuous coefficients for n = 1 a = 1,
ηI = 0.1 and DR = 10. Bottom: Analytical error map generated by the regularized solution
for ∆η = 0.1 tanh(ηI) using (left) the arithmetic mean and (right) the harmonic mean.
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Figure 19: Arithmetic mean. Analytical evaluation of the exact error jump conditions for
the outer problem [[ε]] = ε(ηI + ∆η/2) − ε(ηI − ∆η/2) for different values of the interface
thickness at different locations of the interface. ηI = 0.1, D1 = 1 and two different values
of D2 = 1.5, 105 (Left) Raw data. Red lines showing first and second order convergence are
added as reference. (Right) Error jump conditions scaled according to equation 29. The red
line denotes the model prediction.
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Figure 20: Arithmetic mean. Analytical evaluation of the exact error flux jump conditions
for the outer problem [[D ∂ε

∂n
]] for the same conditions of figure 19. Red lines are added as

reference to show first and second order convergence rates.

where

Di
∂ε̃i
∂n

=
Di√

cosh2(η)− cos2(Ψ)

∂ε̃i
∂η

.

As theoretically predicted, second order convergence is reached.

In the case of the harmonic mean the solution of the system of equations
gives

φ̃harm(η,Ψ) =


(a1e

η + b1e
−η) cos(Ψ) η < ηI

−χ
(
ã∗I1 (χ) + b̃∗K1 (χ)

)
cos(Ψ) ηI −∆η/2 ≤ η ≤ ηI + ∆η/2

(a2e
η + b2e

−η) cos(Ψ) η > ηI

where χ has been defined in equation 41. Figure 21 shows that the error flux
jump condition for the outer problem is proportional to the physical value of
the regularization thickness ∆, being possible to collapse all the jump of the
effective flux between the edges of the regularization region for all points using
the prefactor theoretically computed for flat interfaces and the value of the tan-
gential Laplacian evaluated at the interface. The effective error jump condition
(figure 22) is shown to be proportional to ∆2.

7. Numerical examples

The model presented in this manuscript is formally valid in the continuum
limit. For numerical pourposes, this model is expected to be accurate when
the grid size h is smaller than the regularization thickness ∆. However, from a
practical point of view it is interesting to discuss the behavior of the solution
of the discretized Poisson equation for finite values of the dimensionless ratio
h/∆. Note that in the numerical solution regularization errors (if present) are
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Figure 21: Harmonic mean. Analytical evaluation of the exact normal error flux jump condi-
tions for the outer problem for different values of the interface thickness at different locations
of the interface. ηI = 0.1, D1 = 1 and two different values of D2 = 1.5, 105 (Left) Raw data.
Red lines showing first and second order convergence are added as reference. (Right) Error
jump conditions scaled according to equation 29. The red line denotes the model prediction.
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Figure 22: Harmonic mean. Analytical evaluation of the exact error jump condition for the
outer problem [[ε]] for the same conditions of figure 22. Red lines are added as reference to
show first and second order convergence rates.
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not the only source of errors, and discretization errors are certainly present.

In cartesian grids, the discretization of the two-dimensional Poisson equation
for the [i, j] cell can be written for both standard second order finite volume
discretization and second order finite differences as

D̃[i+1/2,j]

φ̃[i+1,j] − φ̃[i,j]

h
− D̃[i−1/2,j]

φ̃[i,j] − φ̃[i−1,j]

h

+D̃[i,j+1/2]

φ̃[i,j+1] − φ̃[i,j]

h
− D̃[i,j−1/2]

φ̃[i,j] − φ̃[i−1,j]

h
= s̃ih (46)

where different choices for the values of the coefficients D̃ can be justified. In
this work we will use nodally exact values of D̃ from the definition of f with
arbitrary thickness ∆ when finite differences will be used. For the VOF method
the fraction within a cell is naturally imposed by the initialization method, and
it is therefore not straightforward to define a value of ∆ independently from
h. In this work we consider two different initializations of the regularized co-
efficients at the cell faces. In the first method the values of f required at the
faces will be approximated by the linear interpolation of the void fraction at
the cell faces from volume averaged values at the cell center. In addition, we
also consider the case where the value of f will be given by the exact fraction
of fluid occupying a given cell face. In both cases, the value of ∆ cannot be
unquestionably defined, although effectively it is expected to be close to the grid
size h

In the following, we will use the multigrid solver available in Basilisk [23]
to solve the discretized Poisson equation and investigate the numerical errors
introduced in problems where the exact solution of the discontinious coefficient
problem is available.

7.1. Flat interfaces

In order to gain further insight about the range of validity of the models
proposed in numerical applications we use the two-dimensional solution of the
Laplace problem considered in section 6.3 to investigate the impact of the dis-
cretization on the errors generated in the numerical solution when ∆/h varies.
We evaluate D̃ at the desired location from the analytical expression of f given
by eq. 3. Because in this problem the interface is flat, the results obtained using
finite differences in the limit ∆/h = 1 is similar to the initialization of exact
volume average fraction at the cell center from the exact position of the interface
and the linear interpolation of it at the faces. Figure 23 shows the results of
the L1 norm of the exact error contained in the numerical solution. The error
introduced by the arithmetic mean (figure 23left) is relatively well captured by
the model even in the ∆ = h limit, being the quantitative prediction excellent
for ∆/h ≥ 4. In the case of the harmonic mean (figure 23right) the model cap-
tures remarkably well the values of the error for ∆/h ≥ 2, but interestingly, the
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Figure 23: Numerical error generated by the resolution of a 2D Laplace problem for a flat
interface. Convergence rate of the numerical error initializing the coefficients with nodally
exact values at the face location. Three different ratios of the theoretical regularization length
compared to the grid size are tested: ∆/h = 1, 2, 4. Left: Results using the arithmetic mean.
Right: Results using the harmonic mean. Dr = 10.

 0

 0.5

 1

 0  0.5
-1⋅10

-5

-5⋅10
-6

 0⋅10
0

 5⋅10
-6

 1⋅10
-5

 0

 0.5

 1

 0  0.5
-2⋅10

-3

-1⋅10
-3

-5⋅10
-4

 0⋅10
0

 5⋅10
-4

 1⋅10
-3

 2⋅10
-3

Figure 24: Numerical error generated by the resolution of a 2D Laplace problem for a flat
interface. Spatial structure of the exact error using the harmonic mean with (left) ∆ = h and
(right) ∆ = 2h.

32



model fails dramatically predicting the errors in the ∆ = h limit, where first
order errors vanish and the proposed model is unable to predict the numerical
second order convergence observed. To gain further insight into this particular
effect, we plot in figure 24 the structure of the error field for a constant value
of the grid size h/L0 = 1/2128 and two different values of the thickness of the
regularization region: ∆ = h (figure 24 left) and ∆ = 2h (figure 24 right). We
clearly see than in the former case the errors are introduced by the boundary
condition, the discretization of the interface not showing any significant signa-
ture on the error fields obtained. On the contrary, the numerical error fields
obtained for ∆ = 2h are consistent with the theoretical prediction obtained in
the continuum limit (figure 11 in section 6.3) , being the total numerical errors
controlled by the regularization of the coefficients. The fact that it is possible
to find discretization schemes able to display second order convergence even in
the presence of tangential second order derivatives put in evidence the existence
of accurate discretization schemes for sharp interfaces for which the results of
this manuscript cannot be applied. However this result must be taken cau-
tiously. Despite the existence of few works attempting to propose second order
discretization schemes for multiphase flows [12, 20], generalized second order
discretization methods for Eulerian grids where the interface is not aligned with
the cell face is an open problem that has not being solved yet [32]. Indeed, as
it will be shown next, second order convergence was not observed in numerical
problems with curved surfaces using the same combination of the averaging and
discretization scheme.

7.2. Curvature effects

In order to investigate the influence of curvature in numerical solutions we
solve for two different problems associated to the Poisson equation in an infinite
domain where a fluid with diffusivity D1 and radius R0 is placed in the bulk
of a reference fluid (fluid 2). In polar coordinates, the equation solved can be
written as

1

r

∂

∂r
(Dir

∂φi
∂r

) = s,

with s a known source. In the first problem considered we impose

s =

{
1 r ≤ R0,
0 r > R0,

and boundary conditions

∂φ1

∂r

∣∣∣∣
r=0

= 0, φ1(r = 0) = 0.

The general solution for this problem in the sharp limit is

φ =

{
sR2

0(r/R0)2

4D1
, r ≤ R0,

sR2
0

2D2
ln(r/R0) +

sR2
0

4D1
, r > R0.
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Figure 25: Convergence study for the solution of the Poisson equation for D2/D1 = 10 using
nodally exact face values, the harmonic mean, and two different values of the ratio ∆/h. (Left)
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added as reference. (Right) L∞ norm, the dashed lines we represent the solution of the first
order model in the continuum limit.
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Numerically, we solve for the discretized Poisson equation in a cartesian grid
with uniform grid size h in a square domain of size L0 = 5, where exact Dirich-
let boundary conditions are imposed. We set R0 = 1, D1 = 1 and D2 = 10.
We start investigating the dependence of the numerical errors with the grid size
for the harmonic mean using nodally exact values of the face fraction (finite
differences) and imposing the value of the ratio ∆/h (figure 25). Nearly second
order convergence is observed for the errors measured in the L1 norm, where
the errors do not depend on ∆, while the convergence is degraded to first order
in the L∞ norm. This observation is consistent with the predictions of the theo-
retical models, where the harmonic mean is supossed to introduce second order
effective jump conditions for the outer error, being first order errors only visible
inside the regularization region. Although the errors in the L1 norm cannot be
obtained analytically for the particular simulation conditions used, the L∞ first
order error can still be predicted theoretically from eq. 34 where the outer error
is imposed to be zero. In general, the model proposed predicts remarkably well
the maximum first order errors when nodally exact face values of f are used to
define D̃ using the harmonic mean even in the case h = ∆, where we previously
found second order convergence in the case of a flat interface.

Figure 26 shows the errors introduced by the definition of exact face averaged
fractions as well as interpolated fractions from cell centered averaged fractions
(finite volume approach). The use of interpolated values is shown to provide
comparable results to nodally exact values for ∆ = h for the second order errors
measured in the L1 norm. Remarkably, L∞ errors are larger than in the case of
finite differences, being close to the model predictions for ∆ = 2h. The errors
measured in both L1 and L∞ norm are reduced when using face interpolated
values from cell centered values of the VOF function than exact face averaged
value obtained from the exact position of the interface, where the errors are close
to the model predictions for ∆ = 4h. Note that indeed the definition of mixed
face fractions in a given cell modifies the solution in a 3× 3 stencil, so it is not
surprising to find that classical implementations of VOF effectively introduce
regularization errors with larger effective values of ∆ than h. We therefore con-
clude that at least in standards implementations of the volume of fluid method
the curvature of the interface is sufficient to introduce regularization errors that
are well predicted by the theory.

To conclude, we discuss also the errors of the numerical solution for a mod-
ified problem where the source contains an azimuthal component

s =

{
3
4D1R

2
0 cos(θ), r ≤ R0,

−
(
D2

2 +D1 ln(r/R0)
) R4

0

2r2 cos(θ), r > R0.
(47)

The exact solution of this problem for a sharp interface is{
φ1 = D1r

2

4 cos(θ), r ≤ R0,

φ2 =
(

1
4 + ln(r/R0)

2D2

)
D1R

2
0 cos(θ), r > R0.

(48)
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Figure 27: Convergence test for the solution of the Poisson equation obtained with the har-
monic mean. The source is given in eq. 47. Results are obtained using Finite Differences
(FD) with different values of the ∆/h ratio (dots) and using face interpolated values of the
cell averaged fraction (VOF).

The main difference with the previous case is the presence of a tangential
component, effectively introducing first order errors in the outer solution even
with the use of an harmonic mean. Using the same parameters than the previous
case to obtain the numerical solution, the grid size is varied between h = L0/2

5

and L0/2
11. Figure 27 shows the results obtained using the harmonic mean and

a finite difference discretization, where the values of the diffusion coefficient at
the cell faces are initialized with the nodally exact value of the regularization
function with a given value of the ratio ∆/h. In addition the results obtained
with the standard VOF method are included, where the values at the cell faces
are computed from the interpolation of the fluid fraction defined at the cell
center. Due to the presence of tangential gradients both, the L1 and the L∞
norm display first order convergence, with the preactor of the errors introduced
by the various methods scaling with ∆ and not h. As in the previous example,
for a given value of h, the most accurate results are obtained imposing ∆ = h
and using nodally exact values of the fraction f on the cell faces.

8. Conclusions and perspectives

This manuscript presents a systematic approach to investigate the errors in-
troduced by the regularization of the jump of the coefficients in the solution of
an elliptic equation. Using a multiscale analysis the error is decomposed into an
inner region associated to a small length scale ∆ and an outer region. The error
in the outer region is shown to obey a Laplace equation with jump conditions
accross the interface on the error and the error flux. The analysis of the inner
problem allows obtaining expressions for the effective jump conditions required
in the outer problem at arbitrary order and expressions for the structure of the
error in the inner region.

The theoretical analysis reveals that the first order approximation of the
error jump required for the resolution of the outer problem is proportional to
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the normal flux of the regularized solution across the interface, while the first
order approximation of the error flux source depends on the value of the surface
Laplacian of the regularized solution evaluated at a given point of the interface.
In both cases, exact expressions for the pre-factors depending on the averaging
rule are given. In the particular case of the arithmetic mean, the regularization
of the interface only introduces an error flux source in the outer problem at
first order, being the error jump always null. In the case of the harmonic mean,
the effective error jump vanishes, only generating first order errors in the outer
solution in multidimensional problems. Remakably, the inner error is shown
to be always first order and proportional to the normal flux of the regularized
solution irrespective of the averaging rule used.

Various analytical examples where it is possible to compute exact expres-
sions of the regularization error are used to provide convincing evidence about
the relevance of the first order error estimations in the approximate solution.
In addition, numerical tests show that except in some particular cases the error
model proposed captures the main source of numerical errors even in situations
where the grid size becomes of the order of the regularization length ∆, provid-
ing an accurate representation of the error distribution in the entire domain.

Future extensions of this work include the discussion of regularization mod-
els to account for the presence of discontinuities on the primitive variable and
its flux as well as the generalization to more complex equations or system of
equations.

Appendix A. Transient effects

In many cases the one-fluid formulation is applied for transients problems
introducing additional complexity on the analyses of the errors introduced. As
an extension of the results shown for steady-state problems let’s consider as an
example the transient diffusion-reaction equation

ai(x)
∂φi
∂t

= ∇ · (Di∇φi)− si, (A.1)

where ai(x) and Di(x) are spatial functions that do not depend on time. The
classical form of the regularized problem is written as

ã(x)
∂φ̃

∂t
= ∇ · (D̃∇φ̃)− s̃. (A.2)

Following a similar manipulation than in the steady problem we find that the
problem for the error evolution in the entire domain obeys

ai
∂εi
∂t

= ∇ · (Di∇εi)− Sεi − (ai − ã)
∂φ̃

∂t
, (A.3)

with the same expressions for the source (eq. 5) and the jump conditions (eqs.
6-7) derived for steady problems. Imposing that the last term in the right hand
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size is not null only inside the regularized region, then the outer problem reduces
to an unsteady diffusion equation for the outer error

ai
∂ε′i
∂t

= ∇ · (Di∇ε′i). (A.4)

Following the same procedure explained in the core of the manuscript we can
readily integrate the equations in the normal direction to find the jump condi-
tions at first order

[[D
∂ε
′(1)
f

∂n
]] = C1Lt0(φ̃(0)) +

∂φ̃(0)

∂t

∣∣∣∣
n=0

1

∆

∫ n2

n1

(ai − ã)dn (A.5)

[[ε
′(1)
f ]] = C2J̃

(0)
n,0, (A.6)

with the integration constants given by eqs. 27-27. We can see that compared
to the steady-state solution, transient effects introduces an additional source
of error appears in the error flux jump when the function ai is regularized.
Remarkably, it can be easily checked that at first order the structure of the
inner error remains unchanged with respect to the steady state problem.

Appendix B. Local coordinate system for the inner problem

Appendix B.1. Local coordinate system for two-dimensional surfaces

To integrate the error equation along the normal direction in the two dimen-
sional case, we use polar coordinates

ξn = r, ξt1 = θ, ξt2 = z

to define a local coordinate system where the local value of the curvature of the
interface at xI imposes (see figure 1)

r =
1

κ1
− n.

The scale factors are

hξn = 1, hξt1 = r, hξt2 = 1

such that

K =
1

hξnhξt1hξt2

∂(hξt1hξt2 )

∂ξn
=

1

r
=

κ1

1− κ1n
≈ κ1 +O(∆κ2

1).

Appendix B.2. Local coordinate system for three-dimensional surfaces

In three dimensions we use an oblate spheroidal coordinate system

ξn = η, ξt1 = θ, ξt2 = ψ.
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to represent the actual interface by an iso-surface placed at η = ηI . The two
principal curvatures at (η, θ, ψ) = (ηI , 0, π/2), κ1 and κ2, define the parameters
a and ηI as:

κ2 =
1

a sinh(ηI)
, κ1 =

tanh(ηI)

a cosh(ηI)

where κ2 is the value of the principal with the largest absolute value.

Using the definitions of the metric factors [16],

hξn = a

√
cosh2(η)− sin2(θ), hξt1 = a

√
cosh2(η)− sin2(θ), hξt2 = a cosh(η) sin(θ)

we readily obtain

K =
1

hξnhξt1hξt2

∂
(
hξt1hξt2

)
∂ξn

=
2 sinh(η)

a cosh2(η)
= 2κ1 +O(∆)

Appendix C. Exact solution of the regularized 1D Laplace problem

The solution of the 1D regularized problem of section 6.1 can be expressed
as

φ̃ =


ã1x+ b̃1 x < −∆/2,
c̃1 + c̃0

∫
dx
D̃
−∆/2 ≤ x ≤ ∆/2,

ã2x+ b̃2 x > ∆/2.

(C.1)

For the arithmetic mean, the solution obtained after imposing the boundary
conditions and matching conditions across the interface gives

ã1,arith = ã2,arithDr = b̃1,arith = c̃1,arith =
Dr

Dr + 1−
(

1+Dr
2 −Dr

ln(Dr)
Dr−1

)
∆
,

b̃2,arith =
Dr − ( 1+Dr

2 −Dr
ln(Dr)
Dr−1 )∆

Dr + 1−
(

1+Dr
2 −Dr

ln(Dr)
Dr−1

)
∆
,

c̃0 = 1− ∆

2
.

while for the harmonic mean the result is

ã1,harm = ã2,harmDr = b̃1,harm = b̃2,harm = c̃0,harm =
Dr

Dr + 1
,

c̃1,harm =
Dr + 1

8∆(1−Dr)

Dr + 1
. (C.2)
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