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ABSTRACT Synthetically-generated images are getting increasingly popular. Diffusion models have advanced to
the stage where even non-experts can generate photo-realistic images from a simple text prompt. They expand
creative horizons but also open a Pandora’s box of potential disinformation risks. In this context, the present
corpus of synthetic image detection techniques, primarily focusing on older generative models like Generative
Adversarial Networks, finds itself ill-equipped to deal with this emerging trend. Recognizing this challenge, we
introduce a method specifically designed to detect synthetic images produced by diffusion models. Our approach
capitalizes on the inherent frequency artefacts left behind during the diffusion process. Spectral analysis is used
to highlight the artefacts in the Fourier transform of a residual image, which are used to distinguish real
from fake images. The proposed method can detect diffusion-model-generated images even under mild jpg
compression, and generalizes relatively well to unknown models. By pioneering this novel approach, we aim to
fortify forensic methodologies and ignite further research into the detection of AI-generated images.

INDEX TERMS Diffusion models, Image forensics, Media forensics, Multimedia forensics, Spectral analysis,
Synthetic image detection

I. Introduction

How to assess the validity of an image as a proof to its
content? Photographic images used to be considered the

most reliable evidence possible, as they were difficult to realisti-
cally modify. With the proliferation of digital photography and
the development of sophisticated image editing tools, this status
of absolute proof is unfortunately long gone. It is increasingly
easier to alter an image, not only to make it more aesthetically
appealing, but also to change its semantic content and give it a
different meaning than the truth.

In the fight against disinformation, the role of image forensics
was thus to analyse whether an image was authentic or had been
maliciously and locally altered to hide or distort the truth.
However, a new source of disinformation has now appeared.
Thanks to the advent of diffusion models [40], [48]–[50] and
text-to-image joint embeddings, it is now possible and easy to
generate images from scratch with nothing more than a text
prompt describing the intended image, as seen in Figure 1.
Although the resolution of generated images remains limited,
these images have achieved a high level of photorealism, that can
make them visually indistinguishable from real photographies.

This progress has enabled many innovations, for instance in
the arts, to create movies or even in architecture. However, it

also brings the risk of people pretending the synthetic images
they created is in fact an actual photography representing a real
scene, for instance to incriminate or ridicule someone or more
globally spread disinformation.

A cardinal question thus arises: how can such images be
distinguished from real ones? Until very recently, synthetic
images were mainly generated using Generative Adversarial
Networks (GANs) [23], [30]–[33]. The methods to detect
synthetic images have thus also focused on this architecture,
while the literature on detecting images synthetized by those
newer diffusion-based methods is still lacking.

It has been noted [21], [25], [38], [55] that GAN-generated
images feature frequency artefacts. This is also true, to some ex-
tent, of -generated images [14], [15]. Can these artefacts be
used to identify synthetic images? Such an enterprise is challeng-
ing. These artefacts are subtle and not immediately visible, they
must be revealed with suitable filters. While previous work [14],
[29] reveal these artefacts, they could only do so by aggregating
a large number of images together. To identify whether an
image is synthetic, those artefacts must be extracted from a
single image, which is a much more challenging undertaking.
Furthermore, the frequency artefacts of -generated images lie
at the same frequency spots as the artefacts caused by a common
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FIGURE 1: The proposed method detects synthetic images generated by diffusion models in the spectral domain. It computes a
high-pass residual of a suspect image, and analyses suspected peaks in the Fourier transform of the image to detect whether an
image is synthetic or authentic.

jpg compression. It is thus crucial to be able to distinguish
the artefacts that come from frequency-based methods from
those coming from jpg compression, lest natural but jpg-
compressed images be mistakenly detected as synthetic.

In this paper, we propose a method based on spectral analysis
to detect synthetic images generated by diffusion models. We
set up a simple method to highlight and analyse the frequency
artefacts in images, distinguishing -generated images from
authentic ones. Experiments show that the proposed method
can reliably detect artefacts even under mild jpg compression,
and distinguish the artefacts caused by compression than those
caused by diffusion processes. The method adapts well to unseen
architectures, a gap that is yet to be overcome by existing
models.

Our main contribution is four-fold:

• We show that the cross-difference, a simple high-pass filter,
can outperform the state of the art to highlight frequency
artefacts in images, to a point they can be detected on
individual images,

• Based on this, we introduce a spectral method to detect
AI-generated images from diffusion models,

• We design a database of synthetic images to compare the
existing methods. The dataset includes the most recent
available generation methods to date.

• We study the ability of the proposed method and of the
state of the art to distinguish real from fake images against
jpg compression and on unseen models.

II. Related works
A. Synthetic Image Generation

Rcly, the domain of image generation has undergone
profound transformations, predominantly fueled by the

triad of Variational Autoencoders (VAEs), Generative Adver-
sarial Networks (GANs), and Diffusion Models (s). These
advancements have revolutionized image synthesis, paving the
way towards crafting photorealistic synthetic images.

While GANs [28] have deeply influenced the landscape of
image generation [9], [32], they have recently been surpassed
by diffusion models [51]. These models conceptualize data
distribution as a diffusion process, iteratively distorting the
image using a simplistic prior and gradually converting it back
into the target distribution. Notably, the Ablated Diffusion
Model (ADM) [20] has exceeded the capabilities of GANs and
VAEs in image generation, marking a vital inflection point in
the evolution of diffusion models.

In parallel with diffusion models, Transformer Models [52]
have witnessed expanding applications in computer vision,
primarily fueled by the advent of CLIP [47], a model adept
at embedding images and text into a shared space. Capitalizing
on this capability, latent diffusion models [49] such as Stable
Diffusion (SD) [50] and ll· [48] have extended diffusion
models to synthesize images from text prompts in a latent
feature space, resulting in a leap forward in the realm of
image generation capabilities, both in terms of variety and
photorealism.
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(a) Stable Diffusion 1.3 (b) Stable Diffusion 1.4 (c) Stable Diffusion 2 (d) Stable Diffusion XL (e) Glide

(f ) Midjourney v5 (g) ll· 2 (h) ll· 3 (i) Adobe Firefly (j) Raise (real images)

FIGURE 2: ff of the averaged cross-difference of the models and of real images, computed on the proposed database. For a
given model, we compute the cross-difference of each of the 1000 images, then average the computed cross-difference as well as
the colour channels. We then display the magnitude of the Fourier transform of the averaged result. For better visual legibility
at display size, the magnitude is augmented by a morphological dilation, which increases the size of the peaks in the images.
For models where images vary in size, only those of the most frequent size are used. We can see that most diffusion models
feature traces at periods of 2, 4, and 8. Firefly even features a 16-periodic artifact component, possibly due to a higher number of
upsampling steps. Glide images feature fewer, but more visible artefacts, possibly due to the fact that it performs only one small
super-resolution step, which is less than the other models. Curiously, ll· 2 images only feature artefacts on the horizontal
axis of the Fourier transform, hinting at a strongly different treatment of both axes in the weights of the model.

Nonetheless, the swift advances in image generation have
birthed societal apprehensions, primarily the threat of deepfakes,
posing substantial security risks. The necessity to devise robust
methods for synthetic image detection and potential misuse
mitigation cannot be overstated.

B. Synthetic image detection
The central thrust of this paper lies in the authentication
of synthetic images, an area where existing literature remains
sparse. AutoGAN [55] utilizes a classifier in the spectral
domain to identify synthetic images by their frequency arte-
facts. PatchForensics [10] investigates the unique properties
of fake images, particularly face images, that render them
detectable and discerns what generalizes across varying model
architectures, datasets, and training alterations. McCloskey and
Albright [39] take advantage of the fact that the intensity
values of synthetic images are rarely saturated, while Wang et
al. [53] and Gragnaniello et al. [29] train CNNs to differentiate
real and GAN-generated images. However, these studies largely
predate the prevalence of diffusion models and text-to-image
techniques, hence they are primarily trained and evaluated
on GAN-generated images sampled from specific classes. Two
methods have already been proposed to detect -generated

images. Corvi et al. [15] retrains the existing architecture of
Gragnaniello et al. [29] on -generated images, while Ojha et
al. [46] train a network to distinguish real and fake images
in the latent domain of a CLIP-trained architecture [22].
However, neither methods achieve good generalizability against
methods unseen during training.

III. Proposed method

As seen in Figure 1, the frequency artefacts from -
generated images lie at very specific frequencies, corre-

sponding to components of periods 2, 4, and 8. We propose
to use a cross-difference filter on the image to highlight the
frequency artefacts in an image, and extract the magnitude of
the points corresponding to components of periods 0, 2, 4,
or 8, in both directions. A simple classifier is then trained to
distinguish real from generated images.

A. High-pass residual to reveal the artefacts
The cross-difference filter [11] has been introduced and used to
reveal periodic artefacts coming from jpg compression [11],
[43] and image demosaicing [4]. The cross-difference is an high-
pass filter defined as the absolute difference between the two
diagonals of a 2×2 block on an image. Let I be a 2-dimensional
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Original image

Base prompt
close-up of a screwdriver on the grass next
to two shoots of euphorbia betten, focus
on the euphorbia and the grey handle of
the screwdriver, bokeh in the background,
105mm f/5.6

old tesseract artifact in a museum. soft
lighting, microfilm, archaeological object,
smooth surfaces, frontal perspective

Two people playing violin together in the
street, in a red Victorian-era dress, behind
red curtains, …

many round blue dining tables, each sur-
rounded by straw chairs with a table
chandelier holding lit candles, a curved
outdoor roof with lamps, it is night

Midjourney v5

DALL·E 2

DALL·E 3

Stable Diffusion 1.3

Stable Diffusion 1.4

Stable Diffusion 2

Stable Diffusion xl

Glide

Firefly

FIGURE 3: Examples of the generated images in the database. The images are generated with different diffusion models using a
text prompt, that loosely based on a natural image from Raise-1k [17]. As the goal of the database is to evaluate methods that can
distinguish natural photographies from synthetic images, attention is paid in the prompts to generate images with photorealistic
styles and textures rather than artistic styles.
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image, the cross-difference at location (x, y) is defined as
Cx,y =

∣∣Ix,y + Ix+1,y+1 − Ix,y+1 − Ix+1,y
∣∣ . (1)

We propose to use the cross-difference to dampen the low
frequencies and highlight the frequency artefacts from -
generated images, shown in Figure 2 For each colour channel
of the image to analyse, the cross-difference filter defined in
Equation 1 is used to extract a simple fingerprint of the image.
As the cross-difference acts as an high-pass filter, the high-
frequency artefacts we expect to find in synthetic images are
much more prominent on the cross-difference than on the
original image.

The Fast Fourier Transform (ff) of the cross-difference is
then computed. To avoid any bias linked to the image size,
the ff is normalized by the size. Peaks representative of -
generated images occur on components of period 0, 2, 4, and 8,
in both directions. We extract the magnitude of the 45 peaks
from each of the three colour channels, leading to 135 extracted
magnitudes.

B. Analysis of the extracted peaks
Using only the 135 potential magnitude peaks as features, we
then train a classifier to distinguish real from fake images.
We use a histogram-based gradient boosting tree classifier
(HBGB) [34], [35]. This variant of the traditional Gradient
Boosting Trees leverages the concept of gradient boosting with
an histogram-based approach to accelerate the tree-growing
process. The algorithm maintains the robustness of gradient
boosting, while the histogram-based technique enhances its
scalability, making it suitable for large-scale datasets. It is able
to handle the dimensionality of the data, as 135 features are to
consider, and can maintain a high accuracy. Although it was
historically shadowed by neural network, this much simpler
model is sufficient as we only use a relatively small number
of features. Trained with both real and synthetic images from
different diffusion models, our classifier learns to distinguish
authentic and generated images using only the magnitude of
these peaks.

The model is trained on both natural images and diffusion-
model generated ones, to detect whether the analysed features
correspond to a natural or synthetic images. Different training
schemes are presented and discussed in the Experiments section.

C. Robustness to ȷPEg compression
The proposed method analyses ff peaks corresponding to
periods 0, 2, 4, and 8, in both directions. However, jpg
compression also leaves strong artefacts in these periods [2],
[7], [8], [44]. To train the network to only detect artefacts
coming from diffusion methods, we apply jpg compression to
the training images.

One model is trained for each jpg quality factor, as
well as without compression. At inference, the jpg potential
quantization table of the tested image is estimated using a
quantization table estimator [45], and the appropriate model
is selected, a strategy that has already proved its efficiency in
the forensic literature [16].

IV. Database

Tiig and evaluating the proposed method requires sets
of real and fake images. Real images are plentiful. In

particular, the Raise dataset [17] and the Dresden dataset [27]
contain 8156 and 1488 uncompressed photographs. Using
uncompressed images is particularly useful, as we can then apply
various post-processing such as jpg compression on a clean
image.

On the other hand, as diffusion models are quite recent,
the available data on such images is scarce. To the best of our
knowledge, the only such published database is proposed by
Corvi et al. [15], consisting of 1000 images generated with
different GAN and diffusion models, including ll· 2 [48],
Glide [41], and Latent Diffusion [50].

To address this scarcity, we propose our own dataset of
-generated images. This enables us to provide a way to
evaluate methods on current diffusion models, such as Stable
Diffusion [50] 1.3, 1.4, 2, and XL, Midjourney [40], Adobe
Firefly [24],ll· [48] 2 and 3, for which no publicly-available
datasets are available yet. This newly-constructed dataset is also
useful to train and test models on independently-generated data,
ensuring a fair evaluation.

While the synthetic images are generated from a text prompt,
we use an existing database of real image as guideline for
the generated image, the Raise-1k dataset, which is a varied
subset of the full Raise [17] dataset. This dataset contains one
thousand high-quality, uncompressed photographies of diverse
categories: indoor, outdoor, landscape, nature, people, objects,
and buildings. While using an existing dataset of natural images
is not strictly needed, it provides several advantages:

1) Being of the same categories, the natural images them-
selves provide a fair comparison point for the methods
to check both their ability to detect fake images and to
avoid false positives,

2) As already established in the literature [21], it is crucial
to evaluate synthetic image detection methods on var-
ied image classes. Using an already-diverse dataset as a
guideline ensures the generated images are varied.

Note that the original images are not used as image prompts to
try to recreate a similar image or modify it. The original images
are only used as a guideline to create the new text prompt of
the presentation, to ensure the resulting image broadly belongs
to the same category as the original one.

For each of the 1000 images, descriptions of the images
are generated using Midjourney descriptor [40] and CLIP
Interrogator [13]. These descriptions are used as a basis to
manually write a text prompt to generate a photo-realistic image
loosely based on the original image. The objective is not to
recreate a perfectly similar image, but rather to obtain an image
from the same category, so as to keep the variety of the images.

The parameters that are used to guide the methods are
selected randomly, within reasonable bounds.
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Glide s1.3 s1.4 s2 s xl Midjourney Dll· 2 Dll· 3 Firefly Overall

Proposed, generic 0.915 0.933 0.943 0.866 0.915 0.867 0.932 0.920 0.913 0.872
Proposed, specific 0.944 0.969 0.971 0.860 0.956 0.852 0.972 0.932 0.728 0.953

Proposed, generalization 0.827 0.833 0.830 0.702 0.592 0.793 0.478 0.845 0.700 0.527

f [46] 0.101 0.243 0.218 0.344 0.215 0.000 0.424 0.000 0.617 0.143
Wang et al. [53] 0.052 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.390 0.004
Corvi et al. [15] 0.000 0.923 0.933 0.889 0.730 0.701 0.000 0.000 0.122 0.250
Grag. et al [29] 0.000 0.048 0.039 0.000 0.000 0.022 0.263 0.000 0.447 0.000
PatchFor [10] 0.016 0.193 0.184 0.357 0.185 0.207 0.114 0.327 0.113 0.121

Mandelli et al. [37] 0.612 0.734 0.745 0.614 0.507 0.542 0.372 0.490 0.758 0.449

TABLE 1: Comparative results of the state of the art and the proposed method on Glide (g) [41], stable diffusion (s) [50]
1.3 and 1.4, Midjourney(j) v5 [40], and ll· 2() [48]. The proposed method is displayed when the diffusion model
of the studied images was encountered during training (generic), when the detection method is trained specifically on this
model (specific), and when the method is not trained on the image diffusion model (generalization). The Matthew’s Correlation
Coefficient cc score is displayed, by setting the optimal threshold per dataset for each method. The cc is widely regarded as
the most representative single metric on detection scores [12]. The best, second and third-best results are highlighted. As can be
seen the method consistently yields good detection scores across all models, and displays good generalization ability.

Glide s1.3 s1.4 s2 s xl Midjourney Dll· 2 Dll· 3 Firefly Overall

Uncompressed 0.915 0.933 0.943 0.866 0.915 0.867 0.932 0.920 0.913 0.872
jpg Q = 95 0.761 0.913 0.910 0.807 0.680 0.769 0.749 0.879 0.729 0.708
jpg Q = 90 0.699 0.903 0.894 0.804 0.684 0.753 0.749 0.848 0.534 0.609
jpg Q = 80 0.580 0.913 0.904 0.823 0.696 0.716 0.653 0.853 0.502 0.583
jpg Q = 70 0.579 0.915 0.904 0.806 0.687 0.707 0.610 0.848 0.524 0.598

TABLE 2: Study of the robustness of the proposed method (generic training) against JPEG compression on the different models.
The model is trained at different quality factors. At inference, the image JPEG quantization matrix is estimated to select the
appropriate model. The Matthew’s Correlation Coefficient cc score is displayed, by setting the optimal threshold per dataset.
 artefacts and JPEG compression artefacts lie at the very same frequencies, rendering synthetic images detection difficult against
JPEG compression. Despite that, the model still shows robustness against JPEG compression, even at a Q = 70 quality factor.

Glide s1.3 s1.4 s2 s xl Midjourney Dll· 2 Dll· 3 Firefly Overall

Proposed (with Cross-difference) 0.915 0.933 0.943 0.866 0.915 0.867 0.932 0.920 0.913 0.872
Ablated (with DnCNN) 0.153 0.863 0.851 0.735 0.802 0.631 0.519 0.620 0.412

TABLE 3: Ablation of the proposed method (generic training), with the cross-difference and the DnCNN denoiser proposed in
existing works [14], [21], [38], which used DnCNN [54] to reveal frequency artefacts on synthetic images, but had to aggregate
the results over a large number of images. We instead use a cross-difference filter, which can reveal artefacts on single images and
yields much better results with our method.

V. Experiments

W now have a database of synthetic and authentic images
tailored to evaluating methods, as the synthetic images

are matched with real images from the Raise [17] database.
We train our model on a separate fake images dataset [1] and
on real images from the Dresden database [27], guaranteeing
a fair evaluation on a challenging case where fake, but also
real images from the training [27] and testing [17] datasets are
wildly different.

For evaluation, we compare our results to the state of the art
on the proposed database, naturally combined with the raise-

1k [17] real images on which the dataset is based. Three scenarii
are initially considered for training, to show potential results on
the method depending on whether the tested synthetic image
is generated by a model seen during training (generic), if the
diffusion model is exactly known (specific) or in the worst case
where the diffusion model is entirely unseen during training
(generalization):

1) Generic training: the proposed method can be trained
generically on images coming from all known diffusion
models in the augmented Corvi et al. database. This is
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FIGURE 4: Comparative ROC curves of the proposed method
with the existing state of the art, on the different detection
models. The F1 and MCC scores are computed using the
standard thresholds (0 or 0.5 depending on the method). We
can see that the proposed method consistently get excellent
results, even when not trained on the specific model to be
tested. It thus shows some decent generalization ability, except
on the Dll· 2 and Firefly models, which seem to yield slightly
different artefacts.

the most realistic case, as fake images for disinforma-
tion are usually created with fake images from existing,
publicly-available diffusion model, but it is rarely known
specifically which model was used. The generic-trained
method constitutes the final method proposed in this
paper, whereas the specific and generalization scenarii
should be viewed as experiments to test the strengths
and limits of the method.

2) Specific training: the method can be trained specifically
on the diffusion model used for the images. While this
approach can be seen as unrealistic, it enables us to know
the limits of the method in an ideal case where it the
exact model used to generate an image is known.

3) Generalization training: Reversely, the method can be
trained on all known diffusion models, except the one
used to generate the image, to assess whether the method
can generalize to unknown models.

Results of this experiment are reported in Figure 4 and in
Table 1. Under the generic training, the proposed method yields
consistently good results across diffusion models and beats the
state of the art on all, even against stable diffusion images which
are already well-detected by Corvi et al. [15]. Knowing the
specific model used is shown to slightly enhance the results,
although this is only significant against Midjourney [40] and
ll· 2 images. The model also shows great generalization
ability, although the results are expectedly worse than when
the model has been seen during training. Generalization results
are significantly worse on Midjourney images, and even more
so on ll· 2 images, suggesting these models architectures
are dissimilar to the other known ones. We also note that,
surprisingly and seemingly inexplicably, generalization results
against Glide images are better than results when the model
belongs to the training set.

A. Robustness to ȷPEg compression
It was stated earlier that  artefacts and jpg compression
artefacts lie at the very same frequency, potentially rendering
their distinction difficult. To assess this, we test the proposed
model on images at different jpg compression levels, as seen
in Table 2.

The test images, both real and synthetic, are jpg-compressed
at the mentioned quality factor. As can be seen, the model is
very robust even against mild jpg compression, and can still
distinguish real from fake images even at jpg quality 70, albeit
with reduced performance.

B. Ablation study
Frequency artefacts on synthetic images were previously high-
lighted using denoising with DnCNN [14], [15], [21], [54].
However, this was only be performed by aggregating numerous
images to reveal the artefacts, rather than on a single image. We
propose the use of a cross-difference filter, that can highlight
the frequency artefacts on single images. Table 3 shows that
this filter indeed improves performance over using DnCNN
denoising.
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VI. Discussion and limitations

Dspi its simplicity, the proposed method is indeed able
to detect synthetic images better than the existing state

of the art. It shows some generalization ability, as well as
robustness to jpg compression. Despite that, those two points
remain an important challenge. Indeed, while the proposed
method performs better than the existing ones both against
jpg images and on unseen architectures, false positives are
still impossible to avoid in these complex situations. Yet, simple
Bayesian reasoning shows that even a small number of false
positives can be sufficient to drown true detection from false
alarms, due to the high proportion of authentic images in the
wild. In addition, wrongly accusing someone of fraud can have
disastrous consequences. As a consequence, current synthetic
image detection methods, including the proposed one, should
still be considered a research artefact, and not be used as
proof that an image is actually forged. For practical usability,
setting an automatic threshold would be crucial, for instance
with a contrario analysis [18], [19], a promising approach in
forensics [2]–[6], [26], [36], [42], [44]

Finally, we note that the proposed method is trained on
diffusion-model-generated, photorealistic images. It is not
trained to work on GAN images, for which numerous tools
already exists. Given that the frequency artefacts are usually
stronger on GAN images than on  images, it would be
easy to adapt the proposed method to GANs should the need
arise. We also note that our method has only been tested
on photo-realistic images; it remains untested, and thus not
suited for, digital art examination. Indeed, not only is the
method not trained on such images, it is likely they would be
more challenging, as digital art usually present flatter textures
than natural photographies, and thus fewer opportunities for
frequency artefacts to be revealed.

VII. Conclusion

I this paper, we have trained a simple method to detect
synthetic images generated by diffusion models. The method

reveals the frequency artefacts using an high pass filter, then
distinguishes real and fake images using the presence of these
artefacts with a simple classifier on the ff magnitude peaks.

This method performs well even in difficult situations such
as jpg compression and unseen models. Still, the risk of false
positives and their consequences should before all draw future
work into preventing and controlling the risk of false alarms.
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