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Abstract
This paper proposes a density-based topology optimization method for the three-dimensional design of
fluid diodes considering wall-connected structures based on the fictitious physical modelling approach.
The optimum design problem of fluid diodes is formulated as maximizing the energy dissipation
in the reverse flow subject to the upper bound constraint of the energy dissipation in the forward
flow. A fictitious physical model and a geometric constraint are constructed to detect and restrict
the “floating” solid domains, which are not connected to the outer boundaries. The sensitivities
of cost functions are derived and computed based on the continuous adjoint method. The finite
volume method is employed to discretize the governing and adjoint equations to mitigate the huge
computational costs of three-dimensional fluid analysis. Numerical investigations are presented to
validate the fictitious physical model and the geometric constraint for excluding “floating” islands.
Finally, topology optimization for fluid diodes with and without the geometric constraint is performed,
and the result demonstrates that the proposed method is capable of generating fluid diodes with wall
connectivity while maintaining a good functional performance.

Keywords: Topology optimization, Fluid diodes design, Wall-connected structures, Geometric constraint,
Finite volume method

1 Introduction
Fixed-geometry fluid diodes or no-moving-part
valves (e.g. Tesla valves) are check valves with-
out moving parts or deformation whose resistance
depends on flow directions. The geometry of fluid
diodes is designed so that the fluid can flow with
little resistance in the forward direction while
fluidic inertial forces generate huge resistance in
the reverse direction. Since fluid diodes without

any moving parts are easy to fabricate and resis-
tant to wear and fatigue, they are widely used as
components of micropumps [Forster et al., 1995,
Morganti et al., 2005, Nabavi, 2009].

A number of studies have been conducted to
improve the performance of fluid diodes. Most of
the previous studies have employed a measure of
diodicity, defined as the ratio of the pressure drop
in the reverse flow to that in the forward flow,
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as a measure of the performance of fluid diodes.
Truong and Nguyen [2003] investigated the design
optimization parameters for fluid diodes such as
the length and the cross angle of channels and con-
ducted a parametric optimization. Gamboa et al.
[2005] applied shape optimization and obtained
the geometry with significantly improved diodic-
ity over the Reynolds number 0 < Re ≤ 2000.
Although these studies have achieved improve-
ments in fluid diode performance, the topology
of target geometry does not change during the
optimization process in these methods.

Topology optimization has advantages over
those optimization methods in that the topol-
ogy of the structure can be changed during the
optimization process, leading to a significant per-
formance improvement. In this method, the struc-
tural optimization problem is replaced with a
material distribution problem, and optimal dis-
tribution is obtained based on mathematical and
physical principles. Topology optimization origi-
nated in solid mechanics [Bendsøe and Kikuchi,
1988] and has since been extended to other
physical phenomena. The pioneer work of topol-
ogy optimization in fluid problems was done by
Borrvall and Petersson [2003], in which Stokes
equations were considered with a density-based
method introducing Darcy law (also called the
Brinkman model). Based on this approach, topol-
ogy optimization has been extended to Navier-
Stokes equations [Gersborg-Hansen et al., 2005,
Olesen et al., 2006, Zhou and Li, 2008], non-
Newtonian [Pingen and Maute, 2010], unsteady
[Kreissl et al., 2011, Deng et al., 2011], and turbu-
lent flows [Kontoleontos et al., 2013, Yoon, 2016,
Dilgen et al., 2018], and applied to a variety of
design problems, e.g., optimum design of rotor
machines [Romero and Silva, 2014], aerodynamics
[Li et al., 2022b, Ghasemi and Elham, 2022], heat
sinks [Yaji et al., 2015, Li et al., 2022a] in three
dimensions.

Topology optimization was also applied to
design problems of fluid diodes [Deng et al.,
2010, Lin et al., 2015]. Lin et al. [2015] for-
mulated the optimal design problem for fluid
diodes as maximizing diodicity subject to a vol-
ume constraint with an additional penalty on flow
through intermediate density. Sato et al. [2017a]
proposed a bi-objective topology optimization
method for fluid diodes and investigated Pareto-
optimal solutions. In work done by Guo et al.

[2020], length scale constraints were introduced
into two-dimensional topology optimization for
the design of fluid diodes to reduce the difference
between the performance of the two-dimensional
model and the three-dimensional model obtained
from the extrusion.

Although these previous studies showed that
topology optimization can generate novel designs
of fluid diodes with improved performances,
one limitation in the design problems is the
two-dimensional assumption of fluid flow. This
assumption is valid as long as the effect of upper
and lower boundaries is negligible. In practice,
however, the height of the flow channel is not
infinite, and the discrepancy between the per-
formances of the two-dimensional model and the
extruded three-dimensional model should not be
neglected. Lin et al. [2015] reported that the
diodicity values of the extruded three-dimensional
model of fluid diodes measured by both numerical
simulations and experiments were less than those
of the two-dimensional model, and they concluded
that topology optimization in three dimensions
should be performed when the height of the chan-
nel cannot be neglected. Although Guo et al.
[2020] showed that length scale control can miti-
gate the discrepancy, difficulty in estimating the
final performance still remains. Thus, this work
sheds a light on the topology optimization of fluid
diodes in full-scale three-dimensional setting.

However, topology optimization of fluid diodes
in three dimensions poses another challenging
issue. The optimized structures may feature some
“floating” islands disconnected to the external
walls, which is not ideal in practice, therefore, can-
not be manufactured. The Brinkman model allows
the nucleation of such structures owing to the
nature of its mathematical modelling. Therefore,
we need to construct a design methodology for
obtaining wall-connected structures in the fluid
topology optimization.

Previous works have investigated geometric
constraints for ensuring desired geometrical fea-
tures of the structure, especially in the fields
of solid mechanics and additive manufacturing.
In topology optimization, the control of mini-
mum and maximum length scales of structures
has long been a typical issue of geometric con-
straints [Poulsen, 2003, Guest et al., 2004, Zhou
et al., 2015, Guest, 2009, Li et al., 2023], and
the concept of geometric constraints have been
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extended to molding constraints [Xia et al., 2010,
Allaire et al., 2016, Sato et al., 2017b] and enclosed
voids restriction constraints [Liu et al., 2015, Li
et al., 2016, Yamada and Noguchi, 2022]. In the
work of Liu et al. [2015], a Virtual Temperature
Method (VTM) was constructed, in which a vir-
tual boundary value problem is introduced so that
the enclosed void regions can appear with a high
value of virtual temperature. The fictitious physi-
cal model to constrain closed cavities proposed by
Yamada and Noguchi [2022] is similar to VTM in
concept, but the governing equations for the fic-
titious physical field are different. Both of these
methods successfully obtained optimal structures
in which enclosed void regions do not exist, and
all void regions have connections to the outer
boundaries. We can impose a geometric constraint
for ensuring wall-connected structures of the fluid
diodes by considering the enclosed void regions in
these methods as floating solid regions.

This paper proposes a topology optimization
of fluid diodes considering wall-connected struc-
tures. Since excessive energy dissipation in the
forward flow impairs the original function as a
flow path, the optimal design problem of fluid
diodes is formulated as maximizing the energy
dissipation in the reverse flow subject to a max-
imum allowed energy dissipation in the forward
flow. An additional geometric constraint based on
the fictitious physical approach is formulated to
avoid the nucleation of “floating” islands in the
optimum design problem. To the authors’ best
knowledge, very limited works have been proposed
to guarantee wall-connected structures in the
three-dimensional fluid topology optimization. In
numerical implementation, to overcome the prob-
lems of numerical costs of three-dimensional fluid
flow analysis, every implementation is performed
in OpenFOAM, an open-source finite volume soft-
ware which is widely used in computational fluid
dynamics and topology optimization related to
fluid problems [Yu et al., 2020, Pan et al., 2022,
Galanos et al., 2022].

The remainder of this paper is organized as
follows. In Section 2, the governing equations and
density-based topology optimization formulation
of incompressible steady-state flow are described,
and the fictitious physical field and the geomet-
ric constraint are introduced. Then, the optimal
design problem of fluid diodes considering wall-
connected structures is defined. In Section 3,

we describe the implementation details and the
optimization algorithm. In Section 4, we show
a numerical verification of the fictitious physi-
cal model and design examples of fluid diodes
obtained from the proposed method. Finally, con-
clusions are provided in Section 5.

2 Formulation

2.1 Governing equations
The governing equations for an incompressible,
steady-state flow in the non-dimensional form are
given as:

∇ ·
(
uu>)

= ∇ · σ̄ (u, p) + f in Ω
∇ · u = 0 in Ω
u = uD on ΓD
σ̄ (u, p) · n = 0 on ΓN,

(1)

where n is the unit outward normal vector on
the boundary, and u, p, f , and ∇ denote the
non-dimensional velocity, pressure, body force,
and gradient operator, respectively. These non-
dimensional quantities are defined as follows:

u = u∗

U
, p = p∗

ρU2 , f = L

U2 f∗, ∇ = L∇∗, (2)

where U and L are the characteristic velocity and
length, ρ and ν are the fluid density and dynamic
viscosity, and ∗ denotes the dimensional quanti-
ties. The fluid stress tensor σ̄ (u, p) is defined as
follows:

σ̄ (u, p) := −pI + 1
Re

(
∇u + ∇u>)

, Re = UL

ν
.

(3)
where I is the identity tensor, and Re is the
Reynolds number. The boundary Γ := ∂Ω is
composed of the Dirichlet boundary ΓD, where a
velocity profile is given, and the Neumann bound-
ary ΓN, where the boundary stress vector σ :=
σ̄ · n is specified as zero.

2.2 Formulation of the density-based
topology optimization

In this research, the density-based topology opti-
mization method with filtering and projection is
used [Lazarov and Sigmund, 2011, Wang et al.,
2011, Kawamoto et al., 2011]. A pseudo-density
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field γ(x), which is a continuous function defined
in [0, 1], is introduced to describe the material
distribution. To perform topology optimization,
we consider the computational domain Ω which
consists of the solid sub-domain Ωs and the fluid
sub-domain Ωf. The solid domain Ωs is defined as
the domain where γ = 0, and the fluid domain Ωf
is defined as the domain where γ = 1.

γ (x) =
{

0 in Ωs
1 in Ωf.

(4)

The density filtering is employed to prevent
numerical instabilities in topology optimization.
The filtered density field γ̃ is obtained as the
solution of the following Helmholtz-type partial
differential equation.{

−r2∇2γ̃ + γ̃ = γ in Ω
∇γ̃ · n = 0 on Γ,

(5)

where r denotes the filter radius. Finally, the pro-
jected density field γ̂ is obtained by applying the
smoothed Heaviside function H(γ̃; η, β) as follows:

γ̂ := H(γ̃; η, β) = tanh(βη) + tanh(β(γ̃ − η))
tanh(βη) + tanh(β(1 − η)) ,

(6)
where η and β denote the threshold and the sharp-
ness parameters, respectively. Fig. 1 shows a plot
of the smoothed Heaviside function for different
β.
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Fig. 1: Smoothed Heaviside function
H(γ̃; η, β), η = 0.5

In order to make the governing equations to
be applicable in the entire fixed design domain, a
fictitious force f = −αu is introduced based on
the Darcy law (also called the Brinkman model)
[Borrvall and Petersson, 2003].

∇ ·
(
uu>)

= ∇ · σ̄ (u, p) − α(γ̂)u in Ω
∇ · u = 0 in Ω
u = uD on ΓD
σ̄ (u, p) · n = 0 on ΓN,

(7)
The solid domain is represented as a porous mate-
rial, where the inverse permeability α(γ̂) takes
the value much greater than 1. In this work, the
function α(γ̂) is defined as follows:

α (γ̂) = αmax (1 − γ̂) , (8)

where αmax is the maximum value of the inverse
permeability.

2.3 Geometric constraint for
excluding “floating” islands

As has been discussed In Section 1, “floating” solid
regions entirely surrounded by the fluid may be
nucleated in the design problem of fluid diodes.
In order to obtain wall-connected structures in
the fluid topology optimization, we must elimi-
nate such “floating” solid regions or make them
connected to some fixed parts, e.g., no-slip wall
boundaries. Therefore, we introduce a geometric
constraint for excluding “floating” islands based
on the fictitious physical model [Yamada and
Noguchi, 2022].

The key point is to set up a boundary value
problem similar to a heat conduction problem
where the floating solid regions are detected as
the hot portion in the solution. The governing
equations for the fictitious temperature field T are
defined as follows: ∇ · (d (γ̂) ∇T ) + (1 − γ̂ − T ) = 0 in Ω

T = 0 on ΓT

d∇T · n = 0 on Γq,
(9)

where d is the diffusion coefficient defined as:

d (γ̂) = dmax + (dmin − dmax) γ̂. (10)

The diffusion coefficient d is is made to take a large
value dmax in the solid domain and a small value

4
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dmin in the fluid domain. There is a heat source
of O(1) in the solid domain and no heat source in
the fluid domain. Also, the fictitious temperature
value is set to zero on the Dirichlet boundary ΓT

to which all the solid regions are expected to be
connected.

Under this problem setup, in the solid regions
connected to a Dirichlet boundary ΓT , heat is
transferred instantaneously by the very high dif-
fusion coefficient dmax, and the fictitious tem-
perature becomes nearly zero. But in the solid
regions not connected to the Dirichlet boundary
ΓT , heat cannot be transferred anywhere since it
is surrounded by the fluid region with very low
conductivity dmin, and the fictitious temperature
takes the value around one. In this way, “floating”
islands can be detected as regions with fictitious
temperature of O(1).

In addition, to restrict these floating solid
regions, the following cost function is introduced:

Jh =
∫

Ω
(1 − γ̂)T 2dΩ. (11)

It should be noted that, as mentioned in the
work of Yamada and Noguchi [2022], the choice
of the cost function Jh is not unique. This func-
tion (11) is expressed as the integral of the square
of the temperature in the solid domain Ωs and
is expected to have a large value when there
is a floating solid region. Then, setting a suffi-
ciently small upper bound for this cost function
can constrain the nucleation of those “floating”
solid regions.

2.4 Optimum design of fluid diodes
with the geometric constraint
for excluding “floating” islands

Let uf, pf denote the state variables representing
the fluid velocity and pressure in the forward flow,
respectively. Similarly, let ur, pr denote those in
the reverse flow. The viscous energy dissipation
can be evaluated as the boundary integral of total
pressure flux as follows:

Jf = −
∫

Γ

(
pf + uf · uf

2

)
(uf · n) dΓ, (12)

Jr = −
∫

Γ

(
pr + ur · ur

2

)
(ur · n) dΓ, (13)

where Jf and Jr denote the energy dissipation of
the forward and the reverse flow, respectively. It
should be noted that this expression in boundary
integral form is identical to that in domain inte-
gral form used in the previous works [Lin et al.,
2015, Sato et al., 2017a], see Appendix A.

In the most previous works, the diodicity, the
ratio of the pressure drop in the reverse flow to
that in the forward flow, is used as a performance
indicator for fluid diodes.

Di = ∆pr

∆pf
(14)

According to the previous study [Lin et al., 2015],
the diodicity can also be defined using the energy
dissipation as follows:

Di′ = Jr

Jf
=

−
∫

Γ

(
pr + ur · ur

2

)
(ur · n) dΓ

−
∫

Γ

(
pf + uf · uf

2

)
(uf · n) dΓ

≈ Di.

(15)
A large value of the diodicity Di′ indicates a sig-
nificant difference between the energy lost in the
forward and the reverse flows, quantifying the
directionality of the flow.

However, as mentioned in [Sato et al., 2017a],
a fluid diode with high diodicity is not always
an appropriate design. It is desirable to avoid
excessive energy dissipation in the forward flow to
mitigate the driving force. From this standpoint,
we formulate the optimal design problem of max-
imizing the energy dissipation in the reverse flow
subject to a maximum allowed energy dissipation
in the forward flow. Assuming that this constraint
becomes active in the process of maximizing the
energy dissipation in the reverse flow, this prob-
lem is equivalent to the problem for maximizing
diodicity. In addition, to restrict the floating solid
regions, a geometric constraint is introduced using
the fictitious physical model, cf. (9).

Finally, the optimization problem is described
as follows:

minimize
γ

J = −Jr (16)

subject to: G1 = Jf − Jf,max ≤ 0 (17)
G2 = Jh − Jh,max ≤ 0 (18)
0 ≤ γ ≤ 1
Governing equations (7) and (9),
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where Jf,max and Jh,max are the upper bound
values of Jf and Jh, respectively. The boundary
conditions for the forward flow uf, pf, the reverse
flow ur, pr, and the fictitious temperature field T
are described as follows:

uf = uin,f on Γin,f

uf = 0 on Γwall

σ̄ (uf, pf) · n = 0 on Γout,f

ur = uin,r on Γin,r

ur = 0 on Γwall

σ̄ (ur, pr) · n = 0 on Γout,r

T = 0 on ΓT

d∇T · n = 0 on Γq,

(19)

where Γin,f and Γout,f represent the inlet and the
outlet for the forward flow, and Γin,r and Γout,r
represent those for the reverse flow, respectively.
The inlet of the forward flow Γin,f corresponds to
the outlet of the reverse flow Γout,r, and the outlet
of the forward flow Γout,f corresponds to the inlet
of the reverse flow Γin,r. For the fictitious physi-
cal field, the Dirichlet boundary ΓT corresponds
to the portion of the wall boundary Γwall that is
adjacent to the design domain, while the other
boundaries Γ\ΓT are considered as the Neumann
boundary Γq.

The sensitivities of J , G1 and G2 with respect
to the design variable γ are derived based on the
continuous adjoint approach. Adjoint equations
should be solved in each optimization step, and
the sensitivities are calculated using both state
and adjoint variables. See Appendix B for details
on the adjoint systems and the sensitivities.

3 Implementation details

3.1 Implementation in OpenFOAM
As mentioned above, topology optimization of
fluid diode design requires forward and reverse
flow simulations and the solutions of their adjoint
equations. Furthermore, the computational costs
of three-dimensional fluid analysis are consider-
ably higher than that of two-dimensional analysis.
To mitigate such computational burdens, efficient
fluid analysis methods must be employed.

In this work, we employed an open-source
finite volume software, OpenFOAM v5, to dis-
cretize the PDEs. A Semi-Implicit Method
for Pressure Linked Equation (SIMPLE) algo-
rithm was used to solve Navier-Stokes equations.
Adjoint Navier-Stokes equations were also solved
using a SIMPLE-type algorithm based on the
work done by Othmer [2008]. The fictitious heat
equation was solved based on the implementa-
tion of laplacianFoam, a default solver for heat
equations in OpenFOAM.

3.2 Optimization algorithm
The optimization procedure is described in Algo-
rithm 1. First, we prepare a mesh for computa-
tional domain and optimization parameters, such
as upper bound values of the constraint functions.
Then, we decompose the computational domain
for parallel computing, declare unknowns, initial-
ize the psuedo density field γ, and compute γ̃
from (5), and γ̂ from (6). Material properties such
as the inverse permeability α and the fictitious
thermal conductivity d are interpolated using the
projected density field γ̂ from (8) and (10).

Next, the optimization loop starts by solv-
ing governing equations of primal problems, i.e.,
Navier-Stokes equations for forward and reverse
flows (7) and the fictitious heat equation (9).
Then, objective function (16) and constraint func-
tions (17) and (18) are evaluated. If the con-
vergence criterion is satisfied, the optimization
is terminated. Otherwise, the adjoint governing
equations of forward and reverse flows and ficti-
tious heat problems are solved. Sensitivities with
respect to the projected density γ̂ are computed
using primal and adjoint variables. We apply the
chain rule to obtain the sensitivities with respect
to the density γ. The density field γ is updated
using the Method of Moving Asymptotes (MMA)
[Svanberg, 1987]. Then, the filtered density γ̃ and
the projected density γ̂ are obtained from the
filtering (5) and projection (6). Material proper-
ties α and d are interpolated using the updated
projected density γ̂ from (8) and (10).

In this work, the following continuation
method is employed for sharpness parameter β of
Heaviside function (6).

βt =
{

8.0 (1 ≤ t < 100)
min(40, βt−1 + 0.1) (t ≥ 100), (20)
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where the subscript t denotes the iteration num-
ber. Also, the threshold parameter η of Heaviside
function (6) is chosen as 0.5.

The above procedure is repeated until the fol-
lowing criterion is satisfied: after the continuation
method is finished, the relative difference between
the objective function value of current and previ-
ous time steps becomes smaller than εc while the
constraints are satisfied.

Numerical computations in this paper are per-
formed on a Linux computer with 20 Intel Xeon
Gold 6242R CPU cores (3.10GHz).

4 Numerical examples

4.1 Validation of the fictitious
physical model

In this section, we performed two-dimensional
numerical analysis on the proposed fictitious phys-
ical model. The target geometry is shown in Fig. 2,
whose boundary is set as Dirichlet boundary ΓT

where T = 0. The size of the domain is set as
1.5 × 2.0.

Fig. 2: Target geometry for validation of the fic-
titious physical field. Black region represents solid
γ = 0 and white region represents fluid γ = 1.
Every boundary is considered as Γ = ΓT where
T = 0.

Fig. 3 shows fictitious temperature fields for
different sets of maximum and minimum diffusion
coefficients, and Fig. 4 shows the corresponding
sensitivity distributions of Jh. The aim of the fic-
titious physical model is to detect the “floating”
islands as regions with high value of T . The solid
domain connected to the outer boundaries and
the fluid domain should have a value of T close
to 0, so that only the structures without wall

connectivity will be penalized by the geometric
constraint. Taking this into account, the max-
imum value of diffusion coefficient dmax should
be sufficiently large and the minimum value of
diffusion coefficient dmin should be sufficiently
small.

However, in the case with dmax = 1 × 103

such as Figs. 3o and t, the value of T in the
“floating” islands becomes smaller compared to
the result with dmax = 1 × 102, because of the
excessively large maximum value of diffusion coef-
ficient. Another characteristic of the fictitious
physical field is its dependence on the size of
the floating solid regions. In the fictitious phys-
ical model proposed in [Yamada and Noguchi,
2022], it was reported that the void region takes
T = 1 regardless of its size. Although this fea-
ture is desirable in detection, our formulation
may have an advantage in the context of captur-
ing the boundaries of “floating” islands, which is
discussed in Appendix C. From the above obser-
vations, it can be concluded that the proposed
fictitious physical model is effective in detecting
“floating” islands, and that the maximum value of
diffusion coefficient should be 1×101 ≤ dmax ≤ 1×
102 and the minimum value of diffusion coefficient
should be dmin ≤ 1 × 10−5.

Next, to verify the effectiveness of the cost
function (11), we performed a non-constrained
optimization problem of minimizing Jh. For this
numerical example, the steepest decent method
with a constant step size was employed as the
optimizer, and the sensitivity of Jh was normal-
ized by its absolute maximum value at each time
step. Here, we chose the diffusion coefficients as
(dmax, dmin) = (1 × 101, 1 × 10−5). Figs. 5 and 6
show the history of density distribution and the
history of evaluation function Jh, respectively. In
the first 20 iterations, most solid regions either
vanished or were connected to the outer bound-
ary ΓT , then the solid regions gradually decreased,
and after approximately 80 iterations, the solid
regions vanished completely. The cost function Jh
also decreased monotonically during the optimiza-
tion. Consequently, we confirm that the proposed
fictitious physical model and the cost function Jh
can penalize the “floating” islands. It is worth not-
ing that those dmin and dmax should be chosen
carefully depending on the the problem-at-hand,
because they affect how the floating structures
will be modified by the geometric constraint, i.e.,
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Algorithm 1: Optimization problem of fluid diodes with the geometric constraint for excluding
“floating” islands

input: mesh, optimization parameters
initialization:
decompose the computational domain for parallel computing
declare unknowns
initialize the density fields γ, γ̃, and γ̂
interpolate material properties α and d
begin

for it = 0; it < Maxloop; it = it + 1 do
solve Navier–Stokes equations for forward flow using the SIMPLE algorithm
solve Navier–Stokes equations for reverse flow using the SIMPLE algorithm
solve fictitious heat conduction equation
evaluate objective and constraint functions

if
∥∥∥∥Jit − Jit−1

Jit

∥∥∥∥ < εc, G1 < 0, G2 < 0 then
break;

else
solve adjoint Navier–Stokes equations for forward flow using the SIMPLE algorithm
solve adjoint Navier–Stokes equations for reverse flow using the SIMPLE algorithm
solve adjoint fictitious heat conduction equation
calculate sensitivities
update the density field γ using MMA
solve PDE-filter to get γ̃
adopt Heaviside projection to get γ̂
interpolate material properties α and d

end
end

end

whether the “floating” islands will disappear or be
connected to the outer boundaries.

4.2 Three-dimensional design of
fluid diodes with symmetric
condition

In this section, optimizations of fluid diodes with
and without the geometric constraint (18) were
performed. Fig. 7a shows the overall view of the
channel to be considered in this numerical exam-
ple. Fig. 7b shows the computational domain and
the boundary conditions for the fluid problem. To
avoid excessive computational costs, we handle a
quarter model of the entire domain and assume
symmetry of the structure in this case. The com-
putational domain was discretized with 906, 250
structured hexahedral cells. For parallel comput-
ing, the computational domain was decomposed

into 12 subdomains. In this work, the character-
istic length L and the characteristic velocity U
represent the inlet width and the average velocity
at the inlet, respectively, and an incompressible
flow with Reynolds number Re of 100 is assumed.
Before optimization, the energy dissipation of the
channel was evaluated and found to be approx-
imately 0.25 assuming pure fluid phase in the
computational domain. Based on the simulation
result, the upper bound value of the energy dissi-
pation in the forward flow Jf,max was set to 1.0.
The maximum value of inverse permeability αmax
was set to 1.0 × 103. For parameters of density fil-
tering, the filter radius r was set to 1.7 × 10−2,
which corresponds to the length of 3 cells. For
convergence criteria, εc = 1 × 10−5 was used. The
initial guess was given as an uniform distribution
γ = 0.5 in the design domain.
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(f) (1 × 10−1, 1 × 10−4) (g) (1 × 100, 1 × 10−4) (h) (1 × 101, 1 × 10−4) (i) (1 × 102, 1 × 10−4) (j) (1 × 103, 1 × 10−4)

(k) (1 × 10−1, 1 × 10−5) (l) (1 × 100, 1 × 10−5) (m) (1 × 101, 1 × 10−5)(n) (1 × 102, 1 × 10−5) (o) (1 × 103, 1 × 10−5)

(p) (1 × 10−1, 1 × 10−6) (q) (1 × 100, 1 × 10−6) (r) (1 × 101, 1 × 10−6) (s) (1 × 102, 1 × 10−6) (t) (1 × 103, 1 × 10−6)

�

Fig. 3: Fictitious physical field T for various diffusion coefficients (dmax, dmin)

Boundary conditions for the fictitious physical
field are shown in Fig. 8, where the wall adjacent
to the design domain is considered as the Dirich-
let boundary ΓT . The parameters for the fictitious
physical field were set as dmax = 1 × 102 and
dmin = 1×10−5 based on the result of the previous
Section 4.1. Although the geometric constraint
(18) was not imposed in Section 4.2.1, the func-
tion value (11) was evaluated for the comparative
studies in later sections.

4.2.1 Optimization results without the
geometric constraint

Fig. 9 shows the obtained configuration of a fluid
diode plotted by the isovolume of γ̂ ∈ [0, 0.5],

where Figs. 9a and b show the quarter and half
model of the entire design, and Figs. 9c and d
show streamlines of the forward and reverse flows,
all respectively. Fig. 10 shows the optimization
history of Jf, Jr, and Jh. The convergence crite-
ria was satisfied in 458 optimization iterations.
From Figs. 9c and d, it can be seen that the
flow has generally straight paths from the inlet to
the outlet in the forward flow, while the flow is
bent by inertial forces and the structure, contain-
ing many vortices. The solid domains have holes,
and exhibit a wall-like structure that separates
the design domain into the main channel and the
outside. These holes and outer spaces seem to be
effectively utilized for changing the flow directions
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Sensitivity

Fig. 4: Sensitivity distributions of the geometric constraint Jh for various diffusion coefficients
(dmax, dmin)

in the reverse flow, maximizing the energy dissi-
pation. The energy dissipation in the reverse flow
Jr increased during the optimization and reached
approximately 1.52 at the end of the optimiza-
tion process. Since the upper bound constraint for
the energy dissipation of forward flow Jf ≤ 1.0
was satisfied with Jf ≈ 1.0, the diodicity of the
obtained structure was Di ≈ 1.52.

Although the optimized result shows a satis-
factory diodicity, the structure features floating
solid islands, namely, the solid domains without
wall connectivity. To manufacture the obtained
structure, the design must be modified so that
every solid domain can be supported by outer

boundaries. One possibility is to remove all “float-
ing” islands, but it is clear that the “floating”
regions act an essential role in the enhancement of
diodicity in this example. However, it is also chal-
lenging for designers to modify it to a freestanding
structure while maintaining diodicity, e.g., by
adding supports. Therefore, we need to employ
a geometric constraint to ensure wall-connected
structures for the three-dimensional design of fluid
diodes.

The history of function Jh is plotted in Fig. 10,
and the fictitious physical field over solid regions
of the obtained structure is depicted in Fig. 11.
It is seen that “floating” islands are detected as
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Fig. 5: Density distribution during minimizing Jh
with (dmax, dmin) = (1 × 101, 1 × 10−5)
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Fig. 6: Optimization history of minimizing Jh

regions with high value of fictitious physical field
T . The value of Jh for the final configuration was
Jh ≈ 3.9×10−2. We call this value as Jh,ref, and we
impose a sufficiently smaller upper bound value
Jh,max than Jh,ref to constrain “floating” islands
in the following section.

4.2.2 Optimization results with the
geometric constraint

The problem settings and parameters were the
same as in Section 4.2.1 except for introducing
the geometric constraint (18) into the optimiza-
tion problem. For the upper bound value Jh,max,
1 × 10−5 was used.

Fig. 12 shows the obtained configuration of a
fluid diode with the geometric constraint plotted
by the isovolume of γ̂ ∈ [0, 0.5], where Figs. 12a
and b show the quarter and half model of the

1

3

1

1

1

(a) Entire domain.

Γsym : Symmetric boundary

Γwall : Wall

Γin,f : Inlet of forward flow

Γout ,r : Outlet of reverse flow

Γout ,f : Outlet of forward flow

Γin,r : Inlet of reverse flow

Design domain
Non-design domain

Γwall : Wall

Non-design domain

Γwall : Wall

(b) Quarter model for computation.

Fig. 7: Computational domain and boundary
conditions for the fluid flow

entire design, and Figs. 12c and d show stream-
lines of the forward and reverse flows, respectively.
Fig. 13 shows the optimization history of Jf, Jr,
and Jh. In this case, the convergence criteria
was satisfied in 420 optimization iterations. From
Figs. 12c and d, the flow in the obtained struc-
ture has features similar to the solution in the
previous example, i.e., the fluid flows straight in
the forward direction, while the many vortices
exist in the reverse flow. Although the number of
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Fig. 8: Boundary conditions for the fictitious
physical field

holes appears to be less than that of the struc-
ture in Fig. 9, the resulting structure still has a
unique topology. The energy dissipation in the
reverse flow Jr reached approximately 1.63, and
the diodicity was Di ≈ 1.63.

The difference between the obtained structures
of Figs. 9 and 12 is the existence of floating solid
regions. In the solution of Fig. 12, every solid part
connects to the outer boundaries, and therefore
the structure has wall connectivity. As shown in
Fig. 13, the geometric constraint (18) was satis-
fied while the optimization process of fluid diodes
proceeded in the same manner as the case with-
out the geometric constraint. It can be seen that
the floating solid regions in Fig. 9 disappeared in
this solution since such structure is penalized by
the geometric constraint, and instead a structure
connecting to the outer boundaries emerged near
the inlet of the reverse flow, which significantly
changes the direction of the reverse flow. The
value of the evaluation function Jh of the obtained
structure was Jh ≈ 9.1 × 10−6. Fig. 14 shows
the fictitious temperature field over solid regions.
The fictitious temperature field of this result has
a quite smaller value than that of the case without
the constraint for excluding “floating” islands.

While the geometric constraint worked well in
this example, we remark that it is non-trivial to

know how to set the upper bound value of the
geometric constraint. If the upper bound value is
not sufficiently small, the “floating” islands might
not be penalized and remain in a solution. How-
ever, an overly strict geometric constraint value
can lead to numerical instability or significantly
affect the original optimization problem. Also, the
result considering wall-connected structures has
better performance in terms of diodicity, but this
is not always the case. Both obtained structures
in Figs. 9 and 12 are local optima of the problem,
and in the latter case, the geometric constraint
may have caused the structure to converge to
another local optimum. It can also be observed
that the solution contains elongated structures
of several cell sizes. This structure might be
attributed to the effect of the geometric constraint
rather than maximizing diodicity. To prevent such
small structures, one can employ the minimum
length control technique. We hope to extend our
proposed method to a robust methodology that
can create three-dimensional manufacturable fluid
diodes with high diodicity.

4.3 Full-scale three-dimensional
design of fluid diodes

In this section, we present optimization results
of full-scale three-dimensional design of fluid
diodes with and without the geometric constraint.
Fig. 15a shows the overall view of the chan-
nel to be considered in this numerical example.
Fig. 15b shows the computational domain and
the boundary conditions for the fluid problem.
As can be seen, the target channel has a three-
dimensional torsional structure, and unlike the
previous section, symmetry boundary conditions
cannot be used. The computational domain was
discretized with 3.63 · 105 structured hexahedral
cells. For parallel computing, the computational
domain was decomposed into 20 subdomains. As
in the previous section, a flow with Re = 100 is
considered. Before optimization, the energy dissi-
pation of the channel was evaluated and found to
be approximately 2.08, assuming that the compu-
tational domain is composed of pure fluid phase.
For this case, the upper bound value of the energy
dissipation in the forward flow Jf,max was set to 10.
The maximum value of inverse permeability αmax
was set to 1.0 × 103. For parameters of density fil-
tering, the filter radius r was set to 1.7 × 10−2.
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(a) Quarter model. (b) Half model.

(c) Streamlines of forward flow. (d) Streamlines of reverse flow.

Fig. 9: Obtained configuration without the geometric constraint

The initial guess was uniformly given as γ = 0.5
in the design domain.

Boundary conditions for the fictitious physical
field are shown in Fig. 16. The parameters for the
fictitious physical field were set as dmax = 1 × 102

and dmin = 1 × 10−5.

4.3.1 Optimization results without the
geometric constraint

Fig. 17 shows the obtained configuration of a fluid
diode represented by the isovolume of γ̂ ∈ [0, 0.5],
where Figs. 17a and b show the front and side view
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Fig. 10: Optimization history of the result with-
out the geometric constraint

Fig. 11: Fictitious physical field of obtained
solution without the geometric constraint. The
floating solid domains have high value of the fic-
titious temperature

of obtained structure, and Figs. 17c and d show
streamlines of the forward and reverse flows, all
respectively. Fig. 18 shows the optimization his-
tory of Jf, Jr, and Jh. The convergence criteria was
satisfied in 432 optimization iterations. As in the
previous example, it can be seen that the reverse
flow contains a relatively large number of vortices.
In this example, the obtained structure had the
diodicity with Di ≈ 3.53.

However, the obtained result has “floating”
islands similar to what has been observed in
the previous example in Section 4.2.1. Fig. 19

shows the fictitious physical field on the solid
domains. The “floating” solids are detected with
large value of T . The history of function Jh is plot-
ted in Fig. 18, and the value of Jh for the final
configuration was Jh ≈ 8.8 × 10−3.

4.3.2 Optimization results with the
geometric constraint

In order to obtain a solution without “floating”
islands, we introduced the geometric constraint
into this example. In this case, the geometric con-
straint was used as a post-processing step. That is,
using the solution obtained without the geometric
constraint in Section 4.3.1 as the initial structure,
the optimization problem was solved by adding
the geometric constraint. For the upper bound
value Jh,max, 1 × 10−5 was used. For convergence
criteria, εc = 1 × 10−4 was used. The sharpness
parameter β was set to a constant value of 40.

In this example, it seems to be rather diffi-
cult to obtain the solution which fully satisfies
the convergence criteria. Given that the objec-
tive value was somewhat stabilized after approx-
imately 200 iterations with a slight fluctuation,
we therefore terminated the optimization proce-
dure at the 300th iteration. The final structure is
shown in Fig. 20 represented by the isovolume of
γ̂ ∈ [0, 0.5], and the optimization history is plot-
ted in Fig. 21. It shows that the obtained structure
contained a relatively large amount of regions with
greyscale density. Therefore, the performance of
the solution was evaluated by binarizing the den-
sity with a threshold value of 0.5. The energy
dissipation in the forward flow was Jf ≈ 9.9, the
energy dissipation in the reverse flow was Jr ≈
34.3, and the evaluation function of the fictitious
field was Jh ≈ 2.9×10−5. Although the constraint
for the fictitious physical field G2 was violated
after binarization, the energy dissipation in the
forward flow remained within the constraint. The
value of diodicity was Di ≈ 3.47, a slight decrease
from the initial structure, cf. Fig. 17.

Fig. 22 shows the fictitious temperature field
over solid regions. Compared with the structure
in Fig. 19, most of the “floating” islands were
successfully eliminated. Nevertheless, there still
remain several tiny solid domains without wall
connectivity. This can be attributed to the nature
of the constraint function Eq. (18). The geo-
metric constraint limits the mean square of the
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(a) Quarter model. (b) Half model.

(c) Streamlines of forward flow. (d) Streamlines of reverse flow.

Fig. 12: Obtained configuration with the geometric constraint Jh,max = 1 × 10−5

fictitious temperature over the solid domain. On
the other hand, although small “floating” islands
have high fictitious temperatures, their contribu-
tion to the mean square temperature is rather
insignificant due to their small volumes. As an
alternative, an upper constraint on the maximum

temperature could be considered, which might
effectively exclude “floating” islands by setting an
appropriate upper bound temperature.

Furthermore, mesh-size structures are
observed in Fig. 19, and this may also be due
to the geometric constraint. To mitigate the
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Fig. 13: Optimization history of the result with
the geometric constraint Jh,max = 1 × 10−5

�

Fig. 14: Fictitious physical field of obtained solu-
tion with the geometric constraint Jh,max = 1 ×
10−5

mesh size structures, an additional constraint
or further regularization would be necessary. As
mentioned in Section 4.2.2, the minimum length
control technique will work effectively. Employ-
ing a larger filter radius or introducing a volume
constraint could also be successful. A volume
constraint can usually regulate the optimization
problem, making it easier to obtain a fluid diode
without “floating” islands.

1

3

3

1

1

(a) Entire domain

Design domain

Non-design domain

Γout ,f : Outlet of forward flow

Γin,r : Inlet of reverse flow

Γin,f : Inlet of forward flow

Γout ,r : Outlet of reverse flow

(b) Design domain and boundary conditions for fluid flow

Fig. 15: Computational domain and boundary
conditions for the fluid flow of full-scale three-
dimensional case
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Fig. 16: Boundary conditions for the fictitious
physical field

5 Conclusions
In this paper, we proposed a density-based
topology optimization method for the three-
dimensional design of fluid diodes considering
wall-connected structures based on the fictitious
physical model approach. One possible problem
of three-dimensional design of fluid diodes was
the emergence of the “floating” solid domains,
the structures without wall connectivity. To deal
with this issue, we formulated a fictitious physical
model and a geometric constraint to detect and
restrict the “floating” solid domains. The main
findings are summarized as follows:

1. The optimum design problem of fluid diodes
was formulated as maximizing the energy dissi-
pation in the reverse flow subject to the upper
bound constraint of the energy dissipation in
the forward flow. To detect “floating” islands,
the fictitious physical problem was introduced
so that the solution has value of O(1) in the
“floating” islands and a near-zero value in the
other regions. To restrict the “floating” islands,
the upper bound constraint was introduced
for the integral of the square of the fictitious
temperature in the solid domains. The sensitiv-
ities were derived based on continuous adjoint

method and computed by solving primal and
adjoint equations. All the numerical simula-
tions were implemented using OpenFOAM.

2. The proposed fictitious physical model was
investigated through the two-dimensional
example. As a result, our model has proved to
be able to detect the “floating” solids by adjust-
ing the maximum and the minimum value
of the diffusion coefficient to an appropriate
value. Unlike the fictitious model in previous
work, the fictitious temperature has a larger
value in large solid domains than in smaller
ones. Also, our proposed constraint function
for excluding floating solids could successfully
eliminate them during the optimization.

3. We first performed topology optimization for
designing three-dimensional fluid diodes with-
out the geometric constraints in the two types
of channels. In both cases, the obtained struc-
tures showed diodicity of Di > 1 within the
constraint for the energy dissipation of for-
ward flow. Nevertheless, our numerical exam-
ples demonstrated that the solutions of three-
dimensional fluid diodes can contain “floating”
solid islands and therefore they cannot be man-
ufactured. Meanwhile, those “floating” islands
were detected clearly through the proposed
fictitious physical model.

4. We then applied our formulation to design fluid
diodes considering wall-connected structures.
In the symmetric test case, the optimization
procedure was initialized by a uniform den-
sity distribution, and in the non-symmetric
test case, we performed optimization from the
obtained result without the geometric con-
straint. As a result, our method obtained
the solutions without “floating” islands while
the relatively high diodicity was maintained.
Although we observed that mesh-size struc-
tures emerged as a side effect of the geometric
constraint, the solutions had similar perfor-
mance to those without wall connectivity and
had no or much smaller “floating” islands.
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(a) Front view (b) Side view

(c) Streamlines of forward flow (d) Streamlines of reverse flow

Fig. 17: Obtained configuration without the geometric constraint in full-scale 3D case
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Fig. 18: Optimization history of the result with-
out the geometric constraint in full-scale 3D case

Fig. 19: Fictitious physical field of obtained solu-
tion without the geometric constraint
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(a) Front view (b) Side view

(c) Streamlines of forward flow (d) Streamlines of reverse flow

Fig. 20: Obtained configuration with the geometric constraint in full-scale 3D case
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Fig. 21: Optimization history of the result with
the geometric constraint in full-scale 3D case

Fig. 22: Fictitious physical field of obtained solu-
tion with the geometric constraint Jh,max = 1 ×
10−5
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Appendix A Expressions
of the energy
dissipation

In this section, we describe the conservation of
the mechanical energy of the Newtonian fluid in
the control volume Ω shown in Fig. A.1. Simi-
lar explanations can be seen in [Lin et al., 2015].
The governing equations of a steady-state incom-
pressible flow with Brinkman penalization are
described as follows:{

−∇ ·
(
uu>)

− ∇p + ∇ · τ̄ − αu = 0 in Ω
∇ · u = 0 in Ω,

(A.1)
where τ̄ denotes the viscous stress tensor defined
as,

τ̄ := 1
Re

(
∇u + ∇u>)

. (A.2)

Multiplying the momentum equation by the
velocity u as inner product yields, after some
manipulations,

∇ ·
{

−
(

p + u2

2

)
u

}
+ ∇ · τ = Φ + αu2, (A.3)

where τ := τ̄ ·n, and Φ is the dissipation function
defined as,

Φ := τ̄ : ∇u = 1
2Re

(
∇u + ∇u>)2

. (A.4)

Fig. A.1: Control volume Ω for considering
energy conservation

Taking the domain integral of (A.3) and apply-
ing the divergence theorem yields the following
relation.

−
∫

Γ

(
p + u2

2

)
(u · n) dΓ +

∫
Γ

τ · udΓ

=
∫

Ω

(
Φ + αu2)

dΩ.

(A.5)

The boundary Γ = ∂Ω of the control volume Ω
consists of inlet Γin, outlet Γout and wall Γwall. On
the wall Γwall, the velocity is equal to zero.

u = 0 on Γwall. (A.6)

Therefore, the equation (A.5) can be transformed
to:

−
∫

Γin∪Γout

(
p + u2

2

)
(u · n) dΓ +

∫
Γin∪Γout

τ · udΓ

=
∫

Ω

(
Φ + αu2)

dΩ.

(A.7)
The second term in the left-hand side of (A.7)

implies work done by viscous stress on the inlet
and outlet boundaries. Although it can be consid-
ered as negligible in general, this term can be also
theoretically neglected if fully developed flow is
assumed. Then, the following relation is obtained.

−
∫

Γin∪Γout

(
p + u2

2

)
(u · n) dΓ =

∫
Ω

(
Φ + αu2)

dΩ.

(A.8)
Here, we have two equivalent expressions of energy
dissipation. Therefore, the definition of diodic-
ity Di′ in the previous works [Lin et al., 2015,
Sato et al., 2017a] and the definition in this work
(15) are equivalent. Additionally, if the shapes of
the inlet and the outlet are identical, the fully
developed velocity profiles on the inlet and the
outlet are the same, and thus the total flux of the
kinematic energies is equal to zero:∫

Γin

u2

2 (u · n) dΓ +
∫

Γout

u2

2 (u · n) dΓ = 0

(A.9)
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Therefore, the left-hand side of (A.8) can be
rewritten as,

−
∫

Γin∪Γout

(
p + u2

2

)
(u · n) dΓ

= −
∫

Γin∪Γout

p (u · n) dΓ

= (pin − pout) · Q = ∆p · Q,

(A.10)

where ∆p is the static pressure drop and Q :=∫
Γin

(−u · n) dΓ =
∫

Γout
u · ndΓ is the flow rate.

Thus, from equations (14) and (15), the two
expressions of diodicity Di and Di′ are equivalent.

Appendix B Sensitivity
analysis

In this section, the derivation of adjoint systems
and sensitivities are briefly described. For sim-
plicity, we use the following expressions of the
governing equations in the residual form.

Ru(u, p, γ)
= ∇ ·

(
uu>)

− ∇ · σ̄ (u, p) + α(γ)u = 0
Rp(u, γ) = −∇ · u = 0
RT (T, γ)
= ∇ · (d(γ)∇T ) + (1 − γ̂ − T ) = 0.

(B.1)
The extended objective function J (ur, pr, γ) and
constraint functions G1(uf, pf, γ) and G2(uf, pf, γ)
are defined as follows:

J (ur, pr, γ) = J(ur, pr)

+
∫

Ω
(−Ru(ur, pr, γ)) · ur

′dΩ

+
∫

Ω
(−Rp(ur, γ)) p′

rdΩ

G1(uf, pf, γ) = G1(uf, pf)

+
∫

Ω
Ru(uf, pf, γ) · uf

′dΩ

+
∫

Ω
Rp(uf, γ)p′

fdΩ

G2(T, γ) = G2(T, γ)

+
∫

Ω
RT (T, γ)T ′dΩ

(B.2)
where uf

′ and p′
f are adjoint variables for the for-

ward flow, ur
′ and p′

r are adjoint variables for the

reverse flow, and T ′ is the adjoint variable for the
fictitious physical field. The residuals are multi-
plied by −1 in the definition of J for simplicity of
the following derivation.

The adjoint equations are derived from the
conditions that partial variations of the extended
objective and constraint functions with respect to
the state variables are zero. The resultant adjoint
systems are described as follows:

−
(
∇ur

′ + ∇ur
′>)

· ur
−∇ · σ̄ (ur

′, p′
r) + α(γ̂)ur

′ = 0 in Ω
∇ · ur

′ = 0 in Ω
ur

′ = uD on ΓD

σ̄ (ur
′, p′

r) · n

= ur
2

2 + (ur · n) ur

− (ur · n) ur
′ − (ur · ur

′) n on ΓN ,
(B.3)

−
(
∇uf

′ + ∇uf
′>)

· uf
−∇ · σ̄ (uf

′, p′
f) + α(γ̂)uf

′ = 0 in Ω
∇ · uf

′ = 0 in Ω
uf

′ = uD on ΓD

σ̄ (uf
′, p′

f) · n

= uf
2

2 + (uf · n) uf

− (uf · n) uf
′ − (uf · uf

′) n on ΓN ,
(B.4) ∇ · (d (γ̂) ∇T ′) − T ′ + 2 (1 − γ̂) T = 0 in Ω

T ′ = 0 on ΓT

d∇T ′ · n = 0 on Γq.
(B.5)

The sensitivity of the objective function J with
respect to the design variable γ can be described
as follows:

δJ
δγ

= δJ
δγ̂

∂γ̂

∂γ̃

δγ̃

δγ
, (B.6)

where the functional derivative of J with respect
to the projected density γ̂ is derived as:

δJ
δγ̂

= −∂α

∂γ̂
(ur · ur

′) = αmax (ur · ur
′) in Ω,

(B.7)

and the term ∂γ̂

∂γ̃
is the derivative of the smoothed

Heaviside function (6) with respect to the filtered
density γ̃:

∂γ̂

∂γ̃
=

β
(
1 − tanh2(β(γ̃ − η))

)
tanh(βη) + tanh(β(1 − η)) . (B.8)
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Then, the functional derivative of J with respect
to the design variable γ is obtained as the solution
of the adjoint Helmholtz-type partial differential
equation, that is:{

−r2∇2SJ + SJ = SJ ,γ̃ in Ω
∇SJ · n = 0 on Γ,

(B.9)

where,

SJ := δJ
δγ

, SJ ,γ̃ := δJ
δγ̂

∂γ̂

∂γ̃
. (B.10)

In the same manner, the sensitivities of con-
straint functions G1 and G2 with respect to the
design variable γ can be derived by replacing J in
the above process with G1 and G2. The resultant
functional derivatives of G1 and G2 with respect
to the projected density γ̂ are described as:

δG1

δγ̂
= ∂α

∂γ̂
(uf · uf

′) = −αmax (uf · uf
′) in Ω,

δG2

δγ̂
= − ∂d

∂γ̂
(∇T · ∇T ′) − T ′ − T 2

= (dmax − dmin) (∇T · ∇T ′) − T ′ − T 2 in Ω.
(B.11)

Appendix C Fictitious
physi-
cal model
formulation

In the previous work [Yamada and Noguchi, 2022],
the governing equation for the fictitious physical
field is given as follows: ∇ · (d (γ̂) ∇T ) + (1 − γ̂) (1 − T ) = 0 in Ω

T = 0 on ΓT

d∇T · n = 0 on Γq,
(C.1)

The difference is in the definition of the heat
source,

Q(γ̂, T ) =
{

(1 − γ̂ − T ) := Q1(γ̂, T )
(1 − γ̂) (1 − T ) := Q2(γ̂, T ), (C.2)

where Q1(γ̂, T ) is used in this work and Q2(γ̂, T )
is used in the previous work.

Fig. C.1 shows the fictitious physical field
when the governing equation (C.1) is used for
the same problem setting in Section 4.1. In this
case, it seems that dmax = 1 × 101 and dmin ≤
1 × 10−5 are the appropriate values for the dif-
fusion coefficients. As mentioned in [Yamada and
Noguchi, 2022], T ≈ 1 in the “floating” islands (or,
closed cavities in [Yamada and Noguchi, 2022]) is
achieved regardless of their size.

However, in the fluid domain (or the mate-
rial domain) γ̂ = 1, the fictitious temperature T
has non-zero value especially near the “floating”
islands, which may lead to undesirable effects on
the optimization process. This behavior may have
not become an important issue in the previous
work because the target of penalization was the
void cavities in the mean compliance minimiza-
tion problem and the thermal diffusivity problem,
where the material domains γ̂ = 1 are usually sur-
rounded by the void domains γ̂ = 0. In the fluid
problems, however, it is often the case that the
fluid domains occupy most of the design domain,
especially in the case without volume constraint.
Therefore, the fictitious physical field governed
by (C.1) might not work as expected, and we
employed another expression Q1(γ̂, T ) in (C.2) for
the heat source Q(γ̂, T ) in this paper.
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Fig. C.1: Fictitious physical field T in the work by Yamada and Noguchi [2022] for various diffusion
coefficients (dmax, dmin)
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