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Metal ions enable the activation

and preorganization of substrates

instead of enzymes
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We show that metal ions catalyze the reduction of keto acids by the coenzyme

NADH in water, a reaction that otherwise requires complex enzymes to proceed.

The reaction is partially stereoselective, as NADH is a chiral hydride donor,

yielding hydroxy acids with small to moderate enantiomeric excess. Analysis of the

reaction mechanism by experiments and computations illustrates that the metal

ions mimic multiple roles of enzymes by activating the substrates and pre-

organizing them for an intramolecular reaction.
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Metal ions turn on a stereoselective nonenzymatic
reduction of keto acids by the coenzyme NADH

Robert J. Mayer1,2,* and Joseph Moran1,3,4,5,*
THE BIGGER PICTURE

Coenzymes are thought to have

played a central role in the

emergence of metabolism.

However, studies in the context of

prebiotic chemistry face the

problem that outside of enzymes,

many such coenzymes do not

react with their biological

substrates. Previous work

suggests nicotinamide adenine

dinucleotide (NAD) to be one of

the most ancient coenzymes and

to be central to early metabolism.

Yet, these models suffer from the

logical gap that without enzymes,

the reduced coenzyme NADH

does not react with keto acids,

some of its primary biological

substrates.

We now report that aluminum or

iron ions are catalysts for the

reduction of keto acids by NADH.

The ions mimic some of the roles

of enzymes, such as the activation

of substrates and the

preorganization of keto acids with

NADH. Moreover, the reaction

proceeds with moderate

stereoselectivity. Our work gives

insight into how an important

coenzyme could have

participated in a primitive

metabolism that predated

enzymes.
SUMMARY

The relationship between genetic molecules and metabolism is one
of the longest-standing problems for the origin of life. A central
molecule within early metabolism is the coenzyme nicotinamide
adenine dinucleotide (NAD(H)), a modified ribonucleotide and
reducing agent. Yet, without enzymes, NADH does not reduce
carbonyl compounds, its primary metabolic substrates, leading to
an apparent paradox regarding its role in the evolution of meta-
bolism. We now report that abundant metal ions turn on a nonenzy-
matic, stereoselective, and potentially primordial reduction reaction
of keto acids by NADH. Kinetic, mechanistic, and computational
studies elucidate the reactionmechanism and theway stereochemis-
try is transferred. Complexes ofmetalswithRNA-derived coenzymes
could have mediated the transition from inorganic to organic
reducing agents and the propagation of chirality in early meta-
bolism.

INTRODUCTION

Coenzymes are thought to have played a crucial role in the emergence of meta-

bolism and, ultimately, life, even before the existence of enzymes.1–5 Of the

many known coenzymes, nicotinamide adenine dinucleotide (NAD) is essential

for today’s biochemical metabolism, where it is involved in most oxidation and

reduction reactions.6–8 NAD contains both a ribosylated nicotinamide and an

adenosine diphosphate moiety within its structure and, therefore, constitutes a

bridge between metabolism and genetic polymers. According to bioinformatic an-

alyses, NAD is thought to be the central coenzyme within the metabolism of the

last universal common ancestor (LUCA) and is assumed to be one of the most

ancient coenzymes.9–11 Identifying nonenzymatic reactions involving the NAD co-

enzyme is thus of central importance to explaining the onset of metabolism from

prebiotic chemistry. According to models for the emergence of metabolism, the

key role of NAD is to mediate the transition from inorganic to organic reducing

agents (Figure 1). Hydrogen, an inorganic reductant, is thought to have been

the primary energy source of the LUCA and is still used by some bacteria or

archaea. However, hydrogen fails to reduce the majority of organic molecules

without transition metal catalysts.12 In both prebiotic chemistry and biocatalysis,

extensive research has identified conditions that allow the reduction of NAD+ to

NADH.13–18 Once formed, NADH is then thought to have acted as an organic

reducing agent within the early stages of metabolism.

Attempts to synthesize the nicotinamide skeleton and derivatives under potentially

prebiotic conditions date back to the early 70s,19–22 and various isomers of nicotinic

acid and nicotinamide have even been detected in meteorites.23 Plausible prebiotic

syntheses for ribonucleotides (RNA), including that of the adenosine fragment of
Chem 10, 1–13, August 8, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
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Figure 1. Role of NADH within metabolism

NAD+ is accessible from the N-glycosylation of nicotinamide and can subsequently undergo

reduction to NADH. Within metabolism, NADH then acts as an organic reducing agent.
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NAD+, have also been reported,24–26 and RNA can even catalyze the synthesis of the

NAD cofactor itself.27 NADH can donate electrons to ubiquinone within protocell

models to generate proton gradients,28 suggesting a connection between nucleo-

tide-derived coenzymes and metabolism, and RNA was further reported to be

able to catalyze electron transfer processes in conjunction with iron (II).29 However,

NADH itself does not typically act as a nucleophilic hydride donor for carbonyl com-

pounds outside of enzymes in water, arguably its major role within metabolism. The

only reported nonenzymatic hydride transfer from NADH to a carbonyl itself in water

is with benzaldehyde as substrate, as indirectly deduced from kinetic data.30 More is

known about the reactivity of NADH analogs, which were found to reduce highly

electrophilic trifluoroacetophenone and hexachloroacetone in aqueous acetonitrile

or isopropanol.31 Nonetheless, the lack of hydride transfer from NADH to metabolic

substrates in the absence of enzymes presents a fundamental paradox in explaining

the emergence of metabolism since it is crucial for synthesizing key metabolites like

hydroxy- and amino acids.32

Catalysis is essential for reducing biochemically relevant keto acids with hydride

donors, as otherwise, even under harsh reaction conditions, only traces of the

product can be obtained.33,34 However, Brønsted acid catalysis of reduction reac-

tions is incompatible with NADH outside of enzymes due to readily occurring

decomposition (Figure S78).35 As an alternative to Brønsted acid catalysis, Lewis

acidic metal ions like Zn2+ can activate substrates in dehydrogenase enzymes or

ribozymes.36 Similarly, metal ions allow the reduction of carbonyl groups by nico-

tinamide analogs in organic solvents.37–41 We herein show that metal ions turn on

a stereoselective nonenzymatic hydride transfer reaction between NADH and keto

acids in water, enabling some of the key functionality nowadays held by en-

zymes.42,43 We focused our investigation on keto acids as substrates, as they are

obtained under plausible prebiotic conditions44 and are the biosynthetic starting

materials for the synthesis of hydroxy and amino acids, both of which are assumed

to have a central role within early metabolism and the formation of peptides or an-

alogs thereof.45
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RESULTS AND DISCUSSION

Metal-ion catalysis of keto acid reduction

We started our investigation by testing whether metal ions are, in principle, capable

of acting as Lewis acid catalysts for the reduction reactions of keto acids in aqueous

solutions. The previously investigated reduction of pyruvate (1a) to lactate (2a) with

BH3CN
� was chosen as a model reaction to examine the effect of different concen-

trations of Al3+ ions on the reaction rate, as the reduction with NADH does not pro-

ceed uncatalyzed (see supplemental information, section metal-ion catalysis of the

reaction of pyruvate with NaBH3CN for details).34 Al3+ was selected as it is stable to-

ward reduction by BH3CN
�, and 0.1 M acetate buffer at pH 5 was chosen for conve-

nience due to the slow reaction rate at neutral pH.46 Under these specific conditions

and using 1 mol % ethylenediaminetetraacetate with respect to pyruvate to scav-

enge any metal impurities, the pseudo-first-order rate constant of the general

acid-catalyzed background reaction was determined. Significantly higher reduction

rates were observed in the presence of catalytic amounts of Al3+ ions (Figure 2A).

The observed linear correlation of kobs and [Al3+] allowed us to extrapolate the

pseudo-first-order rate for a specific catalyst loading and to estimate the rate accel-

eration due to metal-ion catalysis. According to our extrapolation, the reaction with

100 mol % Al3+ with respect to pyruvate is approx. 130,000 times faster than the

acid-catalyzed background reaction.

In light of these results, we performed a 96-well plate-based high-throughput screen

to study how catalytic amounts of different metal ions or hydrogen bond donors pro-

mote the reduction of pyruvate by NADH at various pH values and buffer composi-

tions (supplemental information, section exploration of experimental space of pyru-

vate reduction. Pyruvate (1a) was again chosen as a model substrate as it was

previously found to be the least reactive keto acid in reductions with BH3CN
� and

is one of the universal metabolite precursors.34 After a reaction time of 14 h at

40�C and after removing metal ions by precipitation as phosphates/sulfides (supple-

mental information, section removal of metal ions/validation of analytical methodol-

ogy), the concentration of lactate (2a) was determined by 1H NMR spectroscopy

combined with software-based spectral deconvolution. As previously found, no

lactate could be detected in the uncatalyzed control reaction. However, multiple

metal ions were found to promote the reaction, with the highest yields being

observed with Al3+, Fe3+/2+, Bi3+, and V3+ (Figure 2B). The reasons for the low yields

of lactate observed with other metals varied. In the reaction conducted in an unbuf-

fered solution with some catalysts (e.g., [thio]urea, Mg2+, Ca2+), leftover NADH indi-

cated insufficient activation of 1a. In neutral phosphate buffer, hydrolyzed NADH

was predominantly observed, and most metal ions precipitated as insoluble phos-

phates. Finally, some metals did not activate 1a toward reduction but promoted

its auto-aldol reaction to yield parapyruvate (e.g., Mn2+).

We next set out to understand the relationship between the yield and various factors

(i.e., the response surface of the reaction). We focused our further investigation on

Al3+ and Fe3+ as they are among the most efficient catalysts in our screen and the

two most abundant metals in the Earth’s crust, making them especially relevant

for a prebiotic context. The initial screening showed that the yield of 2a in the Al3+

and Fe3+-catalyzed reaction is only slightly affected by the pH and buffer type (Fig-

ure 2B). Under unbuffered conditions starting from AlCl3 6H2O or FeCl3 6H2O, the

pH remained between pH 4.5 and 5 during the reaction, presumably due to the buff-

ering effect of the substrate’s functional groups. Accordingly, pH, buffer type, and

buffer concentration were not further investigated, and unbuffered conditions
Chem 10, 1–13, August 8, 2024 3



Figure 2. Metal-ion catalysis of pyruvate reduction by BH3CN
� or NADH

(A) Kinetics of the reduction of pyruvate (1a) with BH3CN
� in the presence of Al3+ showing the

ability of Al3+ to act as Lewis acid catalyst.

(B) High-throughput screen of the experimental space for the reduction of pyruvate (1a) by NADH in

the presence of various promotors.
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Figure 3. Kinetic and mechanistic analysis of the reaction mechanism and analysis of the reaction scope

(A) Reaction profile of the Al3+-catalyzed reduction of pyruvate (1a) by NADH (left), reaction profile for lactate (2a) formation under standard conditions

and in the presence of additional lactate and NAD+ (center), and determination of the reaction order in Al3+ using variable time normalization analysis

(VTNA, right).

(B) Product analysis of the reaction of pyruvate (1a) with dihydronicotinamide 3 (see supplemental information, section reaction with

dihydronicotinamide 3 for details).
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Figure 3. Continued

(C) Proposed mechanistic model for the reaction of dihydronicotinamides with keto acids (see supplemental information, Figure S72 for the full

pathway).

(D) Yield of lactate (2a; with respect to NADH in case of the excess reactions; with respect to pyruvate for the catalysis/concentration variations) under

conditions deviating from the standard conditions and to evaluate catalysis efficiency with regard to lactate formation.

(E) Reaction scope under standard conditions chosen for maximizing product yield at short reaction times (see supplemental information, section

reaction scope for all details. All yields are calculated with respect to the keto acid).

ll
OPEN ACCESS

Please cite this article in press as: Mayer and Moran, Metal ions turn on a stereoselective nonenzymatic reduction of keto acids by the coenzyme
NADH, Chem (2024), https://doi.org/10.1016/j.chempr.2024.05.007

Article
were chosen as the standard. A reaction time of 14 h was selected to evaluate the

reaction optimization at a point where complete conversion is achieved. The remain-

ing parameters that required optimization were the overall concentration of the re-

action, the equivalents of NADH, the concentration of the catalyst, and the temper-

ature of the reaction. To explore the response surface of the reaction with both

metals, a Box-Behnken design was applied to correlate the yield with respect to py-

ruvate with the impact of these input parameters (supplemental information, section

reaction optimization by design of experiments). The reactions with Al3+ and Fe3+

were most sensitive to temperature. Increasing temperature drastically increased

the yield and selectivity of lactate formation, suggesting the involvement of revers-

ible side processes (i.e., the competition between kinetically and thermodynamically

controlled pathways). The reaction yield is inversely correlated with the NADH

concentration, as with an excess of NADH, the alkylation of NADH dominates

(cf. Figures 3B and 3C). The statistical model predicts one equivalent of NADH to

be optimal. The control reaction of pyruvate with Al3+ in the absence of NADH

only yielded aldol addition and condensation products, and no traces of lactate

were observed (cf. supplemental information, section pyruvate decomposition un-

der the reaction conditions [control experiment]). Notably, when taking a reaction

time of 14 h as the reference point, the influence of concentration was statistically

significant only for Al3+ and not for Fe3+, and the catalyst loading was not statistically

significant for either metal.

Mechanistic and kinetic studies

After the formation of lactate ceased, only traces of pyruvate could be detected, and

side products account for the remaining mass balance, as analyzed with 13C-labeled

pyruvate by NMR and mass spectrometry (see discussion below and section side

product analysis of the Al3+-catalyzed reaction of NADH and pyruvate in the supple-

mental information). Thus, we next set out to obtain deeper insights into the reaction

mechanism and the underlying constraints. First, the kinetics of the reaction were

followed at 40�C in the presence of different amounts of Fe3+ and Al3+ using manual

sampling (Figure 3A, left; see supplemental information section kinetic analysis of

the reaction of NADH and pyruvate for details). Notably, the NADH concentration

drops far faster than that of pyruvate. The lactate concentration continues to in-

crease even after NADH is fully consumed, with the reaction eventually stalling.

This observation indicates that NADH could be involved in side reactions that are

either reversible (i.e., in the later stages of the reaction, lactate formation is due to

a small amount of NADH that is liberated from possible adducts and immediately

consumed) or that lactate is formed through the action of a different reductant

that dominates in the later parts of the reaction. When lactate and NAD+ are added

from the beginning (‘‘same excess experiment’’), an identical but shifted reaction

profile was observed, suggesting that the cease in conversion is not due to inhibition

by 1a/NAD+ or catalyst deactivation (Figure 3A, center). To obtain insights into the

reaction orders, we next performed a ‘‘variable time normalization analysis’’ (VTNA)

of the kinetics of lactate formation (supplemental information, section variable time

normalization analysis). Kinetic profiles for reactions with different concentrations

of metal catalysts and NADH in comparison with the standard conditions were
6 Chem 10, 1–13, August 8, 2024



ll
OPEN ACCESS

Please cite this article in press as: Mayer and Moran, Metal ions turn on a stereoselective nonenzymatic reduction of keto acids by the coenzyme
NADH, Chem (2024), https://doi.org/10.1016/j.chempr.2024.05.007

Article
obtained by manual sampling of the reactions. Following the procedure developed

by Burés, VTNA analysis allowed us to derive a positive reaction order for Al3+ and

Fe3+ (Figure 3A, right, and Figure S74), in line with the expected Lewis acid activa-

tion.47 The reaction order is, in both cases, not an integer (i.e., 1). Yet, this is not sur-

prising given the complexity of the mechanism involving multiple side pathways

(cf. discussion below) and the fact that we based our analysis on lactate formation,

which only corresponds to one possible product. In agreement with the analysis of

the response surface, a negative reaction order could be derived for NADH based

on monitoring lactate formation (Figure S75). This suggests that the reduction of py-

ruvate by NADH is competing with another reversible reaction involving both

compounds.

Analyzing the reaction products can provide a rationale for the observed kinetics and

further to clarify the mass balance of the reaction. To simplify the search for the

competing reaction, initial studies were performed on the model dihydronicotina-

mide 3. Under similar reaction conditions as with NADH (cf. Figure 2), 3 yields, in

addition to 2a, the zwitterionic pyridinium species 4, which could be isolated and

characterized (Figure 3B; for the analysis of the mass balance, see supplemental in-

formation section NMR analysis of the mass balance for pyruvate reduction by 4

[rm04-645]). Further side products are acetate, stemming from the oxidative decar-

boxylation of pyruvate,15 and the aldol condensation product of pyruvate, 2-methyl-

4-oxopent-2-enedioic acid (OMPD). An analogous C-alkylation, as observed with 3,

was also established in the reaction of NADH with pyruvate, as detailed in the sec-

tion side product analysis of the Al3+-catalyzed reaction of NADH and pyruvate of

the supplemental information derived from isotope labeling, mass spectrometry,

and NMR studies. Based on our experimental data and previous kinetic studies of

carbonyl addition to dihydronicotinamides,31 a mechanistic model accounting for

the formation of lactate and various side products can be derived (Figures 3C and

S72): slow but irreversible hydride transfer competes with fast and reversible carbon

attack. Kinetically favored carbon attack dominates with a large excess of NADH and

at low temperatures. Thermodynamically favorable lactate formation prevails with

an equimolar ratio of pyruvate and NADH at elevated temperatures. The initial car-

bon attack is partially reversible or yields dihydropyridine I3 as a side product, which

also acts as a reducing agent for pyruvate. Alternatively, NADH and I3 can undergo

established acid-catalyzed anomerization and ring-closure.35 By means of oxidative

decarboxylation, some of the NAD+ formed after hydride transfer can react with

pyruvate to regenerate NADH, acetate, and CO2.
15 However, the small amounts

of acetate observed do not suggest this to be a major pathway. Overall, the

observed ambident reactivity, as well as acid-catalyzed decomposition of NADH,

points to the important role of enzymes in achieving chemoselectivity in reactions

involving NADH.

Using these mechanistic insights, the yields of lactate could be increased to 26% by

using a large excess of the keto acid with respect to NADH (with the yield calculated

relative to NADH), thereby reducing the extent of side pathways (Figure 3D). More-

over, with catalyst loadings as low as 5 mol % relative to pyruvate, we observed cata-

lyst turnover for lactate formation with respect to the metal ion (up to a turnover

number (TON) of 1.7), representing a rare example of catalytic turnover in a prebiotic

context.43 The reaction was also found to operate at concentrations as low as 1 mM

with respect to NADH (Tables S24–S26). Rather than soluble salts, when geologically

relevant iron or aluminum minerals were used as metal sources for the reduction of

pyruvate, lactate was still obtained, albeit at reduced rates (up to 3.8% with FeS after

120 h, Table S27). Under these conditions, we assume that the catalytically relevant
Chem 10, 1–13, August 8, 2024 7
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metal ions are leached out into the solution, as evident by the yellowish color of re-

action solutions involving iron minerals and the subsequent precipitation of black

iron sulfide upon adding sulfide/phosphate solution during the workup.

Next, we applied the reaction conditions to other common metabolites in biochem-

istry (Figure 3E). To obtain short and convenient reaction times and concentrations

for our analysis, wemaintained a 1:1 ratio of keto acid to NADH and opted for 50mol

% of metal salts with respect to the keto acid. With either Al3+ or Fe3+ as catalysts, all

investigated a-keto acids (1c–1h) underwent reduction to the corresponding hy-

droxy acids (2c–2h) to a similar or greater extent than pyruvate (2a). One notable

exception was glyoxylate (1i), which only yielded traces of glycolate (2i). The highest

yields were observed with phenyl pyruvate (1e) to yield mandelic acid (2e). We inter-

pret this finding with the lack of enolizable protons in 1e and, thus, the suppression

of competing aldol chemistry. Furthermore, presumably due to the steric constraints

of the phenyl group, we did not observe any further side products stemming from

C-5 alkylation of NADH, as readily observed with pyruvate (cf. Figure 3B). Oxaloac-

etate (1j) decarboxylates more rapidly under the reaction conditions than it un-

dergoes reduction to malate, and exclusively 2a was observed.

Exploring other classes of carbonyl compounds gave further insight into the mech-

anism. The methyl ester of pyruvate 1b only yielded trace amounts of the reduction

product 2b, and no conversion was observed with b- or g-keto acids 1k and 1l. Alde-

hydes (besides 2i) and conjugated carbonyl compounds like uracil were similarly un-

reactive under the reaction conditions (Figure S16). The selectivity for free a-keto

acids suggests that the presence of a coordinating moiety for metal ions leading

to the formation of 5-membered chelates is essential for activating the carbonyl

group toward NADH.

Chirality transfer and computational analysis

Asymmetric reductions of carbonyl groups by tailored dihydronicotinamides have

previously been reported in organic solvents.38,39,48 We, therefore, tested whether

NADH can affect the asymmetric nonenzymatic reduction of pyruvate (1a) under our

standard conditions with 50mol % Al3+ relative to the keto acid since it is also a chiral

hydride donor due to the numerous stereocenters set by the two ribosemoieties and

bears multiple coordination sites. To analyze the enantiomeric excess (ee) of 2a,

crude reaction samples were acidified, extracted with Et2O, and the residue was de-

rivatized with L-menthol and acetyl chloride, adapting a literature procedure.49 The

resulting diastereomeric esters were separated and quantified by gas chromatog-

raphy/mass spectrometry (GC/MS) calibrated against reference compounds. With

NADH, a significant preference for R-lactate formation was observed. To obtain

further insights into the mechanism of the chirality transfer, we next investigated

the ee of 2a and the other hydroxy acids (2c–2h) as a function of the reaction time

(Figure 4A). The ee of R-lactatewas found to be inversely correlated with the reaction

yield, and the highest ee was observed at the beginning of the reaction. We thus

used the mono-exponential correlation of ee vs. time (see supplemental informa-

tion, section stereochemical analysis of the reaction) to extrapolate the initial ee of

the reaction for a consistent comparison of the intrinsic chirality transfer of NADH it-

self. In the case of lactate, the % ee at t = 0 was determined to be 33% ee. A set of

control experiments showed that lactate does not undergo racemization under the

reaction conditions and that the reaction is irreversible (supplemental information,

section reaction profile of chirality transfer with pyruvate). Thus, the observed enan-

tioselectivity is determined at the transition state. In the same way, other keto acids

produced the corresponding hydroxy acids 2c–2h with 16%–60% ee at t = 0. The
8 Chem 10, 1–13, August 8, 2024



Figure 4. Observed enantioenriched hydroxy acids and computational analysis of chirality transfer

(A) Reaction profile for R-lactate formation in the reaction of pyruvate with NADH with 50 mol % Al3+ indicating deterioration of enantioselectivity during

the reaction and initial enantiomeric excess at the beginning of the reaction derived from ee-time profiles.

(B) Gibbs free energy profiles for intramolecular hydride transfer within Al3+-pyruvate-NADH complexes calculated at the DLPNO-CCSD(T)/cc-pVTZ//

SMD(H2O)/M06-2X/def2-SVP level of theory (left), energetic ranking of the 841 computed transition state structures leading to either R- or S-lactate

within a window of 40 kJ mol�1 (right), and 3D-structures of the lowest energy transition states (bottom). Ade, adenine; and Rib, ribose.

(C) Activation barriers for competing intermolecular hydride transfer or C-alkylation calculated for truncated model structures.
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observation made here is the first example of chirality transfer in a nonenzymatic

context between a coenzyme and its biological substrate and furthermore demon-

strates the potential for asymmetric induction of the ubiquitous adenosyl cofactor

scaffold without requiring complex proteins.50 Our observation is especially

important to the question of how the homochirality observed in biology propagated

at the emergence of metabolism and life. The chirality in NADH comes from

the ribose in its two nucleoside units. Under prebiotic conditions, nucleosides

such as the adenosine fragment found in NADH can be synthesized from ribo-amino-

oxazolines,51 which have recently been shown to be obtainable in homochiral

form.52

To rationalize the experimentally observed preference for R-lactate formation and

the deterioration of stereoselectivity during the reaction, we computationally

modeled the key steps of the reduction catalyzed by Al3+. The diphosphate motif

of NADH and the keto acid are both suitable ligands for transition metals, and

their coordination with aluminum has been studied experimentally.53,54 Thus,

we initially modeled the intramolecular hydride transfer within a pre-arranged

complex of these three species (Figure 4B), as the small concentration depen-

dency of the reaction furthermore supports an intramolecular mechanism; we

also obtained experimental evidence for such a complex by mass spectrometry

(supplemental information, section analysis of key complexes). A key challenge

of the computational investigation is the excessive number of stereoisomeric

complexes and their conformational flexibility (for details, see section computa-

tional study of the supplemental information). However, systematic modeling of

large ensembles of conformers for each stereoisomeric transition state allowed

us to identify plausible transition structures that show a small preference for form-

ing R-lactate through an intramolecular hydride-transfer pathway (Figure 4B,

right; DDGz
calc = 2.7 kJ mol�1; DDGz

exp = 1.7 kJ mol�1). Our computations illus-

trate that very few stereoisomeric complexes can undergo energetically favored

intramolecular hydride transfer (Figure 4B, right). As we observed large amounts

of the oxidized pyridinium salts 4/I6 (cf. section side product analysis of the Al3+-

catalyzed reaction of NADH and pyruvate in the supplemental information),

we additionally investigated hydride transfer with the C-adduct I3 acting as

a reductant (see Figure 3C for the structure). In analogous computations for intra-

molecular hydride transfer starting from I3 as done with NADH, a slightly higher

selectivity for R-lactate formation is suggested (DDGz
calc = 5.3 kJ mol�1). Thus,

C-alkylation and the change in reductant cannot alone account for the deteriora-

tion of stereoselectivity in an intramolecular pathway.

Aside from intramolecular hydride transfer within a pre-organized complex, inter-

molecular hydride transfer is also possible. Due to the system size and the exces-

sive number of potentially reactive species, intermolecular hydride transfer was

computationally investigated only on the model structures M and M3 (Figure 4C;

see section computational study in the supplemental information and Figures S187

and S188 for the full energy profiles). Notably, the alkylated nicotinamide M3 is

computed to be a more nucleophilic hydride donor than M in intermolecular hy-

dride transfer, in line with a previous thermochemical analysis of 5-methylated

dihydronicotinamides.55 This contrasts with the computations for intramolecular

hydride transfer in Figure 4B, which suggest a higher barrier with I3 than with

NADH (89.5 vs. 65.5 kJ mol�1). Thus, once formed, I3 outcompetes NADH as a

nucleophile in intermolecular hydride transfer but not intramolecular hydride trans-

fer. We assume that the intermolecular hydride transfer from I3 is proceeding
10 Chem 10, 1–13, August 8, 2024
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without large stereoselectivity, accounting for the experimentally observed decline

in ee with increased reaction times.
Conclusions

Catalytic amounts of salts of the two most abundant metals in the Earth’s crust

(Al3+, Fe2+/3+) can partially replace the function of complex enzymes in the nonen-

zymatic reduction of keto acids by the cofactor NADH in water. The metal ions

mimic multiple essential functions of enzymes. They activate the keto acids and

pre-organize their interaction with NADH, which accounts for the observed stereo-

selectivity arising from an intramolecular hydride transfer pathway. Yet, our reac-

tion conditions only provide a starting point for the evolution of metabolism using

coenzymes: the observation of side pathways and incomplete transfer of chirality

in the nonenzymatic reaction shows the benefits of confining the reactants within

ribozymes or enzymes.

There is broad disagreement on whether genetic molecules predated metabolism

during the origin of life (i.e., the RNA world hypothesis) or the other way around.

However, genetic molecules and metabolic function are both ultimately needed

for the emergence of biochemistry. The present stereoselective and nonenzymatic

metabolic reaction involving RNA-derived cofactors enabled by metals provides a

long-sought missing link between the metabolic and genetic worlds within prebi-

otic chemistry.
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