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Safe and Energy-Efficient Jerk-Controlled Speed
Profiling for On-road Autonomous Vehicles

Fadel Tarhini, Reine Talj, and Moustapha Doumiati

Abstract—Efficient speed planning is crucial for the safe and
comfortable navigation of autonomous vehicles in dynamic envi-
ronments. This paper introduces a novel energy-efficient, jerk-
controlled speed planning approach based on quintic polynomial
generation. We present a systematic methodology to determine
the dynamic speed of autonomous vehicles by integrating several
factors, including the relative velocity with dynamic obstacles,
the curvature of the base frame and optimal selected path,
road adherence, and road gradient. The direct integration of
road adherence and gradient into the speed profiling approach
contributes to improving vehicle safety. Comparative analysis
with literature methods demonstrates the significant impact of
jerk smoothness on energy efficiency. Simulations are conducted
in a joint simulation between Simulink/Matlab and SCANeR
Studio vehicle dynamics simulator, followed by validation on a
real-world dataset. Our findings elucidate the significance of the
proposed planning method in enhancing safety, energy economy,
driving comfort, and computational efficiency, while effectively
addressing a wide range of critical situations.

Index Terms—Autonomous vehicles, motion planning, speed
planning, safety, energy economy.

I. INTRODUCTION

AUTOMATED driving heralds a reframing era in trans-
portation with far-reaching implications for safety, ef-

ficiency, accessibility, and productivity. At its core, trajectory
planning serves as the linchpin for enabling safe, efficient, and
intelligent navigation within dynamic and stochastic environ-
ments [1]. This task entails the construction of comprehensive
situational awareness, upon which complex decision-making
processes operate to ascertain optimal trajectories while ad-
hering to a spectrum of constraints [2], [3].

A trajectory planning problem involves identifying the
most efficient path, complete with time-stamped positions,
orientations, and velocities, from the vehicle’s current state
to a designated goal configuration. This optimization task
aims to minimize specific objectives while adhering to various
constraints, including geometric limitations (ensuring feasi-
ble paths within free space), task-specific constraints, and
kinodynamic constraints. Such problems are recognized as
PSPACE-hard, indicating that no polynomial-time algorithm
exists to solve all instances of the problem [4]. In addition,
finding an initial guess to solve the problem in the spatio-
temporal space is non-trivial, sometimes even harder than
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solving the optimization problem [5]. Therefore, path-speed
decoupled approaches partition the high-dimensional problem
into two more manageable subproblems: initially, spatial path
planning, followed by generating a speed profile along that
path (temporal planning). This strategy facilitates a step-wise
process, allowing for more efficient and tractable solutions to
be obtained for each component independently.

Beyond learning-based methods, trajectory planning
methodologies are generally classified into three main
categories: sampling-based, search-based, and optimization-
based methods. Sampling-based strategies may employ
random techniques, such as Probabilistic Road Maps [6] and
Rapidly-exploring Random Trees [7], or deterministic
approaches, including control state and state space
sampling methods [8]–[10]. For example, [11] proposes
a sampling-based method that generates the coordinates
(x, y) directly using fifth-degree polynomials of time.
The generated paths resulting from random sampling
methods often exhibit jerky motion, redundancy, and lack
of curvature continuity, rendering them unsuitable for
autonomous driving applications, particularly at high speeds.
Additionally, the runtime of these methods is unbounded
and unpredictable, further hindering their practical utility
in real-time applications. Relative to random sampling-
based techniques, deterministic sampling-based methods
substantially diminish the solution space by exploiting the
inherent structure of roadways. This deliberate reduction
enhances predictability in planner behavior and mitigates the
potential selection of impractical sampling seeds. However,
the optimality of the selected path correlates directly with
the longitudinal and lateral resolution of the generated path
candidates. Enhancing path optimality entails reducing the
resolution of generated paths, albeit at the cost of increased
computational complexity. The search-based methods employ
graph-based search techniques such as the fast search trees,
A∗ algorithm, along with state-lattice methods [12], [13].
In contrast to the random exploration of the environment’s
free space during run-time, search-based methods discretize
the configuration space using a predefined set of motion
primitives. These approaches proactively construct the search
graph, facilitating a structured exploration of potential
trajectories. Nevertheless, due to the discrete nature of the
graph, inadequately designed search spaces can significantly
reduce the solution space. This may result in highly
sub-optimal solutions or even the absence of a solution,
despite its existence. They demonstrate efficacy in low-speed
unstructured environments [14]; however, the resulting paths
often lack curvature continuity, rendering them unsuitable
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for high-speed autonomous driving. While a post-smoothing
process can render the generated path feasible for on-road
driving scenarios, it compromises the collision-free property
initially guaranteed by the search-based generation. Finally,
optimization-based methods are variational methods that
solve two-point boundary value problems utilizing nonlinear
optimization methods. These methods excel in delivering
optimal solutions characterized by embedded high-order
curves or dense waypoint curves. However, in addition
to computational complexity, they exhibit limitations in
managing environmental complexity, as this complexity is
dictated not solely by the number of obstacles but also by the
geometric shape of the free space. Recently, seeking to solve
this problem, numerous studies have considered integrating
sampling methods with optimization methods [15]–[17].
Subsequent to path selection, a process of refinement
is undertaken through nonlinear optimization, aimed at
minimizing predefined cost functions.

Despite receiving less emphasis compared to spatial path
planning, speed planning is increasingly recognized as an in-
dispensable component in trajectory planning for autonomous
vehicles. Responsible for generating optimal velocities along
planned paths, speed planning is instrumental in ensuring
critical aspects such as safety, comfort, energy efficiency, and
traffic flow management. Speed planning methods existing
in the literature can be categorized into four categories:
search-based, optimization-based, learning-based, and switch-
point methods (bang-bang). Methods in the literature tend to
solve the minimum-time problem [18] by employing these
techniques. In the context of the search-based methods, [19]
employs a visibility graph with dynamic obstacles, speed,
and acceleration constraints. An inherent limitation of these
methods lies in their incapacity to directly maximize smooth-
ness. Consequently, the speed profiles derived necessitate
supplementary smoothing to ensure optimal driving comfort.
This smoothing process can pose challenges, particularly
in scenarios where the solution obtained from the search-
based method approaches constraint limits. In such cases, the
smoothing procedure itself becomes a constrained optimiza-
tion problem, adding complexity to the solution process. Con-
trary to search-based methods, optimization-based methods
[20], [21] can maximize smoothness directly. However, these
methods encounter challenges in handling dynamic obstacles
due to their non-convex nature in the (s − t) domain [22].
The majority of literature either neglects the inclusion of
dynamic obstacles in their optimization framework or restricts
the problem to solvable scenarios [23]. A novel approach
presented by [24] addresses this limitation by introducing a
new formulation that accounts for dynamic obstacles, with the
problem iteratively solved as a quadratic program. However,
the proposed method is computationally expensive. Switch-
point methods [25] demonstrate that for the time-optimal
problem, the optimal solution invariably involves either maxi-
mum acceleration or deceleration. Consequently, the challenge
becomes identifying the switch-points to alternate between
these two extremes. Finally, learning-based methods can be
employed for speed planning [26]. For instance, [27] employs
reinforcement learning to generate an efficient speed profile by

minimizing the battery state-of-charge (SOC). However, these
methods suffer from sample inefficiency, often demanding
extensive data collection for effective learning. In addition,
generalization remains an issue, with learned policies strug-
gling to adapt to diverse real-world scenarios.

Energy efficiency is emerging as a primary concern in
spatial path planning [28], behavioral planning [29], and speed
planning [30]. Existing methods for energy economic speed
planning involve the minimization of the battery SOC through
either learning-based methods [31] or optimization [32]. In
this work, we present a novel methodology for energy-efficient
speed planning. As stated in [33] and in our previous work
[34], the smoothness of the velocity profile and the fluctuations
in the acceleration profile directly impact the energy effi-
ciency of the autonomous vehicle. Alternatively, the primary
contributors to uncomfortable driving are elevated levels of
jerk and acceleration, with jerk exerting a more pronounced
influence than acceleration [35]. Consequently, various studies
have introduced jerk-limited speed planning techniques [36],
[37] aimed at enhancing the similarity between automated and
human-like driving. In this paper, we introduce a quintic jerk-
controlled speed planning approach. Leveraging the cubic jerk
profile to achieve a smooth curve with second-order continuity,
our method emphasizes an energy-efficient trajectory.

Literature shows that the majority of motion planning
techniques emphasize path and speed optimization, often
relying on computationally demanding approaches without
adequately considering the trade-off between optimality and
computational efficiency. Research studies often overlook the
comprehensive examination of the global system architecture
and the inherent delays among its constituent elements, includ-
ing sensor acquisition, perception, decision-making, planning,
control, and actuators. Particularly for on-road autonomous
vehicles operating at medium-to-high speeds, deterministic
behavior is essential at higher sampling rates. Therefore, it
demonstrates the necessity for a rapid and energy-efficient
speed planning method that accounts for the dynamic envi-
ronment, driving comfort, and safety.

In this work, we introduce a novel rapid energy-efficient
jerk-controlled fifth-order speed planning method that ac-
counts for road geometry and conditions, and dynamic ob-
stacles. The simulations are conducted using: 1) a joint-
simulation framework with the professional SCANeR Studio
vehicle dynamics simulator, utilizing a fully dynamic vehicle
model, and 2) a real-world dataset using a full nonlinear ve-
hicle model [34]. This approach contrasts with many existing
literature studies, which often rely on simpler vehicle models.
By employing a comprehensive vehicle dynamics model, our
simulations provide a more realistic representation of real-
world driving scenarios. The conducted scenarios encompass
roads featuring high-curvature corners, with certain situations
of overtaking dynamic obstacles and avoiding static obstacles.
Other scenarios are performed on adherence-changing and
gradient-variant roads to target and highlight our contributions.
By incorporating considerations for the relative velocity of
dynamic obstacles and the curvature of the selected best path,
our method demonstrates efficient speed planning during lane-
changing maneuvers on structured roads.
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Fig. 1: Schematic diagram of the proposed global system architecture.

The contributions of the paper can be outlined as:
• Development of a jerk-controlled speed planning method

based on a novel formulation of fifth-order polynomial
generation, comprising transient and steady phases.

• Introducing a planning parameter that incorporates the
relative velocity between the vehicle and dynamic obsta-
cles, the curvature of the base frame, the curvature of the
best path, and road conditions.

• Novel consideration of road adherence and gradient di-
rectly integrated into the speed planning approach, sig-
nificantly enhancing vehicle safety and energy efficiency.

• Illustrating the impact of jerk smoothness on the energy
efficiency of speed planning through a comparative anal-
ysis between the quintic polynomial and cubic one.

The rest of the paper is organized as follows: Section II intro-
duces the complete system architecture. Section III presents
the spatial planning method. Section IV develops the speed
planning approach. The system validation is presented in
Section V followed by a conclusion in Section VI.

II. SYSTEM ARCHITECTURE

The global system architecture is given in Fig. 1. The output
of the perception module is received as an occupancy grid
representation. Detailed discussion of this module is beyond
the scope of the paper. During each planning iteration, the local
occupancy grid undergoes updates to accommodate the new
footprint occupied by moving obstacles within its perception
zone. The longitudinal expansion of the occupancy of the
moving obstacles is adjusted to reflect their velocity and
direction, based on the predicted traveled distance, and updated
each iteration. Then, the spatial path planning module, detailed
in Section III, executes a sampling-based path generation
process. For each point on the navigable candidate paths, the
footprint of the vehicle is validated according to the method
of six circles and one large circle [4]. The six circles are
only examined when an obstacle is detected. Consequently,

for an obstacle-free path, a single large circle is inspected, as
opposed to the four-circle approach [14], providing enhanced
computational efficiency. The local occupancy grid is then
transformed into a clearance map to improve accuracy and
efficiency. Subsequent to the selection of the best path, a novel
speed-planning method, detailed in Section IV, is proceeded
on the selected path. The approach commences by establishing
the velocity limit at each knot of the chosen path. Subse-
quently, a parameter kb is derived from these limits. Then,
a planning parameter vf is ascertained, integrating kb, the
relative velocity with obstacles, the curvature of both the base
frame and the optimal path, and road adherence and gradient.
Finally, a quintic energy-efficient polynomial is generated for
the speed along the path. Finally, the control layer comprises
the achievement of several objectives including stability, ma-
neuverability, path-tracking, and speed control, leveraging the
Super-Twisting Sliding Mode control. Then, the control inputs
are realized by physical actuators including four in-wheel
motors. The reader can refer to the authors’ previous works
on this level [38], [39]. Ultimately, the steering angle and the
generated torques are fed into a full nonlinear vehicle model
developed by [40], and then validated on the SCANeR Studio
professional vehicle dynamics simulator [41].

III. SPATIAL PATH PLANNING

To mimic human drivers’ behavior in structured environ-
ments, it is practical for the trajectory planner to generate
road geometry-aligned paths, where the solution space is
significantly reduced. In this paper, we employ a sampling-
based method in which the generated paths traverse a transition
state and a steady state in parallel to each other, similar to [9],
[10]. The planning method is executed in 3 stages, with base
frame construction at the first stage. Then, the path generation
is executed in the Frenet system (s, q), where the paths are
shifted by a lateral offset from the base frame. Finally, the
best path with the lowest introduced cost is selected.



4

A. Base Frame Construction
The base frame represents a global route used to provide

reference road information. It constitutes a sequence of way-
points and is modeled by a parametric curve. The cubic spline
is adopted in this work which is sufficiently expressive to
satisfy positional constraints, tangency conditions, and curva-
ture constraints, all while preserving a desirable low order in
parametrization. Denoting s as the arc length of every segment,
and i as the waypoint index, the cubic spline is expressed as{
xbf (s) = a0 + a1(s− si) + a2(s− si)

2 + a3(s− si)
3

ybf (s) = b0 + b1(s− si) + b2(s− si)
2 + b3(s− si)

3

(1)
where (xbf , ybf ) are the Cartesian coordinates of the point on
the base frame, and {(aj , bj), j = 0, 1, 2, 3} are the fitting
parameters. The heading θbf and curvature ρbf of every point
of the base frame can be determined by

θbf =
dybf
dxbf

; ρbf =
x′bfy

′′
bf − x′′bfy

′
bf√

(x′bf + y′bf )
3

(2)

where x′bf , y
′
bf , x

′′
bf , y

′′
bf are the first and second derivatives of

xbf and ybf .

B. Path Candidates Generation
The objective of the path planning strategy is to identify

the optimal path from a set of generated candidates, excluding
those deemed non-navigable. Non-navigable paths are defined
as those intersecting static and dynamic obstacles within
an adapted security distance [10], or failing to adhere to
established safety criteria. Hence, the navigation strategy com-
prises several stages: generation of candidate paths, obstacle
detection, path classification, and path selection (see Fig. 2).

The initial phase entails localizing the vehicle within the
base frame. This process involves mapping the vehicle’s
Cartesian coordinates to the (s − q) coordinate system and
subsequently determining the closest point on the base frame
utilizing a combination of quadratic minimization and New-
ton’s method [10]. From the matched point Pi(si, ρi), the
path candidates are generated in two phases: transition phase
(s ∈ [si, sf0]) and a steady phase (s ∈ [sf0, sf ]) (see Fig.
3). The length of the phases is proportional to the speed of
the vehicle v and bounded between a minimum ∆smin and a
maximum ∆smax.

sf0 = ∆smin + kvv

sf = min(∆smax, sf0 + 2dss)
(3)

where kv is a gain parameter and dss is the safe stop distance
given by (4).

dss = dss,0 +
v2

2amax
dec

(4)

where amax
dec is the maximum acceptable longitudinal deceler-

ation and dss,0 is the minimum safety gap.

q(s) =


c0 + c1(s− si) + c2(s− si)

2

+c3(s− si)
3 + c4(s− si)

4
s ∈ [si, sf0]

qf,j s ∈ [sf0, sf ]
(5)
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Fig. 2: Proposed trajectory planning method for an overtaking scenario
involving a dynamic obstacle. The legend is shared with Figures 9, 14 and
18. Legend components not shown in this Figure are depicted in other figures.
Rectangular hatches indicate the longitudinal expansion of the dynamic
obstacle. The colormap represents the quintic speed profile generation along
the knots constituting the best path.

Note that adding 2dss to (3) serves to include safety mar-
gins alongside comfortable deceleration. To ensure the L 2

continuity and avoid curvature discontinuity, a fourth-order
polynomial is generated representing the path candidates (5).
The coefficients ci of each path candidate j can be determined
by solving the following boundary conditions problem

q(si) = qi , ρ(si) = ρi , q(sf0) = qf,j
∂q

∂s
|si = tan∆θi ,

∂q

∂s
|sf0

= 0
(6)

where ∆θi is the difference between the vehicle heading angle
and the tangent at Pi(si, ρi). For each path candidate j, there
exists a corresponding lateral offset qf,j . These lateral offsets
are spaced apart by a constant lateral resolution ∆q, with the
total number of offsets determined by the lane boundaries.
The lane boundaries are determined by subtracting the vehicle
width from the lane width to prevent candidate paths from be-
ing generated near the lane borders. Path candidates comprises
a set of n points (knots) dispersed with a constant longitudinal
resolution ∆s. Their number vary depending on the arc length
of the path candidates sf (see Fig. 3). Path candidates
generated in the (s − q) coordinate system are mapped into
the Cartesian system to conform to the maneuvering system.
The corresponding points in the Cartesian system can be
represented in terms of the arc length of the base frame [42]
as

∂x

∂s
= Q cos θ ,

∂y

∂s
= Q sin θ ,

∂θ

∂s
= Qρ (7)

where ρ, the curvature of the path candidates, can be calculated
as

ρ =
S

Q

(
ρbf +

(1− qρbf )(
∂2q
∂s2 ) + ρbf (

∂q
∂s )

2

Q2

)
(8)

where,

Q =

√
(
∂q

∂s
)2 + (1− qρbf )2 , S = sgn(1− qρbf ) (9)
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Fig. 3: Generation of the path candidates with lateral resolution ∆q and lon-
gitudinal resolution ∆s in the (s, q) frame. ∆smin represents the minimum
threshold for sf0, while ∆smax serves as the maximum limit for sf , chosen
based on kinodynamic constraints and the vehicle’s perception zone.

Upon the generation of the set of path candidates, those inter-
secting with detected obstacles within the security distance
are discarded, along with paths that do not adhere to the
kinodynamic constraints.

C. Path Selection

The path selection process is conducted to determine the
optimal path from the set of navigable paths, minimizing a
cost function that incorporates various criteria (see Fig. 2).
Given that the curve with the highest smoothness is the curve
of least energy, we integrate J1 as the energy cost. J2, denoting
the consistency cost, can also be interpreted as an energy cost,
as abrupt changes in trajectory demand additional energy and
higher control effort. Further, to force the vehicle to maintain
proximity to the reference lane, a reference offset cost term J3
is introduced. Hence, for each path i from the set of navigable
paths, J1, J2, J3 are given as

J1[i] =

∫
ρ2i ds (10a)

J2[i] = i∗|t − i∗|t−1 (10b)

J3[i] =

∫
(qi − qref )

2ds (10c)

where i∗ is the path index and qref is the lateral offset of
the reference lane from the base frame. The final cost term
J4 is a safety term consisting of longitudinal safety cost J4,1
(pertaining host lane navigability) and a lateral safety cost J4,2
(concerning adjacent lane navigability) [10].

J4,1[i] = 2− 2

1 + e−(cs dobs[i])
(11a)

g[k] =
1√
2πσ

e−
(k∆q)2

2σ2 (11b)

J4,2[i] =

∑
k∈Γi

J4,1[k]g[i− k]

N
(11c)

J4[i] = J4,1 + wsJ4,2 (11d)

where cs is a tunable parameter and dobs[i] is the distance-to-
obstacle (collision distance) on the path i. g[k] is the discrete
inverted Gaussian convolution, σ is the standard deviation of
collision risk, and ∆q is the lateral sampling resolution. Γi
is the set of navigable paths excluding the path i, N is their
number, and ws is a weighting coefficient. The designed costs
are normalized using (12a), and the total cost is given by (12b)

Jr[i] =
Jr[i]−min (Jr[i])

max (Jr[i])−min (Jr[i])
; r = {1, 2, 3, 4} (12a)

JT [i] = w1J1[i] + w2J2[i] + w3J3[i] + w4J4[i] (12b)

Algorithm 1 Acceleration limitation for Vlim,3

for each knot k do
if vk+1 > vk then

if v2k+1 − v2k > 2∆sacomacc then
vk+1 =

√
v2k + 2∆sacomacc

end if
else

if v2k − v2k+1 > 2∆s |acomdec | then
vk =

√
v2k+1 + 2∆s |acomdec |

end if
end if

end for

where w1, w2, w3, w4 are the weighting coefficients for energy,
consistency, reference, and safety cost terms respectively.

IV. SPEED PLANNING

A speed profile is generated along the selected best path to
incorporate temporal information into trajectory planning. This
profile is designed to adhere to the traffic rules and road code,
account for static and dynamic obstacles, and adjust according
to prevailing road conditions. Hence, this section focuses on
an energy-efficient quintic polynomial generation for speed
planning, accounting for velocity limitation, obstacles, curva-
ture of the base frame and best path, road adherence, and road
gradient (slope).

A. Velocity Limitation

Velocity limitations are imposed on the autonomous vehicle
to ensure compliance with on-road regulations and enhance
driving comfort. The first limitation Vlim,1 (13a) concerns
traffic rules (traffic lights and road signs), and is presumed
to be known to the vehicle. The second limitation Vlim,2

(13b) is enforced to enhance comfort by keeping the lateral
acceleration ay below a threshold amax

y = 4 m/s2. The limit
is calculated at every knot k of the candidate paths, knowing
the curvature at each point ρk (8). After the construction of
the velocity limits at each knot along the path candidates,
Vlim,3 (13c) is applied to guarantee that the speed transition
between two consecutive knots does not exceed the maximum
comfortable acceleration/deceleration threshold.

Vlim,1 = Vroad (13a)

Vlim,2 =
√
amax
y /ρk (13b)

Vlim,3 = vk ; acomdec ≤ v̇k ≤ acomacc (13c)

vlim = min
(
Vlim,1, Vlim,2, Vlim,3

)
(13d)

Hence, to confine the transition within the limits of a maxi-
mum comfortable deceleration threshold acomdec and a maximum
comfortable acceleration threshold acomacc , Algorithm 1 is em-
ployed. The algorithm acts to saturate the velocity at the knot
k+1 if the velocity rate of change between k and k+1 exceeds
the acceleration limits. Finally, the velocity limitation along
the paths is given by the minimum of the three limitations
(13d).
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B. Quintic polynomial generation

The speed profile along the best path is generated based on a
novel formulation of quintic polynomials, comprising transient
and steady phases. This approach aims to achieve a smooth
third-order profile for the jerk with C 2 continuity. It will be
demonstrated that the smoothness of the jerk profile directly
contributes to improved energy efficiency.

A quintic polynomial for velocity v(t) is given as

v(t) =

5∑
i=0

ξit
i (14)

where ξi, {i = 0, 1, 2, ..., 5} are the polynomial coefficients.
To calculate ξi, a total of seven boundary conditions are
required, as the traveling time along the path (tf ) is unknown.
Hence we have,

v(0) = ξ0 = v0 (15a)

v(tf ) = v0 + ξ1tf + ξ2t
2
f + ξ3t

3
f + ξ4t

4
f + ξ5t

5
f = vf (15b)

a(0) = ξ1 = a0 (15c)

a(tf ) = ξ1 + 2ξ2tf + 3ξ3t
2
f + 4ξ4t

3
f + 5ξ5t

4
f = af (15d)

j(0) = 2ξ2 = j0 (15e)

j(tf ) = 2ξ2 + 6ξ3tf + 12ξ4t
2
f + 20ξ5t

3
f = jf (15f)

s(tf ) = v0tf +
1

2
ξ1t

2
f +

1

3
ξ2t

3
f +

1

4
ξ3t

4
f +

1

5
ξ4t

5
f +

1

6
ξ5t

6
f = sf

(15g)

where v0, a0, j0 and vf , af , jf are the velocity, acceleration,
and jerk at the initial and the final points of the polynomial.
sf represents the length of the best path and tf is the traveling
time along it. Hence, given {v0, vf , a0, af , j0, jf , sf}, we
solve for {ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, tf} using (15). The calculation
of the first three coefficients is trivial and can be solved as

ξ0 = v0 ; ξ1 = a0 ; ξ2 =
j0
2

(16)

To determine the remnant coefficients and by manipulating the
equations of (15), one has to calculate tf first by solving the
cubic equation (17).

α3t
3
f + α2t

2
f + α1tf + α0 = 0 (17a)

α3 =
−1

120
j0 +

−1

120
jf (17b)

α2 =
−1

10
a0 +

1

5
af (17c)

α1 =
−1

2
v0 +

−1

2
vf (17d)

α0 = sf (17e)

where αi are the coefficients of the cubic equation. Finally,
ξ5, ξ4, and ξ3 can be calculated iteratively as (18).

ξ5 =
−3

10

[ ( 7
3
j0 − jf )t

3
f + (18a0 − 2af )t

2
f + (60v0 + 20vf )tf

t6f
−80sf
t6f

]
(18a)

ξ4 =
−10ξ5t

4
f + jf tf + j0tf − 2af + 2a0

4t3f
(18b)

ξ3 =
−20ξ5t

3
f − 12ξ4t

2
f + jf − j0

6tf
(18c)

Given that the path having n knots, the quintic polynomial is
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Fig. 4: Quintic and cubic speed profiling for an arbitrary vf .

sampled on n − p knots and becomes steady on the remnant
p knots (v|n = v|n−1 = ... = v|n−p). The initial and final
boundary conditions are updated at each sampling iteration ti
as v0 = v(ti), a0 = ∂v

∂t |ti , j0 = ∂2v
∂t2 |ti , and af = jf = 0

(see the quintic polynomial generation in Fig. 1). Ultimately,
the generation of the quintic polynomial hinges upon the core
planning parameter vf .

C. Cubic Polynomial Generation

To illustrate the direct correlation between energy efficiency
and jerk smoothness, the quintic polynomial is contrasted with
a cubic polynomial. We retain the ability to generate a cubic
polynomial by enforcing ξ4 = ξ5 = 0. Hence, the cubic
polynomial v(t) is given as

v(t) =

3∑
i=0

ξit
i (19)

where ξ0, ξ1, ξ2, ξ3 are the polynomial coefficients. Following
the same approach as in (15) without the boundaries on j
(without the boundaries (15e) and (15f)), tf can be calculated
by solving the quadratic equation below.

α2t
2
f + α1tf + α0 = 0 (20a)

α2 = a0 − af (20b)
α1 = 6v0 + 6vf (20c)
α0 = −12sf (20d)

where αi are the coefficients of the quadratic equation. Sub-
sequently, ξ0, ξ1, ξ2 and ξ3 are given by (21).

ξ0 = v0; ξ1 = a0 (21a)

ξ2 =
(−af − 2a0)tf − 3(v0 − vf )

t2f
(21b)

ξ3 =
(a0 + af )tf + 2(v0 − vf )

t3f
(21c)

Similar to the quintic polynomial, the cubic speed profiling
is sampled along n − p knots. Fig. 4 depicts the difference
in speed profiling between the quintic and cubic polynomials
for an arbitrary vf . It is evident that while there may not be
significant disparities in speed profile generation, the quintic
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surpasses the cubic polynomial in terms of jerk. The jerk ex-
hibited by the cubic polynomial is linear with oscillations and
higher overshoots compared to the quintic polynomial which
exhibits a smooth third-order jerk profile. The acceleration-
optimal cubic profile exhibits lower acceleration values yet
higher jerk values compared to the jerk-optimal quintic profile.

D. planning parameter vf
The planning parameter vf is the desired velocity at the

n − p knot of the selected best path, upon which the poly-
nomial generation is based. This parameter is composed of
several sub-functions, each addressing different aspects of
road conditions and the dynamic environment. The novel
formulation of the functions is conceived based upon: 1)
capturing intricate nonlinearities, 2) providing smooth tran-
sitions with a capability of behavior adjustment, 3) ensuring
continuity and differentiability, and 4) imposing constraints
on boundedness and saturation to confine the outputs within
a set of limits. The form of the functions will demonstrate
exceptional effectiveness in achieving smoothness in the speed
profile, concurrently addressing several objectives.

1) Relative velocity and curvature
When overtaking a dynamic obstacle in urban environments,

it is crucial to accelerate (accounting to the relative velocity) to
reduce exposure to oncoming traffic and ensure smooth traffic
flow on the road. The acceleration reaches its maximum peak
when the relative velocity is zero and decreases as the relative
velocity increases (see Fig. 5 left). Given that the velocity of
the surrounding dynamic obstacles is presumed to be known
to the vehicle, let vr = {vr,i = vveh− vobs,i ; i = 1, 2, ..., n}
denote the relative velocity between the vehicle and the n
surrounding obstacles within the perception zone. Hence,
define the first sub-function f1 as a function of relative velocity
vr as

f1(vr) = λ1

[
1− 1

1 + e
− 2γ1

vr−vr
(|vr|−

vr+vr
2

)

]
(22)

where λ1 is a gain to specify the upper bound, γ1 denotes
the gradient intensity of the transient-state centroid, and vr,
vr signify the endpoints of the transient state of f1. The aim
of formulating f1 is to provide the vehicle with additional
acceleration when overtaking a dynamic obstacle.

The speed profile is anticipated to decrease with increasing
road curvature. However, its rate of change with respect to the
base frame curvature (global route) should vary from that of
the best path (for instance during lane changes). Hence, define
two sub-functions f2 and f3 function of curvature of the base
frame (ρbf ) and curvature of the best path (ρbp) as (23)

f2(ρbf ) =
[
1− λ2

1 + e
− 2γ2

ρ−ρ
(|ρbf |−

ρ+ρ

2
)

]
kb (23a)

f3(ρbf , ρbp) =
λ3

1 + e
− 2γ3

ρ−ρ
(|ρbp−ρbf |−

ρ+ρ

2
)
kb (23b)

where λ2 and λ3 provide a lower bound for f2 and an upper
bound for f3 respectively, and kb represents the base velocity.
ρ, ρ are the extremities of the transient state of f2 and f3, and
γ2, γ3 are as γ1. The form of the functions f1, f2, and f3
is depicted in Fig. 5. Hence, starting from a base velocity kb
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Fig. 5: Planning parameter vf sub-functions: f1, f2 and f3.

designated for zero curvature in both the base frame and the
best path, f2 and f3 serve to progressively reduce the vehicle
speed in response to increasing curvature.

Therefore, define vf1 in terms of f1, f2, and f3 as

vf1 = (kt × kr × ks)× f1 + f2 − f3 (24)

where kt, kr, and ks are boolean functions. kt, kr, and ks
respectively act to activate f1 according to the obstacle type,
relative direction with the obstacle, and overtaking behavioral
decision. kt = 1 if the obstacle type is moving, and 0
otherwise. kr = 0 if sgn(vvehvobs) < 0 (the vehicle and the
obstacle are in opposite directions) and 1 otherwise. ks = 1
if a behavioral decision is taken of overtaking the succeeding
vehicle, and 0 otherwise. Hence, the boolean functions are set
to promote f1 only when overtaking a dynamic obstacle.

In some unpredictable situations, the value of vf might
exceed the velocity limitations (13) if kb is not carefully set.
Under such conditions, the reference profile will alternate as
the minimum between the quintic generated profile and the ve-
locity limitations at the knots, thereby leading to an oscillatory
reference speed profile. This phenomenon induces fluctuations
in acceleration and deceleration, consequently elevating energy
consumption. Alternately, although setting kb as a constant
value below the minimum velocity limitation of the road can
avert this oscillation, it tends to render the speed profile more
conservative. Therefore, kb is formulated according to the
velocity limitation vlim (13d) and the sampling time ts as
follows

kib =
[vilim − ki−1

b

ts

]
λg + ki−1

b (25)

where λg is a tunable parameter. Thus, by varying kb based
on vlim, the approach of selecting the minimum between vlim
and the quintic speed profile generated based on vf can be
relaxed if the difference between them is less than 2 m/s.

| − 2γ1
vr − vr

λ1
∂vr
∂t

e
− 2γ1

vr−vr
(vr−

vr+vr
2

)(
1 + e

− 2γ1
vr−vr

(vr−
vr+vr

2
)
)2

| ≤ |acom
dec | (26a)

| − 2γ2
ρ− ρ

kbλ2
∂ρbf
∂t

e
− 2γ2

ρ−ρ
(ρbf−

ρ+ρ

2
)(

1 + e
− 2γ2

ρ−ρ
(ρbf−

ρ+ρ

2
)
)2

| ≤ |acom
dec | (26b)

| 2γ3
ρ− ρ

kbλ3
∂ρbp
∂t

e
− 2γ3

ρ−ρ
(ρbp−

ρ+ρ

2
)(

1 + e
− 2γ2

ρ−ρ
(ρbp−

ρ+ρ

2
)
)2

| ≤ acom
acc (26c)

As f2 and f3 consistently vary with the continuous curvature,
it is imperative to constrain their rate of change to time
(representing acceleration), within the maximum admissible
acceleration/deceleration. Similarly for f1 with the variation of
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Fig. 6: Effect of optimizing γi on acceleration extremums.

the relative velocity. Hence the constraints on the formulation
of the functions are given in (26). Given that the extremum
of ∂fi

∂t where i = {1, 2, 3} is at the centroid of the transient
state, it is sufficient to bound ḟ1, ḟ2, and ḟ3 at vr =

vr+vr
2

and ρ =
ρ+ρ

2 respectively. Hence, in a context of function
shaping, an optimization problem is formulated to determine
{γ1, γ2, γ3} such that

min{γ1, γ2, γ3}
satisfying (26a), (26b), (26c)

(27)

Hence, by choosing the design parameters as ρ = 0.02, ρ =
0.002, vr = 6, vr = 0.5, λ1 = 3.5, λ2 = 0.4, and λ3 = 0.2,
the bounds of slope intensities are determined as γ1 ≤ 4.6196,
γ2 ≤ 1.4375, and γ3 ≤ 4.7917. Fig. 6 illustrates the
impact of optimizing γi in constraining the extremities of
acceleration, wherein the optimal functions ḟop are bounded
below acomacc = 2 m/s2 and above acomdec = −2.5 m/s2.
Hence, the longitudinal acceleration ax ∈ [−2.5 2] m/s2.
Lateral acceleration is bounded by ay ∈ [−4 4] m/s2, and
jerk is limited in j ∈ [−3 3] m/s3. Velocity constraints are
determined by vlim (13d), while the quintic speed profile relies
on vf , depending on kb (25), which itself varies with vlim.

Based on the sub-functions f1 and f3 of vf , our method
offers several advantages for lane changing compared to other
literature approaches: 1) The shape of the sub-functions facil-
itates smooth velocity changes independent of the behavior of
other vehicles. 2) It minimizes overtaking time, crucial for ac-
cident prevention with opposing vehicles. 3) The inclusion of
subfunction f3 ensures smooth and comfortable lane changes
while maintaining low lateral acceleration during overtaking
and lane re-entry. 4) Optimization of subfunction shapes by
integrating constraints (26) maintains longitudinal acceleration
within defined thresholds without the need for complex opti-
mization algorithms, thus streamlining computation.

2) Road adherence and gradient
Human drivers instinctively tend to decrease vehicle speed

in inclement weather conditions, as the braking distance
increases with the decrease of the tire grip on the ground.
Such precautions are particularly warranted in situations of
lower adhesion, as vehicle stability is affected, especially
during cornering maneuvers. Hence, it is crucial to account
for road adherence (of coefficient µ) in the speed planning
approach. The authors of [36] suggested imposing a constraint
on acceleration bounds in response to variations in road
adherence. In this paper, we propose an adaptation scheme
to the percentage of speed reduction as a function of both
road adherence and curvature.
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Fig. 7: Sub-function f4 of vf in terms of ρ and µ.

Hence, assuming that µ is accessible, define

g1(µ) = ζ1
1

1 + e
− 2γ4

µ−µ
(|µ|−

µ+µ

2
)
+ ζ2 (28a)

g2(ρbf , ρbp) = ζ3
1

1 + e
− 2γ5

ρ−ρ
(|ρbf |+|ρbp−ρbf |−

ρ+ρ

2
)
+ ζ4 (28b)

f4(µ, ρbf , ρbp) = g1(µ)− g2(ρbf , ρbp) (28c)

where ζi such that {i = 1, 2, 3, 4} are shaping parameters, µ
and µ represent the adherence extremities of the transient state
of g1, and γ4, γ5 signify the gradient intensity of the transient-
state centroid of g1 and g2 respectively. The objective is to re-
duce the speed (increase the speed reduction percentage) with
increasing curvature and decreasing adherence. The lateral
acceleration ay , a critical factor influencing vehicle stability, is
approximated by (29) [38]. Consequently, to maintain stability,
the maximum allowable lateral acceleration diminishes as
µ decreases. Conversely, the rate of the side-slip angle β̇
escalates during cornering, thereby augmenting ay . Hence,
according to (29), reducing v can mitigate ay to enhance
stability as µ decreases and ρ increases.

ay ≃ v (ψ̇ + β̇) ≤ µg (29)

The reshaping of the function is performed by determining
ζi according to the desired values of f4 on the extremities of
the transient states (µ, µ, ρ, ρ). Referring to the form in Fig.
7, denote by A(µ, ρ), B(µ, ρ), C(µ,ρ), and D(µ,ρ) the four
endpoints of transient states of f4. The value of f4 at these
points is given by (30).

f4|A =
[ 1

1 + e−γ4

]
ζ1 −

[ 1

1 + eγ5

]
ζ3 + (ζ2 − ζ4) (30a)

f4|B =
[ 1

1 + eγ4

]
ζ1 −

[ 1

1 + eγ5

]
ζ3 + (ζ2 − ζ4) (30b)

f4|C =
[ 1

1 + eγ4

]
ζ1 −

[ 1

1 + e−γ5

]
ζ3 + (ζ2 − ζ4) (30c)

f4|D =
[ 1

1 + e−γ4

]
ζ1 −

[ 1

1 + e−γ5

]
ζ3 + (ζ2 − ζ4) (30d)

Let g1 and g2 have the same slope intensity and denote γ∗ =
γ4 = γ5. Then, ζ1

ζ3
ζ2 − ζ4

 =

 1
1+e−γ∗ 1 −1

1+eγ∗
1

1+eγ∗ 1 −1
1+eγ∗

1
1+e−γ∗ 1 −1

1+e−γ∗


−1

×

b1b2
b3

 (31)

where B = [b1 b2 b3]
T is the desired values of f4 at A,B,

and C respectively. Fig. 7 depicts the shape of f4 for µ =
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0.3, µ = 0.7, γ∗ = 3, and B = [0.35 30 35]T .
Therefore, vf is adapted to f4 by defining vf2 as follows

vf2 = vf1
[
1− f4

100

]
(32)

Another factor influencing the speed reference profile in
accordance with human drivers’ intuitive responses is road
elevation. To the best of the authors’ knowledge, no study
has yet addressed the incorporation of road slope variations
into speed planning methodologies. However, when ascending
a steep incline, it is prudent to reduce speed to conserve energy
and enhance traction. Conversely, during descent on a steep
slope, precise speed management is essential to guarantee
safety and stability, as excessive speed may result in loss of
control or components overheating. To illustrate the impact of
speed control on inclined roads on energy economy, consider
the power consumption (P ) model (33) [43].

P =
[
ma+ (

ρa
2
CDAf )v

2 + frmg +mg sinϕr

]
v (33)

where m is the vehicle mass, ρa is the air density, CD is the
drag coefficient, Af is the front surface area of the vehicle, fr
is the rolling resistance coefficient, and g is the gravitational
constant. Suppose that it is desired to keep the same power
of the vehicle for an inclination ϕr, i.e. the power required
for driving on a straight, non-inclined road equals the power
needed for traversing the inclined road. Further, consider that
the speed on a zero-degree incline (vi) is directly proportional
to the speed on an inclined road with an angle ϕr (vn), given
as vn = λvi, where λ ∈ [0, 1]. Given that aerodynamic
forces typically have a less pronounced impact compared to
gravitational forces on an incline, and for the sake of simplicity
in analysis, the effect of aerodynamic force is neglected. The
reduction parameter λ is given as (34).

λ =
ma+ frmg

mg sinϕr +ma+ frmg
∝ 1

1 + g
|a| sinϕr

(34)

It can be observed in (34) that as the road angle ϕ increases,
λ should be decreased to preserve the power consumption.
Therefore, neglecting the speed regulation and maintaining a
constant velocity on inclined roads could result in increased
energy consumption. It’s important to highlight that the energy
consumption model utilized in our study differs from the one
represented by (33), where the detailed energy consumption
model is outlined in our previous work [34]. However, for
the sake of clarity and comprehensibility, we chose to illus-
trate the energy economy on inclined roads using the power
consumption model (33).

Although road elevation is typically irrelevant to speed
profiling for autonomous driving, its rate of change holds
significant importance. The road slope or gradient (grad)
serves as a standard metric for quantifying the angle of road
elevation from the ground. It is commonly expressed as a grade
percentage and defined as the ratio of rise over run. Con-
sidering that the road slope information is typically provided
through traffic signs, we assume its availability and awareness
by the autonomous vehicle. The consideration of road gradient
becomes notably pivotal during cornering as it proportionally
affects lateral stability (29). Hence, the objective is to increase
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Fig. 8: Sub-function f5 of vf in terms of ρ and χ.

the percentage of speed reduction, via a new sub-function, with
increasing road gradient and curvature.

Denoting χ as the road gradient, define f5 as a function of
road gradient and curvature as

h1(µ) = σ1

[
1− 1

1 + e
− 2γ6

χ−µ
(|χ|−

χ+χ

2
)

]
+ σ2 (35a)

h2(ρbf , ρbp) = σ3
1

1 + e
− 2γ7

ρ−ρ
(|ρbf |−

ρ+ρ

2
)
+ σ4 (35b)

f5(µ, ρbf , ρbp) = h1(µ)− h2(ρbf , ρbp) (35c)

where σi are shaping parameters, χ and χ are the road gradient
extremities of the transient state of h1, and γ6, γ7 are as γ5.
Following the same reshaping steps as performed in f4, we
have  σ1

σ3

σ2 − σ4

 =


1

1+e−γ2∗ 1 −1
1+eγ2∗

1
1+eγ2∗ 1 −1

1+eγ2∗
1

1+e−γ2∗ 1 −1
1+e−γ2∗


−1

×

p1p2
p3

 (36)

where P = [p1 p2 p3]
T is the desired values of f5 at (χ,

ρ), (χ, ρ), and (χ,ρ) respectively. By setting χ = 5, χ =
15, γ∗2 = 3.5, and B = [0.2 15 18]T , the shape of f5 is
depicted in Fig. 8.

Fz,fl = m
[ lr
lr + lf

g cos(ϕr)−
h

lr + lf
g sin(ϕr)−

h

lr + lf
ax

]
×

[1
2
− h

tfg
ay

]
(37a)

Fz,fr = m
[ lr
lr + lf

g cos(ϕr)−
h

lr + lf
g sin(ϕr)−

h

lr + lf
ax

]
×

[1
2
+

h

tfg
ay

]
(37b)

Fz,rl = m
[ lf
lr + lf

g cos(ϕr) +
h

lr + lf
g sin(ϕr) +

h

lr + lf
ax

]
×

[1
2
− h

trg
ay

]
(37c)

Fz,rr = m
[ lf
lr + lf

g cos(ϕr) +
h

lr + lf
g sin(ϕr) +

h

lr + lf
ax

]
×

[1
2
+

h

trg
ay

]
(37d)

The elevation angle of the road from the ground ϕr impacts
vehicle dynamics by influencing the tire loads Fz . Denote by
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m the vehicle mass, h is the height of the vehicle center of
gravity (CG), and lr and lf are respectively the distances from
CG to the rear and front axles. Then, the tire loads derived
from [44], can be determined by (37), where {fl, fr, rl, rr}
represent the tires: front-left, front-right, rear-left, and rear-
right respectively. g is the gravitational acceleration, and tr
and tf are the rear and front tracks respectively. ϕr and χ are
related according to (38).

ϕr = arctan(χ(%)/100) (38)

Finally, the planning parameter vf is given by (39).

vf = vf2
[
1− f5

100

]
(39)

As f5 impacts the tire loads, define the rear/front load distri-
bution ratio κ1, the left/right load distribution ratio κ2, and
the load transfer ratio LTR [34] to be used as cost variables
as follows

κ1 =
Fz,fi

Fz,ri
=

Fz,fr + Fz,fl

Fz,rr + Fz,rl
(40a)

κ2 =
Fz,ir

Fz,il
=

Fz,fr + Fz,rr

Fz,fl + Fz,rl
(40b)

LTR =
(Fz,fr + Fz,rr)− (Fzrl + Fz,fl)

(Fz,fr + Fz,rr) + (Fzrl + Fz,fl)
(40c)

The physical parameters are bounded as follows: µ is within
µ ∈ [0 1], |χ| ∈ [0 20] (%), and |ρ| ∈ [0 0.03] m−1.
Functions dependent on µ, χ, or ρ saturate if these parameters
exceed their respective ranges.

The formulation of the sub-functions of vf is developed
in a generalized manner. However, the shaping parameters
(λi, ζi, σi) are tunable and may require adjustment according
to the controller characteristics and the desired objectives.
For instance, a higher λ1 decreases the time required for
overtaking the succeeding dynamic obstacle. Other parameters
depend on the controller characteristics (controllers developed
in [34] are depicted in Fig. 1). For instance, lateral controllers
with lower path-tracking accuracy may necessitate an increase
in λ2 to reduce the lateral acceleration during cornering and
prevent road divergence. Similarly, ζ2 and ζ2−ζ4 might require
increasing (via b2 and b3) to enhance stability in cases of low
adherence. The bounds of vr, ρ, µ, and χ in transient states are
heuristic parameters derived from driver experience, multiple
simulations, and road data. For instance, vr and vr are chosen
to effectively accomplish lane-change within a range of 4 to 7
s. ρ and ρ are based on real-word road curvature information,
while µ and µ and χ and χ are assigned heuristically, with
µ constrained within [0 1] and χ limited to a maximum of
20 %. This attribute highlights a significant advantage, as the
formulation possesses inherent reproducibility, facilitating its
straightforward replication and application.

V. SIMULATION RESULTS

The complete global system architecture is implemented in
Simulink/Matlab, tested on a full nonlinear vehicle model [40],
and validated on the professional SCANeR Studio vehicle
dynamics simulator. The planner is running at a frequency
of 10 Hz, the controller is running at 50 Hz, and the rest of
the system (vehicle model, bicycle model, energy consumption
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Fig. 9: Vehicle trajectory (same legend as Fig. 2) - sc1.

model) is running at 100 Hz (see the architecture in Fig. 1). At
every planning time step, the local occupancy grid is updated
to reflect the vehicle’s new position, with any mobile obstacles
incorporated accordingly.

To illustrate the effectiveness of the proposed speed profiling
approach, the following performance variables are introduced.

• Energy consumption Em =
∫ t

0

∑4
i=1

Tiωi

η
sign(Ti)

k,i

• Smoothness costs of:
- acceleration: asmoothness =

∑n−1
i=0 (ai+1 − ai)

2

- jerk: jsmoothness =
∑n−1

i=0 (ji+1 − ji)
2

This work considers a battery electric vehicle equipped with
four independent in-wheel motors. Neglecting the battery
internal resistance, the energy consumption Em is determined
as the sum of the energy consumed by the four motors in terms
of motor torque Ti, rotational velocity ωi, and efficiency ηk,i.
Further, the efficiency ηk,i = ηd,i for driving and ηk,i = ηb,i
for regenerative braking and they are estimated based on the
respective motor efficiency MAPs. For further elaboration,
interested readers are directed to the authors’ prior work [34].

In order to have a better insight to the contributions, a
case study is performed comprising four distinct scenarios.
The first three scenario maps represent realistic trajectories
extracted from the SCANeR Studio simulator. While the fourth
scenario represents a real-world track constructed from a
dataset. The first scenario is performed to illustrate the effect
of the sub-functions f1, f2, and f3 of vf and to demonstrate
the energy economy of the proposed quintic jerk-controlled
speed profiling. The second scenario is carried out to mainly
reveal the impact of the sub-function f4 on vehicle stability
in the case of varying load adherence. The third scenario is
executed to signify the effectiveness of the sub-function f5
on steep-slope roads. The final scenario serves to showcase
the robustness of our method using real-world datasets while
testing it on a full nonlinear vehicle model, demonstrating its
viability for on-road application. The proposed quintic speed
planning approach is compared with the cubic one and with
other literature methods. In particular, the smoothing algorithm
methods proposed by [10] and [22] denoted by “SOTA 1”.
The cubic polynomial approach developed in [14] and labeled
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Fig. 10: Quintic speed profile generation, longitudinal acceleration, jerk, and lateral acceleration - sc1.
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Fig. 11: Comparison of our quintic strategy with literature approaches: acceleration, jerk, smoothness costs, and energy consumption - sc1.

as “SOTA 2”. The speed planning approach proposed by [8]
considering dynamic safety and denoted by “SOTA 3”. Finally,
we compare it with the quintic bezier curves generation for
speed planning proposed by [45], labeled as “SOTA 4”.

A. Scenario 1: Urban Environment Testing - sc1

The initial scenario unfolds on the track depicted in Fig.
9. Within this scenario, the on-road vehicle confronts several
typical situations, including: 1) overtaking a moving obstacle,
2) navigating through a narrow passage, 3) executing a lane
change maneuver to circumvent a static obstacle at a corner,
and 4) re-entering the host lane after encountering a dynamic
obstacle while overtaking a static obstacle. Throughout these
maneuvers, the curvature of the base frame dynamically varies
from low-curvature straight paths to high-curvature corners.
The road adherence coefficient is kept at 1 in this scenario
and the road gradient is assumed 0 %. The velocity of the
vehicle along the tracked path is shown and varies between
8 m/s to 14 m/s. Initially, upon deciding to overtake the
incoming dynamic obstacle, f1 (22) is promoted, allowing
the vehicle to attain the requisite speed for overtaking in
a reasonable time. Subsequently, the vehicle must return to
the host lane, and thus f3 (23b) is activated, aligning with
the high curvature of the best path. Subsequently, f2 (23a)
is consistently adapting to the curvature of the base frame,

while the lowest speed is achieved when a combination of
f2 and f3 is ascertained during a lane change maneuver
on segments of the high-curvature base frame. The speed
profile is depicted in Fig. 10 along with the longitudinal and
lateral acceleration and the jerk. The parameter kb (25) is
demonstrated to dynamically adjust according to the speed
limitation (13d). Consequently, the planning parameter vf (39)
continually adapts based on variations in kb, f1, f2, and
f3. Utilizing the value of vf , the reference speed profile is
then constructed through quintic polynomial generation. The
actual vehicle speed is shown to track the reference-generated
profile with smooth acceleration bounded between −3 m/s2

and 2.5 m/s2. The lateral acceleration is illustrated alongside
the reference (which is equal to ρ.v2) constrained within
the interval of [−4 4] m/s2. Importantly, it does not exceed
3.5 m/s2, indicative of a notably comfortable and smooth
drive.

In the same scenario, under the same test conditions, and
based on the constructed profile of vf , the reference speed
profile is generated using a cubic polynomial to contrast it
with the quintic polynomial approach. As demonstrated in Fig.
4, the cubic speed profile closely resembles the quintic one,
yet exhibits variations in acceleration and jerk profiles. The
acceleration and jerk profiles of the quintic and cubic poly-
nomial approaches are given in Fig. 11 along with the energy
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consumption and smoothness costs. A noticeable distinction
in energy consumption emerges between the two approaches,
albeit having the same speed profile. This discrepancy stems
from the contrasting smoothness of the jerk profile: the quintic
approach features a third-order curve, while the cubic approach
exhibits a linear jerk profile. Oscillations and high overshoots
in the cubic polynomial’s jerk profile are attributable to its un-
regulated behavior, in contrast to the quintic approach, which
imposes constraints on the jerk profile at every planning step
(15e,15f) (see Fig. 11). The smoothness costs highlight the
superiority of the quintic polynomial approach over the cubic
one in terms of acceleration smoothness, with a noteworthy
disparity in jerk smoothness. Specifically, the quintic approach
achieves a jerk smoothness value below 0.7, while the cu-
bic approach exhibits a value exceeding 100. Consequently,
although both approaches yield identical speed profiles, the
quintic speed profiling resulted in an energy saving of 6 %
compared to the cubic approach, attributed to superior jerk
smoothness and control.

Our quintic speed planning is compared further with the
literature approaches SOTA 1, SOTA 2, SOTA 3, and SOTA
4. Fig. 11 illustrates their respective reference speed profiles,
alongside longitudinal and lateral accelerations, as well as jerk
profiles. Although the speed profile of SOTA 1 is smooth,
its longitudinal acceleration exhibits oscillations, and its jerk
profile is unbounded and oscillatory. SOTA 2 revealed an
acceptable behavior in the speed and acceleration profiles but
its jerk is oscillatory and unbounded. SOTA 3 exhibited an
undesirable behavior in the speed and acceleration profiles
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Fig. 14: Vehicle trajectory (same legend as Fig. 2) - sc2.

as well as the jerk profile. In contrast, although SOTA 4
employs quintic bezier curves and implies smooth jerk profiles,
it enforces zero jerk at the beginning of the speed profile.
Despite being widely adopted in the literature, this constraint
renders the jerk profile oscillatory, as it should be zero at each
planning iteration, thereby increasing its smoothness costs
and energy consumption. The percentage energy save of our
quintic strategy compared to SOTA 1, SOTA 2 and SOTA
3 is roughly 15 % and about 6 % compared to SOTA 4. The
former reveals the effect of jerk smoothness and control, while
the latter underscores the sole impact of jerk control.

B. Scenario 2: Road Adherence Variation - sc2

The second scenario is carried out on the same track
featured in the first scenario, encompassing a narrow passage
navigation and a lane change maneuver. However, in this
scenario, the adherence coefficient µ undergoes continuous
variation. The profiling of the vf sub-functions f1, f2, f3, and
f4 is depicted in Fig. 12 with the curvature variation and
adherence changing. It can be observed that f3 is promoted
with the increase of |ρbp−ρbf | (see (23b)), and f2 is adapting
in response to |ρbf |. Whereas, f4 undergoes variation with the
decrease of µ and the increase of |ρbf |+ |ρbp − ρbf | (28b).

The speed profiling along with the longitudinal acceleration
and jerk is shown in Fig. 13. The speed reduction at t = 10 s
is executed in response to f4 to maintain vehicle stability,
particularly on a road with µ = 0.2, indicative of snowy
conditions. Despite the significant drop in speed (≈ 4 m/s),
the design of vf and the quintic polynomial prevent the
acceleration from reaching −2 m/s2 and keep its profile
smooth. In addition, it conserves the smoothness of jerk and
prevents its overshooting despite the road grip conditions.

To gauge the significance of incorporating µ and the efficacy
of f4, a test is conducted without integrating f4 and subse-
quently compared with the original test. Fig. 14 illustrates the
disparity between the vehicle trajectories with and without the
integration of f4. It is evident that neglecting to address speed
modulation in terms of µ, particularly on high-curvature roads,
can result in the vehicle losing stability and veering off the
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road, potentially leading to severe accidents. The methods in
SOTA 1, SOTA 2, SOTA 3, and SOTA 4 exhibited similar
behavior, veering off the road. Therefore, it is imperative to
incorporate f4 as a function of road adherence and variation
of road curvature in an integrated strategy into speed planning.

C. Scenario 3: Road Gradient Changing - sc3

The third scenario is conducted on the same track as the
first scenario, involving navigation through a narrow passage
and executing a lane change maneuver. In this scenario, the
vehicle operates on a steep slope with a gradient of 15 %. The
energy-efficient quintic speed profiling with the variation of vf
in terms of its sub-functions, particularly f5, is depicted in Fig.
15. Given the consistent road slope throughout the scenario,
f5 varies as a function of the base frame curvature, ensuring
it remains above the threshold required for a 15 % gradient.

To assess the importance of integrating χ and the effec-
tiveness of f5, a test without incorporating f5 is performed
and contrasted with the original one. The literature approaches
are also employed and contrasted with our approach. The cost
variables (40) are employed for the purpose of comparison and
shown in Fig. 16, along with the energy consumption metric.
The integration of f5 is observed to improve load distribution

24/04/2024, 16:12 Google Earth
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Fig. 17: The real trajectory dataset in the city of Compìegne, France.
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Fig. 18: Vehicle trajectory (same legend as Fig. 2) - sc4.

for both front/rear (κ1) and right/left (κ2) orientations. Partic-
ularly noteworthy is its role in attenuating oscillations between
the right and left loads, which are induced during cornering
maneuvers. The load transfer ratio (LTR) is a critical metric
for assessing the risk of rollover, with values exceeding the
safety threshold of [−0.75 0.75] indicating potential danger.
The examination revealed that the literature approaches exhib-
ited oscillations in the load transfer and exceeds the bounds of
LTR indicating potential danger of rollover. Notably, SOTA
1 surpassed the bounds of [−1 1], implying a high risk of
rollover. SOTA 3 revealed sharp oscillations in κ1 which leads
to discomfort and higher energy consumption. It is evident
that the integration of f5 has reduced the LTR value to below
0.5, effectively mitigating oscillations and thereby enhancing
vehicle stability and comfort. As previously discussed, the
precise regulation of speed in the presence of varying road
slopes contributes significantly to an energy economy. The
energy consumption is given in Fig. 16, illustrating that the
integration of f5 has resulted in energy savings of up to 25 %
compared to the scenario without its integration, and up to
50 % compared to the literature approaches.

D. Scenario 4: Validation on a Real-World Dataset - sc4

The final scenario is performed on a track constructed
from our real-world dataset. The real track is shown in Fig.
17 and the vehicle trajectory is depicted in Fig. 18. The
scenario encompasses a series of maneuvers, commencing
with overtaking the succeeding vehicle, followed by navigating
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a roundabout, executing a left turn, and performing a lane
change to avoid a stationary vehicle. Subsequently, the ego
vehicle overtakes another vehicle before encountering another
roundabout. The profiling of the subfunctions of vf is depicted
in Fig. 19. By taking the maximum between ρbf at the current
location and ρbf at 20 m in front of the vehicle, it becomes
feasible to initiate deceleration in anticipation of sharp turns.
It should be noted that the dataset track points are sparse and
the velocity of other vehicles is noisy. The velocity of other
vehicles is available inside the perception zone of the vehicle
and assumed zero outside it. The profiling of f1 is shown in
Fig. 19 as a function of the relative velocity vr,i. Notably, f1 is
not triggered for vr,3, as the moving obstacle 3 is approaching
the ego vehicle from the opposite direction on the second lane.

The generated reference velocity profiles of our quintic
approach, cubic approach, and the other literature methods
are presented in Fig. 20. Due to the nature of the dataset, the
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Fig. 21: Smoothness costs and energy consumption comparison - sc4.

use of full nonlinear vehicle model, and the critical situations
of the scenario, none of the literature approaches completed
the test, despite a maximum velocity setting of 12 m/s. In
contrast to the quintic and cubic approaches that follows the
parameter vf , with the quintic having smoother speed profile,
jerk, and lower lateral acceleration. As we delve into more
realistic real-world scenarios, it becomes crucial for the speed
profile to dynamically adjust to road-changing conditions. This
underscores the robustness of our approach and its practical
applicability for on-road operations.

The smoothness costs of acceleration and jerk along with
the energy consumption for our quintic and cubic approaches
are depicted in Fig. 21. Despite the quintic approach exhibiting
higher acceleration smoothness, its jerk smoothness is notably
lower compared to the cubic approach. Consequently, the
energy consumption is lower in the quintic approach, resulting
in approximately an 8 % energy savings. This highlights the
significant impact of jerk smoothness on energy consumption,
outweighing the influence of acceleration smoothness.

E. Recap

The conducted scenarios have revealed the significance of
the proposed speed planning strategy. Scenario 1 showcased
the effectiveness of the sub-functions f1, f2 and f3 of vf in
handling obstacles and varying road curvature. The quintic
speed profiling emphasized energy economy compared to the
cubic one, achieved through smooth controlled acceleration
and jerk profiles. The proposed approach is subjected to
testing in additional scenarios to assess its generality, yielding
similar outcomes with slightly varying energy savings val-
ues. Scenario 2 elucidated the importance of incorporating
road adherence in the speed planning methodologies, and
manifested the leading merits of f4 in handling continuous
varying road adherence. Scenario 3 demonstrated the major
advantage of integrating road gradient via f5 in enhancing the
overall stability of the vehicle while achieving notable energy
savings. Finally, Scenario 4 highlighted the effectiveness and
robustness of our approach in real-world situations. In addition
to the ablation tests for f4 and f5, we conducted individual
experiments for f1, f2, and f3. f1 contributes to efficient
overtaking by reducing the time spent on the second lane by
35 %. f2 is crucial for safety and stability on high curvature
roads, and f3 enhances the lane change comfort by lowering
the lateral acceleration.

It is worth noting that the execution time of the speed
planning approach with the quintic profiling is roughly similar
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to the cubic one. The simulations are conducted under an Intel
Core i9-12950HX CPU 2.3-GHz laptop. With a sampling time
of 100 ms, the quintic speed profiling (including the calcula-
tion of kb and vf ) is executed on average in 0.01 ms, while
the cubic one in 0.008 ms. This demonstrates exceptionally
fast execution, coupled with energy efficiency, driving comfort,
and enhanced stability. The average total execution time for the
entire process is 15 ms, making real-time operation feasible.

Videos of the system validation on the Scaner Studio
simulator can be seen at: “https://www.youtube.com/playlist?
list=PL6pn13pjrt-AomyhzJXOsg-5R6Chb11Ne”.

VI. CONCLUSION

This paper introduces a novel rapid energy-efficient jerk-
controlled speed planning methodology based on quintic poly-
nomial generation. Several factors, including relative velocity
with obstacles, the curvature of the base frame and best
path, road adherence, and road gradient are integrated into a
speed planning parameter. The approach is demonstrated to be
energy-efficient attributed to the smoothness and control of the
jerk profile, and effectively addresses a wide array of critical
scenarios within moderate traffic conditions. Future research
endeavors may focus on further refining the proposed method
to accommodate dense traffic environments.
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