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Abstract

For details and citation, please refer to [Perrin and Le Riche, 2023]

Bayesian optimization algorithms form an important class of methods to minimize functions
that are costly to evaluate, which is a very common situation. These algorithms iteratively infer
Gaussian processes from past observations of the function and decide where new observations
should be made through the maximization of an acquisition criterion. Often, in particular in
engineering practice, the objective function is defined on a compact set such as in a
hyper-rectangle of a d-dimensional real space, and the bounds are chosen wide enough so that
the optimum is inside the search domain. In this situation, this work provides a way to integrate
in the acquisition criterion the a priori information that these functions, once modeled as GP
trajectories, should be evaluated at their minima, and not at any point as usual acquisition
criteria do. We propose an adaptation of the widely used Expected Improvement acquisition
criterion that accounts only for GP trajectories where the first order partial derivatives are zero
and the Hessian matrix is positive definite. The new acquisition criterion keeps an analytical,
computationally efficient, expression. This new acquisition criterion is found to improve
Bayesian optimization on a test bed of functions made of Gaussian process trajectories in
dimensions 2, 3 and 5. The addition of first and second order derivative information is
particularly useful for multimodal functions.
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Bayesian Optimization (BO)

Our goal : find x? ∈ arg minx∈X⊂Rd y(x)

1 Learn a model (most often, a Gaussian Process YN()) of y()
from N point observations

2 Deduce from YN() a candidate point to evaluate by maximizing
an acquisition criterion
xN+1 = arg maxx∈X a(x ;YN)

3 Calculate y(xN+1), add it to the observations, N ← N + 1

4 stop or go to 1

BO general references: [Garnett, 2023, Gramacy, 2020, Frazier, 2018,
Shahriari et al., 2015, Sobester et al., 2008, Jones, 2001]
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Basic assumption of BO

Trajectories of the Gaussian process (GP) are possible functions
underlying the observations:
y (ω)(x) ∼ N (E(YN(x)) , Cov(YN(x),YN(x ′))) are possible y(x)
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Acquisition criteria: pointwise

Look at the distribution of YN(x) at x to give it a worth sampling
value. Often Analytical.
(Notation: E(YN(x)) = µ(x), Cov(YN(x),YN(x ′)) = c(x , x ′))

Upper Confidence Bound : a(x) = µ(x) + α
√
c(x , x)

Probability of improvement : a(x) = P(YN(x) < ymin)
Expected improvement :
a(x) = EI(x) = E [max(0, ymin − YN(x))]
and many others . . .
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Acquisition criteria: global in scope

Look at the effect of adding an observation at x elsewhere in X.
The criteria are no longer analytical.

Pointwise criteria averaged over X (not analytical). Example:
IECI (Integrated Expected Conditional Improvement)
[Gramacy and Lee, 2011].

Knowledge gradient [Frazier, 2018] : not analytical, not so local
a(x) = E

[
minx ′ µ(x ′)−minx ′ µ

(+x ,YN(x))(x ′)
]
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Acquisition criteria: information-wise

Measure how sampling at x globally provides information about
X ? = arg minx YN(x). Not analytical.

Sample where the entropy of
X ? is reduced the most
[Villemonteix et al., 2009,

Hennig and Schuler, 2012]

as above, obtained through
the entropy of YN(x) | X ?

[Hernández-Lobato et al., 2014]

(from [Villemonteix et al., 2009])
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Trajectories and relevant information for

optimization
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in the acquisition criterion, should
we account for any y (ω)(x)

or for the min of the
trajectories, which is

costly?

Perrin, Le Riche BO with derivatives acceleration 8 / 32



Derivatives acceleration: outline of the talk

y (ω)(x) ∼ N (E(YN(x)) , Cov(YN(x),YN(x ′))) are possible y(x)

When evaluating the worth of x in the acquisition criterion
(potential xN+1), only account for trajectories that have a local
minimum at x ⇒ no need to optimize them!

This is possible with GPs.

Better, propose an analytical approximation to the acquisition
criterion, deriv-EI.
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GPs plasticity: no conditioning
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Note: with a stationary GP, YN(x), ∂YN(x) and ∂2YN(x) are
independent.
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GPs plasticity: with y observations
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The usual Gaussian Process Regression (kriging) picture
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GPs plasticity: y observations + null derivatives
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All trajectories interpolate the observations and have ∂y (ω)(x) = 0 at
dotted x . Some are maxima, others minima.
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GPs plasticity: y observations + null derivatives +

positive curvatures
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All trajectories interpolate the observations, have ∂y (ω)(x) = 0 and
∂2y (ω)(x) > 0 at dotted x . They are local minima.
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Expl: enforcing trajectories with local minima

classical GPR
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When enforcing local minima in the optimal region, the true function

(black line) is better represented, and vice versa ⇒ an acquisition criterion

with derivatives acceleration should learn faster.
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GP and optimality conditions

Recall our goal : find x? ∈ arg minx∈X⊂Rd y(x)

2nd order optimality conditions on the GP

If x is an interior point and y (ω)() C 2, x is a local minimum of y (ω)()
if gradient is null and Hessian positive definite at x :

∂y (ω)(x) = 0 and ∂2y (ω)(x) > 0

No derivative of the true function needed
Do not mistake the true function, y(x), with the GP trajectories,
y (ω)(x). The GP trajectories need to be C2, not the true function.
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GP with derivatives (1/2)

Derivation is a linear operator: (∂YN(x))i=1,...,d and
(∂2YN(x))i ,j∈{1,...,d}2 are GPs with known means and covariances.

Examples: YN(x) ∼ N (µ(x), c(x , x ′))
∂YN(x)
∂x
∼ N (∂µ(x)

∂x
, ∂

2c(x ,x ′)
∂x∂x ′

)
∂2YN(x)
∂x2 ∼ N (∂

2µ(x)
∂x2 , ∂

4c(x ,x ′)
∂x2∂x ′2

)

Cov
(
YN(x), ∂YN(x ′)

∂x ′

)
= ∂c(x ,x ′)

∂x ′

Cov
(
∂YN(x)
∂x

, ∂
2YN(x ′)
∂x ′2

)
= ∂3c(x ,x ′)

∂x∂x ′2

. . .
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GP with derivatives (2/2)

In general, for any linear operator L, LY is also a Gaussian process,
with

E[LY (x)] = Lµ(x), Cov(LY (x),LY (x ′)) = LC (x , x ′)LT .

Here, of interest is the operator creating the R1+d(d+3)/2 vector of Y
and its first and second derivatives,

L : Y 7→ LY :=

{
Y ,

∂Y

∂x1
, . . . ,

∂Y

∂xd
,
∂2Y

∂x2
1

, . . . ,
∂2Y

∂x1∂x2
, . . . ,

∂2Y

∂x2
d

}
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GP conditioned for optimality conditions (1/2)

Key Gaussian vector :Y (x), ∂2Y (x),

to be conditioned︷ ︸︸ ︷
∂Y (x),Y (x1), . . . ,Y (xN)


Conditioning by the observations :
YN(x) = Y (x) | Y (x1) = y(x1) . . .Y (xN) = y(xN)

(YN(x),D2YN(x)|∂YN(x) = 0) ∼

N




m
m̈1
...
m̈d

 ,


s2 ρ1,1 · · · ρ1,d

ρ1,1 s̈1
. . .

...
...

. . . . . . ρd−1,d

ρd ,1 · · · ρd ,d−1 s̈d



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GP conditioned for optimality conditions (2/2)

For example,

m = µ(x) + ∂c(x , x)>
[
∂2c(x , x)

]−1
(0− ∂µ(x))

s2 = c(x , x)− ∂c(x , x)>
[
∂2c(x , x)

]−1
∂c(x , x)

Enforcing the positive definiteness of ∂2YN(x) is more complicated.

Simulation with gradient and Hessian constraints

Approximate ∂2YN(x) > 0 by D2YN(x) > 0
(D2YN(x) = diag(∂2YN(x)))

Use algorithm of [Perrin and Da Veiga, 2021] to simulate the GP
YN(x),D2YN(x) | ∂YN(x) = 0 under the constraints D2YN(x) > 0
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EI with derivatives acceleration

Expected Improvement [Saltenis, 1971, Schonlau, 1997] :

a(x) = EI(x) := E [max(0, ymin − YN(x))]

=
√

c(x , x) [U(x)Φ(U(x)) + φ(U(x))]

where U(x) := (ymin − µ(x))/
√

c(x , x)

EI with derivatives acceleration

deriv-EI(x) := E
[
1R(x)∂YN(x)∈B(ε),∂2YN(x)>0 max(0, ymin − YN(x))

]
where B(ε) :=

{
ẏ ∈ Rd , ‖ẏ‖ ≤ ε

}
is the d-dimensional hypersphere of

radius ε, R(x) is a matrix such that R(x)Cov(∂YN(x))R(x)T = Id .

All the explanations in [Perrin and Le Riche, 2023].
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Approximation to deriv-EI I

Acquisition criteria will be optimized a lot : they should be
inexpensive to calculate if possible ⇒ we propose an analytical
approximation to deriv-EI.

Assumptions:

A1 ε, the size of the sphere to which ‖R(x)∂YN(x)‖ belongs, is
small.

A2 The positive definiteness of ∂2YN(x) | ∂YN(x) = 0,YN(x) = y
can be approximately checked as all main curvatures are
independent and positive,
((∂2YN(x))i ,i | ∂YN(x) = 0,YN(x) = y) > 0.
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Approximation to deriv-EI II

Under A1 & A2,

deriv-EI(x) ≈ LikelyMin(x)× cond-EI(x)

LikelyMin(x) := cte(εd)× exp

(
−ṁT Ṡ−1ṁ

2

)

×
d∏

i=1

Φ

(
τ̈i√

1− ri 2

)
cond-EI(x) := s [(zmin − a)Φ(zmin) + φ(zmin)]

where ∂YN(x) ∼ N (ṁ, Ṡ), τ̈i = m̈i

s̈i
, ri = ρ1i

ss̈i
, zmin = ymin−m

s
,

a = cf. [Perrin and Le Riche, 2023], → 0 when ri → 0 or τ̈i → 0.
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Approximation to deriv-EI III

The (analytical) deriv-EI is marginally more expensive than EI:
just model Y (x),D2Y (x) | Y (X) = y(X), ∂Y (x) = 0 instead of
Y (x) | Y (X) = y(X), i.e., only d extra-observations in the
covariance matrix to invert.

Start of the proof:

deriv-EI(x) =

∫ ymin

y=−∞

∫
ẏ∈E(x,ε)

∫
Ÿ def.pos.

(ymin − y)pdP(y , ẏ , Ÿ )

≈ Vol(E(x , ε))f∂YN (x)(0)

∫ ymin

y=−∞

∫
ÿ∈[0,+∞[d

(ymin − y)pfYN (x),D2YN (x)|∂YN (x)=0(y , ÿ)dydÿ

= Vol(E(x , ε))f∂YN (x)(0)

∫ ymin

y=−∞

∫
ÿ∈[0,+∞[d

(ymin − y)pfYN (x)|∂YN (x)=0(y)

fD2YN (x)|∂YN (x)=0,YN (x)=y (ÿ)dydÿ

= . . . independence of the (D2YN(x))i | ∂YN(x) = 0,YN(x) = y makes the product appear . . .
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Numerical experiments

GPs: constant mean, Matérn 5/2 kernels : trajectories are twice
continuously differentiable, as needed,

x ∈ X = [0, 1]d , Cov(Y (x),Y (x ′)) = σ2
d∏

i=1

κ

(
|xi − x ′i |
θ
√
d/2

)
,

κ(u) :=

(
1 +
√

5u +
5

3
u2

)
exp
(
−
√

5u
)

Test functions: y 1D and y 2D + GPs with this (known) Matérn
covariance and interior optima: results only depend on the
acquisition criterion, not artifacts.

deriv-EI and EI are either optimized by exhaustive search (in 1
and 2D) or 105 random evaluations followed by 10 Nelder-Mead
search starting from the best points.
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Illustration of deriv-EI on y 1D
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EI ( ) and deriv-EI ( )

deriv-EI has more concentrated high-values regions than EI

deriv-EI favors the center of X while EI favors the edges
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Illustration of deriv-EI on y 2D
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deriv-EI vs. EI, one step

500 LHS of size N ∈ [2d + 1, 20d ], quartiles of y(xN+1),
EI in black vs. deriv-EI in red.
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deriv-EI yields better results, in particular in the middle of the search.
Indeed, EI and deriv-EI equivalent at the beginning (Y , ∂Y and ∂2Y
independent) and at the end (EI samples in regions of local optima).
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Tests on GPs

100 functions are generated as GPs in d = 2, 3 and 5.
Examples in 2D: θ = 0.2 top row, θ = 0.5 bottom row.
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Tests on GPs: mean time to target vs. target
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Conclusions

deriv-EI is an EI calculated only on optima at no extra cost.

Testing on problems with the proper structure (GPs and interior
optima), d ≤ 5, show that deriv-EI improves over EI.

deriv-EI samples less than EI on the bounds ? What if the
optimum is on the bounds ?

⇐ deriv-EI does not prevent from sampling on the bounds, it
strikes a compromise between null gradient, positive curvatures
and possible Y values. It may correct in high-dimension a
known flaw of EI.

⇐ Extension: use YN(x) trajectories to estimate the probability
that x? is on the bound. If large, do something else (use EI, set
xi to the bound value, . . . ).

Other acquisition criteria could benefit from the derivatives
acceleration: EI2 (done in the paper), probability of
improvement, . . .
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