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Abstract
Diverging wave acquisition has become the standard tech-
nique for fast ultrasound imaging due to its high tempo-
ral resolution. However, this approach is limited by the
number of transmitted waves. Recently, deep learning has
taken place in a variety of studies to improve the quality of
ultrasound imaging. Most of these approaches have been
performed on Bmode images, radio frequency signals, and
in-phase/quadrature posterior to the delay-and-sum beam-
former. In this work, we employ a 3D complex convolu-
tional neural network to reconstruct an enhanced ultra-
sound image from fewer diverging waves prior to the sum
in delay-and-sum beamformer. The network was trained
using simulated data and evaluated using in-vitro phantom
data. We provide experimental evidence that our approach
produces a high contrast and quality image from 3 steered
acquisitions that is comparable to those obtained from di-
verging wave compounding.

Keywords
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1 Introduction
Ultrasound (US) image reconstruction involves the recep-
tion of the reflected multichannel raw radio frequency
(RF) signals. RF data is demodulated to produce in-
phase/quadrature (IQ) data, followed by beamforming of
the imaged target. Beamforming is the application of a
time-of-flight correction process with spatial filtering to in-
troduce selectivity into the signal to eliminate undesirable
interference [1].
Diverging wave (DW) ability to image a target with a single
transmission acquisition makes it achieve higher frame rate
[2]. However images from a single DW emission produces
poor quality. A standard technique to improve the quality
consists of coherently compounding multiple acquisitions
with different steering angles [3] [4] [5]. A trade-off be-

tween quality and frame rate needs to be made as the trans-
mission of multiple waves increases the acquisition time,
hence lower frame rate.
Recently, deep learning has played a key role in medi-
cal data processing due to the growth of computational
power and various use cases. State-of-the-art results have
been achieved in image classification [6], segmentation [7]
[8], liver and breast lesion classification [9] [10]. This
prompted US medical researchers to apply deep learn-
ing methods to their research. Deep neural networks
(DNNs) were used to interpolate missing RF data [11],
and the reconstruction of B-mode images [12]. A more
promising approach is the use of convolutional neural net-
works (CNNs), which have shown improvement in image
processing-related tasks; for instance CNN was used for
compounded imaging [13], denoising and speckle reduc-
tion [14], also the use of a fully convolutional neural net-
work (FCNN), which learned an MV beamformer transfor-
mation [15] and direct image segmentation from RF data
[16]. Another use of deep learning was the learning of
compounding for DW imaging [17] [18] where a real val-
ued CNN was used to reconstruct a compounded image
from fewer DWs.
Until recently, deep learning has predominantly focused
on real-valued data, with limited exploration of complex-
valued data. A recent study [19] compared the effective-
ness of complex-value neural networks (CVNNs) versus
real-value neural networks (RVNNs) to assess the utility
of such data. Additionally, the application of CVNNs has
been investigated in tasks involving the learning of com-
plex representations of time-series and processing of seis-
mic data [20].
In the field of US imaging, CNNs based on complex IQ
data has been introduced for speckle reduction [14], multi-
line acquisition and transmission improvement [21], where
the complex data was trained as a separated real and imag-
inary parts in a two-branch network structure as in color
channel information, such approach does not take in con-
sideration the nature of complex data and its calculation.
As demonstrated in [19], a complex-valued model provides
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Figure 1: Proposed complex-valued architecture. The network consists of five (5) complex convolution 3D blocks, where
each block includes doubled complex convolution 3d, modReLU activation and complex batch normalisation. Finally single
3D complex convolution with modTanh activation to produce the network weights. The weights are applied to the input data
and the result is summed over channel data to produce complex IQ image.

a more constrained system than a model based on real-
valued parameters. A recent study [22] demonstrated the
superior representational capacity of complex-valued neu-
ral networks in acoustic applications such as speech spec-
trum prediction and music transcription.
A different approach was considered by [23] [24], where a
CVNN was defined for DW imaging; their work consisted
of building a complex equivalent of the work in [18]. The
network consisted of a 2D convolution between the IQ data
produces from delay-and-sum (DAS) beamformer as real
and imaginary parts with complex weights represented as
real and imaginary parts.
In this context, we propose a 3D CVNN architecture for
fast DW imaging using only 3 DW acquisitions. Our net-
work employees data after time-of-flight (TOF) correction
that produces 3D complex channel signals rather than the
2D IQ signals posterior to DAS. Our network uses 3D com-
plex convolution to incorporate the phase information from
each channel to enhance the learning to produce high qual-
ity US image.
The present study is structured as follows: Section 2 deals
with the proposed architecture and training strategy. Sec-
tion 3 presents the experimental setup for the data acqui-
sition, network training, and performance metrics. Section
4 presents the result of the work and a comparison with
the approach presented in [24] which is named CID-Net.
Finally, conclusion and remarks are given in section 5.

2 Methods
2.1 Delay and Sum
Assume an M element linear array aligned on the x-axis
facing the positive direction of the z-axis, and a pixel grid
of R rows and C columns with prc being one pixel from the
grid such that r ∈ [1, R] and c ∈ [1, C]. Denoting IQm(t)
the demodulated RF echo signal received at an element m,
and τrcm the round trip time of the pixel prc to the element
m of the transmitted wave.
DAS beamformer performs a time of flight correction by

combining the IQ signals at a delay τrcm to generate
complex-valued pixel data that is out of phase producing a
frame of size R×C×M . In order to correct the pixel data,
a correction weights wDAS are applied to the pixel data and
summed over the transducer’s elements as follows:

IDAS =

M∑
m=1

wDAS · IQm(τrcm). (1)

The correction weights are defined as:

wDAS = exp(2πjfcτrcm), (2)

where j =
√
−1 is the imaginary unit and fc is the trans-

ducer center frequency. V. Perrot et al. [25] implemented
a DAS beamformer as a part of their toolbox that handles
ultrasound imaging which will be used for data processing
in our work.

2.2 Complex Convolution
In this work, complex-valued convolution layer is uti-
lized based on the definition of complex-valued convolu-
tion [22]. Assuming a complex-valued input X and a kernel
W, the complex-valued convolution Z is defined as:

[
Re(Z)
Im(Z)

]
=

[
Re(W ) −Im(W )
Im(W ) Re(W )

]
∗
[
Re(X)
Im(X)

]
, (3)

where Re(.) and Im(.) denote the real and imaginary part
of the complex value, respectively. (∗) denotes convolu-
tional operation.

2.3 Activation Function
Different activation were investigated in the context of
complex-valued networks, however, our aim is to preserved
the phase information and only influence that value with
the complex convolution operation. Arjovsky et al. pro-
posed modReLU [26], which is a variant of ReLU activa-
tion that is defined as:
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Figure 2: Sample from training set. Red area indicates
background region, green area indicates anechoic region,
and blue area indicates hyperechoic region. (a) B-mode
image of standard compounding 3 DWs as training input
with 90 dB, (b) B-mode image of standard compounding
20 DWs as target with 40 dB.

modReLU(Z) = ReLU(|Z|+ b)ejθZ , (4)

where θZ is the phase of Z, b ∈ R is a bias parameter of
the non-linearity, and |.| is the magnitude of the complex
number. By applying such activation the phase θZ is pre-
served in contrary to applying a separate ReLUs on both
the real and imaginary parts. Following the definition of
modeReLU, we created modTanh as a final activation as
follow:

modTanh(Z) = tanh(|Z|+ b)ejθZ . (5)

2.4 Loss Function
Network learning is not complete without applying back-
propagation to update the complex kernels. Back-
propagation implies differentiable loss function. In a
complex-valued network a complex differentiable func-
tion is needed (i.e., holomorphic functions that satisfy the
Cauchy-Riemann conditions) [20]. However, this restric-
tion is not necessary, as it was shown that a real differen-
tiable loss function with respect to the real and imaginary
parts is compatible with back-propagation[19, 22].

We suggest to use a complex magnitude mean-squared-
error (MSE) between the desired output image Y and net-
work prediction Ŷ :

LMSE =
1

N

N∑
(Ŷ − Y )2. (6)

2.5 Network Architecture
The main building components of the network are: 3D
complex convolution, modReLU, and complex batch nor-
malization [27] with a final modTanh activation. The net-
work consist of a series of blocks that learns the optimal
weights to produce a high quality and contrast. Overall,
the network is defined as:

Inew =

M∑
m=1

wnew · wDAS · IQm(τrcm), (7)

where wnew is the learned weights of the network applied
to DAS and summed over channel axis.
The proposed network (3D-CVCNN) presented in Fig-
ure 1; consists of 5 complex convolution blocks. One block
is constructed using the previously mentioned components.
The network uses proper padding to preserve the spatial fu-
tures with the same size. modReLU preserves the phase
throughout the network to reconstruct wnew form the tar-
get data. wnew is multiplied to the input and the result is
summed over channel axis to produce complex IQ image.

Table 1: Ultrasound Imaging Configuration.

Parameters Value

Number of elements 80

Center frequency 2.8 MHz

Sampling frequency 11.2 MHz

Pitch 240 µm

Kerf 40 µm

Fractional bandwidth 75%

Speed of sound 1540 m/s

3 Experiment
3.1 Data Acquisition
A phased array configuration derived from VERMON P2-8
transducer (Table 1) was used with SIMUS [28, 29] to sim-
ulate training dataset by steered diverging wave acquisi-
tions. Each acquisition was performed by emitting 20 DWs
with tilt angles between ±45◦. The simulated RF data were
demodulated using a phaser at the center frequency, and a
fifth-order Butterworth low-pass filter was used for band-
width reduction. Time-of-flight correction was performed
with a modified version of the DAS beamformer [25] to
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Figure 3: B-mode samples from simulated test set comparing different methods. Left to right: standard compounding of 3
DWs; CID-Net (3 DWs); 3D-CVCNN (3 DWs); and standard compounding of 20 DWs.

Method
Hyperechoic region Anechoic region

CR CNR CR CNR

Standard compounding (3 DWs) 0.20 2.31 0.18 2.00

CID-Net (3 DWs) 0.20 2.58 0.23 3.01

3D-CVCNN (3 DWs) 0.39 3.86 0.21 2.53

Standard compounding (20 DWs) 0.20 2.16 0.22 2.34

Table 2: CR, CNR of different methods on the test set.

create the 3D complex input data that contains IQ signals
for each element of the transducer (channel), using a mean
sound velocity of 1540 m/s. The IQ signals were formed
on a 128 × 128 grid, which corresponds to a physical di-
mensions of 70 mm in length, and a sectorial angle of 90◦.

From each acquisition, target data was obtained by coher-
ently compounding all 20 TOF signal and summed over
channel axis to produce a 128 × 128 IQ image, while a
subset of 3 DWs TOF data that correspond to steered an-
gles [−30◦, 0◦,+30◦] were summed to produce the com-
plex training TOF data 128 × 128 × 80. To be able to fit the
training data and prevent the loss of information (phase),
we averaged the input data over the channel axis to a size
of 128 × 128 × 10. A total of 5000 training pairs (TOF,
IQ) were simulated.

In addition, we acquired in-vitro data using CIRS phan-

tom model 040GS, with VERMON P2-8 transducer on a
Vantage 256; Verasonics scanner. The acquisition was per-
formed with 31 DWs with title angles between ±45◦ and
processed with the same procedure as the simulated data.
The in-vitro data were not included in training, and only
used for evaluation.

3.2 Network Training
The network was implemented in Python using Keras API
[30], and Keras Complex API [27]. A selection of 3500
pairs (TOF, IQ) were used as training, 1000 for validation,
and the remaining 500 for testing. Due to the size of train-
ing data and GPU RAM limitations, a data loader was used
to feed the training data to the network by batch. The net-
work was trained using Adam optimizer [31] with a batch
size of 1 and an initial learning rate of 1×10−4. Early stop-
ping mechanism was implemented to prevent over-fitting,
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Figure 5: Axial profiles of the point reflectors represented
in Figure 4 (a).

with learning rate scheduler. The learning rate was halved
if there was no reduction in validation loss for 10 epochs,
and training was terminated if there were 20 epochs with-
out a reduction in validation loss with a minimum change
of 0.0001 that qualify as an improvement. The training was
conducted on a NVIDIA GeForce RTX 3080 GPU.

3.3 Evaluation Metrics
The following metrics were used to assess the performance
of the proposed method:
Contrast: Contrast (CR) is defined as the ratio of the mean
value in the region of interest to the mean value in the re-
gion of the background [32].

CR = |µR − µB |. (8)

Contrast to Noise Ratio: Contrast to Noise Ratio (CNR)
measures the signal intensity ratio between the region of
interest and the background [33].

CNR =
|µR − µB |√
σ2
R + σ2

B

, (9)

where µR, µB (σR, σB) are the mean (standard deviation)
of the region of interest and the background, respectively.

4 Results
4.1 Learning Convergence
After 56 epochs the training was ended according to the
implemented early stopping mechanism and relative to the
size of the model that has a total of 4.9 × 103 trainable
parameters. Training took approximately 15 hours and the
weights obtained from the last training session were used
for further analysis.

4.2 Image Quality
Figure 3 depicts B-mode sample from test set comparing
different methods. The methods included standard com-
pounding, CID-Net, and 3D-CVCNN with 3 DWs, in ad-
dition to standard compounding with 20 DWs. We observe
that 3D-CVCNN improved the over all image quality and
contrast by suppressing background noise. This improve-
ment is related to the learning strategy where we fed the
network with high contrast data that is reconstructed from
coherently compounding 20 DW acquisition.
The previously defined metrics in section 3.3 were com-
puted over the test set. The results are presented in Table 2.
We notice that 3D-CVCNN improves the contrast and that
is reflected into the values of CR and CNR compared to
standard compounding and CID-Net, However CID-Net
provides higher CNR in anechoic regions.

4.3 Image resolution
Figure 4 depicts results from the in-vitro phantom acqui-
sition comparing different methods. As 3D-CVCNN im-
proves the contrast it lacks the sharpness of standard com-
pounding of 31 DWs. Another observation is presented in
Figure 5 showing the axial profile of the point reflectors
(in red rectangle). We notice that 3D-CVCNN provides
a separation between the point reflectors and background
compared to standard compound and CID-Net with 3 DWs,
However as the input data is from 3 DWs, the blurring in
point reflectors is to be expected and that is to be improved
during acquisition.



5 Conclusion
In this paper, we presented a 3D complex-valued convolu-
tional network for fast DW imaging. The proposed method
was trained for the reconstruction of high quality imaging
and frame rate only using 3 DWs. Through experimen-
tal evaluation, we demonstrated the effectiveness of this
method, yielding an image quality comparable to that ob-
tained from coherent compound of more than 20 DWs. For
future work, we aim to explore methods to improve the
pixel resolution and sharpness of the reconstructed IQ im-
age.
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