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PRESCRIBED EXPONENTIAL STABILIZATION OF A ONE-LAYER

NEURAL NETWORK WITH DELAYED FEEDBACK:

INSIGHTS IN SEIZURE PREVENTION AND NEURAL CONTROL

CYPRIEN TAMEKUE, ISLAM BOUSSAADA, AND KARIM TRABELSI

Abstract. This paper provides control-oriented delay-based modelling of a one-layer neural
network of Hopfield-type subject to an external input designed as delayed feedback. The speci-
ficity of such a model is that it makes the considered neuron less susceptible to seizure caused by
its inherent dynamic instability. This modelling exploits a recently set partial pole placement
for linear functional differential equations, which relies on the coexistence of real spectral values,
allowing the explicit prescription of the closed-loop solution’s exponential decay. The proposed
framework improves some pioneering and scarce results from the literature on the characteriza-
tion of the exact solution’s exponential decay when a simple real spectral value exists. Indeed,
it improves neural stability when the inherent dynamic is stable and provides insights into the
design of a one-layer neural network that can be stabilized exponentially with delayed feedback
and with a prescribed decay rate regardless of whether the inherent neuron dynamic is stable
or unstable.
Keywords. Neural networks, Time-delay controller, Neutral equations, PD-controller, Coexistent-
real-roots-induced-dominancy, Partial pole placement.
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1. Introduction

Neural networks exhibit complex dynamics crucial for their biological or artificial functionality.
The stability of these systems is essential, as instabilities can lead to dysfunctional behaviours
such as seizures in biological systems [YBM+15] or system failures in artificial networks [WY21].

In the study of neurological disorders such as epilepsy, models at the single-neuron level offer
profound insights into the cellular mechanisms that support seizure phenomena [DDJB21]. Sin-
gle neuron-scale models vary significantly in detail, ranging from those that include sub-cellular
components like mitochondria [TU19] to those that intricately describe the morphology of den-
dritic and axonal trees [TGCR14]. Such detailed models often require the neuron’s geometry to
be divided into several compartments, which, while biophysically detailed, can lead to complex
systems with many differential equations that challenge the complete dynamical analysis.

This paper employs a one-layer continuous-time Hopfield neural network (HNN) [Hop84]
to model epileptic seizures at the single neuron level, incorporating a delayed Proportional-
Derivative (PD) controller to enhance the model’s stability and responsiveness. The HNN frame-
work offers a more straightforward yet effective way to capture neuronal activity’s fundamental
dynamics during seizures, such as high-frequency bursts of action potentials and hypersynchro-
nization of neuronal populations, which are pivotal in initiating and propagating seizures. It
reduces the complexity seen in highly detailed models [CUZ+09, HH52] while retaining the abil-
ity to simulate key biophysical processes. Integrating a delayed PD controller is essential for
accurately simulating the regulatory mechanisms that naturally occur within the brain. This
controller mimics the effects of inhibitory feedback within neuronal circuits, essential for mod-
ulating the excitatory activity that leads to seizures [YBM+15]. By implementing delay in the
PD controller, our model reflects the time-dependent nature of neuronal interactions, where the
effects of inhibitory actions are not instantaneous but occur with a physiological lag, charac-
teristic of synaptic transmission delays relevant in brain activities [PJ19, SD19], for further in-
sights in the use of time-delays in modelling biological systems, see for instance [Gop13, Rua06].
In particular, it is commonly accepted to include time delays in modelling sensory and mo-
toric neural pathways due to the time lag one observes in communication. See, for instance,
[Ste09, Kua93, BBL93], and [WR99] for two delays in neural networks modelling.

Consider the continuous Hopfield network, a model that simulates the state dynamics of a
biological neuron or serves as a basic unit within an artificial neural network. The following
equation encapsulates the governing dynamics of this model [Hop84, BBL93],

ẏ(t) = −νy(t) + µ tanh(y(t)) + I(t), (1.1)

where ẏ(t) denotes the rate of change of the neuron’s state at time t, ν is a positive parameter
reflecting the natural decay rate or leakage of the neuron’s membrane potential towards its
resting state, µ is a positive parameter that scales the influence of the activation function tanh,
tanh(y(t)) is the activation function applied to the neuron’s current state, emphasizing real-
time processing without the introduction of delay, I(t) = −kpy(t − τ) − kdẏ(t − τ) represents
an external input designed as a Proportional-Derivative (PD) controller, with kp and kd being
the proportional and derivative gains, respectively, and τ > 0 indicating a delay in the control
action to account for the inherent temporal dynamics in neural processing.

The proportional component of the PD controller (−kp) can be compared to inhibitory
synaptic strength. Increasing kp represents strengthening inhibitory control and stabilizing
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the neuron’s activity. The derivative component (−kd) helps dampen the rate of change in
the neuron’s activity, similar to how biological systems use rate-dependent inhibitory mecha-
nisms to prevent excessive firing rates that lead to seizures. We achieve stability with small
values for kp and kd. This smallness guarantees that the inherent dynamics of the system
(ẏ(t) = −νy(t)+µ tanh(y(t))) are preserved to a greater extent. In particular, this is important
for neural networks that aim to mimic biological processes, as it ensures that the control strategy
does not overpower the natural behaviours and characteristics of the system.

When a neural system’s natural decay rate (ν) is surpassed by the interaction strength (µ),
the system tends toward instability. This is a significant theoretical and practical concern, as it
resembles the hyperexcitability observed in neuronal populations during epileptic seizures.

This paper explores the effectiveness of delayed PD controllers in stabilizing the equation (1.1)
characterized by ν ≤ µ. Our main goal is to establish a theoretical basis to guide the practical
design of a one-layer neural network system that is less susceptible to seizures caused by inherent
dynamic instability. Roughly speaking, our main focus is on parameter identifications, meaning
that given γ < 0, how can we engineer the system’s parameters ν > 0, µ > 0, kp > 0, kd > 0
and τ > 0, whatever the sign of ν − µ such that the trivial equilibrium to equation (1.1) decays
exponentially towards zero with a decay rate γ + ε, for a sufficiently small ε > 0?

We achieve this general purpose through the linearization technique. We are therefore inter-
ested in studying the exponential stability of the equation,

ẏ(t) = −(ν − µ)y(t)− kpy(t− τ)− kdẏ(t− τ). (1.2)

In the proposed framework, we adjust the control parameters - specifically the gains kp and
kd, and the delay τ - to ensure that the solutions of equation (1.2) are not only asymptotically
stable but also exhibit a guaranteed rate of exponential decay.

The equation (1.2) has been widely discussed in the literature regarding its asymptotic and
exponential stability [LYH00, HL13, Fri01, BMN22, SBN23]. Sufficient delay-independent con-
ditions for stability have been presented. In [LYH00, Example 1, page 26], the authors proved
the global uniform asymptotic stability of equation (1.2) with constant real coefficients (not

dependent upon the delay τ) satisfying ν − µ > 0, |kd| < 1, and |kp| < (ν − µ)
√

1− k2d using

a Lyapunov functional and a linear matrix inequality (LMI). It’s worth noting that asymptotic
analysis of (1.2) was already considered in [HL13, Chapter 9, Section 9.8, page 294] when kp = 0,
ν − µ > 0, and |kd| < 1, see also [Fri14, Chapter 3, Section 3.3.4, page 69]. Unfortunately, to
the best of the authors’ knowledge, no known result using a time-domain approach based on a
Lyapunov functional and a LMI can be applied to study the asymptotic stability properties of
equation (1.2) when ν − µ ≤ 0.

In the frequency domain, the problem reduces to the analysis of the distribution of the roots
of the corresponding characteristic function, which is an entire function called characteristic
quasipolynomial. Interestingly, the corresponding characteristic quasipolynomial is shared with
the problem of boundary PI control of the transport equation as studied in [CT15, SBN23],
see also [BBNT23] for further insights on the corresponding quasipolynomial. For a deeper
discussion of the spectral properties and related stability analysis and control approaches of
(1.2), refer to [MN14, Bri15]. Via Laplace’s transform, the asymptotic stability of equation
(1.2) is reduced to study the location of the spectrum of the quasipolynomial function

∆0(s) = s+ ν − µ+ e−τs(kds+ kp), s ∈ C. (1.3)
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As a matter of fact, to characterize the exponential stability of solutions of the linearization of
(1.2), it amounts to the location of the spectral abscissa of ∆0, which is a challenging prob-
lem in all generality. However, recent works have highlighted a particularly interesting spectral
property, called multiplicity-induced-dominancy (MID), which consists in conditions on the sys-
tem’s parameters under which a multiple spectral value corresponds to the spectral abscissa
[BNEA+20, BMN22, MBN21]. In particular, it appears that a characteristic root of maximal
multiplicity (i.e., equal to the degree of the corresponding quasipolynomial) necessarily defines
the spectral abscissa of the system, this property occurs in general in generic quasipolynomial
and is called GMID. However, in the case of intermediate multiplicities, that is, multiplicities
which are less than the quasipolynomial’s degree, the IMID occurs (the largest assigned root cor-
responds to the spectral abscissa) under some additional conditions, see for instance [BBNT23].
Since these works, the case of the assignment of a characteristic root with maximal multiplicity
was recently addressed and thoroughly characterized in [MBN21] (generic retarded case) and
in [BMN22] (unifying retarded and neutral cases) for LTI DDEs including a single delay . It is
essential to point out that the multiplicity of a given spectral value itself is not essential. Still, its
connection with the dominancy of this root is a meaningful tool for control synthesis. Namely,
it is shown that, under appropriate conditions, the coexistence of exactly the maximal number
of distinct negative zeros of quasipolynomial of reduced degree guarantees the exponential sta-
bility of the zero solution of the corresponding time-delay system, a property called Coexisting
Real Roots Induced Dominancy (CRRID), see for instance [ABBN18, BBN20, SBN23, SBNB23].
These properties opened an interesting perspective in control through the so-called partial pole
placement method, that is, imposing the multiplicity or the coexistence of simple real character-
istic root of the closed-loop system by an appropriate choice of the controller gains guarantees
the exponential stability of the closed-loop system with a prescribed decay rate. For instance, the
quasipolynomial (1.3) has been investigated in [SBN23] in the context of studying the boundary
control of the transport equation with a proportional-integral (PI) controller, where the CRRID
property has been exploited in the prescription of the closed-loop exponential decay.

The contribution of this work is threefold: First, it refines recent results on the CRRID prop-
erty for the first-order neutral functional differential equations, providing further insights into
the qualitative properties of the corresponding quasipolynomials. In particular, in comparison
to the result of [SBN23], it gives a more straightforward proof for the GCRRID1 (G refers to
generic) to hold for an arbitrary distribution of the real roots as well as the necessary and suf-
ficient conditions for the ICRRID (I refers to intermediate) to hold i.e. when two real roots are
assigned. The latter is provided in the two complementary cases: no further real roots exist,
and an unintentional third real root coexists.

Secondly, it sheds some light on the intriguing properties of the quasipolynomial satisfying
the CRRID and the benefits offered by the CRRID property in terms of exponential decay cer-
tification. In fact, in the single-delay case, when the Frasson-Verduyn Lunel’s [FVL03] sufficient
condition for the dominancy of a simple spectral value is not met, the CRRID remains valid.
Furthermore, the CRRID extends some recent results employing time-domain approaches such
as the ones relying on Lyapunov functional and linear matrix inequalities thanks to the resulting
sharp information on the spectrum location. As a matter of fact, when three coexistent spectral
values are equidistributed, we exhaustively characterize the remaining spectrum distribution,

1The GCRRID occurs when the maximal number of real roots is achieved.



STABILIZING ONE-LAYER NEURAL NETWORK WITH PD CONTROLLER 5

extending the result obtained in [BMN22] in the GMID case. Nevertheless, when these roots
are not equidistributed, we show that the remaining spectrum is asymptotic to an appropriate
vertical line in the complex plane. Also, while the negativity of the spectral abscissa is assumed
in [SBN23], in our contribution, the negativity of such a spectral abscissa is characterized in
the space of the system’s parameters. Thanks to the CRRID setting, and inspired from [HL13,
Chapter 1, Theorem 6.2], we establish an explicit and more straightforward exponential esti-
mate of the closed-loop system’s solution compared to that of [HL13][Chapter 1, Theorem 7.6,
page 32] thanks to the special structure of the corresponding quasipolynomial.

Lastly, these findings are interpreted and exploited in modelling a one-layer neural network
of Hopfield-type, which is less susceptible to seizure caused by inherent dynamic instability.

The remainder of the paper is organized as follows: Section 2 provides the reader with some
prerequisites in the complex analysis used to prove the main results and ends by the problem
settings. In Section 3, we present the main results and the corresponding proofs. Section 4
exploits and translates the main results into exponentially stable one-layer neural networks of
Hopfield-type modelling.

2. Problem settings and prerequisites

Throughout the following, our focus is on studying the asymptotic behaviour of solutions of
the general scalar neutral functional differential equation (NFDE) in Hale’s form

d

dt
(y(t) + αy(t− τ)) = −ay(t)− βy(t− τ), (NDE)

with corresponding initial condition y(0) = y0 ∈ C0([−τ, 0]). To this equation corresponds the
characteristic quasipolynomial function given by

∆(s) = s+ a+ e−τs(αs+ β) (s ∈ C), (2.1)

where (a, α, β) ∈ R3 and τ > 0. It is known that the degree of the quasipolynomial ∆ - the
sum of the degrees of the involved polynomials plus the number of delays - is equal to three.
Moreover, thanks to the Pólya-Szegö bound [PS72, Problem 206.2, page 144], the degree of ∆
is a sharp bound for the number of real roots counting multiplicities of the quasipolynomial ∆.

Despite the challenging question of characterizing the spectral abscissa of (NDE), Frasson-
Verduyn Lunel in [FVL03, Lemma B1] provides a test for determining the simplicity and dom-
inance of real spectral values in the multi-delay scalar neutral equations, offering fundamental
insights. Notice that such a characterization is closely related to the exponential/asymptotic
behavior of the equation (NDE).

According to Frasson-Verduyn Lunel’s lemma when restricted to the single-delay case, a real
root s0 of ∆ is simple and dominant if V (s0) < 1 where V is a specific functional construct
derived from ∆. In other words, the condition is as follows; see, [FVL03, Lemma 5.1].

Lemma 2.1. Suppose that there exists a real zero s0 of ∆. If V (s0) < 1, then s0 is a real simple
dominant zero of ∆. Here,

V (s0) = (|α|(1 + |s0|τ) + |β|τ)e−s0τ ,

where (α, β) ∈ R2 are real coefficients appearing in (2.1) and τ > 0.
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Frasson-Verduyn Lunel’s lemma is relevant, however restrictive, its limitation shall be explored
later in Section 3.3. This study uses the CRRID framework which appears to be broad and
flexible, with a quite sharp location of the spectrum distribution. Our analysis shows that the
CRRID approach ensures that the largest real root is the rightmost and dominant, even when
Frasson-Verduyn Lunel’s sufficient condition is not satisfied. When the real spectral values
assigned to ∆ are equidistributed, we also determine the threshold value beyond which the
largest one maintains dominancy while no longer satisfying Frasson-Verduyn Lunel’s sufficient
condition for dominacy. This expanded application of the CRRID approach demonstrates its
usefulness in providing an effective framework for analyzing the spectrum of quasipolynomials.

Before starting the study of the localisation of the quasipolynomial ∆ roots, let us state the
following lemma the proof of which can be found in [PS12, Problem 77, page 46].

Lemma 2.2 (Descartes’ rule of signs). Let a1, a2, a3, λ1, λ2, λ3 be real constants, such that
λ1 < λ2 < λ3. Denote by Z the number of real zeros of the entire function

F(x) = a1e
λ1x + a2e

λ2x + a3e
λ3x (2.2)

and by C, the number of sign changes in the sequence of numbers a1, a2, a3. Then, C − Z is a
non-negative even integer.

One also has the following important result which extends the [SBN23, Corollary 2], it includes
the case where we only assign two real spectral values to ∆.

Lemma 2.3. Let τ > 0 and ∆ be the quasipolynomial defined by (2.1) with real coefficients.
Let η ∈ {0, 1}, if ∆ admits exactly 3 − η real roots, then any root x + iω ∈ C of ∆ with ω ̸= 0
satisfies

|ω| ≥ (2− η)π

τ
. (2.3)

Proof. Recall from [PS72, Problem 206.2, page 144] that if Mα,β denotes the number of roots
of ∆ contained in the horizontal strip {s ∈ C | α ≤ ℑ(s) ≤ β} counting multiplicities, then the
following bound holds

τ(β − α)

2π
− 3 ≤ Mα,β ≤ τ(β − α)

2π
+ 3. (2.4)

To complete the proof of the lemma, we argue by contradiction. Assume that ∆ admits 3 − η
real roots, and let x+ iω ∈ C be a root of ∆ with ω ̸= 0 and |ω| < (2−η)π/τ . Then there exists

ε > 0 such that |ω| < (2−η)π
τ −ε. Since ∆ has real coefficients, the complex conjugate of ω is also

a root of ∆, both belonging to the horizontal strip {s ∈ C | − (2−η)π
τ + ε ≤ ℑ(s) ≤ (2−η)π

τ − ε}.
It follows that ∆ admits at least 5 − η roots in this strip, which is inconsistent, since by the
Pólya-Szegö bound (2.4), the number of zero in this strip satisfies

M− (2−η)π
τ

+ε,
(2−η)π

τ
−ε

≤ 5− η − ετ

π
< 5− η. (2.5)

□

In the next section, we study the spectral properties of the quasipolynomial function ∆,
focusing on characterizing its rightmost root. Consider a complex value s0 ∈ C such that
∆(s0) = 0. We say that s0 is a dominant (respectively, strictly dominant) root of ∆ if the
following holds:

∀s ∈ C\{s0}, ∆(s) = 0 =⇒ ℜ(s) ≤ ℜ(s0) (respectively ℜ(s) < ℜ(s0)). (2.6)
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Let us investigate the coexistence of - non-necessarily equidistributed - three real roots for
the quasipolynomial ∆. Due to the linearity of ∆ with respect to its coefficients a, α and β, one
reduces the system ∆(s1) = ∆(s2) = ∆(s3) = 0 to the linear system

Aτ,3(s1, s2, s3)X = B, (2.7)

where B = −(s1e
τs1 , s2e

τs2 , s3e
τs3)t, X = (α, β, a)t and

Aτ,3(s1, s2, s3) =

s1 1 eτs1

s2 1 eτs2

s3 1 eτs3

 . (2.8)

Using [BBN20, Theorem 2], one immediately obtains that the determinant of the structured
functional Vandermonde-type matrix Aτ,3(s1, s2, s3) is given by

Dτ,3(s1, s2, s3) = τ2(s1 − s2)(s1 − s3)(s2 − s3)F−τ,2(s1, s2, s3), (2.9)

where F−τ,2(s1, s2, s3) is defined by

F−τ,2(s1, s2, s3) :=

∫ 1

0

∫ 1

0
(1− t1)e

τ(t1s1+(1−t1)(t2s2+(1−t2)s3))dt1dt2 > 0. (2.10)

By integrating (2.10), one may carefully check that

F−τ,2(s1, s2, s3) =
eτs3(s1 − s2) + eτs2(s3 − s1) + eτs1(s2 − s3)

τ2(s1 − s3)(s2 − s3)(s1 − s2)
. (2.11)

For distinct real spectral values s3 < s2 < s1, one deduces from (2.9) and (2.10) that for
every τ > 0, Dτ,3(s1, s2, s3) > 0 holds. It follows that (2.7) is a Cramer system, and one can
immediately compute the coefficients α, β and a using the Cramer formula. More precisely, one
has the following.

Lemma 2.4. For a fixed τ > 0, the quasipolynomial ∆ admits three distinct real spectral values
s3, s2 and s1 if, and only if, the coefficients α, β and a are respectively given by

β(τ) =
1

Dτ,3(s1, s2, s3)
det

s1 −s1e
τs1 eτs1

s2 −s2e
τs2 eτs2

s3 −s3e
τs3 eτs3

 , (2.12)

α(τ) =
1

Dτ,3(s1, s2, s3)
det

−s1e
τs1 1 eτs1

−s2e
τs2 1 eτs2

−s3e
τs3 1 eτs3

 =
F−τ,2(s1 + s2, s1 + s3, s2 + s3)

F−τ,2(s1, s2, s3)
, (2.13)

a(τ) =
1

Dτ,3(s1, s2, s3)
det

s1 1 −s1e
τs1

s2 1 −s2e
τs2

s3 1 −s3e
τs3

 = −s1 −
F−τ,1(s2, s3)

τF−τ,2(s1, s2, s3)
, (2.14)

= −s2 −
F−τ,1(s1, s3)

τF−τ,2(s1, s2, s3)
, (2.15)

where

F−τ,1(u, v) :=

∫ 1

0
eτ(tu+(1−t)v)dt =

eτu − eτv

τ(u− v)
> 0 (∀u, v ∈ R). (2.16)
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Proof. Relation (2.12) and the first identities in relations (2.13)-(2.15) follow directly by applying
the Cramer formulas to the Cramer system (2.7). To obtain the second ones in (2.13)-(2.15),
one may use (2.9), (2.11), (2.16) and the following.

det

−s1e
τs1 1 eτs1

−s2e
τs2 1 eτs2

−s3e
τs3 1 eτs3

 = eτ(s1+s2)(s1 − s2) + eτ(s1+s3)(s3 − s1) + eτ(s2+s3)(s2 − s3)

= τ2(s1 − s2)(s1 − s3)(s2 − s3)F−τ,2(s1 + s2, s1 + s3, s2 + s3),(2.17)

and

det

s1 1 −s1e
τs1

s2 1 −s2e
τs2

s3 1 −s3e
τs3

 = eτs3(s2 − s1)s3 + eτs2(s1 − s3)s2 + eτs1(s3 − s2)s1

= −s1Dτ,3(s1, s2, s3)− (eτs2 − eτs3)(s1 − s2)(s1 − s3),

= −s2Dτ,3(s1, s2, s3)− (eτs1 − eτs3)(s1 − s2)(s2 − s3),

hence completing the proof of the lemma. □

The next lemma is a key ingredient in simplifying the proofs of our main results in Section 3.1.

Lemma 2.5. Let τ > 0. Assume that the quasipolynomial ∆ has three real spectral values
s3 < s2 < s1. Then, the following holds

0 < α < 1, (2.18)

α < eτx (∀x ≥ s1). (2.19)

Proof. It follows from (2.13) and (2.10) that α > 0. Then, one has

1− α =
F−τ,2(s1, s2, s3)− F−τ,2(s1 + s2, s2 + s3, s1 + s3)

F−τ,2(s2, s3, s1)
> 0, (2.20)

since for every (t1, t2) ∈ [0, 1]2, the following holds

t1s1 − (1− t1)(t2s2 − (1− t2)s3)− t1(s1 + s2)− (1− t1)(t2(s2 + s3)− (1− t2)(s1 + s3)) =

−t1s2 − t2(1− t1)s3 − (1− t1)(1− t2)s1 > 0.

Now, let x ≥ s1, then one has

eτx − α =
eτxF−τ,2(s2, s3, s1)− F−τ,2(s1 + s2, s2 + s3, s1 + s3)

F−τ,2(s2, s3, s1)
> 0, (2.21)

since F−τ,2(s1, s2, s3) = F−τ,2(s2, s3, s1) by [BBN20, Lemma 4] and the fact that for every
(t1, t2) ∈ [0, 1]2, one has

x+ t1s2 + (1− t1)(t2s3 + (1− t2)s1))− t1(s1 + s2)− (1− t1)(t2(s2 + s3)− (1− t2)(s1 + s3))) =

x− t1s1 − t2(1− t1)s2 − (1− t1)(1− t2)s3 >

(1− t1)s1 − t2(1− t1)s1 − (1− t1)(1− t2)s1 = 0.

□
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Remark 2.6. Note, from Lemmas 2.4 and 2.5, that, if s1 < 0 then for every τ > 0, one has
b(τ) = −αs1 + ζeτs1 > 0 and a(τ) may change sign. Here,

ζ := ζ(τ) =
F−τ,1(s2, s3)

τF−τ,2(s1, s2, s3)
> 0. (2.22)

Remark 2.7. It follows from Lemma 2.5, by considering the bound (2.18) in particular, that
the coexistence of three real roots for the quasipolynomial ∆ ensures the strong stability of the
difference operator D [HL13, Section 9.6, page 284], defined for every ϕ ∈ C([−τ, 0]) by

Dϕ = ϕ(0) + αϕ(−τ). (2.23)

Similarly, Lemma 2.5, and in particular property (2.19), shows that assigning three real spectral
values s3 < s2 < s1 to the quasipolynomial ∆ entails that the real part of spectral values of the
difference equation y(t) + αy(t− τ) = 0 are strictly less than s1.

3. Main results

In this section, we establish our main results. Section 3.1 discusses the GCRRID property for
the quasipolynomial ∆ and derives a new and simpler proof for its validity. In Section 3.2, the
ICRRID property is investigated. Next, Section 3.3 provides an example of a simple dominant
spectral value violating the sufficient condition established by Frasson-Verduyn Lunel, thereby
emphasizing the non-necessary nature of the latter condition. Additionally, we will present a
simpler proof of the exponential estimates for solutions of equation (NDE) in Section 3.4.

3.1. Assigning three distinct real spectral values. This section discusses the GCRRID
property for the quasipolynomial ∆. This property involves assigning the maximal number of
distinct real spectral values s3 < s2 < s1 to ∆ and proving that s1, the rightmost, is the dominant
root. We shall then use this result to establish necessary and sufficient conditions to ensure that
s1 is negative, which is essential to the exponential stability of equation (NDE). Finally, we shall
fully characterize the remaining spectrum of ∆ by assigning three equidistributed real spectral
values.

The first main result of this section provides a more straightforward and comprehensive proof
of [SBN23, Theorem 5].

Theorem 3.1 (Dominancy of a real root). Assume that ∆ admits three real spectral values
s3 < s2 < s1. Then, the spectral value s1 is a strictly dominant root of ∆.

Proof. Fix τ > 0. It follows from Lemma 2.4 that a + s1 < 0 and α > 0. We argue by
contradiction. Assume that there exists s0 := x + iω ∈ C such that ∆(s0) = 0 and x ≥ s1. In
particular, ω ̸= 0, since we have already assigned three real spectral values s3 < s2 < s1 to ∆.
From ∆(s1) = 0, one deduces that β = −αs1 − eτs1(a + s1). It follows that ∆(s0) = 0 if, and
only if,

eτs0s0 + eτs0a+ αs0 = αs1 + eτs1(a+ s1). (3.1)

By taking the real and imaginary parts of both sides in (3.1), one gets

(a+ x) cos(τω)− ω sin(τω) = e−τ(x−s1)(a+ s1)− α(x− s1)e
−τx,

(a+ x) sin(τω) + ω cos(τω) = −αωe−τx.
(3.2)
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By squaring each equality in (3.2) and adding them, one obtains

ω2 =
(eτs1(a+ s1)− α(x− s1))

2 − (a+ x)2e2τx

e2τx − α2
, (3.3)

which is well defined for every x ≥ s1 by Lemma 2.5. Let us prove that ω2 given by (3.3) satisfies
ω2 < 1/τ2. To do so, define the function

χ(x) = (eτs1(a+ s1)− α(x− s1))
2 − (a+ x)2e2τx − τ−2(e2τx − α2) (∀x ≥ s1). (3.4)

We want to prove that χ(x) < 0 for every x ≥ s1. On the one hand, one has

χ(s1) = −(e2τs1 − α2)τ−2 < 0, lim
x→∞

χ(x) = −∞, (3.5)

owing to Lemma 2.5. On the other hand, function χ is infinitely derivable on [s1,∞), so that

χ′′(x) = −2e2τx
(
2 (τ(a+ x) + 1)2 + e−2τx(e2τx − α2)

)
< 0 (∀x ≥ s1), (3.6)

since the two terms between the big brackets of χ′′(x) are positive by Lemma 2.5. One also has

χ′(x) =− 2α((a+ s1)e
τs1 − α(x− s1))− 2τ(a+ x)2e2τx − 2(a+ x)e2τx − 2τ−1e2τx (∀x ≥ s1),

χ′(s1) =− 2τ

(
(a+ s1)e

τs1 +
α+ eτs1

2τ

)2

− (eτs1 − α)(α+ 3eτs1)

2τ
< 0, lim

x→∞
χ′(x) = −∞.

(3.7)

Here, χ′(s1) < 0, as the sum of two negative terms by Lemma 2.5. It follows from (3.6) and
(3.7) that

χ′(x) < 0 (∀x ≥ s1). (3.8)

Finally, by combining (3.8) and (3.5), one gets that

χ(x) < 0 (∀x ≥ s1). (3.9)

The latter is equivalent to ω2 < τ−2 with ω2 defined in (3.3). So, we have shown that if x+ iω
is a root of ∆ with x ≥ s1 and ω ̸= 0, then |ω| < τ−1. The latter is inconsistent since one has
necessarily |ω| ≥ 2π/τ owing to Lemma 2.3. □

Remark 3.2. It is worth noting that the key property on α required in the proof of Theorem 3.1
is that

e2τx − α2 ≥ 0 (∀x ≥ s1). (3.10)

which is satisfied owing to Lemma 2.5.

The second main result provides the necessary and sufficient conditions on the delay τ and
the coefficient a to guarantee that the dominant root s1 is negative when three spectral values
s3 < s2 < s1 are formally assigned to ∆.

Theorem 3.3 (Negativity of the dominant root). Assume that ∆ admits three real spectral
values s3 < s2 < s1. Then, the spectral value s1 is negative if, and only if, there exists a unique
τ∗ > 0 such that a(τ∗) = 0, where

a(τ)


= 0 if τ = τ∗,

< 0 if τ < τ∗,

> 0 if τ > τ∗.

(3.11)
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Moreover, s1 < 0 can be designed as follows

s1


= −ζ(τ) if τ = τ∗,

> −ζ(τ) if τ < τ∗,

< −ζ(τ) if τ > τ∗,

where ζ(τ) =
F−τ,1(s2, s3)

τF−τ,2(s1, s2, s3)
> 0. (3.12)

Proof. Let us assume that s1 < 0. Since τ ∈ (0, ∞) 7→ a(τ) is continuous with respect to τ , one
may use the intermediate value theorem. Combining (2.14) and (2.11), one gets

a(τ) =
e−τ(s1−s3)(s1 − s2)s3 + e−τ(s1−s2)(s3 − s1)s2 + (s2 − s3)s1

e−τ(s1−s3)(s2 − s1) + e−τ(s1−s2)(s1 − s3) + (s3 − s2)
. (3.13)

Consequently, a(τ) → −s1 > 0 when τ → ∞. Next, definitions (2.10) and (2.16), and the
continuity of F−τ,1 and F−τ,2 with respect to τ entail that a(τ) → −∞ as τ → 0. It follows that
there exists at least one τ∗ > 0 such that a(τ∗) = 0. To show that τ∗ > 0 is unique, one applies
Lemma 2.2. Firstly, we observe that a(τ) = 0 if, and only if, its numerator vanishes at τ . Now,
let

F (τ) = eτs3(s1 − s2)s3 + eτs2(s3 − s1)s2 + eτs1(s2 − s3)s1 (3.14)

be the numerator of eτs1a(τ). Then, F is obviously analytic in τ , and one has from s3 < s2 < s1
that (s1−s2)s3 < 0, (s3−s1)s2 > 0 and (s2−s3)s1 < 0. Let C denote the number of sign changes
in the sequence of real numbers (s1 − s2)s3, (s3 − s1)s2, and (s2 − s3)s1, then C = 2. Similarly,
if Z represents the number of real zeros of the entire function F , then C − Z = 2− Z ≥ 0 and
2 − Z is even according to Lemma 2.2, so that Z = 2. Since F (0) = 0 and F (τ∗) = 0, the
uniqueness of τ∗ > 0 follows.

Conversely, assume the existence of a unique τ∗ > 0 such that a(τ∗) = 0. One immediately
infers from (2.10), (2.14) and (2.16) that

s1 = − F−τ∗,1(s2, s3)

τ∗F−τ∗,2(s1, s2, s3)
< 0, (3.15)

completing the proof of the theorem. □

Remark 3.4. Observe that Theorem 3.3 states that exponential stability of equation (NDE)
may be achieved with a prescribed decay rate, even though a ≤ 0. Time-domain techniques based
on a Lyapunov functional and LMI do not cover this. See, for instance, [LYH00, HL13, Fri01].

In the case of equidistributed real spectral values s3 < s2 < s1, the delay τ∗ > 0 that enables
the design of s1 < 0 may be explicitly computed, as is stated hereafter.

Corollary 3.5. Assume that the quasipolynomial ∆ admits three equidistributed real spectral
values sk = s1 − (k − 1)d, for d > 0 and k = 1, 2, 3. Then, s1 is negative if, and only if, the
delay τ∗ > 0 in Theorem 3.1 is given by

τ∗ =
1

d
ln

(
s3
s1

)
> 0. (3.16)

Proof. Owing to Lemma 3.1, s1 is negative if, and only if, there exists one, and only one, τ∗ > 0
such that a(τ∗) = 0, and

s1 = − F−τ∗,1(s2, s3)

τ∗F−τ∗,2(s1, s2, s3)
. (3.17)
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Figure 1. Spectrum of the quasipolynomial ∆ for various parameters. The
spectrum distribution is obtained by assigning three real spectral values s3 <
s2 < s1 to ∆ and computing the system parameters a, β, α and τ in each case.
For instance, the spectrum distribution in orange is obtained by assigning three
equidistributed real spectral values s3 = −3.5, s2 = −2.5 and s1 = −1.5. As
expected (Theorem 3.6), the remaining spectrum belongs to the vertical line
with abscissa s2 = −2.5.

By taking now s2 = s1 − d and s3 = s1 − 2d with d > 0, one finds after careful computa-
tions,considering (2.11) and (2.16), that

F−τ∗,2(s1, s2, s3) =
eτ∗s1(1− e−τ∗d)2

2τ2∗ d
2

and F−τ∗,1(s2, s3) =
eτ∗s1e−τ∗d(1− e−τ∗d)

τ∗d
. (3.18)

By injecting (3.18) into (3.17), one gets

s1 =
−2d

eτ∗d − 1
, which is equivalent to τ∗ =

1

d
ln

(
s3
s1

)
> 0, (3.19)

since s3 < s1 < 0. □

In the specific case where a single real spectral value s3 = s2 = s1 is assigned to ∆, the
GMID is demonstrated in [BMN22]. Furthermore, the analysis fully characterizes the remaining
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spectrum of ∆ as

s = s1 +
ω

τ
i, where tan

(ω
2

)
=

ω

2
. (3.20)

In the same fashion, assuming that the quasipolynomial ∆ has three equidistributed real
spectral values, we also fully characterize the remaining spectrum of ∆.

Theorem 3.6. Assume that the quasipolynomial ∆ admits three equidistributed real spectral
values sk = s1− (k− 1)d, for d > 0 and k = 1, 2, 3. Then, the remaining spectrum of ∆ is given
by

s = s2 +
ω

τ
i, where tan

(ω
2

)
=

ω

ξ(d)
, ξ(d) = τd coth

(
τd

2

)
. (3.21)

Here coth is the cotangent hyperbolic function.

Proof. First of all, direct computations yield

α = eτ(s1−d) = eτs2 , a = −s2 − η, β = eτs2(−s2 + η), η := η(d) = d coth

(
τd

2

)
,

(3.22)
owing to (2.13), (2.15) and (2.12). Let s0 = x0 + iω0 be a complex spectral value of ∆. Then,
x0 < s1 and ω0 ̸= 0, in particular. From ∆(s0) = 0 and (3.22), one obtains

s0 − s2 − η

s0 − s2 + η
= −e−τ(s0−s2). (3.23)

Taking the magnitude of the above identity leads to√
(x0 − s2 − η)2 + ω2

0

(x0 − s2 + η)2 + ω2
0

= eτ(s2−x0),

which holds for every |ω0| ≥ 2π/τ by Lemma 2.3. By letting |ω0| → ∞, one finds

1 = eτ(s2−x0) (∀τ > 0). (3.24)

It follows that x0 = s2 and that the rest of the spectrum is either located on the vertical line
ℜ(s) = s2 or forms a chain asymptotic to ℜ(s) = s2. Since ∆(s) = (s− s2)− η + e−τ(s−s2)(s−
s2+η), we can derive ∆(2s2−s0) = −eτ(s0−s2)∆(s0). Additionally, since ∆ has real coefficients,
a complex number s ∈ C is a spectral value of ∆ if, and only if, its complex conjugate s is
also a spectral value. Therefore, the complex number s0 is a spectral value of ∆ if, and only if,
2s2 − s0, the reflection of s0 across the vertical line ℜ(s) = s2, is a spectral value of ∆. As a
result, the remaining spectrum of ∆ exists along the vertical line ℜ(s) = s2.

Finally, by substituting s = s2 + iω0 into (3.23), one gets

iω0 − η

iω0 + η
= −e−iτω0 ⇐⇒ i

ω0

η
=

1− e−iτω0

1 + e−iτω0
= i tan

(τω0

2

)
(3.25)

which leads to the desired result via the change of variables ω = τω0. □

Remark 3.7. Since ξ(d) → 2 as d → 0, Theorem 3.6 confirms the intuitive concept that the
GMID is the limiting case of the GCRRID.

We refer the reader to Figure 1, where we depicted the spectrum of quasipolynomial ∆ for
various parameters.
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Remark 3.8. In Theorem 3.6, it is proved that in the equidistributed case, the remaining
spectrum of ∆ lies on the vertical line ℜ(s) = s2. However, it should be noted that if the
real spectral values s3 < s2 < s1 are not equidistributed, the remaining spectrum of ∆ does
not perfectly align on a vertical line, though this may not be immediately obvious visually (see
Figure 1 for green and blue spectrum distributions). In fact, there are imperfections in the
symmetry of the spectrum with respect to a vertical line. Let us illustrate it in the following.

Theorem 3.9. Let τ > 0. Assume that the quasipolynomial ∆ admits three non-equidistributed
real spectral values s3 < s2 < s1. The remaining spectrum of ∆ forms a chain asymptotic to the
vertical line

ℜ(s) = s2 +
1

τ
ln(θ(τ, d, δ)), with θ(τ, d, δ) =

eτd(d(1− eτδ)− δ(1− eτd))

−deτd + eτδ(eτd(d− δ) + δ)
. (3.26)

Here d := s1 − s2 and δ := s1 − s3. Moreover, there exists a complex spectral value s0 such that

∆(s0) = 0 =⇒ ℜ(s0) ̸= s2 +
1

τ
ln(θ(τ, s1, s2, s3)). (3.27)

Proof. We start by noticing that direct computations yield

αe−τs2 =
eτd(d(eτδ − 1)− δ(eτd − 1))

deτd + eτδ(eτd(δ − d)− δ)
= θ(τ, d, δ) := θ, (3.28)

a = s2 −
ξ

τ
where ξ := ξ(τ, d, δ) =

deτd(eτd − 1)(δ − d)τ

deτd + eτδ(eτd(δ − d)− δ)
, (3.29)

β = −αs2 − eτs2(a+ s2) = −αs2 +
ξ

τ
eτs2 (3.30)

thanks to (2.13), (2.15) and (2.12). Here d = s1 − s2 and δ = s1 − s3. It follows from ∆(s) =
a+ s+ e−τs(αs+ β) that

∆(s) = (s− s2)−
ξ

τ
+ e−τ(s−s2)

(
θ(s− s2) +

ξ

τ

)
(s ∈ C). (3.31)

Consider the change of functions

∆′(z) = τ∆
(
s2 +

z

τ

)
= z − ξ + e−z(θz + ξ) (z ∈ C) (3.32)

so that ∆′ has three real roots −τ(δ − d), 0 and τd. In particular, ∆′(0) = 0 if, and only if,
∆(s2) = 0, and z ∈ C is a spectral value of ∆′ if, and only if, s2 + z/τ is a spectral value of
∆. Moreover, since s1 is the dominant root of ∆, then τd is the dominant root of ∆′. Let
now z0 = x0 + iω0 be a complex non-real spectral value of ∆′. Then, x0 < τd and ω0 ̸= 0. In
particular, |ω0| ≥ 2π by Lemma 2.3. From ∆′(z0) = 0, one obtains

z − ξ

θz + ξ
= −e−z =⇒

√
(x0 − ξ)2 + ω2

0

(θx0 + ξ)2 + ω2
0

= e−x0 . (3.33)

Letting |ω0| → ∞ in (3.33), one deduces that

e−x0 =
1

θ
, since 0 < θ < eτ(s1−s2) = eτd. (3.34)
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Figure 2. Plot of the function Θ(d, δ) defined in (3.38) for (d, δ) ∈ R∗
+ × R∗

+.
The red straight line characterises points (d, δ) where Θ(d, δ) = 1. We magnified
the red curve in the inset on the top-left, which suggests that it corresponds to
the straight line δ = 2d.

It follows that x0 = ln(θ), and the rest of the spectrum of ∆′ is either located on the vertical
line ℜ(z) = ln(θ) or forms a chain asymptotic to ℜ(s) = ln(θ). Let us show that the former
is inconsistent; that is, there exists at least a complex spectral value z0 ∈ C of ∆′ such that
ℜ(z0) ̸= ln(θ). Otherwise, for every z0 = x0 + iω0 ∈ C (x0 < τd, ω0 ̸= 0 and |ω0| ≥ 2π)
∆′(z0) = 0 and x0 = ln(θ). Firstly, in all generality, for any complex number z ∈ C, the
reflection 2 ln(θ)− z of z across the vertical line ℜ(z) = ln(θ) satisfies

∆′(2 ln(θ)− z) = −z + ln(θ2)− ξ + ez
(
−z

θ
+

ln(θ2)

θ
+

ξ

θ2

)
. (3.35)

Secondly, for z = z0 = ln(θ) + iω0 (ω0 ̸= 0 and |ω0| ≥ 2π), one has 2 ln(θ) − z0 = z0 so that
owing to (3.35) and (3.32), one gets

z0 − ξ + ez0
(
z0
θ

+
ξ

θ2

)
= z0 − ξ + e−z0(θz0 + ξ). (3.36)
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which yields z0 = z0. It follows that z0 is a real spectral value of ∆′, which is inconsistent. □

Remark 3.10. From the definition of θ(τ, d, δ) given by (3.26), one can immediately check that

θ(τ, d, δ) → 1 as δ → 2d (3.37)

indicating that we retrieve Theorem 3.6 in the equidistributed scenario. Additionally, we notice
that θ seems to rely on three distinct parameters τ > 0, d > 0, and δ > d. However, upon closer
examination, it is obvious that it depends solely on the products τd and τδ since we have

Θ(τd, τδ) := θ

(
τ,

d

τ
,
δ

τ

)
=

ed(d(1− eδ)− δ(1− ed))

−ded + eδ(ed(d− δ) + δ)
. (3.38)

As a result, τ > 0 may be treated as a scaling parameter. We have plotted Θ(d, δ) (i.e., τ = 1)
in Figure 2, illustrating that Θ(d, δ) = 1 only when δ = 2d. This suggests that when three real
spectral values coexist in the spectrum of ∆, the remaining spectrum exists along a vertical line
only if these real spectral values are equidistributed.

While we investigated in this section the case of coexistence of three real spectral values,
Section 3.2 will provide necessary and sufficient conditions guaranteeing that the coexistence of
two real spectral values s2 < s1 for the quasipolynomial ∆ entails that s1 is the dominant root.

3.2. Assigning two distinct real spectral values. This section discusses the ICRRID prop-
erty of the quasipolynomial ∆. The aim is to assign two real spectral values s2 < s1 to the
quasipolynomial ∆ and to find necessary and sufficient conditions on the coefficients of ∆ guar-
anteeing that s1 is a dominant root of ∆.

Inspired from [SBN23, Theorem 6], we find these conditions in terms of the quotient (a +
s1)/(s1−s2). The challenge in this task relies on the scenario where a third real spectral value x
exists in the spectrum of ∆ in which case the coefficients a, α, and β are given in terms of x, s2,
s1 and τ as in Lemma 2.4. Moreover, the greatest between s2, s1 and x is the dominant root by
Theorem 3.1. Since one wants s1 to be the dominant root of ∆, we are looking for the necessary
and sufficient conditions on (a+ s1)/(s1 − s2) ensuring that x < s2 < s1 or s2 < x < s1. On the
one hand, one deduces from (2.14) that

a+ s1
s1 − s2

= − (s1 − x)(eτs2 − eτx)

eτx(s1 − s2) + eτs2(x− s1) + eτs1(s2 − x)
, (∀x ∈ R\{s1, s2}) (3.39)

which is negative owing to (2.10) and (2.11). On the other hand, introduce the function

φ(x) =
(s1 − x)(eτs2 − eτx)

eτx(s1 − s2) + eτs2(x− s1) + eτs1(s2 − x)
, (∀x ∈ R\{s1, s2}). (3.40)

Then, φ(x) > 0 for every x < s2 < s1 or s2 < x < s1 or x > s1, and satisfies

lim
x→−∞

φ(x) =
1

eτ(s1−s2) − 1
, lim

x→s2
φ(x) =

τ(s1 − s2)

eτ(s1−s2) − (1 + τ(s1 − s2))
, (3.41)

lim
x→s1

φ(x) =
eτ(s1−s2) − 1

eτ(s1−s2)(τ(s1 − s2)− 1) + 1
, (3.42)
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and

φ′(x) =
(eτ(s1+s2) − eτ(s1+x) + e2τx − eτ(s2+x))(s1 − s2) + τ(s1 − x)(s2 − x)(eτ(s2+x) − eτ(s1+x))

[exτ (−s1 + s2) + es2τ (s1 − x) + es1τ (−s2 + x)]2

=
τ2(s2 − x)(s1 − x)(s1 − s2)(F−τ,1(x, s1)F−τ,1(x, s2)− exF−τ,1(s1, s2))

[exτ (−s1 + s2) + es2τ (s1 − x) + es1τ (−s2 + x)]2
,

thanks to the integral representation (2.16). Using [BBN20, Lemma 7], one finds that for all
τ > 0 and (u, v, w) ∈ R3, the following holds

F−τ,1(u, v)− F−τ,1(u,w) = τ(v − w)F−τ,2(u, v, w) > 0 ⇐⇒ v > w.

Therefore, for a fixed u ∈ R, v 7→ F−τ,1(u, v) is a positive and strictly increasing function on R.
One deduces that φ′(x) > 0 for every x < s2 < s1 or s2 < x < s1 or x > s1, and that φ is a
positive increasing function for x < s2 < s1 or s2 < x < s1 or x > s1. Therefore, if s2 < s1, then

φ(x) ≥ 1

eτ(s1−s2) − 1
, (∀x ∈ R\{s1, s2}).

We proved the following first main result.

Theorem 3.11. Let τ > 0. Assume that ∆ admits two real spectral values s2 < s1. Then, a
third real spectral value x coexists in the spectrum of ∆, if and only if

a+ s1
s1 − s2

≤ −1

eτ(s1−s2) − 1
. (3.43)

Furthermore, one has

−τ(s1 − s2)

eτ(s1−s2) − (1 + τ(s1 − s2))
<

a+ s1
s1 − s2

≤ −1

eτ(s1−s2) − 1
⇐⇒ x < s2 < s1, (3.44)

and

1− eτ(s1−s2)

eτ(s1−s2)(τ(s1 − s2)− 1) + 1
<

a+ s1
s1 − s2

<
−τ(s1 − s2)

eτ(s1−s2) − (1 + τ(s1 − s2))
⇔ s2 < x < s1.

(3.45)

As an immediate consequence of Theorem 3.11, one has the following result.

Corollary 3.12. Let τ > 0. Assume that ∆ admits two real spectral values s2 < s1. Then, a
third real spectral value x coexists in the spectrum of ∆, and it is the dominant root of ∆ if, and
only if,

a+ s1
s1 − s2

≤ 1− eτ(s1−s2)

eτ(s1−s2)(τ(s1 − s2)− 1) + 1
. (3.46)

Remark 3.13. It follows from (3.45) and (3.46) that s1 is the dominant real spectral value of
∆ with multiplicity equal to two if

a+ s1
s1 − s2

=
1− eτ(s1−s2)

eτ(s1−s2)(τ(s1 − s2)− 1) + 1
.

This equality corresponds to a very special configuration where the ICRRID property allows the
IMID property to hold.
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Let us now investigate the necessary and sufficient conditions on (a+s1)/(s1−s2) guaranteeing
the dominance of a simple real spectral value s1 when exactly two real spectral values s2 < s1
are assigned to the quasipolynomial ∆. The following interpolation result is of interest when
exactly two real spectral values coexist in the spectrum of ∆.

Lemma 3.14. The quasipolynomial ∆ admits exactly two distinct real spectral values s2 and s1
if, and only if a ∈ R,

β = −αs1 − eτs1(a+ s1) = −αs2 − eτs2(a+ s2), (3.47)

and

α =
−(a+ s1)e

τs1 + (a+ s2)e
τs2

s1 − s2
. (3.48)

Proof. First, one has ∆(s1) = ∆(s2) = 0 if, and only if, β is given by (3.47) and

α(s1 − s2) + (a+ s1)e
τs1 − (a+ s2)e

τs2 = 0, (3.49)

which yields the desired result. □

Remark 3.15. It is an immediate consequence of Theorem 3.11 that, exactly two real spectral
values s2 < s1 coexist in the spectrum of ∆, if and only if, the following inequality holds

−1

eτ(s1−s2) − 1
<

a+ s1
s1 − s2

. (3.50)

By inspecting the proof of Theorem 3.1 when three real spectral values are assigned to ∆,
one can notice that the key point to obtain the desired result relies on the properties of the
coefficient α as noticed in Remark 3.2. Firstly, equation (3.3) is well-defined if, and only if,
e2τx − α2 ̸= 0 for every x ≥ s1. Moreover, relations (3.5), (3.6) and (3.7) are satisfied only if
e2τx − α2 > 0.

The next lemma is a key ingredient in proving our second main result.

Lemma 3.16. Let τ > 0. Assume that exactly two real spectral values s2 < s1 coexist in the
spectrum of ∆. Then, it holds

−1

eτ(s1−s2) − 1
<

a+ s1
s1 − s2

< 1, (3.51)

if and only if α < 0, and

−eτx < α (∀x ≥ s1). (3.52)

Moreover, if s1 ≤ 0, then β ≤ 0 whenever

0 ≤ a+ s1
s1 − s2

< 1. (3.53)

Proof. Firstly, Direct computations from equation (3.48) yield

αe−τs1 = − a+ s1
s1 − s2

(
1− e−τ(s1−s2)

)
− e−τ(s1−s2) < e−τ(s1−s2) − e−τ(s1−s2) = 0, (3.54)
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Figure 3. The Spectrum distribution of ∆ obtained when two simple real spec-
tral values s2 < s1 are assigned to ∆. The delay τ = 1 in all cases. In blue,
s2 = −2 and s1 = 0 are assigned to ∆, but the spectrum distribution shows that
another real root coexists, and it is the dominant root of ∆; in orange, s2 = −2.5
and s1 = −1 are assigned to ∆, and s1 is the strictly dominant root of ∆ while
another real root coexists in the spectrum between s2 and s1; in green, s2 = −4
and s1 = −3 are assigned to ∆, and s1 is the strictly dominant root of ∆ while
another real root coexists in the spectrum, and it is less than s2; in red, s2 = −6
and s1 = −5 are assigned to ∆, and s1 is the strictly dominant root of ∆ while
none real root coexists in the spectrum; finally, in purple, s2 = −8 and s1 = −7
are assigned to ∆, and s1 is not a strictly dominant root of ∆, and none real root
coexists in the spectrum.

if, and only if, the first inequality in (3.50) is satisfied. Secondly, one also has for every x ≥ s1,

eτx + α = eτx +
−(a+ s1)e

τs1 + (a+ s2)e
τs2

s1 − s2
≥ eτs1 +

−(a+ s1)e
τs1 + (a+ s2)e

τs2

s1 − s2

= −(a+ s2)
eτs1 − eτs2

s1 − s2
> 0 ⇔ a+ s2 < 0.

(3.55)
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Figure 4. Complete characterization of the regions with respect to the values of
(a+s1)/δ that are necessary and sufficient to ensure the strict dominance or not of
the real spectral value s1 when only two real spectral values s2 < s1 are assigned
to ∆. The figure is depicted when the delay τ = 1 while δ := s1 − s2 ranges
between 0.01 and 2. The functions used are ϕ1(δ) = (1 − eδ)/(eδ(δ − 1) + 1),
ϕ2(δ) = −δ/(eδ − (1 + δ)), ϕ3(δ) = −1/(eδ − 1), and ϕ4(δ) = 1. We define
the regions R1 as the range of δ where a+s1

δ ≤ ϕ1(δ), R2 as the range where

ϕ1(δ) <
a+s1
δ ≤ ϕ2(δ), R3 as the range where ϕ2(δ) <

a+s1
δ ≤ ϕ3(δ), R4 as the

range where ϕ3(δ) <
a+s1
δ < ϕ4(δ), and R5 as the range where a+s1

δ ≥ ϕ4(δ).

It follows that for every x ≥ s1, e
τx + α > 0 if, and only if,

a+ s2
s1 − s2

< 0 ⇐⇒ a+ s1
s1 − s2

< 1. (3.56)

Finally, if s1 ≤ 0, then it follows immediately from (3.47) and (3.53) that β ≤ 0. □

One can now prove the following main result, which gives necessary and sufficient conditions
for the dominance of a real spectral value when exactly two real spectral values are assigned to
the quasipolynomial ∆.
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Theorem 3.17. Let τ > 0. Assume that exactly two real spectral values s2 < s1 coexist in the
spectrum of ∆. Then, s1 is a strictly dominant root of ∆ if, and only if, inequalities (3.51) are
satisfied.

Proof. Firstly, it follows from Remark 3.15 that exactly two real spectral values coexist in the
spectrum of ∆ if, and only if, the left inequality in (3.51) is verified. Let us prove that inequality
(3.51) ensures that s1 is a dominant root of ∆. Let s0 := x+ iω ∈ C be such that ∆(s0) = 0. In
particular, ω ̸= 0. From ∆(s1) = 0, one gets β = −αs1 − eτs1(a+ s1), where α and a are given
by Lemma 3.14. It follows that ∆(s0) = 0 if, and only if,

eτs0s0 + eτs0a+ αs0 = αs1 + eτs1(a+ s1). (3.57)

By taking the real and imaginary parts of both sides in (3.57), one gets

eτx((a+ x) cos(τω)− ω sin(τω)) = eτs1(a+ s1)− α(x− s1),

eτx((a+ x) sin(τω) + ω cos(τω)) = −αω.
(3.58)

By squaring each equality in (3.58) and adding them, one obtains

ω2 =
(eτs1(a+ s1)− α(x− s1))

2 − (a+ x)2e2τx

e2τx − α2
, (3.59)

which is well-defined for every x ≥ s1 by Lemma 3.16. Therefore, by performing the exact same
steps of the proof of dominancy in Theorem 3.1, one gets that ω2 < 1/τ2, i.e., |ω| < 1/τ . The
latter is inconsistent since one has necessarily |ω| ≥ π/τ owing to Lemma 2.3. Hence, s1 is the
dominant root of ∆. Conversely, assume that inequality (3.51) is not satisfied. If

a+ s1
s1 − s2

≤ −1

eτ(s1−s2) − 1
,

then another real root x coexists in the spectrum of ∆ by Theorem 3.11. Instead, if

a+ s1
s1 − s2

≥ 1,

then, s1 and s2 are the only real spectral values of ∆, and s1 is not a strictly dominant of ∆ by
Lemma 3.16 and the sufficient part of this theorem. Indeed, the sufficient part of this theorem
that we proved holds if, and only if, (a+ s1)/(s1 − s2) < 1 owing to Lemma 3.16. □

Remark 3.18. We stress the fact that in the particular case of exactly two real spectral values
s2 < s1 coexisting in the spectrum of ∆, and

a+ s1
s1 − s2

= 1, (3.60)

the spectral values s ∈ C of ∆ are analytically given by s = s1 + i2πkτ , k ∈ Z, and s1 is hence a
(not strictly) dominant root of ∆. Indeed, considering a+s1 = s1−s2, and equations (3.47) and

(3.48), one finds α = −eτs1 and β = s2e
τs1 . Consequently, one has ∆(s) = (s−s2)(1−e−τ(s−s1))

for every s ∈ C, wherefrom one obtains the desired result.

Remark 3.19. Aside from the necessary and sufficient conditions on the dominancy of the
assigned rightmost root s1, which have already been established in [SBN23, Theorem 6], Theorem
3.11 and Theorem 3.17 provide a complete description of such conditions with respect to the
number of assigned roots and the potential coexistence of a third real root. We refer to Figure 4
for a full visualisation.
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3.3. On Frasson-Verduyn Lunel’s sufficient conditions for dominancy and beyond.
This section builds upon Frasson-Verduyn Lunel’s seminal work [FVL03, Lemma 5.1], which es-
tablished a sufficient condition for the dominance of a simple real spectral value of quasipolyno-
mials with multiple delays. While Frasson-Verduyn Lunel’s lemma offers a fundamental method
for assessing spectral dominance, its applicability is restricted to specific conditions that may
only address certain dynamic scenarios encountered in complex systems. Restricted to the
single-delay case, when Frasson-Verduyn Lunel’s condition is not met, the CRRID property still
provides a guarantee for the dominance of a simple real root.

The first main result of this section is the following.

Theorem 3.20. Let τ > 0. There exist s1 ≤ 0 and d > 0, such that if ∆ admits three
equidistributed real spectral values s3 = s1 − 2d, s2 = s1 − d and s1, then

V (s1) = (|α|(1 + |s1|τ) + |β|τ)e−s1τ (3.61)

satisfies V (s1) ≥ 1 and s1 is the dominant root of ∆.

Proof. Assume that the quasipolynomial ∆ admits three equidistributed real spectral values
sk = s1 − (k − 1)d, for some d > 0 (that we will choose later on) and k = 1, 2, 3 with s1 ≤ 0.
Necessarily, sk is simple since ∆ cannot admit more than three real roots counting multiplicities
[PS72, Problem 206.2, page 144]. Hence, Theorem 3.1 states that s1 is a strictly dominant root
of ∆. Moreover, one deduces from Lemma 2.4 that

α = eτ(s1−d), β = eτ(s1−d)

(
−s1 + d+ d coth

(
τd

2

))
, (3.62)

so that

V (s1) =

(
1− 2τs1 + τd+ τd coth

(
τd

2

))
e−τd. (3.63)

Introducing g(s1) := V (s1)− 1, one finds

g(s1) = e−τd

(
τd coth

(
τd

2

)
+ τd+ 1− eτd − 2τs1

)
(3.64)

which is affine in s1. It follows that g(s1) ≥ 0 if, and only if,

s1 ≤
τd coth

(
τd
2

)
+ τd+ 1− eτd

2τ
. (3.65)

In particular, knowing that Frasson-Verduyn Lunel’s sufficient condition is not met the first
time when V (s1) = 1, owing to inequality (3.65) the latter is equivalent to (v := τs1 and u := τd)

v(u) =
u coth

(
u
2

)
+ u+ 1− eu

2
(u > 0). (3.66)

A straightforward analysis of the function u 7→ v(u) for u > 0 shows that v is strictly decreasing
on (0,∞) and satisfies

lim
u→0

v(u) = 1, lim
u→∞

v(u) = −∞. (3.67)

Therefore, there exist s1 ≤ 0 and d > 0 satisfying (3.65) such that V (s1) ≥ 1. □
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Figure 5. For (τ, d, s1) ∈ R∗
+ ×R∗

+ ×R∗
−, the red coloured region in the param-

eters space (τd, τs1) corresponds to the region where Frasson-Verduyn Lunel’s
sufficient condition for the dominance of a simple real spectral value is satis-
fied, that is W (τd, τs1) < 1. The GCRRID conditions extend Frasson-Verduyn
Lunel’s conditions by the blue region, that is, for W (τd, τs1) > 1.

Theorem 3.20 shows that Frasson-Verduyn Lunel’s sufficient condition is not necessary for
the dominance of simple real spectral values when three equidistributed real roots coexist in the
spectrum of ∆.

The function V defined in (3.63) initially seems to depend on three separate parameters: the
delay τ , the distance d, and the dominant simple real value s1. However, upon closer inspection,
it becomes apparent that V can be expressed solely in terms of the products τd and τs1, denoted
by u and v, respectively. As a result, the function reduces to

W (u, v) :=
(
1− 2v + u+ u coth

(u
2

))
e−u. (3.68)

As a conssequence, the behaviour of V can be fully explored by varying u and v without loss
of generality. Therefore, for visualization and analysis, it is sufficient to consider plots of W as
a function of u = τd and v = τs1, treating τ as a positive constant scaling factor. Refer to
Figure 5 for a visualisation.

The second main result of this section is the following.

Theorem 3.21. Let τ > 0. There exist s1 ≤ 0 and δ > 0 such that if ∆ admits exactly two
simple real spectral values s1 and s2 = s1 − δ, and inequality (3.53) is satisfied, then

Y (s1) = (|α|(1 + |s1|τ) + |β|τ)e−s1τ (3.69)

satisfies Y (s1) ≥ 1 and s1 is the dominant root of ∆.

Proof. If ∆ admits exactly two simple real spectral values s2 < s1 and inequality (3.53) is
satisfied, then s1 is a strictly dominant root of ∆ by Theorem 3.17. Moreover, α < 0, and if
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s1 ≤ 0 then β ≤ 0 by Lemma 3.16. If s2 = s1 − δ for some δ > 0 that will be chosen later on,
then one has from Lemma 3.14,

α = −eτs1
(
(a+ s1)

δ
(1− e−τδ) + e−τδ

)
, β = −αs1 − eτs1(a+ s1),

so that

Y (s1) =
e−τδ(a+ s1 − δ)(−1 + 2τs1) + (a+ s1)(1− 2τs1 + τδ)

δ
. (3.70)

Function Y initially seems to depend on four separate parameters: the coefficient a, the delay
τ , the distance δ, and the dominant simple real value s1. However, upon closer inspection, one
finds that Y can be expressed solely in terms of the products τa, τδ and τs1. Setting A := τa,
u := τδ, v := τs1, then A ∈ R, u > 0 and v < 0. Introducing the functions

Z(A, u, v) := Y (s1) and h(A, u, v) = Z(A, u, v)− 1, (3.71)

one gets

h(A, u, v) =
−(2− 2e−u)v2 − ((1− e−u)(2A− u− 1) + ue−u)v + (A+ e−u − 1)u+A(1− e−u)

u
,

(3.72)
which is a second-degree polynomial in v. Let N(A, u, v) be the numerator of h(A, u, v). From
N(A, u, v) = 0, one finds that the discriminant is given by

D1(A, u) = 4(1− e−u)2A2 + 4(1− e−u)(1− e−u + (1 + 2e−u)u)A+ (1− e−u)2

+u2(1− 2e−u)2 + 2u(1− e−u)(2e−u − 3). (3.73)

To study the sign of D1(A, u), a second-degree polynomial in A, one solves the equation
D1(A, u) = 0. Therefore, the discriminant of D1(A, u) is given by

D2(u) = 128ue−u(1− e−u)2(eu + u− 1) > 0, (3.74)

since eu+u−1 > 0 for every u > 0. It follows that D1(A, u) admits two real roots A0(u) < A1(u)
given by

A0 := A0(u) =
−(1− e−u + (1 + 2e−u)u)− 2

√
2ue−u(eu + u− 1)

2(1− e−u)
< 0 (u > 0), (3.75)

A1(u) =
−(1− e−u + (1 + 2e−u)u) + 2

√
2ue−u(eu + u− 1)

2(1− e−u)
. (3.76)

One infers that for every u > 0, D1(A, u) ≥ 0 for A ≤ A0(u) and A ≥ A1(u). For simplicity,
assume from now on that A ≥ A1(u). Hence, equation N(A, u, v) = 0 admits two real roots

v1 := v1(A, u) =
−Cb(A, u)−

√
D1(A, u)

2Ca(u)
, v2 := v2(A, u) =

−Cb(A, u) +
√

D1(A, u)

2Ca(u)
,

(3.77)
where

Ca(u) = −2(1− e−u), Cb(A, u) = −2(1− e−u)A+ (1 + u)(1− e−u)− ue−u,

and

Cc(A, u) = (1− e−u + u)A− (1− e−u)u,
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are the coefficients ofN(A, u, v) considered as a second-degree polynomial in v, so thatD1(A, u) =
C2
b (A, u)− 4Ca(u)Cc(A, u). Letting

A2(u) =
(1− e−u)u

1− e−u + u
> 0 and A3(u) =

(1 + u)(1− e−u)− ue−u

2(1− e−u)
> 0 (u > 0), (3.78)

one can carefully checks that A1(u) ≤ A2(u) ≤ A3(u) for every u > 0. Moreover, one gets the
following sign tab.

A

Cb(A, u)

Cc(A, u)

−∞ A2(u) A3(u) +∞

+ + 0 −

− 0 + +

Consequently, for every A ≤ A2(u), one has v1 ≤ 0 (v1 = 0 if, and only if, A = A2(u)) and v2 > 0.
Since A1(u) ≤ A2(u), and Ca(u) < 0 for every u > 0, one deduces that for all A ∈ [A1, A2],
u > 0 and v ∈ [v1, v2], one has N(A, u, v) ≥ 0. Therefore, for every s1 ≤ 0 and every δ > 0, one
has Y (s1) ≥ 1, whenever

A1(τδ) ≤ τa ≤ A2(τδ) and v1(τa, τδ) ≤ τs1 ≤ v2(τa, τδ). (3.79)
□

Theorem 3.21 shows that Frasson-Verduyn Lunel’s sufficient condition is not necessary for
the dominance of simple real spectral values when exactly two simple real roots coexist in the
spectrum of ∆.

Remark 3.22. We want to emphasize that there are values for s1 and δ (where s1 ≤ 0 and
δ > 0) that satisfy (3.79) and still maintain inequality (3.53). From equation (3.79), take, for
instance,

τa = A2(τδ), and τs1 = v1(τa, τδ). (3.80)

One finds, after careful computations, that

a+ s1
δ

=
A2(τδ) + v1(τa, τδ)

τδ
=

1

2

(
1 +

1

1− eτδ
+

1

τδ

)
. (3.81)

Finally, as a function of τδ > 0, one can immediately check that the third member on the right
in (3.81) is bounded between 0 and 1.

Remark 3.23. Notice that, when two real roots are assigned, and a third root coexists (see,
Theorem 3.11 and Corollary 3.12), one can use the exact same arguments as in the proof of
Theorem 3.20 to show that in some parameters regions, the Frasson-Verduyn Lunel’s criteria
does not apply. Furthermore, when exactly two real spectral values s2 < s1 coexist in the
spectrum of ∆, and

−1

eτ(s1−s2) − 1
<

a+ s1
s1 − s2

≤ 0, (3.82)

then s1 is a strictly dominant root of ∆ by Theorem 3.17, and we can prove as in Theorem 3.21
that in some parameters regions the Frasson-Verduyn Lunel’s criteria does not apply.
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Figure 6. An illustration of the function Z(τa, τδ, τs1) defined in (3.83) where
(τ, δ, s1) ∈ R∗

+ × R∗
+ × R∗

− and the parameter a = 2. The red -coloured region in
the parameters space (τd, τs1) corresponds to the region where Frasson-Verduyn
Lunel sufficient condition for the dominance of a simple real spectral value is sat-
isfied that is Z(2, τδ, τs1) < 1. The ICRRID conditions extend Frasson-Verduyn
Lunel’s conditions by the blue region, that is, Z(2, τδ, τs1) > 1.

In the proof of Theorem 3.21, we introduced the function

Z(τa, τδ, τs1) := Y (s1) =
e−τδ(a+ s1 − δ)(−1 + 2τs1) + (a+ s1)(1− 2τs1 + τδ)

δ
. (3.83)

When a = 2 (admissible owing to (3.79)), we plotted the heatmap of Z(2, τδ, τs1) in Figure 6
showing the regions (τδ, τs1) where Y (s1) < 1, Y (s1) > 1 and Y (s1) = 1.

3.4. Exponential Estimates. In [Kha05, Section 6], the author establishes exponential esti-
mates of solutions for time delay systems of neutral-type using quadratic Lyapunov functionals
and Lyapunov matrices. Although effective, this method may be computationally involved.
Additionally, [HL13][Chapter 1, Theorem 7.6, page 32] also offers an exponential estimate for
solutions of a neutral differential equation based on the characteristic quasipolynomial’s right-
most root. The proof employs the Cauchy theorem of residues and involves complex analysis
arguments, including the periodicity and analyticity of certain functions. However, the explana-
tion may benefit from greater detail to enhance the reader’s clarity and ease of understanding.

In the following, we provide an alternative proof of exponential estimates for solutions of
(NDE) that integrates the previously outlined spectral analysis of Sections 3.1 and 3.2 with the
Cauchy theorem of residues.

For all t ≥ 0, yt ∈ C0([−τ, 0]) denotes the history function, defined for all θ ∈ [−τ, 0] as

yt(θ) = y(t+ θ), with ∥yt∥∞ := sup
θ∈[−τ,0]

|yt(θ)|. (3.84)
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Theorem 3.24. Let τ > 0. Assume that the quasipolynomial ∆ admits three real spectral values
s3 < s2 < s1. For every ε > 0, there exists a constant k := k(ε, s1, s2, s3) ≥ 1 such that the
solution y(t) of (NDE) with initial condition y0 ∈ C0([−τ, 0]) satisfies

|y(t)| ≤ ke(s1+ε)t∥y0∥∞ (t ≥ 0). (3.85)

Proof. Applying the Laplace transform to both sides of equation (NDE), one gets

ŷ(s) =
y0(0) + αy0(−τ)

∆(s)
(s ∈ C), (3.86)

showing that ŷ is an analytic function of s for ℜ(s) > s1. Let ε > 0 and set c1 := s1 + ε. Then,
function y is given by the Bromwich complex contour integral

y(t) =
(y0(0) + αy0(−τ))

2iπ
lim
T→∞

∫ c1+iT

c1−iT

est

∆(s)
ds (t ≥ 0). (3.87)

Indeed, let T > 0 and c2 > c1, and consider the integration of the function ets/∆(s) over the
closed rectangle Γ in the complex plane with vertical boundaries V1 := {c1 + iω | −T ≤ ω ≤ T}
and V2 := {c2 + iω | −T ≤ ω ≤ T}, and horizontal boundaries H1 := {x+ iT | c1 ≤ x ≤ c2} and
H2 := {x− iT | c1 ≤ x ≤ c2}. Since ∆ has no zeroes inside the rectangle Γ, the integral over Γ
equals zero. It is then sufficient to show the following.∫

Hj

est

∆(s)
ds → 0 as T → ∞ (j = 1, 2). (3.88)

For s = x+ iT with c1 ≤ x ≤ c2 and T > 0, one has ∆(s) = (1 + αe−τs)s+ (a+ βe−τs). Since
1 − αe−τx > 0 thanks to s1 < c1 ≤ x ≤ c2 and Lemma 2.5 (inequality (2.19)), one chooses
T0 > 0 large enough in order to have

T

2
(1− αe−τx) ≥ |a|+ βe−τc2 (∀T ≥ T0). (3.89)

It follows that

|∆(s)| ≥ T (1− αe−τx)− (|a|+ βe−τx) ≥ T

2
(1− αe−τx) (T ≥ T0). (3.90)

Therefore, one has∣∣∣∣∫
H1

est

∆(s)
ds

∣∣∣∣ ≤ 2etc2

T

∫ c2

c1

eτx

(eτx − α)
dx =

2

T

etc2

τ
ln

(
eτc2 − α

eτc1 − α

)
→ 0 as T → ∞.

In the same fashion, one proves that the integral over H2 tends to zero when T → ∞. It follows
that (3.87) defines properly the signal y(t) for every t ≥ 0.

One claims that if s = c1 + iT = s1 + ε+ iT , then

|∆(s)| ≥ |T |
2
(1− αe−τs1), for all |T | ≥ 4ζ

1− αe−τs1
=: T1, (3.91)

where ζ > 0 is defined by (2.22) and 1 − αe−τs1 > 0 owing to Lemma 2.5 (inequality (2.19)).
Indeed, since a = −s1 − ζ and b = −αs1 + ζeτs1 , one has ∆(s) = (1 + αe−τc1e−iτT )(ε + iT ) −
ζ(1− e−τεe−iτT ). Therefore,

|∆(s)| ≥ |T |(1− αe−τc1)− ζ(1 + e−τε) ≥ |T |(1− αe−τs1)− 2ζ,

thanks to the reverse triangle inequality, which completes the proof of the claim.
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Set

z(t) := L−1

{
1

∆(s)

}
(t) =

1

2iπ
lim
T→∞

∫ c1+iT

c1−iT

est

∆(s)
ds (t ≥ 0). (3.92)

One immediately observes that for every s ∈ C such that ℜ(s) > s1, one has

1 + αe−τs

∆(s)
= ζ

1− e−τ(s−s1)

(s− s1)∆(s)
+

1

s− s1
,

so that, taking the inverse Laplace transform and the fact that L−1{1/(s − s1)} = es1t), one
obtains

z(t) + αz(t− τ) = ζL−1

{
1− e−τ(s−s1)

(s− s1)∆(s)

}
(t) + es1t. (3.93)

Thanks to (3.91), one has∣∣∣∣∣ζL−1

{
1− e−τ(s−s1)

(s− s1)∆(s)

}
(t)

∣∣∣∣∣ ≤ ζetc1

π

∫ T1

−T1

dT

|∆(c1 + iT )|
√
ε2 + T 2

+
4ζetc1

π(1− αe−τs1)

∫ ∞

T1

dT

T 2

=
ζetc1

π

∫ T1

−T1

dT

|∆(c1 + iT )|
√
ε2 + T 2

+
etc1

π
≤ k0e

tc1 , (3.94)

where

k0 := k0(ε, s1, s2, s3) =
1

π

(
1 + 2ζT1 min

|T |≤T1

(|∆(c1 + iT )|
√
ε2 + T 2)

)
.

Combining (3.93) and (3.94), one obtains

|z(t)| − α|z(t− τ)| ≤ |z(t) + αz(t− τ)| ≤ (1 + k0)e
(s1+ε)t, (3.95)

which yields

|z(t)| ≤ (1 + k0)e
(s1+ε)t

∞∑
j=0

αje−j(s1+ε)τ =
(1 + k0)

1− αe−τ(s1+ε)
e(s1+ε)t, (3.96)

since 1 − αe−τ(s1+ε) > 0 owing to Lemma 2.5 (inequality (2.19)). As a consequence, the result
follows since

|y(t)| = |(y0(0) + αy0(−τ))||z(t)| ≤ (1 + k0)(1 + α)

1− αe−τ(s1+ε)
e(s1+ε)t∥y0∥∞ (3.97)

and

k(ε, s1, s2, s3) :=
(1 + k0)(1 + α)

1− αe−τ(s1+ε)
≥ 1. □

Remark 3.25. In (3.85), it is important to note that the inequality only makes sense when
k ≥ 1. The GCRRID setting derived in Section 3.1 allows to explicitly determine k ≥ 1, a
property which is not explicitly stated in [HL13][Chapter 1, Theorem 7.6, page 32].

Remark 3.26. It is worth noting that in the case where the quasipolynomial ∆ has exactly two
simple real spectral values s2 < s1 and that inequality (3.51) is satisfied, the same proof applies
due to Lemma 3.16 (since α < 0 implies α < eτx for every x ≥ s1) and Theorem 3.17.
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4. Application: Designing an exponentially stable one-layer neural network

Based on the spectral theory developed in the previous sections, this section applies our the-
oretical insights to the practical design of a one-layer continuous-time Hopfield Neural Network
(HNN). The aim is to prevent mechanisms that support seizure phenomena. Our model uses
a delayed Proportional-Derivative (PD) controller, a proven effective strategy in modulating
the dynamic instabilities that lead to such neurological events. The PD controller, customized
through precise spectral analysis, allows us to explicitly prescribe the closed-loop solution’s
exponential decay, thereby enhancing the model’s stability and responsiveness.

4.1. A priori stability analysis. This section will study the stability of the continuous-time
one-layer Hopfield Neural Network (HNN) with time-independent external inputs. Instead of
using linearization to approximate system behaviour, we will directly examine the nonlinear
characteristics of the model. The analysis will help us understand the conditions under which
the system remains stable and will provide a foundation for introducing external control designs.

For the sake of exhaustiveness, we tackle the question in the instance where the constant
external input is not identically equal to zero. Then, we consider the following equation

ẏ(t) = −νy(t) + µ tanh(y(t)) + I, (4.1)

where ν > 0, µ > 0, and I ∈ R is time-independent.
The following result is standard, but we provide the proof for the sake of completeness.

Proposition 4.1. For every I ∈ R, the unique equilibrium y∗ ∈ R of (4.1) is globally exponen-
tially stable if 0 < µ < ν and globally asymptotically stable when µ = ν.

Proof. The fact that y∗ ∈ R exists and is unique is a trivial consequence of the intermediate value
theorem. Since tanh is globally 1-Lipschitz continuous, the Cauchy-Lipchitz theorem ensures
that for every I ∈ R and for any y0 ∈ R, there exists a unique continuous solution y to equation
(4.1) with initial condition y(0) = y0. Set the change of function

u(t) = y(t)− y∗ (∀t ≥ 0). (4.2)

Then, u(0) = y0 − y∗ and u solves the following equation

u̇(t) = −νu(t) + µ(tanh(u(t) + y∗)− tanh(y∗)), (4.3)

since −νy∗ + µ tanh(y∗) + I = 0. Duhamel’s formula gives us

u(t) = e−νtu0 + µ

∫ t

0
e−ν(t−s)(tanh(u(s) + y∗)− tanh(y∗))ds (∀t ≥ 0). (4.4)

Taking the absolute value of the above identity leads to

eνt|u(t)| ≤ |u0|+ µ

∫ t

0
eνs|u(s)|ds, (4.5)

which, by Gronwall’s lemma, implies that

eνt|u(t)| ≤ eµt|u0| i.e., |y(t)− y∗| ≤ e−(ν−µ)t|y0 − y∗| (∀t ≥ 0). (4.6)

It follows that the equilibrium y∗ (equal to zero when I = 0) is globally exponentially stable if
ν > µ.
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Figure 7. Solutions to equation (4.1) corresponding to different values of µ and
ν when I = 0. The initial condition in each case is taken to be y0 = 1.

Let us provide an argument to prove the global asymptotic stability of y∗ when µ = ν via a
Lyapunov function. Define the function

V (y) = ν

∫ y

y∗

(r − tanh(r)− I) tanh′(r − y∗)dr (y ∈ R). (4.7)

By letting g(r) = r− tanh(r)− I, function g is derivable on R and satisfies g(y∗) = 0, g(±∞) =
±∞ and g′(r) = tanh2(r) ≥ 0 for all r ∈ R. It follows that g(r) > 0 for every r > y∗ and
g(r) < 0 for every r < y∗, which yields

V (y∗) = 0 and V (y) > 0 (∀y ∈ R\{y∗}). (4.8)

On the other hand, along a solution y(·) of (4.1), one has

dV

dt
(y(t)) = −ẏ(t)2 tanh′(y(t)− y∗) ≤ 0, and

dV

dt
(y(t)) = 0 ⇐⇒ y(t) = y∗. (4.9)

As a result, V is a strict Lyapunov function for y∗, and the latter is globally asymptotically
stable. □

In the case of 0 < ν < µ, equation (4.1) can have multi equilibria for certain inputs I ∈ R
and exactly three equilibria −y1 < y∗ = 0 < y1 when I = 0. In this case, via linear stability
analysis, one proves that ±y1 are locally exponentially stable, and y∗ = 0 is unstable.

Consequently, we can assume that y∗ = 0 (tanh(0) = 0) is the unstable equilibrium. The aim
is then to design a suitable delayed PD controller guaranteeing that the trivial equilibrium zero
of the closed-loop equation (1.1) is exponentially stable.

Remark 4.2. It follows from the proof of Proposition 4.1 that when 0 < µ ≤ ν and I = 0, one
has y∗ = 0, and the asymptotic stability of the equilibrium zero is equivalent to say that any
solution of (4.1) converges towards zero exponentially if µ < ν and asymptotically when µ = ν;
refer to Figure 7.

Remark 4.3. Since equation (4.1) is structurally stable, replacing the tanh with any sigmoid
function f satisfying f(0) = 0 will lead to the same conclusion.
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Figure 8. Solutions to equation (4.10) when I = 0 and when I is the PD
controller I(t) = −kpy(t − τ) − kdẏ(t − τ), where τ > 0, kd > 0 and kp > 0
are given by (4.12). We also plotted the function t 7→ exp(−5t), since −5 + ε
controls the exponential decay of solutions of the linearized equation (4.10) for a
sufficiently small ε > 0 as stated in Theorem 3.24. The initial condition is taken
as y0 = 1 for the solution with I = 0, and y0(t) = 1, y′0(t) = 0, t ≤ 0 for the
solution with the PD feedback input.

Now that we understand the system’s inherent stability properties, we will move on to imple-
menting delayed PD control strategies. These strategies are designed to improve the system’s
dynamic properties and ensure stability, even in the more challenging scenario where 0 < ν < µ.
The next subsection will explain how these control mechanisms are implemented and their ef-
fectiveness in achieving the desired stability outcomes.

4.2. Implementing delayed PD control for seizure prevention. Based on the CRRID
setting of Section 3.1 and the stability analysis of Section 4.1, this section specifically looks at
how to practically implement a delayed Proportional-Derivative (PD) controller to improve the
stability of the HNN when ν ≥ µ and to stabilize the HNN in situations where ν < µ. The
reason for adding the PD controller is its ability to reduce the natural instabilities that could
cause seizure-like patterns in neuronal models. It is worth noting that in the case of exclusive
access to the delayed Proportional action, that is, kd = 0, the analysis reduces to the retarded
case where a complete analysis is provides in [BBN20].

We consider two types of configurations. The first type aims to improve the decay rate to
zero or stabilize to zero exponentially - with a prescribed decay - the solutions of equation (1.1)
in the case where ν > µ or ν ≤ µ. This will be achieved by determining the gain parameters kp
and kd and the delay τ > 0. The parameters µ and ν are then known in this case. The second
type of configuration aims to model a one-layer neural network like (1.1) such that the trivial
equilibrium is exponentially stable with a prescribed decay rate, regardless of the sign of ν − µ.
We achieve both of these tasks locally by studying the asymptotic stability of the linearized
equation around the trivial equilibrium zero to (1.1).
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4.2.1. Improving the decay rate of an exponentially stable one-layer neural network. Consider
the one-layer neural network under the form

ẏ(t) = −2y(t) + tanh(y(t)) + I(t), (4.10)

which is a particular case of (1.1) when ν = 2 and µ = 1. Under no external input, that is,
when I(t) = 0, Proposition 4.1 ensures that all solutions of (4.10) are globally exponentially
stable or equivalently that the trivial equilibrium zero is globally exponentially stable with a
decay rate equal to ν − µ = 1. A classical problem in control theory is choosing the control I(t)
in the feedback form to improve (locally at least) the stability properties of (4.10). By letting
I(t) = −kpy(t − τ) − kdẏ(t − τ) and after linearization around zero, the question reduces to
studying the localization of the spectrum of the quasipolynomial function

Q0(s) = s+ 1 + e−τs(kds+ kp) (s ∈ C),

which is the particular case of (2.1) where α = kd, β = kp and a = 1.
To simplify the control design, assume that we assign three equidistributed real spectral values

s1 = −5, s2 = −5− d and s3 = −5− 2d to Q0. By letting d = 1, owing to Lemma 2.4 one has

1 = 5− 2

eτ − 1
, kd = e−6τ , kp = e−6τ

(
6 + coth

(τ
2

))
, (4.11)

where coth is the cotangent hyperbolic function. By solving the first equation in (4.11), one
obtains the following.

τ = ln

(
3

2

)
, kd = e−6τ , kp = e−6τ

(
6 + coth

(τ
2

))
. (4.12)

As per the CRRID properties explained in Section 3.1, it can be inferred that parameters in
equation (4.12) ensure the local exponential stability of solutions of equation (4.10) by the PD
controller I(t) = −kpy(t− τ)− kdẏ(t− τ), with a decay rate equal to −5 + ε, for a sufficiently
small ε > 0 as stated in Theorem 3.24. The reader can refer to Figure 8 for a visualization.

4.2.2. Stabilizing exponentially an asymptotically stable one-layer neural network. In this sec-
tion, we will focus on the one-layer neural network equation

ẏ(t) = −y(t) + tanh(y(t)) + I(t). (4.13)

This equation corresponds to a specific case of the equation (1.1) when ν = µ = 1. According to
Proposition 4.1, all solutions of this equation asymptotically converge to zero without external
input. See also Figure 7. To make the solutions converge toward zero with a prescribed exponen-
tial decay rate, we control this equation with the PD controller I(t) = −kpy(t−τ)−kdẏ(t−τ). By
linearizing around zero, we can reduce the question to studying the localization of the spectrum
of the quasipolynomial function

Q1(s) = s+ e−τs(kds+ kp) (s ∈ C),

which is a particular case of (2.1), where α = kd, β = kp, and a = 0.
Assume that one assigns three non-equidistributed real spectral values s3 < s2 < s1 to Q1,

say s1 < 0, s2 = s1 − δ and s3 = s1 − 3δ for some δ > 0. One has

F−τ,1(s2, s3) =
eτs3(e2τδ − 1)

2τδ
, F−τ,2(s1, s2, s3) =

eτs3(eτδ − 1)2(1 + 2eτδ)

6τ2δ2
. (4.14)
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Figure 9. Solutions to equation (4.13) when I = 0 and when I is the PD
controller I(t) = −kpy(t − τ) − kdẏ(t − τ), where τ > 0, kd > 0 and kp > 0
are given by (4.15). We also plotted the function t 7→ exp(−3t), since −3 + ε
controls the exponential decay of solutions of the linearised equation (4.10) for a
sufficiently small ε > 0 as stated in Theorem 3.24. The initial condition is taken
as y0 = 1 for the solution with I = 0, and y0(t) = 1, y′0(t) = 0, t ≤ 0 for the
solution with the PD feedback input.

Lemma 2.4 states that

s1 = − 3δ(eτδ + 1)

(eτδ − 1)(1 + 2eτδ)
, kd =

eτs2(2 + eτδ)

1 + 2eτδ
, kp =

−s3 + (s1 + 3δ) cosh(τδ)− 3s2 sinh(τδ)

e−τs1(eτδ − 1)(1 + 2eτδ)
.

Letting, s1 = −2 and δ = 1, one gets s2 = −4, s3 = −6 and

τ = ln

(
1 +

√
5

2

)
, kd = −20 + 9

√
5, kp = −66 + 30

√
5. (4.15)

We plotted in Figure 9 the solutions of (4.13) when I(t) = 0 and when I(t) = −kpy(t− τ)−
kdẏ(t− τ) where τ > 0, kd > 0 and kp > 0 are given by (4.15).

4.2.3. Stabilizing exponentially an unstable one-layer neural network. This section focuses on
the more interesting scenario where the neural system’s natural decay rate is surpassed by
the interaction strength so that the neuron’s inherent dynamics tend toward instability. More
precisely, we consider the one layer-neural network

ẏ(t) = −y(t) + 2 tanh(y(t)) + I(t), (4.16)

which is a particular case of (1.1) when ν = 1 and µ = 2. The linear stability analysis and
numerical simulations depicted in Figure 7 suggest that the trivial equilibrium to (4.16) when
I = 0 is unstable. To stabilize the neuron activity, we use a PD controller I(t) = −kpy(t− τ)−
kdẏ(t− τ) where the gain kp can be compared to inhibitory synaptic strength, the gain kd helps
dampen the rate of change in the neuron’s activity and the delay τ > 0 accounts for the inherent
temporal dynamics of the neuron.
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Figure 10. Solutions to equation (4.16) when I = 0 and when I is the PD
controller I(t) = −kpy(t − τ) − kdẏ(t − τ), where τ > 0, kd > 0 and kp > 0
are given by (4.17). We also plotted the function t 7→ exp(−7t), since −7 + ε
controls the exponential decay of solutions of the linearized equation (4.16) for a
sufficiently small ε > 0 as stated in Theorem 3.24. The initial condition is taken
as y0 = 1 for the solution with I = 0, and y0(t) = 1, y′0(t) = 0, t ≤ 0 for the
solution with the PD feedback input.

By linearizing the equation, assessing the local asymptotic behaviour of solutions to (4.16) is
equivalent to studying the spectrum distribution of the quasipolynomial function

Q2(s) = s− 1 + e−τs(kds+ kp) (s ∈ C)

which is a particular case of (2.1), where α = kd, β = kp, and a = −1.
Assume that we assign three equidistributed real spectral values s1 = −7, s2 = −7 − d and

s3 = −7− 2d to Q2. Lemma 2.4 provides the following

−1 = 7− 2d

eτd − 1
, kd = eτs2 , kp = eτs2

(
−s2 + d coth

(
τd

2

))
.

By letting d = 1, one finds

τ = ln

(
5

4

)
, kd = e−8τ , kp = e−8τ

(
8 + coth

(τ
2

))
. (4.17)

In Figure 9, we depicted the solutions of (4.16) when I(t) = 0 and when I(t) = −kpy(t− τ)−
kdẏ(t− τ) where τ > 0, kd > 0 and kp > 0 are given by (4.17).

4.2.4. Modeling of locally exponentially stable one-layer neural networks. In the previous sec-
tions, we examined the fundamental stability aspects of one-layer neural networks. We specifi-
cally looked at how variations in the system’s parameters ν and µ, as well as the implementation
of a delayed PD controller, influence the system’s dynamic behaviour. Building on this analysis,
this section aims to provide a comprehensive framework that guides the design and configura-
tion of one-layer neural networks to achieve specific exponential stability criteria. It involves a
detailed exploration of how to adjust the network parameters, specifically the gains of the PD



STABILIZING ONE-LAYER NEURAL NETWORK WITH PD CONTROLLER 35

controller (kp and kd) and the delay τ , to ensure that the network’s equilibrium behaviour aligns
with desired stability profiles.

In this scenario, we do not have prior knowledge of the inherent parameters ν > 0 and µ > 0
in equation (NDE). The only available information is the prescribed decay rate γ > 0, which
is designated to govern the exponential decay of the solution of (NDE) towards zero, regardless
of the sign of ν − µ. Since the local asymptotic behaviour of solutions to (NDE) is equivalent
to studying the spectrum distribution of the quasipolynomial function ∆0 defined in (1.3), the
following steps allow us to engineer the model parameters.

(1) Firstly, assign (one can let them equidistributed to simplify the design) three real spectral
values s3 < s2 < s1 := −γ to ∆0.

(2) Owing to the interpolation Lemma 2.4, the coefficients of ∆0 are then given by

(ν − µ)(τ) = −s1 − ζ(τ), kd(τ) =
F−τ,2(s1 + s2 + s3, s1 + s3)

F−τ,2(s1, s2, s3)
, kp(τ) = −kd(τ)s1 + ζ(τ)eτs1 ,

(4.18)
where ζ is defined in (2.22).

(3) If one wants to design (NDE) with ν = µ,
(i) Find the unique τ∗ > 0 such that s1 = −ζ(τ∗). This equation always admits a

positive real solution thanks to Theorem 3.3.
(ii) Compute the corresponding gains kp(τ∗) and kd(τ∗).
Consequently, the trivial equilibrium zero to (NDE) having parameters ν = µ (equal
to any positive real number), τ = τ∗, kp = kp(τ∗), and kd = kd(τ∗) will be locally
exponentially stable with a decay rate s1 + ε for a sufficiently small ε > 0, according to
Theorem 3.24.

(4) If one wants to design (NDE) with ν > µ,
(i) Find the unique τ∗ > 0 such that s1 = −ζ(τ∗).
(ii) Choose some τ0 > 0 such that τ0 > τ∗ to guarantee that (ν − µ)(τ0) > 0 owing to

Theorem 3.3.
(iii) Compute the corresponding gains kp(τ0) and kd(τ0).
Therefore, the trivial equilibrium zero to (NDE) having parameters µ > 0, ν = µ− s1 −
ζ(τ0), τ = τ0, kp = kp(τ0), and kd = kd(τ0) will be locally exponentially stable with a
decay rate s1 + ε for a sufficiently small ε > 0, according to Theorem 3.24.

(5) If one wants to design (NDE) with ν < µ,
(i) Find the unique τ∗ > 0 such that s1 = −ζ(τ∗).
(ii) Choose some τ1 > 0 such that τ1 < τ∗ to guarantee that (ν − µ)(τ1) < 0 owing to

Theorem 3.3.
(iii) Compute the corresponding gains kp(τ1) and kd(τ1).
It follows that the trivial equilibrium zero to (NDE) having parameters ν > 0, µ =
ν + s1 + ζ(τ1), τ = τ1, kp = kp(τ1), and kd = kd(τ1) will be locally exponentially stable
with a decay rate s1 + ε for a sufficiently small ε > 0, thanks to Theorem 3.24.

Abiding by these steps enables the design of a one-layer neural network with a delayed PD
controller that prevents seizure and system failure regardless of the inherent dynamics.

Consider the practical example consisting of designing (NDE) with either ν = µ, ν > µ and
µ > ν such that the trivial equilibrium zero is locally exponential stable with the prescribed
decay rate γ = 4. Assigning three equidistributed real spectral values s3 = −6, s2 = −5 and
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Figure 11. Solutions to equations (4.19), (4.20) and (4.21) respectively plotted
in blue, orange and green. We also plotted the function t 7→ exp(−4t), since
−4 + ε controls the exponential decay of solutions of the linearized equation
(4.19), (4.20) and (4.21) for a sufficiently small ε > 0 as stated in Theorem 3.24.
The initial condition is taken as y0(t) = 1, y′0(t) = 0, t ≤ 0 in each case.

s1 = −4, one finds that the unique τ∗ > 0 such that −4 = ζ(τ∗) is given by τ∗ = ln(3/2). One
can compute the associated gains

kd(τ∗) = e−5τ∗ , kp(τ∗) = e−5τ∗
(
5 + coth

(τ∗
2

))
.

Therefore letting, for instance, ν = µ = 2, one can design (NDE) in the following fashion

ẏ(t) = −2y(t) + 2 tanh(y(t))− kp(τ∗)y(t− τ∗)− kd(τ∗)ẏ(t− τ∗). (4.19)

Letting now τ0 > ln(3/2), say τ0 = 2 ln(3/2), and µ = 1, one finds

ν = µ− s1 − ζ(τ0) = 3.4, kd(τ0) = e−5τ0 , kp(τ0) = e−5τ0
(
5 + coth

(τ0
2

))
.

It follows that one can design (NDE) accordingly

ẏ(t) = −3.4y(t) + tanh(y(t))− kp(τ0)y(t− τ0)− kd(τ0)ẏ(t− τ0). (4.20)

Finally, taking τ1 > 0 such that τ1 < τ∗, say τ1 = ln(3/2)/2, and ν = 3, one gets

µ = ν + s1 + ζ(τ1) ≈ 7.89898, kd(τ1) = e−5τ1 , kp(τ1) = e−5τ1
(
5 + coth

(τ1
2

))
.

Therefore, one can design (NDE) as follows

ẏ(t) = −3y(t) + 7.89898 tanh(y(t))− kp(τ1)y(t− τ1)− kd(τ1)ẏ(t− τ1). (4.21)

We depicted in Figure 11 solutions to equations (4.19), (4.20) and (4.21). As expected, these
solutions decay exponentially towards zero as the function t 7→ exp((−4 + ε)t) for a sufficiently
small ε > 0.

Remark 4.4. We always achieve exponential stability in each case with small values for kp and
kd. This smallness guarantees that the inherent dynamics of the original system are preserved to
a great extent. In particular, this is important for neural networks that aim to mimic biological
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processes, as it ensures that the control strategy does not overpower the natural behaviours and
characteristics of the system.

5. Discussion

This paper demonstrates the use of a delayed Proportional-Derivative (PD) controller in a
continuous-time modeling of an one-layer Hopfield Neural Network (HNN) to achieve exponential
stability in models that are vulnerable to conditions similar to epileptic seizures at the single
neuron level. Through a rigorous application of spectral theory analysis, we have developed a
methodological framework that improves the stability of neural network models.

We have expanded the spectral theory based on the CRRID property for linear functional
differential equations of neutral type to the field of neural dynamics, offering a powerful analytical
tool to examine the stability of neural networks based on their spectral properties. This has
enabled us to determine the conditions under which the network attains stability, with a primary
focus on systems where conventional approaches anticipate instability.

Based on these theoretical insights, integrating a delayed PD controller has shown significant
promise in stabilizing the HNN. This approach imitates the natural inhibitory feedback mech-
anisms within the brain. It offers a biologically inspired method to control and prevent the
hyperexcitability that leads to seizures.

It would be beneficial for future research to explore the potential of implementing the delayed
PD control strategy and CRRID setting in more complex, multi-layer neural network architec-
tures, which could represent the intricate structures of biological neural systems more accurately.
It’s important to note that the MID setting developed in [BBNT23, BMN22, MBN21] can address
this issue. However, as mentioned in [MBN17], it is widely acknowledged that non-semisimple
spectral values are sensitive to minor perturbations due to their splitting mechanism.

The study provides valuable insights into the local stability of the trivial equilibrium in the
nonlinear model. However, it is important to recognize that these findings are primarily related
to local dynamics. In the future, research should combine the spectral methods used for the
linear equation with time-domain approaches based on Lyapunov functionals and linear matrix
inequalities. This combined approach would enable a more comprehensive investigation into the
global exponential stability of the nonlinear equation with a prescribed decay rate, expanding
the applicability and reliability of our findings.
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