
HAL Id: hal-04617936
https://hal.science/hal-04617936

Submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Benefits of hypergraphs for density-based clustering
Louis Hauseux, Konstantin Avrachenkov, Josiane Zerubia

To cite this version:
Louis Hauseux, Konstantin Avrachenkov, Josiane Zerubia. Benefits of hypergraphs for density-based
clustering. EUSIPCO 2024 - 32nd IEEE European Signal Processing Conference, Aug 2024, Lyon,
France. �hal-04617936�

https://hal.science/hal-04617936
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Benefits of hypergraphs for density-based clustering
Louis HAUSEUX

Inria, Université Côte d’Azur
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Abstract—Many of clustering algorithms are based on density
estimates in Rd. Building geometric graphs on the dataset X is
an elegant way of doing this. In fact, the connected components
of a geometric graph match exactly with the high-density clusters
of the 1-Nearest Neighbor density estimator.

In this paper, We show that the natural way to generalize
geometric graphs is to use hypergraphs with a more restrictive
notion of connected component called K-Polyhedron. Herein,
we prove that K-polyhedra correspond to high-density clusters
of K-Nearest Neighbors density estimator. Furthermore, the
percolation phenomenon is omnipresent behind the family of
clustering algorithms we look at in this paper.

Index Terms—hierarchical clustering, density estimator, geo-
metric graphs, hypergraphs, percolation

I. INTRODUCTION

Cluster analysis – or clustering – involves the process
of categorizing a collection of items in a manner where
items within the same group, called a cluster, exhibit greater
similarity to one another compared to those in different groups.

When the dataset X ⊂ Rd is made of points in the
Euclidean space, considering the point generation density f
and its high-density clusters is a natural way of tackling this
clustering problem [1] (see Fig. 1).

Fig. 1. Result of the Hierarchical Density-Based SCAN (HDBSCAN)
algorithm [2] on a 2D toy dataset [3].

Precise discretization of the Eucliden space Rd is often
intractable (and brings its own set of technical and theoretical
problems).

One classical solution consists in constructing a graph
whose nodes are the points of X and whose edges connect
nearby points. Looking at geometric graphs [4] allows us
to find the high-density clusters of the 1-Nearest Neighbor
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estimator [5] without constructing a density estimator f̂ on
the whole space.

To gain in robustness, it is natural to try to replace this 1-
Nearest Neighbor by a K-Nearest Neighbors density estimator
[5]. This is the key-idea of algorithms such as the Robust
Single-Linkage [6] or HDBSCAN [2], [3].

However, anticipating explanations in Fig. 4, we note that
these algorithms introduce a strong constraint on the vertices
while still having relaxed constraints on edges.

We illustrate this theoretical weakness with two practical
cases: A toy dataset of the © Scikit-Learn’s Clustering webpage
[7] and studying the small clusters of an olive oil dataset [8],
[9].

To tackle this issue, we propose a novel method using
hypergraphs rather than standard graphs. Hypergraphs, with
edges comprising more than two nodes, allow us to work with
more constrained notions of connectivity and therefore more
restrictive connected components called K-Polyhedra (see
Definition in Section III-A). We show that the K-Polyhedra
match with the high-density clusters of the density estimator
f̂K-NN (see Theorem in Section III-C).

II. CLASSICAL MATHEMATICAL MODEL

Assume that the dataset Xn := {x1, . . . , xn} ⊂ Rd is
a cloud of n points plotted IID according to a probability
measure with density f : Rd → R+.

Therefore, the underlying structure of the point cloud Xn

lies entirely in this density function f .
With the very intuitive idea that the different clusters are

represented by the “peaks” [10] of density, HARTIGAN [11]
defined the high-density clusters Hf (r) at level r as the
different connected components of the level set Lr

Lr :=
{
x ∈ Rd : f(x) ≥ r

}
.

By varying the level r, we can obtain a hierarchical cluster-
ing (cf. Fig. 2). Given a cluster C, i.e. a connected component
of Lr, the ‘discrete’ cluster on Xn is then defined by

Cdiscrete := C ∩ Xn.

The hierarchical clustering can be represented by a tree, the
dendrogram. See ROLLE & SCOCCOLA [12] for a much more
extensive presentation of hierarchical clustering.

mailto:louis.hauseux@inria.fr
https://orcid.org/0009-0007-3570-746X
mailto:konstantin.avratchenkov@inria.fr
https://orcid.org/0000-0002-8124-8272
mailto:josiane.zerubia@inria.fr
https://orcid.org/0000-0002-7444-0856
https://scikit-learn.org/stable/modules/clustering.html


Fig. 2. Hierarchical clustering. Each cluster is associated to its relative excess
of mass [3], that is the area of the coloured zone. © Images taken from [3]

A. Two approaches for density-based clustering.

First, if there is an estimator f̂ of the density f , it is then
possible to estimate Hf (r) with Hf̂ (r). This solution might
be adapted for Euclidean spaces of small dimensions (e.g. in
Rd with d = 1, 2 or 3)... But it becomes intractable in large
dimension: discretization of the space becomes too costly.

A way to bypass this difficulty is to construct a geometric
graph on the data whose connected components are a good
estimator of the discrete clusters. Given a point cloud X ⊂ E
in the Euclidean space Rd, the geometric graph G(X , r) of
radius r is the graph whose nodes are the points x ∈ X and
there is an edge between x, y ∈ X if ||x−y|| ≤ r, where || · ||
denotes the Euclidean distance (see PENROSE [4]).

B. Single-Linkage ≃ Geometric graphs ≃ f̂1-Nearest Neighbor

Single-Linkage algorithm constructs a hierarchical cluster-
ing as follows: It starts with the trivial initial clustering (n
points for n clusters) C0 =

{
C0

1 , . . . , C
0
n

}
with C0

i = {xi}.
At each step, we merge the two clusters that are the closest
for the distance: dClust(C,C

′) = minx∈C,y∈C′ ||x− y||.
At step t, the resulting clustering Ct =

{
Ct

1, C
t
2, . . . , C

t
n−t

}
corresponds to the connected components of a geometric graph
G(Xn, rt) built on Xn. Therefore, Single-Linkage performs
persistent analysis on geometric graphs G(Xn, r).

Furthermore, we propose a new clustering algorithm, called
‘Hypergraph-Percol’, combining the use of these K-Polyhedra
with percolation phenomenon.

See Fig. 3 for an illustration. Density is constant on each
half-rectangle, the left one A and the right one B, and is larger
on A. We observe on the dendrogram the first percolation
phase (for the plateus A). Suddenly, for r ≲ 0.07, plenty of
clusters merge. The associated geometric graph G(X300, 0.07)
has a giant component almost corresponding to A ∩ X300.

Fig. 3. From left to right: 1) The point cloud X300. 2) The dendogram of
the Single-Linkage applied on X300. 3) The geometric graph G(X300, 0.07).

HARTIGAN [13] showed that the Single-Linkage algorithm
is a consistent estimator of high-density clusters in dimension
d = 1, but only fractionnally1 consistent in dimension d ≥ 2.

C. Robust Single-Linkage

To gain in robustness, it is natural to try to replace this 1-
Nearest Neighbor by a K-Nearest Neighbors density estimator.
CHAUDHURI & DASGUPTA [6] proposed a robust version of
the Single-Linkage based on the consistency of the K-Nearest
Neighbors density estimator [5].

In the K-Robust version, only points x ∈ Xn having more
than K neighbors in their r-neighbourhood are considered:

XK,r
n := {x ∈ Xn : |B(x, r) ∩ Xn| ≥ K} ⊆ Xn.

Then a geometric graph G(XK,r
n , r) is constructed on XK,r

n

and the rest of the algorithm is the same as for Single-Linkage.
(H)DBSCAN and other algorithms work in the same way [12].

We emphasize that there is now a hiatus between the strong
constraint on the points (having K neighbors to appear) and
the relaxed condition on edges (once two vertices x, y ∈ XK,r

n

appear, they are linked with the weak condition ||x−y|| ≤ r).

D. Limitation of the Robust Single-Linkage

1) In theory: For K > 2, it is very important to note
that the discrete clusters obtained via the high-density clusters
of the K-Nearest Neighbors density estimator f̂K-NN are
quite different from those of the Robust Single-Linkage (or
(H)DBSCAN).

Fig. 4. Left: A cloud X6 of six points: two equilateral triangle at equidistance
r. In red, the two clusters of Hf̂3-NN

for level r. Right: The resulting
dendrogram of the discrete hierarchical clustering Hf̂3-NN

.

Look at the Fig. 4 for such an example. The discrete high-
density clusters at level r of the point cloud X6 are composed
of the two triangles {A,B,C} and {D,E, F}. Then, for larger
level r′ > r, these two triangles will merge. The hierarchical
clustering Hf̂3-NN

can thus be represented by the tree on the
right-hand side. Whereas the Robust Single-Linkage algorithm
merges the two triangles once they appear because the edge
{C,D} appears at the same time... Consequently, the dendro-
gram of 3-Robust Single Linkage is also reduced to an unique
root–leaf, {A,B,C,D,E, F}.

1A question then arises: How can we measure this recoverable ‘fraction’?
This led us to define a percolation rate in [14]. There is still a lot more
to say about it. The phenomenon of percolation is omnipresent behind
this family of algorithms. Its study is necessary to understand, analyse and
compare their performances. To deal with it herein would take us too far...
For continuum percolation, see MEESTER & ROY [15] or PENROSE [4]; for
discrete percolation, the reader can refer to GRIMMETT [16].



2) In practice: This weakness is not purely theoretical.
On Scikit-Learn’s Clustering webpage [7], HDBSCAN – the
algorithm with the best visual results – makes a mistake on
a 3-blob example (see Fig. 5): It merges the 3 clusters into 2
clusters. A short chain of points is enough to merge the two
vertically aligned clusters.

Fig. 5. Left: Result of HDBSCAN on the 3 blobs [7]. Colours are the 3
ground-truth clusters, Shapes are the clustering: only 2 clusters (triangles and
squares). Disks are unclustered points. Right: The condensed clustering tree
with the choice of clusters according to the excess of mass criterion [3].

Another example on a real dataset: The Italian olive oil [8],
[9], [12], [17]. This dataset was first presented in 1983 [8].
It consists of 572 samples of chemical oil composition, these
samples coming from nine different italian regions grouped in
three macro-areas: 1) South: North Apulia, South Apulia,
Calabria and Sicilia; 2) Sardinia: Inland and Coast; 3)
Centro-settentrionale: East Liguria, West Liguria and Umbria.

HDBSCAN is able to recover the 3 geographical ‘ground-
truth’ macro-areas2 but not the 9 finer region-clusters.

This weakness leads us to look at more general objects than
graphs, with more restrictive notions of connectivity.

III. PROPOSED APPROACH

A. Hypergraphs and K-Polyhedra

Like a graph, a hypergraph is defined by a set of vertices
X and a set of edges E. The difference is that the edges
e ∈ E are not only pairs {x, y} of vertices x, y ∈ X but
can be any non-empty subsets of the vertices e ⊆ X . An edge
can thus express more elaborated neighbourhood relationships.
We will look at a sub-family of hypergraphs called simplicial
complexes in algebraic topology (see MUNKRES [19]).

DEFINITION. A polyhedron of dimension K is defined
inductively (see Fig. 6 for an illustration):

— The convex hull of a hyperedge e = {xi0 , . . . , xiK}
of dimension K (with K + 1 vertices) is a polyhedron of
dimension K.

— If two polyhedra of dimension K share a common facet
(hyperedge of dimension K − 1), then their union is still a
polyhedron of dimension K.

2The geographical location is in fact an important criterion... It should not
be the only one. E.g. North-Apulia forms a cluster clearly distinct from South-
Apulia (and also from the other clusters; look at Fig. 8: it is the last small
remaining cluster when everything else has merged). This certainly has more
to do with the way of oil fabrication and olive harvesting (either picked still
on the tree or picked after they fall) than with the geographical, geological
or climatic differences. At the time of the study (1983), some olive farmers
still used millenia-old practises (see an article on olive oil in Apulia [18]).

Fig. 6. A hypergraph and its five 2-Polyhedra (or “Triangle-connected”
components) surrounded in red.

This notion of connected component on hypergraphs was
defined by ATKIN [20] for simplicial complexes and called
‘q-connectivity’. See [21] for more recent developments.

B. Čech simplicial complexes

The Čech complex Č(Xn, r) is the hypergraph whose K-
dimensional hyperedges e = {xi0 , .. , xik} are in Č(Xn, r)
if their epicentrum E(e) is not empty:

E(e) :=

k⋂
j=0

B
(
xij , r/2

)
̸= ∅.

Note that the 1-skeleton of Č(Xn, r) corresponds to the
geometric graph G(Xn, r).

C. Correspondence between K-Polyhedra of Č(Xn, r) and
the high-density clusters of f̂K-NN

Let Xn ⊂ Rd be a point cloud IID generated by a continuous
density function f . Let LK

r be the r-level set of the K-Nearest
Neighbors density estimator

LK
r =

{
x ∈ Rd : |B(x, r/2) ∩ Xn| ≥ K

}
=

⋃
e∈Č(Xn,r)

|e|=K

E(e)

and Hf̂K-NN
(r) the associated high-density clusters, i.e. the set

of connected components of LK
r .

Note that for fixed radius r, LK+1
r ⊂ LK

r , we can therefore
‘link’ the (K+1)-clusters C ∈ Hf̂(K+1)-NN

(r) which are in the
same K-cluster C ′ ∈ Hf̂K-NN

(r). Let us define

LinkKr =


⋃

C∈Hf̂(K+1)-NN
(r)

C⊂C′

C : C ′ ∈ Hf̂K-NN
(r)

 \ {∅} .
We define the ε-dilatation of the set X ⊂ Rd by

δε(X) =
{
x ∈ Rd : B(x, ε) ∩X ̸= ∅

}
.

THEOREM. Let K be the dimension of the polyhedra, r a
radius, Č(Xn, r) the Čech complex of radius r on the cloud
Xn and V1, . . . , Vα the sets of vertices of its α K-Polyhedra.
Then, α = |LinkKr |. Moreover, the Vis are exactly given by

δr/2(C) ∩ Xn for C ∈ LinkKr .

By looking at the K-Polyhedra, we can therefore identify
the clusters of Hf̂(K+1)-NN

(r) that are connected in LK
r . While

Robust Single-Linkage (or HDBSCAN) merges all the clusters

https://scikit-learn.org/stable/modules/clustering.html


of Hf̂(K+1)-NN
(r) that were connected after an r-dilatation,

which is much less restrictive.
PROOF. The proof is not very difficult but would take too

much space here. The idea is that connecting K-hyperedges
of Č(Xn, r) by means of (K − 1)-hyperedges is equivalent
(apart from r/2-dilatation) to connecting (K+1)-high-density
clusters within K-high-density clusters. The full proof will be
submitted to a journal.

D. The novel ‘Hypergraph-Percol’ algorithm

Alg. 1 schematically presents how our Hypergraph-Percol
works. Varying a radius r, it produces a persistent analysis
on Čech complexes Č(X , r). In the spirit of working only
after percolation phases, a ‘percolation threshold’ parameter
is introduced, pruning the resulting hierarchical tree.

Algorithm 1 Hypergraph-Percol
Input: X the point cloud, K ∈ N and PercolThreshold ∈ N
Output: Hierarchical clustering Ĥ : r 7→ Ĥ(r)

for r from 0 to +∞ do
Hypergraph← Č(X , r)
Polyhedra← K-Polyhedra(Hypergraph)
for Polyhedron in Polyhedra do

if Length(Polyhedron) < PercolThreshold then
Remove(Polyhedron) from Polyhedra

end if
end for
Ĥ(r)← Polyhedra

end for
Return Ĥ

Once a hierarchical clustering3 Ĥ : r 7→ Ĥ(r) is obtained,
we can compute its linkage matrix [22] and draw the associ-
ated condensed clustering tree [3].

The relative excess of mass criterion [3] is then applied
to extract the relevant clusters. Multi-clustered points are
removed from the final clustering. To obtain an exhaustive
clustering, we associate to each unclustered point the cluster
of its Nearest Neighbor (within the clustered points).

IV. EXPERIMENTAL RESULTS

See Section II-D2 for a presentation of the two datasets.

A. 2D toy dataset of the © Scikit-Learn’s Clustering webpage [7]

X500 is composed of 3 blobs (see Fig. 5 and 7). The com-
putation of the K-Polyhedra on the Čech complex Č(X500, r)
is made with the same parameters as in HBDSCAN: K ← 2
and the percolation threshold PercolThreshold ← 15. We
also apply the same relative excess of mass [3] criterion for
the choice of clusters (see the red ellipses in Fig. 7: the excess
of mass is the area of the vertical bars in the dendrogram). The
2-Polyhedra being a more constraining notion of connected
components than the 3-Neighbors of HDBSCAN, the result
is less smooth and smaller components appear and have a

Fig. 7. Left: Results of our algorithm on the 3-blobs. Colours are the 3
ground-truth clusters: gray, orange and red. © Scikit-Learn’s Clustering
webpage. Shapes are the final clustering using the condensed clustering tree
[3] (Right). We recover the 3 clusters (triangles, squares and pentagons). Disks
are unlabelled points.

TABLE I
RESULTS OF DIFFERENT CLUSTERING ALGORITHMS ON 3 BLOBS [7].

Methods requiring n clusters Unsupervized methods
K-Means Spectr. C. Gauss. M. HDBSCAN Hypergraph-Percol

n clusters Given Given Given 2 3
Accuracy 495/500 494/500 494/500 X 495/500

Rand Index 0.987 0.984 0.984 X 0.987

longer lifespan. See the resulting clustering on Fig. 7. We
identify well the three clusters (the three shapes; contrary to
HDBSCAN, cf. Fig. 5). On the cloud X500 made of 500 points,
29 are unclustered, 1 is bi-clustered and 3 are misclustered.
Among the 30 bi- or un-clustered points, 28 would be rightly
clustered using the 1-Nearest (clustered) Neighbor. Thus, the
exhaustive ‘Hypergraph-Percol’ method – which is totally
unsupervized – gives 495 well-clustered points; result similar
to classical methods requiring the number of clusters such as
Mini-batch K-Means [23] (495), Spectral clustering [24] (494)
or Gaussian mixture [25] (494) (see Tab. I).

B. The Olive Oil dataset [8], [9]

HDBSCAN is able to recover the three macro-areas but not
the finer regions. Whereas our ‘Hypergraph-Percol’ method
is. With K ← 6 and PercolThreshold ← 30 we obtain the
condensed tree drawn in Fig. 8 with height clusters. Height
and not nine because – as with the ‘Persistable algorithm’ in
[12] – the ‘Sicilia’ cluster (4th in Tab. II) does not appear.

Note that a point may appear in several different clusters.
That is why the “number of points” in Fig. 8 is higher than
572, the number of samples. In Tab. II, only points that
appear in a single cluster are classified. 394 points are thus
clustered with a relative accuracy of 374/394 ≈ 94.9%. It
can be noticed that there are few false positives (apart the
diagonal, majority of cells have 0-value – in light gray). Using
the Nearest-Neighbor clustered point to obtain an exhaustive
clustering, the overall accuracy is 506/572 ≈ 88.5% (against
499/572 ≈ 87.2% in [12]).

3Note that, here, a ‘clustering’ H(r) may not be a partition of X : some
points at the frontier of K-Polyhedra may appear in several clusters.
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Fig. 8. Condensed clustering tree [3] obtained with our Hypergraph-Percol
method on the ℓ2-normalized olive oil dataset [8], [9]. We recover 8 of the 9
geographical ‘ground-truth’ region clusters. The resulting clustering is given
in Tab. II.

TABLE II
RESULTS OF THE PERSISTABLE [12] AND OUR HYPERGRAPH-PERCOL

ALGORITHMS ON THE OLIVE OIL DATASET.

Pers./Ours 1 2 3 4 5 6 7 8 9 Miss.
N. Apulia 12/14 0/0 0/0 - 0/0 0/0 0/0 0/0 0/0 13/11
Calabria 0/0 7/28 1/1 - 0/0 0/0 0/0 0/0 0/0 48/27
S. Apulia 0/0 0/0 100/167 - 0/0 0/0 0/0 0/0 0/0 106/39
Sicilia 3/5 0/1 0/2 - 0/0 0/0 0/0 0/0 0/0 33/28
Inl. Sard. 0/0 0/0 0/0 - 51/52 0/0 0/0 0/0 0/0 14/13
Coast S. 0/0 0/0 0/0 - 0/2 19/27 0/0 0/0 0/0 14/4
E. Ligur. 0/0 0/0 0/0 - 0/0 0/0 14/20 1/3 0/0 35/27
W. Ligur. 0/0 0/0 0/0 - 0/0 0/0 0/0 29/41 0/0 21/9
Umbria 0/0 0/0 0/0 - 0/0 0/0 0/6 0/0 42/25 9/20

V. CONCLUSION AND PERSPECTIVES

This paper presents a new clustering method called
‘Hypergraph-Percol’ for data X ⊂ Rd in the Euclidean space.

We construct hypergraphs (Čech complexes) on X and use a
restrained notion of connectivity called the K-Polyhedron con-
nectivity (Definition III-A). We show that our ‘Hypergraph-
Percol’ clustering technique is theoretically better able to re-
cover high-density clusters (Theorem III-C) than other classi-
cal density-based clustering algorithms such as Robust Single-
Linkage [6] or HDBSCAN [2], [3].

This capability is illustrated on two datasets. First, a 2D toy
dataset [7] on which HDBSCAN defaulted and recovered only
2 of the 3 clusters while our method works well. Second, an
olive oil dataset [8], [9] with geographical clusters as ground-
truth. Here, HDBSCAN is not able to detect precisely finer
clusters. Again, our method is more robust than HDBSCAN
and manages to detect smaller clusters with good accuracy.

Our algorithm provides only a partial clustering, which
we completed for unclustered points with a Nearest-Neighbor
method.

In the future, it would be interesting to develop a more com-
prehensive and robust framework than this cobbled-together
approach to obtain an exhaustive clustering and test the new
method on a larger number of datasets.

In addition, it might be interesting to add a parameter for the
cluster selection criterion. We could then automatically obtain

a clustering with micro-clusters or macro-clusters depending
on the value of this parameter.
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