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Abstract. Semi-supervised domain adaptation methods leverage infor-
mation from a source labelled domain with the goal of generalizing over
a scarcely labelled target domain. While this setting already poses chal-
lenges due to potential distribution shifts between domains, an even more
complex scenario arises when source and target data differs in modality
representation (e.g. they are acquired by sensors with different charac-
teristics). For instance, in remote sensing, images may be collected via
various acquisition modes (e.g. optical or radar), different spectral char-
acteristics (e.g. RGB or multi-spectral) and spatial resolutions. Such a
setting is denoted as Semi-Supervised Heterogeneous Domain Adapta-
tion (SSHDA) and it exhibits an even more severe distribution shift due
to modality heterogeneity across domains.
To cope with the challenging SSHDA setting, here we introduce SHeDD
(Semi-supervised Heterogeneous Domain Adaptation via Disentangle-
ment) an end-to-end neural framework tailored to learning a target do-
main classifier by leveraging both labelled and unlabelled data from het-
erogeneous data sources. SHeDD is designed to effectively disentangle
domain-invariant representations, relevant for the downstream task, from
domain-specific information, that can hinder the cross-modality transfer.
Additionally, SHeDD adopts an augmentation-based consistency regular-
ization mechanism that takes advantages of reliable pseudo-labels on the
unlabelled target samples to further boost its generalization ability on
the target domain. Empirical evaluations on two remote sensing bench-
marks, encompassing heterogeneous data in terms of acquisition modes
and spectral/spatial resolutions, demonstrate the quality of SHeDD com-
pared to both baseline and state-of-the-art competing approaches. Our
code is publicly available here.

Keywords: Domain Adaptation · Heterogeneous data · Feature disen-
tanglement · Pseudo-labeling · Consistency regularization.

https://github.com/tanodino/SSHDA/tree/main
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1 Introduction

When it comes to real-world applications of machine learning, disposing of a vast
amount of labelled samples remains a major issue in many domains, especially
those featured by costly and time-consuming labelling processes. Consequently,
make value of already available data, covering similar downstream tasks, is of
paramount importance to enhance the classification performances on target do-
mains where labelled data are scarce. Nonetheless, this process is not straightfor-
ward due to potential differences or shifts in their underlying data distributions
between a rich source labelled domain and the target one [26]. To cope with data
distribution shifts between source and target domains, Domain Adaptation (DA)
techniques have been proposed [21]. The main objective of this family of machine
learning methods is to learn a classification model across different domains, gen-
erally sharing the same set of classes, with the aim to transfer information from
a source to a target one.

Many research efforts have focused on addressing situations wherein the tar-
get domain lacks completely of associated labels, while only the source domain
disposes of labelled information [21]. This scenario is commonly referred as Un-
supervised Domain Adaptation (UDA). However, a more practical assumption
for real-world applications is to have access to a small amount of labelled in-
formation from the target domain, enabling the simultaneous exploitation of
abundant labelled samples from the source domain and limited labelled samples
from the target domain. Such a setting is generally termed as Semi-Supervised
Domain Adaptation [15], and existing literature has highlighted that directly
using UDA approaches fails to exploit the label information associated with the
target domain, thus requiring tailored solutions for this setting [16].

Nevertheless, most of the aforementioned research strategies rely on the
strong assumption that data coming from source and target domains share a
similar (homogeneous) data modality representation. However, in real-world ap-
plications data can be collected by means of heterogeneous sensors, as it is the
case for remote sensing imagery exhibiting differences in acquisition modes (e.g.
optical and radar), spectral characteristics (RGB, multi-/hyper-spectral), and
spatial resolution. Consequently, it is increasingly common to encounter label-
abundant source domains and label-scarce target domains that are heterogeneous
in terms of data modality representation, further exacerbating potential data
distribution shifts between domains. To address this challenging scenario, Semi-
Supervised Heterogeneous Domain Adaptation (SSHDA) methods are gaining
increasing attention within the research community [2]. However, the majority
of the proposed approaches rely on pre-trained deep learning models that are
only available for standard modalities (e.g. RGB imagery, text data), limiting
their applicability in scenarios involving non-standard sensor data, such as those
used in the medical [3] and remote sensing [13] fields.

With the aim to address the challenging SSHDA setting, in this research
work we introduce a new end-to-end deep learning framework especially tailored
to learn a target domain classifier by leveraging both labelled and unlabelled
data from heterogeneous data sources. Our framework, SHeDD (Semi-supervised
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Heterogeneous Domain Adaptation via Disentanglement), tackles data modality
heterogeneity by extracting, via a feature disentanglement approach, domain-
invariant representations, relevant for the downstream task, and domain-specific
information, that can prevent cross-modality transfer. To this end, invariant and
domain specific features are enforced to be orthogonal to each other with the lat-
ter carrying domain-discriminant information. Furthermore, SHeDD harnesses
unlabelled target data to enhance its generalization ability, aiming to trans-
fer discriminative information from the labelled source domain to the scarcely-
labelled target domain. This last point is achieved via consistency learning where
confident pseudo-labels are derived on the target domain by the classification
model and subsequently exploited in the training process. Empirical evaluations
on two remote sensing benchmarks, encompassing heterogeneous data domains
in terms of acquisition modes and spectral/spatial characteristics/resolutions,
clearly demonstrate the quality of SHeDD compared to both baseline and state-
of-the-art competing methods.

This paper is organized as follows: related works are discussed in Section 2;
the proposed method is described Section 3; experimental results are presented
and discussed in Section 4, followed by concluding remarks in Section 5.

2 Related Works

Domain adaption [21] (DA) methods belong to the family of transfer learning
approaches [26] which have the main objective to transfer a model trained on a
labelled source domain to a target domain. When the target domain is completely
unlabelled, Unsupervised Domain Adaptation (UDA) strategies are designed in
order to align domains through data transformation and/or extract domain-
invariant features to reduce the distribution gap between the labelled source
and the unlabelled target domain [10].

When, for the target domain, a limited amount of labelled samples are avail-
able, Semi Supervised Domain Adaptation (SSDA) strategies have been proposed
to combine both labelled (source and target) with unlabelled (target) informa-
tion [16,14,8,9,5,22,23,24]. In [16], a framework based on Minimax Entropy is
introduced to exploit the available target supervision. The same research work
clearly illustrates that directly use UDA methods performs poorly when small
amount of labeled samples are accessible from the target domain, thus empha-
sizing the need to design specialized approaches for the SSDA setting. In [14],
an adversarial learning paradigm is leveraged in order to obtain two contra-
dictory classifiers (source and target), enforcing well-scattered source features
and compact target features respectively. A slightly different approach is pro-
posed in [8], where a cross-domain adaptive clustering algorithm is presented to
achieve cluster-wise feature alignment across domains, still employing an adver-
sarial learning strategy. In [5], additional adversarial examples are introduced
to fill the gap between domains and model robustness. The work in [23] decom-
poses SSDA into an SSL problem within the target domain coupled with an
inter-domain UDA problem, then optimizes both tasks simultaneously using co-



4 C. F. Dantas et al.

training. Moving away from the adversarial paradigm, [17] proposes a contrastive
learning framework operating both at a class level to reduce inter-domain gap
and at the instance level with strong augmentations to minimize intra-domain
discrepancy. Mitigating discrepancy within the target domain is also the main
goal in [6], which proposes a feature alignment approach for achieving it.

Despite the effectiveness demonstrated by these methods, they are especially
designed for managing homogeneous domains since they capitalize on the fact
that source and the target domains share a similar modality representation (e.g.,
both involving RGB images). Therefore, the direct extension of these approaches
to handle a heterogeneous setting, where source and target data differ in modality
representation, is challenging.

In recent years, research efforts have been devoted towards addressing DA
in an heterogeneous setting [1]. These efforts primarily focus on aligning the
source and target domains through heterogeneous feature transformations. For
instance, [25] learns feature transformations to map source and target data into
a common latent space, where both marginal and class-conditional distribu-
tions are matched. In addition, self-training via pseudo labelling is used to up-
date the target label set. Another approach proposed in [2] introduces a joint
mean embedding alignment method where a neural network based approach
aligns source and target data distribution via domain discrepancy minimization.
However, these methods rely on features derived either through hand-crafted
processes or from modality/domain specific pre-trained models (e.g. RGB pre-
trained model) thus lacking end-to-end behaviour. Such reliance can prevent
their applicability in scenarios involving data beyond the standard RGB (three
channels) format. Recently, [12] has introduced an end-to-end SSHDA method,
addressing the aforementioned limitations. This method adopts per-domain en-
coders sequentially connected to a shared backbone, with a classification head
used for the final decision. During training, the neural network is optimized for
simultaneously classifying and align the embedding representations coming from
the different heterogeneous domains with standard cross entropy and domain
critic discrimination based on wasserstein distance, respectively.

In this work we propose a different framework for SSHDA based on fea-
ture disentanglement, intended as the capacity of a network to identify domain-
invariant representations, relevant for the downstream task, by explicitly seeking
in parallel to isolate domain-specific information which may hinder the cross-
modality transfer.

3 Proposed Method

The proposed architecture, summarized in Figure 1, is given by two independent
encoder branches with specialized backbones (one dedicated to the source data
modality and another to the target data), followed by two parallel classifiers (a
task classifier and a domain classifier).

A given input data x is firstly encoded by its matching backbone and the
obtained embedding vector z = g(x) ∈ R2D is then split into two equal parts:
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Fig. 1. Schematic view of the proposed method architecture with a separate encoder
for each of the data modalities (source and target). Feature disentanglement enables
domain-specific and domain-invariant information to be encoded separately into each
half of the generated embedding vectors (depicted in orange and green respectively).
The domain-invariant information (zinv) is used by the task classifier, while the do-
main classifier receives the domain-specific portion of the embedding vector (zspe). At
inference time, only the bottom part of the architecture is used, the top part being
instrumental in the training stage to enable the feature disentanglement procedure.

zspe ∈ RD and zinv ∈ RD. While the former vector is fed into the domain
classifier fd, a binary classifier that tries to predict from which branch (source
or target) the sample originates, the latter one is sent to the task classifier fcl
that outputs class probabilities ŷ = fcl(z

inv) ∈ RC for the C existing classes.
At training time, guided by the losses described in Section 3.2, the weights of

these four modules —source and target encoders, task and domain classifiers—
are optimized on the available supporting data composed of the following sets:

S := {(xs, ys)
(i)}Ns

i=1 labelled source data.
T := {(xt, yt)

(i)}Nt
i=1 labelled target data.

U := {x(i)
u }Nu

i=1 unlabelled target data.

From each unlabeled target sample xu, we generate a corresponding augmented
counterpart (see details in Section 3.2) denoted xû that form the set below:

Û := {x(i)
û }Nu

i=1 augmented unlabelled target data.

where we denote Ns, Nt and Nu the corresponding dataset sizes.
At inference time, only the target encoder is retained. Similarly, only the

task classifier is required. The two dropped modules, however, are crucial as
supporting elements during training in order to fully guide the network’s abil-
ity to effectively disentangle domain-invariant from domain-specific information.
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This ability, acquired during training and carried over to inference time in the
two retained modules, helps enhancing the generalization capabilities of the final
network.

3.1 Training losses

In case of a labeled training sample, from either source or target domain, the
output of the task classifier fcl(zinv) is compared to its ground-truth annotation
y in the following cross-entropy classification loss:

Lcl = CE
(
fcl(z

inv), y
)
. (1)

Because the provenance domain ydom ∈ {s, t} of any given data sample is al-
ways known (even for unlabeled target samples), the domain classifier prediction
fd(z

spe) can be systematically taken into account in the following cross-entropy
loss:

Ldom = CE (fd(z
spe), ydom) . (2)

To further enforce disentanglement between domain-invariant and domain-
specific information, we enforce orthogonality between the two embedding types
for any given input sample (source and target, labelled and unlabelled):

L⊥ =
⟨zinv, zspe⟩

∥zinv∥2∥zspe∥2
. (3)

To fully exploit the available target unlabelled data (set U), for each sample
xu ∈ U we first generate an associated augmented sample xû = Augment(xu)
(see details in section 3.2) and then employ an unsupervised loss à la FixMatch
[18] that enforces consistency between predictions obtained from the unlabeled
sample xu and its augmentation xû via pseudo-labelling procedure:

Lpl = mτ
u CE(f(z

inv
û ), yû) (4)

where pseudo-labels yû := argmax(fcl(z
inv
u )), given by the classifier predictions

on the unlabelled target data xu ∈ U , are used as ground-truth for the corre-
sponding augmentation xû. Only a subset of the pseudo-labels (those with higher
confidence) are retained. This is expressed through the multiplying binary factor

mτ
u := 1(max(fcl(z

inv
u )) > τ) (5)

where τ ∈ [0, 1] is a scalar hyper-parameter denoting the confidence threshold.
and 1(condition) denotes the indicator function, which is equal to 1 if condition
holds and 0 otherwise.

3.2 Training procedure

The proposed training scheme is summarized in Figure 2, where we show the
different input data paths through the network during training as well as the
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Fig. 2. Schematic view of the data flow during the training phase. The four proposed
loss terms (framed in grey) are illustrated with their corresponding inputs.

inputs used by each of the four proposed losses. A more detailed and formalized
description of the training procedure is given in Algorithm 1.

For each epoch, we go through the source dataset sequentially (as it is usually
the dataset with the highest number of samples Ns > Nu > Nt). This is done
by batches in practice, even if in Algorithm 1 we illustrate the sample-wise case
(unitary batch) for simplicity5. At each iteration, we sample uniformly at random
the same number of samples (batch size) from the set labeled and unlabeled
target data —lines 4 and 5. Each sample is then passed through their matching
encoder at lines 6–9 (note that the target encoder gt is used not only for the
labeled target samples xt with matching subscript, but also for the unlabeled
samples xu and xû). Finally, in lines 10–16, each of the loss terms defined in
the previous section are computed with respect to the all relevant input data
and, subsequently (line 17), backpropagated through the entire architecture to
update its composing modules (gs, gt, fcl, fd) weights.

For convenience, we introduce superscripts on a loss term, say LV , to specify
its application on input data coming from a certain dataset V ∈ {S, T, U, Û} (or
several datasets in case of multiple superscripts). For instance, we denote by LS,T

cl

5 The generic minibatch version of Algorithm 1 is obtained simply by additionally
averaging each of the loss terms over the batch dimension.
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Algorithm 1 SHeDD Train procedure
Require: Datasets S, T , U ; Pseudo-labeling threshold τ .
1: for epoch ∈ {1, . . . , Nep} do
2: for all (xs, ys) ∈ S do
3: (xt, yt) ∼ U(T )
4: xu ∼ U(U)
5: xû = Augment(xu)
6: zinvs , zspes = gs(xs)
7: zinvt , zspet = gt(xt)
8: zinvu , zspeu = gt(xu)
9: zinvû , zspeû = gt(xû)

10: LS,T
cl = 1

2

∑
v∈{s,t} CE(fcl(z

inv
v ), yv)

11: LS,T
dom = 1

2

∑
v∈{s,t} CE(fd(z

spe
v ), v)

12: LU,Û
dom = 1

2

∑
v∈{u,û} CE(fd(z

spe
v ), t)

13: LS,T
⊥ = 1

2

∑
v∈{s,t}

⟨zinv
v ,zspe

v ⟩
||zinv

v ||2||zspe
v ||2

14: LU,Û
⊥ = 1

2

∑
v∈{u,û}

⟨zinv
v ,zspe

v ⟩
||zinv

v ||2||zspe
v ||2

15: yû,m
τ
u = PseudoLabel(fcl(zinvu ), τ ) // cf. equations (4) and (5)

16: LÛ
pl = mτ

u · CE(fcl(z
inv
û ), yû)

17: Update weights of (gs, gt, fcl, fd) by back-propagating the loss:
LS,T
cl + LS,T

dom + LU,Û
dom + LS,T

⊥ + LU,Û
⊥ + LÛ

pl

18: end for
19: end for
20: return gT , fcl

the classification loss defined in eq. (1) applied on (and averaged over) samples
from labeled source and target datasets. This notation has the merit of making
more explicit to which dataset each loss applies and will prove particularly useful
for our ablation analysis in Table 6.

Hence, while the classification loss Lcl naturally applies only to labelled data
(S, T ), the domain classification Ldom and orthogonality L⊥ losses can be eval-
uated for both labeled (S, T ) and unlabelled data (U , Û). Finally, the Fix-
Match loss Lpl applies to the augmented unsupervised data (Û) while leveraging
pseudo-labels obtained for the corresponding non-augmented samples (in U).
These multiple data paths involved in the proposed training scheme are sum-
marized in Figure 2. In the figure, we replicate the encoder and classification
modules to properly outline each separate data flow, but we emphasize that
these modules are characterized by an unique set of shared weights.

Data augmentation: The employed augmentation operation Augment(·) (line
5 in Algorithm 1) consists of a series of possible transformations with 50% of
occurrence probability each, among the following: horizontal flip; vertical flip;
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rotation with random angle on the set {0◦, 90◦, 180◦, 270◦}; color jitter (random
changes in the image brightness, contrast, saturation and hue)6.

4 Experiments

In order to assess the performance of SHeDD , we consider two different bench-
marks covering heterogeneous data coming from the remote sensing field.

Benchmark Volume Modality Spatial Res. # Classes

RESISC45-Euro 5 600×3×256×256 RGB 0.2m–30m 824 000×13×64×64 MS 10m

EuroSat-MS-SAR 27 000×13×64×64 MS 10m 1027 000×2×64×64 SAR 10m
Table 1. Benchmark statistics and description. Each benchmark covers two heteroge-
neous domains. EuroSat-MS-SAR involves MS and SAR images, both with a spatial
resolution of 10m, for a classification task with 10 classes. RESISC45-Euro includes
RGB and MS images, with varying spatial resolutions, for a classification task with 8
classes. The Volume column reports per-domain statistics in the format (# images)
× (# channels) × (image height) × (image width).

As our first dataset, we adopt the RESISC45-Euro benchmark previously
introduced in [12]. This dataset contains 5 600 RGB images at different spatial
resolutions and 24 000 multispectral (MS) images, with 13 channels, spanning
eight different land cover classes. Here, the heterogeneity is related to domains
covering imagery with different spatial and spectral resolutions. As our second
dataset, we use the EuroSat-MS-SAR benchmark [20]. This dataset contains
54 000 pairs of MS and synthetic aperture radar (SAR) images, with 13 and 2
channels respectively. With the aim to avoid possible data biases and spurious
correlations, for each sample of the dataset we only retain one of the two modal-
ities. This leads to a benchmark including 27 000 MS and 27 000 SAR unaligned
images over the set of ten land cover classes. Here, the heterogeneity corresponds
to imagery collected via different acquisition modes (optical and radar). Details
about benchmarks are reported in Table 1. For each benchmark we set up two
transfer tasks where each transfer task is denoted as (Ds → Dt) where the right
arrow indicates the transfer direction from the fully labelled source domain (Ds)
to the scarce labelled target domain (Dt).

Considering the competing approaches, we include in our experimental eval-
uation a fully supervised baseline that only exploits available target labelled
data, referred as Target Only. As a state-of-the-art semi-supervised framework
that exploits both labelled and unlabelled target samples in order to leverage

6 For this transformation, we used the PyTorch implementation
torchvision.transforms.ColorJitter() with default parameters.
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the full amount of available target data, here we adopt the well-known FixMatch
framework [18]. Finally, according to SSHDA literature, we include the SS-HIDA
approach recently introduced in [12].

For all the competing approaches, as well as our proposed SHeDD , to set up
a fair comparison, we adopt the same backbone architecture, ResNet-18 [4]. In
the particular case of our proposed SHeDD , the final fully-connected layer (with
softmax activation) of ResNet-18 is employed as our task classifier module and
the same structure is used for the domain classifier. For FixMatch and SHeDD
we fix the pseudo-labeling threshold τ to 0.95 and we use as weak augmentation
the identity function and as strong augmentation a random combination of ge-
ometrical (flipping and rotation) and radiometric (color jitter) transformations.
For the SS-HIDA, according to the original work, we used half of the backbone
network as specific per-domain encoder and the rest of the backbone as shared
encoder. For all the competing approaches we adopt a number of training epochs
equal to 300, a batch size of 128, AdamW [11] as parameter optimizer with a
learning rate of 10−4 Additionally, based on recent literature [7], for all the meth-
ods we adopted an exponential moving average (EMA) of the weight parameters,
with momentum equals to 0.95, since we experimentally observed that all the
approaches took advantage from it.

For the experimental assessment, we set up two different transfer tasks for
each benchmark, considering each of the available domains firstly as source and
then as target. While for the source domain all the available data are labelled,
for the target domain we varied the amount of available supervision, ranging
in the set {25, 50, 100, 200} samples per class. This means that, for instance,
if the supervision value is equal to 25, then 25 labelled samples are accessible
per class for the target domain. The rest of the target samples constitute the
test set, which is also assumed to be available at training time as additional
unlabelled target data. The assessment of the models performance, on the test
set, is done considering the weighted F1-Score, subsequently referred simply as
F1-Score. We repeat each experiment five times and report average and standard
deviation results.

All the methods are implemented in Pytorch and available here. Experiments
are carried out on a workstation equipped with an Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz, with 377Gb of RAM and four RTX3090 GPU. All the methods
require only one GPU for training.

4.1 Results

Tables 2, 3, 4 and 5 report the results of all the competing methods, in terms of
F1-Score, varying the amount of labelled target sample in the set {25, 50, 100, 200}
for the RESISC45-Euro and EuroSat-MS-SAR benchmarks, respectively.

Concerning the RESISC45-Euro benchmark, we evaluate two transfer tasks:
(RGB → MS) and (MS → RGB). Here, the two domains differ in terms of
radiometric content (imagery with 3 or 13 channels) and spatial resolution as
outlined in Table 1. For the first transfer task (RGB → MS) the results are

https://github.com/tanodino/SSHDA/tree/main
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presented in Table 2. Notably, SHeDD systematically outperforms all the com-
peting approaches. Although SS-HIDA also exhibits improvements over baseline
approaches, it achieves lower performances compared to our method.

In the second transfer task (MS → RGB), as illustrated in Table 3, our
method continues to outperform competing approaches in the majority of cases,
exception made for the case with 200 labelled target samples per class where
our proposed approach, nonetheless, still achieves comparable performance to
SS-HIDA. Generally, the use of the source data clearly enables our framework
to achieve a gain of over 2 points in terms of F1-Score, regardless of the amount
of target labelled samples, compared to strategies relying solely on target infor-
mation (Target Only and FixMatch).

Method 25 50 100 200
Target Only 79.48 ± 1.34 85.05 ± 1.01 88.99 ± 0.77 92.34 ± 0.52
FixMatch 81.74 ± 1.38 85.60 ± 0.37 89.37 ± 0.55 92.57 ± 0.79
SS-HIDA 82.29 ± 0.68 88.81 ± 0.95 91.64 ± 1.67 93.59 ± 1.39
SHeDD 84.06 ± 0.73 89.12 ± 0.84 92.84 ± 0.18 95.29 ± 0.38

Table 2. Average and standard deviation F1-Score results, over 5 runs, on RESISC45-
Euro with RGB as source and MS as target domain (RGB → MS) varying the amount
of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200
Target Only 75.19 ± 1.67 82.52 ± 0.91 87.45 ± 0.82 91.74 ± 0.65
FixMatch 77.17 ± 1.29 82.80 ± 0.81 87.86 ± 0.56 91.93 ± 0.53
SS-HIDA 79.78 ± 1.06 85.00 ± 1.07 89.56 ± 2.34 93.83 ± 0.18
SHeDD 81.72 ± 1.93 86.65 ± 0.82 91.00 ± 0.55 93.79 ± 0.32

Table 3. Average and standard deviation F1-Score results, over 5 runs, on RESISC45-
Euro with MS as source and RGB as target domain (MS → RGB) varying the amount
of per-class target supervision in the range {25, 50, 100, 200}.

Regarding the EuroSat-MS-SAR benchmark, we consider the transfer tasks:
(MS → SAR) and (SAR → MS). Here, the two domains differ in terms of ac-
quisition modes (Optical vs. Radar), thus providing a more challenging transfer
scenario in term of source/target domain heterogeneity. The results for the first
transfer task (MS → SAR) are reported in Table 4 while the results for the second
transfer task (SAR → MS) are outlined in Table 5. Irrespective of the amount
of labeled samples in the target domain, SHeDD consistently outperforms all
the competing approaches by a notable margin. Differences are generally more
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Method 25 50 100 200
Target Only 60.08 ± 1.25 62.52 ± 0.38 64.93 ± 0.31 67.80 ± 0.65
FixMatch 59.07 ± 1.29 64.45 ± 0.35 67.26 ± 0.95 70.38 ± 0.59
SS-HIDA 60.24 ± 1.65 62.96 ± 0.86 66.63 ± 1.00 70.40 ± 0.87
SHeDD 63.66 ± 1.53 67.91 ± 1.83 70.64 ± 1.50 73.97 ± 0.67

Table 4. Average and standard deviation F1-Score results, over 5 runs, on EuroSat-
MS-SAR with MS as source and SAR as target domain (MS → SAR) varying the
amount of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200
Target Only 75.85 ± 0.28 82.94 ± 0.45 87.08 ± 0.83 90.92 ± 0.23
FixMatch 76.87 ± 1.32 83.25 ± 0.65 87.67 ± 0.57 91.74 ± 0.39
SS-HIDA 76.49 ± 0.81 80.52 ± 1.49 85.33 ± 0.73 89.38 ± 0.52
SHeDD 82.30 ± 1.12 88.16 ± 0.85 91.67 ± 0.23 94.52 ± 0.14

Table 5. Average and standard deviation F1-Score results, over 5 runs, on EuroSat-
MS-SAR with SAR as source and MS as target domain (SAR → MS) varying the
amount of per-class target supervision in the range {25, 50, 100, 200}.

pronounced for low amount of target labelled samples. For instance, when only
25 target labeled samples per-class are considered for the transfer task (SAR
→ MS), SHeDD demonstrates nearly a 6-point increase in F1-Score over the
second-best competitor.

It is worth noting that, differently from the case of RESISC45-Euro bench-
mark, here SS-HIDA only performs on-pair with the baseline methods (Tar-
get Only and FixMatch). This point can be partly related to the architectural
structure of SS-HIDA. While SHeDD employs distinct per-domain encoders,
SS-HIDA shared a portion of its encoder between the two domains.

If on the one hand this architectural choice can prove advantageous in sce-
narios where domains exhibit a limited degree of heterogeneity (e.g. transferring
between RGB and MS data, where one modality can be considered as a subset or
superset of the other), on the other hand it may hinder transfer performance in
more challenging scenarios characterized by a high degree of heterogeneity, as for
the EuroSat-MS-SAR benchmark. Consequently, it may fail to establish an effec-
tive strategy for general heterogeneous domain adaptation. This result further
supports the flexibility of our method in modeling a wide range of heterogeneous
data transfer scenarios owing to its inherent structural design.

Ablation Analysis: Table 6 reports the ablation analysis of SHeDD on the
EuroSat-MS-SAR benchmark where MS images serve as source domain and SAR
images as target domain. Here we consider the case in which 50 labelled sam-
ples per class are available from the target domain. Six different ablations were
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devised from the complete model to comprehensively assess the various com-
ponents upon which SHeDD relies. Firstly, we observe a clear positive impact
of enforcing disentanglement between domain-invariant and domain-specific fea-
tures (LS,T

⊥ and LS,T
dom) over the scenario where only the supervised classification

loss is optimized (Abla1 vs Abla2). Secondly, we can underline that the use of
unlabelled target data, through the LU,Û

⊥ , LU,Û
dom and LÛ

pl losses, systematically
enhances the performances compared to using the labelled information alone
(Abla1, Abla2 vs Abla3, Abla4, Abla5 and Abla6). Thirdly, the highest perfor-
mances are generally attained when consistency regularization, through pseudo-
labelling, is considered (Abla4, Abla5 and Abla6). Fourthly, when either LU,Û

⊥

and LU,Û
dom or LÛ

pl are employed separately (Abla3 and Abla4), performances are
still far from the ones achieved by the whole framework. This indicates that the
combined use of these three losses, to leverage unlabelled target data, synergisti-
cally enhances the final outcome. Finally, the performed ablations indicate that
SHeDD clearly benefits from all the components it is built on, thus exhibiting
the best performance overall in terms of F1-Score.

Ablation LS,T
clf LS,T

⊥ LS,T
dom LU,Û

⊥ LU,Û
dom LÛ

pl F1-score

Abla1 D 63.84 ± 0.34
Abla2 D D D 64.58 ± 0.85
Abla3 D D D D D 65.04 ± 0.74
Abla4 D D D D 66.00 ± 0.87
Abla5 D D D D 66.54 ± 0.77
Abla6 D D D D 67.47 ± 1.63

SHeDD D D D D D D 67.91 ± 1.83
Table 6. Ablation study of SHeDD on the EuroSat-MS-SAR benchmark with MS as
source and SAR as target domain when 50 samples per class are considered as labelled
target data. F1-Score results, in terms of mean and standard deviation over 5 runs, are
reported.

Visual Inspection of learnt representations: Figure 3 visually depicts
the internal representation learnt by the different competing methods on the
RESISC45-Euro benchmark for the transfer task (RGB → MS) when only 25
labelled samples per class for the target domain are considered. To this end, we
randomly chose 50 samples per class on the target domain and we extracted the
corresponding feature representation per method, that is, the embedding vector
used as input to the classifier module —in the case our proposed approach, no-
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(a) (b)

(c) (d)

Fig. 3. Visualization of the embeddings extracted from the different competing ap-
proaches: (a) Target Only (b) FixMatch (c) SS-HIDA and (d) SHeDD when trained on
the RESISC45-Euro benchmark with RGB as source and MS as target domain (RGB
→ MS) and only 25 labelled samples per class are considered for the target domain.
For this visual inspection, 50 random samples per class from the test set (coming from
the target domain) are sampled. The two dimensional representation is obtained via
the T-SNE algorithm [19].
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tably, the domain-invariant embeddings zinv are used. Subsequently, we applied
t-SNE [19] to reduce the feature dimensionality for visualisation purposes.

When only a limited amount of labelled target data is employed to learn the
underlying classification models, as for Target Only and FixMatch methods, the
2D spatial arrangement of the generated embeddings demonstrates evident visual
cluttering, with samples coming from different classes overlapping. Although this
phenomenon is partially alleviated on SS-HIDA embeddings, the resulting man-
ifold still struggles to accurately recover the underlying eight-cluster structure.
In contrast, SHeDD produces embeddings that depict a more distinct class-
aware manifold, visually aligning better with the underlying data distribution
compared to competing approaches.

Overall, the visualisation of internal features representation confirms the
quantitative findings we previously discussed.

5 Conclusions and Perspectives

In this paper we have presented SHeDD , a deep learning based framework to
cope with the challenging scenario of semi-supervised domain adaptation when
source and target data are heterogeneous in terms of modality representation.
Our end-to-end framework has the objective to learn a target domain classifier
by leveraging labelled and unlabelled data from both source and target domain
via consistency regularized pseudo-labelling and disentanglement learning. While
the former mechanism allows to fully leverage the available unlabelled data, the
latter allows to simultaneously extract domain-invariant representations, rele-
vant for the downstream task, while retrieving domain-specific information, that
can hinder the cross-modality transfer.

The evaluation on two real-world benchmarks, spanning different degrees
of source/target domain heterogeneity, has demonstrated the effectiveness of
SHeDD compared to baselines and recent competing approaches.

While the proposed experimental evaluation clearly demonstrates the effec-
tiveness of SHeDD on challenging remote sensing benchmarks, further assess-
ment on general computer vision tasks involving heterogeneous data sources,
such as RGB/Depth, RGB/Thermal, or RGB/LIDAR data, still represents a
concrete opportunity. Additional evaluations on these benchmarks could further
emphasize the value of SHeDD in the broader field of computer vision.

In the short term, we aim to enhance the quality of SHeDD by drawing inspi-
ration from recent semi-supervised learning strategies, such as FlexMatch, and
by exploring the impact of various augmentation techniques on consistency regu-
larization and pseudo-labeling to improve the model’s performance in data-scarce
environments. In the medium term, we plan to extend our framework towards
a multi-source domain adaptation setting, enabling the use of multiple hetero-
geneous domains as source data. This could lead to a more robust classifier and
potentially improved performance on the target domain. Additionally, further
exploration could involve adapting the proposed framework to more structured
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classification tasks, such as semantic segmentation or object recognition, where
data spanning heterogeneous modalities are abundant.
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