

Causal Mutual Byzantine Broadcast

Mathieu Féry, Vincent Kowalski, Florian Monsion, Achour Mostefaoui, Samuel Pénault, Matthieu Perrin, Guillaume Poignant

▶ To cite this version:

Mathieu Féry, Vincent Kowalski, Florian Monsion, Achour Mostefaoui, Samuel Pénault, et al.. Causal Mutual Byzantine Broadcast. 2024. hal-04617873

HAL Id: hal-04617873 https://hal.science/hal-04617873

Preprint submitted on 19 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Causal Mutual Byzantine Broadcast

M. Féry, V. Kowalski, F. Monsion, A. Mostefaoui, S. Pénault, M. Perrin and G. Poignant LS2N, Nantes Université

Abstract

Recently, a new communication abstraction called Mutual Broadcast has been proposed for messagepassing distributed systems where some processes may fail by crashing. It is a one-to-all broadcast abstraction providing an ordering property that allows it to be computationally equivalent to atomic registers. This paper proposes an adaptation of this abstraction, *Causal Mutual Byzantine Broadcast* (in short CMB-Broadcast) for message-passing systems where some processes may experience Byzantine faults. Byzantine faults are a more severe failure model compared to crash failures. A Byzantine process can behave arbitrarily. After defining this new communication abstraction, we show how it can be used to emulate atomic registers and also how it can be implemented using quorums and the famous Byzantine reliable broadcast abstraction of Bracha. We also prove a necessary condition on the size of the quorums.

keywords: Atomic register, Byzantine process, Communication abstraction, Message-passing system, Quorums.

1 Introduction

Context: The Mutual Broadcast Abstraction Distributed systems consist of a collection of processes that communicate either through shared memory or by sending and receiving messages to solve a common problem. When physical shared memory is not available, one approach is to emulate shared memory algorithms atop a message-passing system by implementing shared registers in this model [1]. Such algorithms rely on quorums to overcome partitions: each time a process reads or writes to a shared register, it broadcasts a message and waits for acknowledgment from a majority of the system's processes. However, designing quorum-based algorithms can be challenging due to their heavy reliance on the specific model employed.

Recently, Mutual Broadcast has been identified as a broadcast abstraction computationally equivalent to atomic registers [6, 5]. This equivalence implies that atomic registers can be emulated in a distributed system where Mutual Broadcast is available, and conversely, Mutual Broadcast can be implemented in systems where processes communicate using atomic registers. In other words, providing Mutual Broadcast as a basic building block of a message-passing system could replace quorums in solving many cooperation problems.

Although Mutual Broadcast seems to be the right abstraction to deal with many safety issues in distributed systems, those systems may also be prone to security issues. Byzantine failures, first introduced by Pease, Shostak and Lamport [12], occur when a process does not execute as expected. This can happen when for example malicious users are actively trying to attack the system by altering the code of their client application, or simply when they run outdated or corrupted versions of the application. The goal of this paper is to study Mutual Broadcast in distributed systems prone to Byzantine failures.

Byzantine Atomic Registers Many variants of shared registers have been studied in the literature, encompassing both crash-prone environments [9] and Byzantine contexts. Three types of single-writer multi-reader (SWMR) registers were compared in [8]: the classical read/write register [4], the read/write-increment register [10], and the read/append register [7]. It has been demonstrated that, although these three types of registers are computationally equivalent in crash-prone environments, they differ in Byzantine contexts.

Specifically, while read/append registers can implement the other two types of registers, the reverse is not true. Consequently, this paper focuses on the implementation of the strongest variant, namely the atomic SWMR read/append register, which tracks the sequence of all values written by the writer (whether Byzantine or not). This sequence is perceived identically by all non-Byzantine processes (read/append register). If the writer is Byzantine, the sequence depends on its behavior; in extreme cases, the history might be reduced to its initial state (an empty sequence).

Contribution 1: The Causal Mutual Broadcast Abstraction This paper investigates the adaptation of the mutual broadcast abstraction to Byzantine contexts, specifically, a broadcast abstraction that effectively captures the computing requirements for implementing an atomic SWMR read/append register in Byzantine-prone systems. The first major contribution is the definition of Causal Byzantine Mutual Broadcast (CMB-broadcast). In addition to the traditional properties of mutual broadcast, CMB-broadcast incorporates the causal ordering of message deliveries [2]. Subsequently, the paper presents an algorithm that utilizes the CMB-broadcast abstraction for implementing a SWMR read/append register, demonstrating resilience against any number of Byzantine failures.

Contribution 2: Implementation of CMB-broadcast We then illustrate how to implement the CMB-Broadcast abstraction atop a message-passing system, under the condition that at most t < n/3 processes may exhibit Byzantine behavior, where n is the total number of processes in the system. Specifically, our implementation is based on FIFO Byzantine reliable broadcast, a variant of Bracha's Byzantine reliable broadcast. This variant ensures FIFO ordering of messages, maintaining this order consistency regardless of whether the sender is correct or Byzantine.

Contribution 3: The Computational Power of FIFO-Broadcast Interestingly, the reduction of CMB-Broadcast to FIFO Byzantine reliable broadcast requires the assumption that a majority of the processes are correct, specifically t < n/2. This is the same bound as in the crash-prone context. On the other hand, we establish that if the FIFO property in the FIFO Byzantine reliable broadcast is limited only to correct senders, then it becomes necessary that t < n/3 to implement CMB-Broadcast. This stresses, for the first time, the role of the FIFO property in enforcing the power of reliable broadcast in a Byzantine context.

Roadmap This paper is composed of 7 sections. First, Section 2 presents the underlying computing model, then Section 3 introduces the high-level CMB-Broadcast communication abstractions. The two following sections propose two implementations. Section 4 details an implementation of an atomic register using the proposed CMB-Broadcast communication abstraction and Section 5 gives an implementation of the CMB-Broadcast communication abstractions using the well-known Byzantine reliable broadcast abstraction of Bracha. Section 6 proves an impossibility result on the necessary condition to upgrade from the Byzantine reliable broadcast to CMB-Broadcast. Finally Section 7 concludes the paper. For the paper to be self-contained, we have added the implementation of a Byzantine reliable FIFO broadcast based on Bracha's algorithm in Appendix A, the proof of Algorithm 1 in Appendix B, and parts of the proof of Algorithm 2 in Appendix C.

2 Computing Model

In this paper, we consider the classical Byzantine-prone asynchronous message-passing computing model.

Computing entities The system is composed of a set of n sequential processes, denoted p_1, p_2, \ldots, p_n . These processes are asynchronous in the sense that each process progresses at its own speed, which can be arbitrary and may vary along any execution, and remains always unknown to the other processes. Each process p_i has access to its own identifier i which can be used in the code.

Failure model Among the n processes of the system, it is supposed that at most t processes can exhibit a Byzantine behavior. A Byzantine behavior is characteristic of a process not following its algorithm and acting in an arbitrary way [12]: it may start in an arbitrary state, stop executing at any time (this behavior is called a crash), perform arbitrary state transitions, attempt to communicate arbitrary or different values to different processes, etc. A Byzantine process is also called a *faulty* process, and a process that commits no failure (i.e., a non-Byzantine process) is called a *correct* process.

Communication model The different processes communicate by exchanging messages through bi-directional communication channels. These channels connect each pair of processes so that any process can identify the sender of a message and no process can impersonate another correct process. The sending of a message is asynchronous and reliable. "Asynchronous" means that there is no bound on message transfer delay, and "Reliable" means that channels do not create, duplicate, or modify information and that all messages sent by correct processes to correct processes will eventually be received.

Notation The acronym $\mathcal{BAMP}_{n,t}[\emptyset]$ is used to denote the previous Byzantine-prone Asynchronous Message-Passing model without additional computability power. $\mathcal{BAMP}_{n,t}[H]$ denotes $\mathcal{BAMP}_{n,t}[\emptyset]$ enriched with the additional computational power denoted by H. For example, $\mathcal{BAMP}_{n,t}[t < \frac{n}{3}]$ denotes the model in which at least two-thirds of the processes are correct, namely, t < n/3.

3 Causal Mutual Byzantine Broadcast

Causal Mutual Byzantine broadcast (CMB-Broadcast) is an extension, to the Byzantine context, of the Mutual broadcast abstraction proposed in the crash failure model in [6]. This communication abstraction allows a process to broadcast a message that will be delivered, at least, by all the correct processes, ensuring a certain ordering property among the delivered messages. It provides the processes with one operation denoted cmb broadcast(), and one event denoted by cmb deliver.

A process p_i invokes the operation "cmb_broadcast(TYPE(m))" to broadcast a message with type TYPE and content m. This action is referred to as p_i cmb-broadcasting a message TYPE(m). Subsequently, the event "cmb_deliver TYPE(m) from p_i " might be triggered at some processes p_j , leading us to say that p_j "cmb-delivers m from p_i ". It is assumed that, although messages may share type and content, each broadcast message is unique. The following properties define CMB-Broadcast.

- **VALIDITY.** If a correct process p_i cmb-delivers a message m from a correct process p_j , then p_j previously invoked cmb broadcast(m).
- **INTEGRITY.** A correct process cmb-delivers a message m at most once.
- **LOCAL PROGRESS.** If a correct process p_i cmb-broadcasts a message m, then m will eventually be cmbdelivered by p_i from p_i .
- **CONSISTENCY.** If a correct process cmb-delivers a message m from some process p_j , then all correct processes will eventually cmb-deliver m from p_j (p_j may be correct or Byzantine).
- **MUTUAL ORDERING.** For any pair of correct processes p and p', if p cmb-broadcasts a message m and p' cmb-broadcasts a message m', it is not possible that p cmb-delivers m before m' and p' cmb-delivers m' before m.
- **CS-CAUSAL ORDERING.** If a correct process p_i cmb-delivers a message m, and then cmb-broadcasts a message m', then no correct process cmb-delivers m' before m.
- **CS-FIFO ORDERING.** If a correct process p_i cmb-broadcasts a message m before a message m', then no correct process cmb-delivers m' before m.
- **BS-FIFO ORDERING.** If a correct process p_i cmb-delivers a message m before a message m', both from the same process p_j (p_j may be correct or not), then no correct process cmb-delivers m' before m.

```
1 operation append(v) is:

2 \lfloor synchro_cmb_broadcast(APPEND(v));

3 operation read() is:

4 \lfloor synchro_cmb_broadcast(SYNCH());

5 \lfloor let log_i \leftarrow replica<sub>i</sub>.read();

6 \lfloor synchro_cmb_broadcast(SYNCH());

7 \lfloor return log_i;

8 when p_i cmb_delivers APPEND(v) from p_w do:
```

9 **replica**_i.append(v);

Algorithm 1: Implementation of an atomic SWMR read/append register using CMB-broadcast

The properties of VALIDITY, INTEGRITY, LOCAL PROGRESS, and CONSISTENCY are classical in defining Byzantine-tolerant broadcast abstractions and constitute the core of the Byzantine-reliable broadcast abstraction proposed by Bracha [3]. The MUTUAL ORDERING property characterizes mutual broadcast. It stipulates that when two processes initiate broadcasts concurrently, at least one must cmb-deliver the other's message prior to its own. This condition prevents partitioning, thereby facilitating the implementation of an atomic register in crash-prone systems. The CS-FIFO ORDERING and CS-CAUSAL ORDERING properties, where CS denotes "correct sender", mirror the conventional attributes of FIFO and causal broadcasts in crash-prone systems, as outlined in [2], but are confined to messages broadcast by correct processes. Given a Byzantine sender, referring to order in which it broadcasts and delivers messages is impossible. Instead, the BS-FIFO ORDERING property states that correct processes must concur on a uniform delivery sequence for any broadcasting process, aligning with the emission order if the sender is indeed correct.

It is important to note that if a process consistently waits for the local delivery of its previous messages before initiating a subsequent broadcast, then both CS-CAUSAL ORDERING and BS-FIFO ORDER-ING inherently imply CS-FIFO ORDERING. To facilitate this behavior, we introduce a blocking variant of cmb_broadcast, denoted as synchro_cmb_broadcast. This function is defined as:

cmb broadcast m; wait until m has been cmb-delivered locally.

4 Implementation of a SWMR atomic register

Algorithm 1 implements an atomic SWMR read/append register in the model $\mathcal{BAMP}_{n,t}$ [cmb_broadcast]. It follows closely the algorithm implementing an atomic read/write register on top of mutual broadcast, in a crash-prone model [6]. In particular, this is a full-replication protocol. Hence, each correct process p_i maintains a local variable, called replica_i, whose sequence of states is the same as the sequence of abstract states of the shared read/append register. We will now describe how each safety property of CMB-broadcast serves a precise role in the algorithm.

When the writing process p_w wants to append a value v to its register, it invokes append(v). Accordingly, it cmb-broadcasts a message APPEND(v) (Line 2) to inform each other process p_i there is new value to append to its local variable $replica_i$ (Line 9). Thanks to the VALIDITY, INTEGRITY and BS-FIFO ORDERING properties of cmb-broadcast, all correct processes receive the same set of append(v) messages, in the same order. Therefore, the different variables $replica_i$ take the same sequence of values and remain consistent with each other. Note the importance of the BS-FIFO ORDERING property to ensure that values are appended in the same order, even if p_w is Byzantine.

A correct process p_i can read the shared register by invoking the read() operation. Process p_i returns the value stored in its variable replica_i (Lines 5 and 7), but a memory barrier must be posed before and after the read in order to ensure the real-time ordering imposed by linearizability (Lines 4 and 6).

Line 4 ensures the read-after-write property which states that, if a read starts after an append has ended,

1 operation $cmb_broadcast(m)$ is:

- **2** sending_i $\leftarrow m$; acked_i $\leftarrow \emptyset$;
- **3** fifo_broadcast MSG(m, i);
- 4 **wait until** $m \in \mathsf{delivered}_i;$

```
5 when p_i fifo_delivers MSG(m,k) as the sn-th message from p_j do:
```

```
6 wait until next_i[j] = sn;
```

7 | if $m = \text{sending}_i$ then $\text{acked}_i \leftarrow \text{acked}_i \cup \{j\};$

```
8 | if j = k \land m \notin \mathsf{delivered}_i then
```

```
9 | if i = k then wait until |acked_i| > n - t;
```

```
10 else fifo_broadcast MSG(m, k);
```

11 cmb_deliver m from p_k ;

```
12 delivered<sub>i</sub> \leftarrow delivered<sub>i</sub> \cup {m};
```

```
13 wait until m \in \text{delivered}_i;
```

```
14 \operatorname{next}_i[j] \leftarrow sn+1;
```

Algorithm 2: Implementation of CMB-broadcast

then the read must return a list of values containing the appended value. This is achieved thanks to the MUTUAL ORDERING property of CMB-broadcast: before returning from its append operation, p_w waits until it has cmb-delivered its APPEND message locally (recall that synchro_cmb_broadcast m is the blocking version of cmb_broadcast). Hence, p_w cmb-delivers its own APPEND message before any SYNCH message cmb-broadcast by any other process p_i after the end of the append(v) operation. This ensures that the process p_i must cmb-deliver these two messages in the same order. Hence, p_i cmb-delivers APPEND(v) before the end of Line 4, and replica_i is up-to-date on Line 5 when it is read.

Line 6 ensures the read-after-read property which means that, if a read by a process p_i starts after another read by p_j has ended, the value returned by p_i must be at least as recent as the value returned by p_j . In this case, the SYNCH message cmb-broadcast by p_j at Line 6 serves the same synchronyzation purpose as p_w 's APPEND message: p_i cmb-delivers p_j 's message before its own. Moreover, the CS-CAUSAL ORDERING property of cmb-broadcast ensures that p_i cmb-delivers all APPEND messages cmb-delivered by p_j before its read, which ensures an up-to-date read.

The proof of Algorithm 1 is in Appendix B. It follows the same framework as [6], which proposes a set of necessary and sufficient properties, that characterize a Byzantine-linearizable SWMR read/append register.

5 Implementation of CMB-broadcast

This section presents Algorithm 2 that implements CMB-broadcast. For the sake of simplicity, it is not built directly on a distributed message-passing system in the model $\mathcal{BAMP}_{n,t}[t < \frac{n}{3}]$, but is rather presented in a two-step design. We use another broadcast abstraction, called fifo-broadcast, as a building block. This abstraction ensures that the different broadcast messages are delivered in FIFO order. Specifically, fifo-broadcast imposes the following properties, defined in the same way as CMB-broadcast: VALIDITY, IN-TEGRITY, LOCAL PROGRESS, CONSISTENCY, CS-FIFO ORDERING and BS-FIFO ORDERING. Fifo-broadcast can be implemented by a variant of the Byzantine reliable broadcast of Bracha [3] enriched with sequence numbers. Its code is given in Appendix A.

Each process p_i executing Algorithm 2 manages the following local variables:

- $\operatorname{next}_i[1..n]$: This is an array of size n, where the entry $\operatorname{next}_i[j]$, initialized to 1, gives the sequence number of the next message p_i will fifo-deliver from p_j .
- sending_i: Variable used to save the last message sent by process p_i to recognize later the answers of the other processes concerning this same message.

- acked_i: The set of processes from which p_i has fifo-delivered a message MSG(sending_i, i).
- delivered_i: A set containing all the messages previously cmb-delivered by p_i .

When a process p_i wants to cmb-broadcast a message m, it stores this message in the variable sending_i and sets the set of acknowledgments $acked_i$ to \emptyset . Then, it fifo-broadcasts it and waits until this message has been cmb-delivered to itself (at Line 12). When a process p_i fifo-delivers a message MSG(m,k) from p_j , it first executes Line 6 that allows process p_i to consider the messages it receives from the different processes in FIFO order. The fifo-delivered message m may correspond to two different cases.

- 1. k = j: the message *m* corresponds to a message process p_j wants to cmb-broadcast and that process p_i fifo-delivered. If moreover j = i, this means that p_i fifo-delivered this message from itself.
- 2. $k = i \neq j$: the message corresponds to an acknowledgment sent by process p_j to process p_i for the message $m p_i$ wants to cmb-broadcast.

The test in Line 7 means that m is a message p_i wants to cmb-broadcast (i = k) and p_i considers the present message as an acknowledgment from p_j for message m it fifo-broadcast at Line 3 and updates the variable acked_i accordingly. Then if k = j, this means that p_i fifo-delivered a message m process p_j wants to cmb-broadcast. Two cases are to be considered, if i = k(= j), p_i fifo-delivered its own message m, it consequently waits until it has received at least n - t acknowledgments before cmb-delivering m at Line 11. Otherwise, $i \neq k$ meaning that p_i has to acknowledge message m to $p_k(k = j)$. This is done at Line 11. This is done to ensure the MUTUAL ORDERING property. Line 13 is used to ensure the CAUSAL ORDERING property: if a correct process p_j has cmb-delivered a message m from some process p_k before cmb-broadcasting a message m', then p_j has also fifo-broadcast a message MSG(m,k) before its message MSG(m', j), so Line 13 ensures that p_i has cmb-delivered m from p_k before treating the message MSG(m', j)and eventually cmb-delivering m' from p_j .

A remark on complexity. Since the assumption $t < \frac{n}{3}$ is necessary to implement fifo-broadcast, practical uses for Algorithm 2 are to be considered in the model $\mathcal{BAMP}_{n,t}[t < \frac{n}{3}]$. In this model, the message on Line 10 can be sent to all processes, using fifo point-to-point communication channels, instead of relying on fifo-broadcast. The only difference in the correctness demonstration appears in the proof of the MUTUAL ORDERING property: acked_i eventually contains the identifiers of n - t processes whose message $MSG(m_i, i)$ is fifo-delivered to p_i before the message $MSG(m_j, j)$ related to a concurrent message m_j from p_j . In Algorithm 2, acked_i \cap acked_j must contain some process, which can be correct or Byzantine, so t < n/2is sufficient. In the modified version, $acked_i \cap acked_j$ must contain a correct process, which is true when t < n/3.

Correctness proof of Algorithm 2

Lemma 1. Let S be the set of pairs $\langle MSG(m,k), j \rangle$, such that MSG(m,k) is fifo-delivered by all correct processes, and m is cmb-delivered from p_k by some correct process. For all pairs $\langle MSG(m,k), j \rangle \in S$ and all correct processes p_i , p_i eventually executes Line 14 in the code triggered by the fifo-delivery of MSG(m,k) from p_j . (The proof is given in Appendix C.)

Theorem 1 (Correctness of Algorithm 2). Algorithm 2 implements CMB-broadcast in the model $\mathcal{BAMP}_{n,t}[t < \frac{n}{2}, \text{fifo}_{broadcast}].$

Proof. Our proof will go through all properties presented in Section 3 to characterize CMB-broadcast.

VALIDITY. Suppose a correct process p_i cmb-delivers a message m from a correct process p_j . This happens on Line 11, after p_i fifo-delivered a message MSG(m, j) from p_j . By the VALIDITY property of fifo-broadcast, p_j fifo-broadcast MSG(m, j) on Line 3 after invoking cmb broadcast(m).

INTEGRITY. Suppose a correct process p_i cmb-delivers a message m from a process p_j . This happens at most once on Line 11, since $m \notin \text{delivered}_i$ before (Line 8) and $m \in \text{delivered}_i$ afterward (Line 12).

LOCAL PROGRESS. Suppose a correct process p_i cmd-broadcasts a message m. Then, p_i will fifo-broadcast MSG(m, i) at Line 3 and will eventually fifo-deliver MSG(m, i) from p_i (itself). By Lemma 1, all correct processes have executed Line 14 for all the messages fifo-broadcast by p_i prior to the message MSG(m, i). Hence, all correct processes will treat the message MSG(m, i) from p_i and cmb-deliver m from p_i . By Lemma 1 again, $\langle MSG(m, i), i \rangle \in S$ so p_i eventually executes Line 14, after having cmb-delivered m from p_i .

CONSISTENCY. Suppose a correct process p_i cmd-delivers a message m from a process p_k . According to Line 5, p_i has fifo-delivered MSG(m, k) from p_k , so all correct processes fifo-deliver MSG(m, k) from p_k by the CONSISTENCY property of fifo-broadcast. Hence, $(MSG(m, k), k) \in S$ and all correct processes eventually cmb-deliver m from p_k by Lemma 1.

MUTUAL ORDERING. Let p_i and p_j be two correct processes such that p_i cmb-broadcasts a message m_i and p_j cmb-broadcasts a message m_j , and suppose, for contradiction, that p_i cmb-delivers m_i before m_j and p_j cmb-delivers m_i before m_j . Let S_i be the set acked_i when p_i cmb-delivers m_i , and S_j be the set acked_j when p_j cmb-delivers m_j . We observe that, for all $k \in S_i$, p_i fifo-delivered $\mathsf{MSG}(m_i, i)$ from p_k before $\mathsf{MSG}(m_j, j)$ from p_k . Indeed, otherwise, $m_j \in Delivered_i$ between the two fifo-deliveries (thanks to Line 13), which contradicts the fact that p_i cmb-delivered m_i before m_j . Similarly, for all $k \in S_j$, p_j fifo-delivered $\mathsf{MSG}(m_j, j)$ from p_k before $\mathsf{MSG}(m_i, i)$ from p_k . Therefore, the CS-FIFO ORDERING property of fifo-broadcast implies that for all $k \in S_j$, p_i fifo-delivered $\mathsf{MSG}(m_j, j)$ from p_k before $\mathsf{MSG}(m_i, i)$ from p_k . In other words, S_i and S_j are disjoint. Therefore, by Line 9 we have $n \ge |S_i \cup S_j| = |S_i| + |S_j| > n$, which is a contradiction.

CS-FIFO ORDERING. Let p_i and p_j be two correct processes, and suppose that p_i cmb-broadcasts two messages m and then m'. By Line 3, p_i fifo-broadcasts MSG(m,i) and MSG(m',i) in that order. By the CS-FIFO ORDERING property of fifo-broadcast, p_j fifo-delivers MSG(m,i) before MSG(m',i) from p_i . Then, by Lines 14 and 6, p_j cmb-delivers m before m'.

BS-FIFO ORDERING. Suppose that two correct processes p_i and p_j cmb-deliver two messages m and m', both from the same process p_k . By Lines 8 and 11, the cmb-delivery of m (resp. m') happened after the fifo-delivery of a message MSG(m,k) (resp. MSG(m',k)) from p_k . Moreover, by Lines 14 and 6, these fifo-deliveries happened in the same order as the cmb-deliveries, and in the same order for both p_i and p_j , thanks to the BS-FIFO ORDERING property of fifo-broadcast. Hence p_i and p_j cmb-deliver m and m' in the same order.

CS-CAUSAL ORDERING. Suppose a correct process p_i cmb-delivers a message m from p_j , and then cmb-broadcasts a message m'. Let p_k be a correct process, and let us prove that p_k does not cmb-deliver m' before m. If i = j, the property is implied by the CS-FIFO ORDERING property proven above. Otherwise, the following events happen in this order at Process p_i : p_i fifo-broadcast MSG(m, j) (Line 10) before cmb-delivering m from p_j (Line 11), then p_i cmb-broadcast m' before fifo-broadcasting MSG(m', i) (Lines 1 and 3). Hence, the CS-FIFO ORDERING property of fifo-broadcast implies that p_k fifo-delivered MSG(m, j) from p_i before fifo-delivering MSG(m', i) from p_i , and only later cmb-delivered m' from p_i . By Lines 13, 14 and 6, p_k cmb-delivered m before cmb-delivering m'.

6 An Impossibility Result

Let us recall that the assumption t < n/3 is necessary and sufficient to implement Bracha's Byzantine reliable broadcast abstraction, as well as its variant used in this paper. The difference between Bracha's abstraction and the one employed here lies in the latter's assurance of both CS-FIFO ORDERING and BS-FIFO ORDERING properties. These properties impose a FIFO order of all messages delivered from any process, irrespective of whether they are correct or Byzantine. Due to these properties, Algorithm 2 allows the upgrade from reliable FIFO broadcast to CMB-broadcast under the assumption t < n/2. Interestingly, t < n/2 is also the condition that allows an upgrade from reliable broadcast to mutual broadcast in the crash failure model. The theorem proved below states that if the underlying Byzantine reliable broadcast abstraction ensures CS-FIFO ORDERING (FIFO order when the sender is correct) but not BS-FIFO ORDERING (an agreement on the delivery order when the sender is Byzantine) — an abstraction that we call weak-FIFO-broadcast — then the upgrade to CMB-broadcast becomes infeasible with t < n/2, necessitating t < n/3. This means that the maintenance of FIFO order, even when the sender is Byzantine, empowers the reliable broadcast abstraction to effectively handle and mitigate the impacts of Byzantine processes, thereby enabling the emulation of an atomic register or the CMB-broadcast abstraction.

Theorem 2. It is impossible to implement CMB-broadcast in the model $\mathcal{BAMP}_{n,t}[t < \frac{n}{2}, \text{weak_fifo_broadcast}]$, when $n \ge 3$ and $t \ge \frac{n}{3}$.

Proof. Let us assume that there exists an algorithm, A, which implements CMB-broadcast in the model $\mathcal{BAMP}_{n,t}[weak_fifo_broadcast]$. even when $t \geq \frac{n}{3}$. We are going to show (proof by contradiction) that there exists an execution allowed by A and does not respect the specification of CMB-broadcast.

Let us consider a system made up of $n \ge 3$ processes, and let $t \ge \frac{n}{3}$. We can partition the set of processes into three non-empty sub-sets P, Q and R, whose size is at most t. Let us pick two processes $p \in P$ and $q \in Q$, and let us consider three executions of A.

 S_1 : In the first scenario, the processes in Q are Byzantine (or simply slow) and do not take any step during the execution. All other processes are correct. Process p cmb-broadcasts a message m_p , and, by the LOCAL PROGRESS property of CMB-broadcast, p_i eventually cmb-delivers m_p from itself.

 S_2 : The second scenario is similar, except that the roles of the processes in P and Q are exchanged. This time, the processes in P are Byzantine and do not take any step during the execution, Process q cmb-broadcasts a message m_q and eventually cmb-delivers m_q from itself.

 S_3 : In the third scenario, the processes in R are Byzantine, and the other processes are correct. In the first stage of the execution, p cmb-broadcasts m_p , and q cmb-broadcasts m_q . In the second stage of the execution, all messages between P and Q are delayed, and processes in R weak-fifo-broadcast the same messages as in S_1 and S_2 . Since the processes in R are Byzantine, there is no restriction on the order in which these messages are weak-fifo-delivered by the other processes. Hence, during this second phase, all processes in P weak-fifo-deliver the same messages as in S_1 , and all processes in Q weak-fifo-deliver the same messages as in S_2 . Since p receives the same messages, in the same order, in S_1 and S_3 , p cmb-delivers m_p without cmb-delivering m_q . similarly, S_2 and S_3 are indistinguishable from q, so q cmb-delivers m_q without cmb-delivering m_p . This violates the MUTUAL ORDERING property of CMB-broadcast, hence a contradiction.

7 Conclusion

This article proposes a communication abstraction called CMB-broadcast (for Causal Byzantine Mutual Broadcast) whose computability is equivalent to that of SWMR atomic registers in a distributed system where some processes can be Byzantine. It is an adaptation of the mutual broadcast proposed for crashprone systems. We first demonstrate how it can be used to implement a SWMR atomic read/append register. Additionally, we show how to implement CMB-broadcast over a system where the number of Byzantine processes is t < n/3. This implementation was structured in two steps to facilitate understanding. It was built on top of another abstraction, which is Bracha's Byzantine reliable broadcast in a FIFO version.

Interestingly, we observed that, in reality, when CMB-broadcast is implemented over reliable FIFO broadcast, it is sufficient to assume only t < n/2. We then demonstrated that this is possible only if the FIFO property is guaranteed regardless of whether the message sender is Byzantine or not. If this property is restricted only to correct processes, then t < n/3 is necessary to implement CMB-broadcast over reliable broadcast, highlighting for the first time the role of strong FIFO property in enforcing the power of reliable broadcast in a Byzantine context.

References

- Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.
- [2] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures. ACM Trans. Comput. Syst., 5(1):47–76, 1987.
- [3] Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Information and Computation, 75(2):130-143, 1987.
- [4] Shir Cohen and Idit Keidar. Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer. In 35th International Symposium on Distributed Computing (DISC 2021), volume 209, 2021.
- [5] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Brief Announcement: The MBroadcast Abstraction. In Proc. of the 2023 ACM Symposium on Principles of Distributed Computing, PODC, Orlando, FL, USA, pages 282–285, 2023.
- [6] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Send/Receive Patterns Versus Read/Write Patterns in Crash-Prone Asynchronous Distributed Systems. In 37th International Symposium on Distributed Computing, DISC 2023, L'Aquila, Italy, volume 281 of LIPIcs, pages 16:1– 16:24, 2023.
- [7] Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write shared memory abstraction on top of asynchronous Byzantine message-passing systems. J. Parallel Distributed Comput., 93-94:1-9, 2016.
- [8] Vincent Kowalski, Achour Mostéfaoui, and Matthieu Perrin. Atomic Register Abstractions for Byzantine-Prone Distributed Systems. In 27th International Conference on Principles of Distributed Systems, OPODIS, Tokyo, Japan, volume 286 of LIPIcs, 2023.
- [9] Leslie Lamport. On Interprocess Communication. Part I: Basic Formalism. Distributed Comput., 1(2):77-85, 1986.
- [10] Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic Read/Write Memory in Signature-Free Byzantine Asynchronous Message-Passing Systems. *Theory Comput. Syst.*, 60(4):677– 694, 2017.
- [11] Achour Mostéfaoui and Michel Raynal. Intrusion-Tolerant Broadcast and Agreement Abstractions in the Presence of Byzantine Processes. *IEEE Trans. Parallel Distributed Syst.*, 27(4):1085–1098, 2016.
- [12] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement in the Presence of Faults. Journal of the ACM, 27(2):228–234, 1980.

Appendix A: Bracha's Reliable Broadcast Algorithm

The broadcast algorithm presented in Figure 3 is Bracha's algorithm [3] enriched with sequence numbers. On the one hand, it enables the broadcasting of a sequence of messages rather than a single one. On the other hand, it ensures that the different broadcast messages are delivered in FIFO order. Specifically, each correct process delivers the same sequence of messages from each given process (possibly Byzantine). For that, each process p_i manages a local array $next_i[1..n]$, where $next_i[j]$ is the sequence number of the next application message that will be fifo-delivered, by process p_i , from process p_j . Initially, for all $i, j, next_i[j] = 1$.

When a process p_i invokes fifo_broadcast(m) 1, it sends the message INIT(m, current) (Line 3) to all processes, where *current* is its next sequence number and then waits until this message is fifo-delivered to p_i itself (lines 18 and 19). The procedure fifo_broadcast is thus blocking.

1 operation fifo broadcast(m) is:

2 let $current \leftarrow \mathsf{next}_i[i];$

send INIT(m, current) to all processes;

4 wait until $next_i[i] = current + 1;$

5 when one of the following conditions holds for the first time, for each pair (j, sn):

• p_i has received INIT(m, sn) from p_i

• p_i has received ECHO(m, j, sn) from more than $\frac{n+t}{2}$ different processes

• p_i has received READY(m, j, sn) from more than t different processes

9 do: send ECHO(m, j, sn) to all processes;

10 when one of the following conditions holds for the first time, for each pair (j, sn):

• p_i has received ECHO(m, j, sn) from more than $\frac{n+t}{2}$ different processes

• p_i has received READY(m, j, sn) from at least t + 1 different processes

13 do: send READY(m, j, sn) to all processes;

```
14 when the following condition holds for the first time, for each pair (j, sn):
```

```
• p_i has received READY(m, j, sn) from at least 2t + 1 different processes
```

16 do:

6

7

8

17 | wait until $next_i[j] = sn;$

18 | fifo deliver m from p_i ;

19 $\operatorname{next}_i[j] \leftarrow sn+1;$

Algorithm 3: Implementation of FIFO-broadcast

- When a process p_i receives a message INIT(m, current) from a process, it echoes it by sending a message ECHO(m, j, sn) to all processes (Line 9). This is done to inform the other processes it received the application message m. This echo is sent only once for each sequence number. This is because if p_j is Byzantine it can send different messages with the same sequence number.
- Then, when p_i has received the same message ECHO(m, j, sn) from "enough" processes (where "enough" means here "more than (n+t)/2 different processes"), and has not yet broadcast a message READY(m, j, sn), p_i does it in Line 10.

The aim of (a) the messages ECHO(m, j, sn), and (b) the cardinality "greater than (n+t)/2 processes", is to ensure that no two correct processes can fifo-deliver distinct messages at Line 18 from p_j (even if p_j is Byzantine). The aim of the messages READY(m, j, sn) is related to the liveness of the algorithm. More precisely, it aims to allow the fifo-delivery by the correct processes of the very same message m from p_j , and this must always occur if p_j is correct. It is nevertheless possible that a message fifo broadcast by a Byzantine process p_i is never fifo-delivered by the correct processes.

• Finally, when p_i has received the message READY(m, j, sn) from (t+1) different processes, it broadcasts the same message READY(m, j, sn), if not yet done. This is required to ensure the termination property. If p_i has received "enough" messages READY(m, j, sn) ("enough" means here "from at least (2t + 1)different processes"), it fifo-delivers the message m fifo-broadcast by p_i .

More explanations and proofs that this algorithm satisfies the properties defining the reliable broadcast abstraction can be found in [3, 11].

Appendix B: Proof of Algorithm 1

Lemma 2 (Validity). If a read operation performed by a correct process returns log, and if the writing process is correct, then for all $s \in \{1, ..., |log|\}$, log[s-1] is the s^{th} value written.

Proof. Suppose that the writing process p_w is correct, and that a **read** operation performed by a correct process p_i returns log_i . By the VALIDITY, INTEGRITY and FIFO ORDERING properties of CMB-broadcast,

the sequence of cmb-deliveries of APPEND(_) messages by p_i from p_w is the same as the sequence of cmbbroadcasts of APPEND(_) messages by p_w . This sequence is also the same as both the sequence of write operations (Line 2), and the sequence of values appended in replica_i (Line 9), whose log_i is a prefix (Line 5).

Lemma 3 (Read after write). If a read done by a correct process starts after the s^{th} write of a correct process completes, then the read cannot return a sequence containing less than s values.

Proof. Suppose a read done by a correct process p_i starts after the s^{th} write of a correct process p_w completes. Then p_w has cmb-delivered at least s of its own APPEND(_) messages before the SYNCH message cmbbroadcast on Line 4. By the MUTUAL ORDERING property of CMB-broadcast, p_i must also cmb-deliver at least s APPEND(_) messages before its own SYNCH message. Hence, replice_i contains at least s values on Line 5.

Lemma 4 (Inclusion). Let r_i and r_j be two read operations, done by correct processes, that return respectively \log_i and \log_j . Then \log_i is a prefix of \log_j , or \log_j is a prefix of \log_i .

Proof. By the INTEGRITY and FIFO ORDERING properties of CMB-broadcast, the sequence of cmb-deliveries of APPEND(_) messages by any pair of correct processes is the same. Since log_i and log_j are two prefixes of this common sequence, one must be a prefix of the other, following Levi's lemma.

Lemma 5 (Read after read). Let r_i and r_j be two read operations, done by correct processes, that return respectively log_i and log_j . If r_i completes before r_j starts, then log_i is a prefix of log_j .

Proof. Let m_i be the SYNCH message p_i cmb-broadcasts on Line 6, and m_j be the SYNCH message p_j cmb-broadcasts on Line 4.

Suppose r_i completes before r_j starts. Then p_i cmb-delivers m_i before m_j . By the MUTUAL ORDERING property of CMB-broadcast, p_j must also cmb-deliver m_i before m_j . Therefore, by the CS-CAUSAL OR-DERING property of cmb-broadcast, before cmb-delivering m_j , p_j must also cmb-deliver all the APPEND(_) messages that p_i cmb-delivered before cmb-broadcasting m_i . Hence, log_j contains at least all the values of log_i , so by Lemma 4, log_i is a prefix of log_j .

Theorem 3 (Correctness of Algorithm 1). Algorithm 1 implements a wait-free and Byzantine linearizable SWMR read/append register.

Proof. Let H be a distributed history of Algorithm 1. By lemmas 2-5, H verifies the four hypotheses of Proposition 2, stated in [8]. Hence, H is Byzantine linearizable. Moreover, Algorithm 1 does not contain any loop or recursion, and all its waiting times terminate thanks to the LOCAL PROGRESS property of CMB-broadcast. Hence, Algorithm 1 is wait-free.

Appendix C: Proof of Algorithm 2

Lemma 1. Let S be the set of pairs $\langle MSG(m,k), j \rangle$, such that MSG(m,k) is fifo-delivered by all correct processes, and m is cmb-delivered from p_k by some correct process. For all pairs $\langle MSG(m,k), j \rangle \in S$ and all correct processes p_i , then p_i eventually execute Line 14 in the code triggered by the fifo-delivery of MSG(m,k) from p_j .

Proof. We define the binary relation \leq on elements of S as: $\langle MSG(m,k), j \rangle \leq \langle MSG(m',k'), j' \rangle$ if one of the following conditions hold:

- j = j' and all correct processes fifo-deliver MSG(m,k) from p_j before MSG(m',k') from p_j ,
- k = k' = j and m = m',
- there exists $s \in S$ such that $\langle MSG(m,k), j \rangle \leq s \leq \langle MSG(m',k'), j' \rangle$.

We first remark that \leq is a antisymmetric: this is because, by Lines 6, 13 and 14, a correct process cannot cmb-deliver m' before m if $\langle MSG(m,k), j \rangle \leq \langle MSG(m',k'), j' \rangle$, so pairs $\langle MSG(m,k), j \rangle$ participating in a cycle would not match the definition of S. Hence, \leq is an order relation. Moreover, it is well-founded because executions have a beginning in time.

We now prove, by Noetherian induction on S, that for all $\langle MSG(m,k), j \rangle \in S$ and all correct processes p_i, p_i eventually execute Line 14 in the code triggered by the fifo-delivery of MSG(m,k) from p_j . Let $\langle MSG(m,k), j \rangle \in S$ and p_i be a correct process. We suppose the result is true for all $s \in S$ such that $s < \langle MSG(m,k), j \rangle$. It is sufficient to prove that p_i cannot wait forever at Line 6, 9 or 13 after its fifo-delivery of MSG(m,k) from p_j .

- Line 6 By induction, the property holds for all messages fifo-broadcast by p_j prior to MSG(m,k), so p_j eventually executes Line 14 sn 1 times, and p_i is not blocked on Line 6.
- Line 9 By induction, all correct processes have executed Line 14 for all the messages fifo-broadcast by p_i prior to the message MSG(m, i). Hence, all correct processes (at least n-t) will eventually fifo-broadcast MSG(m, i) after fifo-delivering MSG(m, i) from p_i . Therefore, p_i cannot block at Line 9.
- Line 13 By the definition of S, a correct process has cmb-delivered m from p_k . By Lines 8 and 11, this process has fifo-delivered a message MSG(m, k) from p_k , so all correct processes do so by the CONSIS-TENCY property of fifo-broadcast. Hence, $\langle MSG(m,k), k \rangle \in S$, and $\langle MSG(m,k), k \rangle < \langle MSG(m,k), j \rangle$. By induction, p_i has executed Line 14 upon fifo-delivery of MSG(m,k) from p_k , after cmb-delivering m from p_k . Hence, p_i is not blocked on Line 13.