
HAL Id: hal-04617873
https://hal.science/hal-04617873

Preprint submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causal Mutual Byzantine Broadcast
Mathieu Féry, Vincent Kowalski, Florian Monsion, Achour Mostefaoui,

Samuel Pénault, Matthieu Perrin, Guillaume Poignant

To cite this version:
Mathieu Féry, Vincent Kowalski, Florian Monsion, Achour Mostefaoui, Samuel Pénault, et al.. Causal
Mutual Byzantine Broadcast. 2024. �hal-04617873�

https://hal.science/hal-04617873
https://hal.archives-ouvertes.fr

Causal Mutual Byzantine Broadcast

M. Féry, V. Kowalski, F. Monsion, A. Mostefaoui,
S. Pénault, M. Perrin and G. Poignant

LS2N, Nantes Université

Abstract

Recently, a new communication abstraction called Mutual Broadcast has been proposed for message-
passing distributed systems where some processes may fail by crashing. It is a one-to-all broadcast
abstraction providing an ordering property that allows it to be computationally equivalent to atomic
registers. This paper proposes an adaptation of this abstraction, Causal Mutual Byzantine Broadcast
(in short CMB-Broadcast) for message-passing systems where some processes may experience Byzantine
faults. Byzantine faults are a more severe failure model compared to crash failures. A Byzantine process
can behave arbitrarily. After defining this new communication abstraction, we show how it can be used
to emulate atomic registers and also how it can be implemented using quorums and the famous Byzantine
reliable broadcast abstraction of Bracha. We also prove a necessary condition on the size of the quorums.

keywords: Atomic register, Byzantine process, Communication abstraction, Message-passing system,
Quorums.

1 Introduction
Context: The Mutual Broadcast Abstraction Distributed systems consist of a collection of processes
that communicate either through shared memory or by sending and receiving messages to solve a common
problem. When physical shared memory is not available, one approach is to emulate shared memory algo-
rithms atop a message-passing system by implementing shared registers in this model [1]. Such algorithms
rely on quorums to overcome partitions: each time a process reads or writes to a shared register, it broad-
casts a message and waits for acknowledgment from a majority of the system’s processes. However, designing
quorum-based algorithms can be challenging due to their heavy reliance on the specific model employed.

Recently, Mutual Broadcast has been identified as a broadcast abstraction computationally equivalent
to atomic registers [6, 5]. This equivalence implies that atomic registers can be emulated in a distributed
system where Mutual Broadcast is available, and conversely, Mutual Broadcast can be implemented in
systems where processes communicate using atomic registers. In other words, providing Mutual Broadcast
as a basic building block of a message-passing system could replace quorums in solving many cooperation
problems.

Although Mutual Broadcast seems to be the right abstraction to deal with many safety issues in dis-
tributed systems, those systems may also be prone to security issues. Byzantine failures, first introduced
by Pease, Shostak and Lamport [12], occur when a process does not execute as expected. This can happen
when for example malicious users are actively trying to attack the system by altering the code of their client
application, or simply when they run outdated or corrupted versions of the application. The goal of this
paper is to study Mutual Broadcast in distributed systems prone to Byzantine failures.

Byzantine Atomic Registers Many variants of shared registers have been studied in the literature,
encompassing both crash-prone environments [9] and Byzantine contexts. Three types of single-writer multi-
reader (SWMR) registers were compared in [8]: the classical read/write register [4], the read/write-increment
register [10], and the read/append register [7]. It has been demonstrated that, although these three types
of registers are computationally equivalent in crash-prone environments, they differ in Byzantine contexts.

1

Specifically, while read/append registers can implement the other two types of registers, the reverse is
not true. Consequently, this paper focuses on the implementation of the strongest variant, namely the
atomic SWMR read/append register, which tracks the sequence of all values written by the writer (whether
Byzantine or not). This sequence is perceived identically by all non-Byzantine processes (read/append
register). If the writer is Byzantine, the sequence depends on its behavior; in extreme cases, the history
might be reduced to its initial state (an empty sequence).

Contribution 1: The Causal Mutual Broadcast Abstraction This paper investigates the adapta-
tion of the mutual broadcast abstraction to Byzantine contexts, specifically, a broadcast abstraction that
effectively captures the computing requirements for implementing an atomic SWMR read/append register
in Byzantine-prone systems. The first major contribution is the definition of Causal Byzantine Mutual
Broadcast (CMB-broadcast). In addition to the traditional properties of mutual broadcast, CMB-broadcast
incorporates the causal ordering of message deliveries [2]. Subsequently, the paper presents an algorithm
that utilizes the CMB-broadcast abstraction for implementing a SWMR read/append register, demonstrating
resilience against any number of Byzantine failures.

Contribution 2: Implementation of CMB-broadcast We then illustrate how to implement the CMB-
Broadcast abstraction atop a message-passing system, under the condition that at most t < n/3 processes
may exhibit Byzantine behavior, where n is the total number of processes in the system. Specifically, our
implementation is based on FIFO Byzantine reliable broadcast, a variant of Bracha’s Byzantine reliable
broadcast. This variant ensures FIFO ordering of messages, maintaining this order consistency regardless of
whether the sender is correct or Byzantine.

Contribution 3: The Computational Power of FIFO-Broadcast Interestingly, the reduction of
CMB-Broadcast to FIFO Byzantine reliable broadcast requires the assumption that a majority of the pro-
cesses are correct, specifically t < n/2. This is the same bound as in the crash-prone context. On the other
hand, we establish that if the FIFO property in the FIFO Byzantine reliable broadcast is limited only to
correct senders, then it becomes necessary that t < n/3 to implement CMB-Broadcast. This stresses, for the
first time, the role of the FIFO property in enforcing the power of reliable broadcast in a Byzantine context.

Roadmap This paper is composed of 7 sections. First, Section 2 presents the underlying computing model,
then Section 3 introduces the high-level CMB-Broadcast communication abstractions. The two following
sections propose two implementations. Section 4 details an implementation of an atomic register using the
proposed CMB-Broadcast communication abstraction and Section 5 gives an implementation of the CMB-
Broadcast communication abstractions using the well-known Byzantine reliable broadcast abstraction of
Bracha. Section 6 proves an impossibility result on the necessary condition to upgrade from the Byzantine
reliable broadcast to CMB-Broadcast. Finally Section 7 concludes the paper. For the paper to be self-
contained, we have added the implementation of a Byzantine reliable FIFO broadcast based on Bracha’s
algorithm in Appendix A, the proof of Algorithm 1 in Appendix B, and parts of the proof of Algorithm 2 in
Appendix C.

2 Computing Model
In this paper, we consider the classical Byzantine-prone asynchronous message-passing computing model.

Computing entities The system is composed of a set of n sequential processes, denoted p1, p2, . . . , pn.
These processes are asynchronous in the sense that each process progresses at its own speed, which can be
arbitrary and may vary along any execution, and remains always unknown to the other processes. Each
process pi has access to its own identifier i which can be used in the code.

Failure model Among the n processes of the system, it is supposed that at most t processes can exhibit
a Byzantine behavior. A Byzantine behavior is characteristic of a process not following its algorithm and
acting in an arbitrary way [12]: it may start in an arbitrary state, stop executing at any time (this behavior
is called a crash), perform arbitrary state transitions, attempt to communicate arbitrary or different values

2

to different processes, etc. A Byzantine process is also called a faulty process, and a process that commits
no failure (i.e., a non-Byzantine process) is called a correct process.

Communication model The different processes communicate by exchanging messages through bi-directional
communication channels. These channels connect each pair of processes so that any process can identify the
sender of a message and no process can impersonate another correct process. The sending of a message is
asynchronous and reliable. “Asynchronous” means that there is no bound on message transfer delay, and
“Reliable” means that channels do not create, duplicate, or modify information and that all messages sent
by correct processes to correct processes will eventually be received.

Notation The acronym BAMPn,t[∅] is used to denote the previous Byzantine-prone Asynchronous Message-
Passing model without additional computability power. BAMPn,t[H] denotes BAMPn,t[∅] enriched with
the additional computational power denoted by H. For example, BAMPn,t[t <

n
3] denotes the model in

which at least two-thirds of the processes are correct, namely, t < n/3.

3 Causal Mutual Byzantine Broadcast

Causal Mutual Byzantine broadcast (CMB-Broadcast) is an extension, to the Byzantine context, of the
Mutual broadcast abstraction proposed in the crash failure model in [6]. This communication abstraction
allows a process to broadcast a message that will be delivered, at least, by all the correct processes, ensuring
a certain ordering property among the delivered messages. It provides the processes with one operation
denoted cmb_broadcast(), and one event denoted by cmb_deliver.

A process pi invokes the operation “cmb_broadcast(type(m))” to broadcast a message with type type
and content m. This action is referred to as pi cmb-broadcasting a message type(m). Subsequently, the
event “cmb_deliver type(m) from pi” might be triggered at some processes pj , leading us to say that pj
“cmb-delivers m from pi”. It is assumed that, although messages may share type and content, each broadcast
message is unique. The following properties define CMB-Broadcast.

Validity. If a correct process pi cmb-delivers a message m from a correct process pj , then pj previously
invoked cmb_broadcast(m).

Integrity. A correct process cmb-delivers a message m at most once.

Local progress. If a correct process pi cmb-broadcasts a message m, then m will eventually be cmb-
delivered by pi from pi.

Consistency. If a correct process cmb-delivers a message m from some process pj , then all correct
processes will eventually cmb-deliver m from pj (pj may be correct or Byzantine).

Mutual ordering. For any pair of correct processes p and p′, if p cmb-broadcasts a message m and p′

cmb-broadcasts a message m′, it is not possible that p cmb-delivers m before m′ and p′ cmb-delivers
m′ before m.

CS-Causal ordering. If a correct process pi cmb-delivers a message m, and then cmb-broadcasts a
message m′, then no correct process cmb-delivers m′ before m.

CS-Fifo ordering. If a correct process pi cmb-broadcasts a message m before a message m′, then no
correct process cmb-delivers m′ before m.

BS-Fifo ordering. If a correct process pi cmb-delivers a message m before a message m′, both from
the same process pj (pj may be correct or not), then no correct process cmb-delivers m′ before m.

3

1 operation append(v) is:
2 synchro_cmb_broadcast(append(v));

3 operation read() is:
4 synchro_cmb_broadcast(synch());
5 let log i ← replicai.read();
6 synchro_cmb_broadcast(synch());
7 return log i;

8 when pi cmb_delivers append(v) from pw do:
9 replicai.append(v);

Algorithm 1: Implementation of an atomic SWMR read/append register using CMB-broadcast

The properties of Validity, Integrity, Local Progress, and Consistency are classical in defin-
ing Byzantine-tolerant broadcast abstractions and constitute the core of the Byzantine-reliable broadcast
abstraction proposed by Bracha [3]. The Mutual Ordering property characterizes mutual broadcast. It
stipulates that when two processes initiate broadcasts concurrently, at least one must cmb-deliver the other’s
message prior to its own. This condition prevents partitioning, thereby facilitating the implementation of an
atomic register in crash-prone systems. The CS-Fifo Ordering and CS-Causal Ordering properties,
where CS denotes “correct sender”, mirror the conventional attributes of FIFO and causal broadcasts in
crash-prone systems, as outlined in [2], but are confined to messages broadcast by correct processes. Given
a Byzantine sender, referring to order in which it broadcasts and delivers messages is impossible. Instead,
the BS-Fifo Ordering property states that correct processes must concur on a uniform delivery sequence
for any broadcasting process, aligning with the emission order if the sender is indeed correct.

It is important to note that if a process consistently waits for the local delivery of its previous mes-
sages before initiating a subsequent broadcast, then both CS-Causal Ordering and BS-Fifo Order-
ing inherently imply CS-Fifo Ordering. To facilitate this behavior, we introduce a blocking variant of
cmb_broadcast, denoted as synchro_cmb_broadcast. This function is defined as:

cmb_broadcast m; wait until m has been cmb-delivered locally.

4 Implementation of a SWMR atomic register

Algorithm 1 implements an atomic SWMR read/append register in the model BAMPn,t[cmb_broadcast].
It follows closely the algorithm implementing an atomic read/write register on top of mutual broadcast, in
a crash-prone model [6]. In particular, this is a full-replication protocol. Hence, each correct process pi
maintains a local variable, called replicai, whose sequence of states is the same as the sequence of abstract
states of the shared read/append register. We will now describe how each safety property of CMB-broadcast
serves a precise role in the algorithm.

When the writing process pw wants to append a value v to its register, it invokes append(v). Accordingly,
it cmb-broadcasts a message append(v) (Line 2) to inform each other process pi there is new value to
append to its local variable replicai (Line 9). Thanks to the Validity, Integrity and BS-Fifo ordering
properties of cmb-broadcast, all correct processes receive the same set of append(v) messages, in the same
order. Therefore, the different variables replicai take the same sequence of values and remain consistent with
each other. Note the importance of the BS-Fifo ordering property to ensure that values are appended in
the same order, even if pw is Byzantine.

A correct process pi can read the shared register by invoking the read() operation. Process pi returns
the value stored in its variable replicai (Lines 5 and 7), but a memory barrier must be posed before and after
the read in order to ensure the real-time ordering imposed by linearizability (Lines 4 and 6).

Line 4 ensures the read-after-write property which states that, if a read starts after an append has ended,

4

1 operation cmb_broadcast(m) is:
2 sendingi ← m; ackedi ← ∅;
3 fifo_broadcast msg(m, i);
4 wait until m ∈ deliveredi;

5 when pi fifo_delivers msg(m, k) as the sn-th message from pj do:
6 wait until nexti[j] = sn;
7 if m = sendingi then ackedi ← ackedi ∪ {j};
8 if j = k ∧m /∈ deliveredi then
9 if i = k then wait until |ackedi| > n− t;

10 else fifo_broadcast msg(m, k);
11 cmb_deliver m from pk;
12 deliveredi ← deliveredi ∪ {m};
13 wait until m ∈ deliveredi;
14 nexti[j]← sn + 1;

Algorithm 2: Implementation of CMB-broadcast

then the read must return a list of values containing the appended value. This is achieved thanks to the
Mutual ordering property of CMB-broadcast: before returning from its append operation, pw waits
until it has cmb-delivered its append message locally (recall that synchro_cmb_broadcast m is the blocking
version of cmb_broadcast). Hence, pw cmb-delivers its own append message before any synch message
cmb-broadcast by any other process pi after the end of the append(v) operation. This ensures that the
process pi must cmb-deliver these two messages in the same order. Hence, pi cmb-delivers append(v) before
the end of Line 4, and replicai is up-to-date on Line 5 when it is read.

Line 6 ensures the read-after-read property which means that, if a read by a process pi starts after another
read by pj has ended, the value returned by pi must be at least as recent as the value returned by pj . In
this case, the synch message cmb-broadcast by pj at Line 6 serves the same synchronyzation purpose as
pw’s append message: pi cmb-delivers pj ’s message before its own. Moreover, the CS-Causal ordering
property of cmb-broadcast ensures that pi cmb-delivers all append messages cmb-delivered by pj before its
read, which ensures an up-to-date read.

The proof of Algorithm 1 is in Appendix B. It follows the same framework as [6], which proposes a set of
necessary and sufficient properties, that characterize a Byzantine-linearizable SWMR read/append register.

5 Implementation of CMB-broadcast

This section presents Algorithm 2 that implements CMB-broadcast. For the sake of simplicity, it is not
built directly on a distributed message-passing system in the model BAMPn,t[t < n

3], but is rather pre-
sented in a two-step design. We use another broadcast abstraction, called fifo-broadcast, as a building block.
This abstraction ensures that the different broadcast messages are delivered in FIFO order. Specifically,
fifo-broadcast imposes the following properties, defined in the same way as CMB-broadcast: Validity, In-
tegrity, Local progress, Consistency, CS-Fifo ordering and BS-Fifo ordering. Fifo-broadcast
can be implemented by a variant of the Byzantine reliable broadcast of Bracha [3] enriched with sequence
numbers. Its code is given in Appendix A.

Each process pi executing Algorithm 2 manages the following local variables:

• nexti[1..n]: This is an array of size n, where the entry nexti[j], initialized to 1, gives the sequence
number of the next message pi will fifo-deliver from pj .

• sendingi: Variable used to save the last message sent by process pi to recognize later the answers of
the other processes concerning this same message.

5

• ackedi: The set of processes from which pi has fifo-delivered a message msg(sendingi, i).
• deliveredi: A set containing all the messages previously cmb-delivered by pi.

When a process pi wants to cmb-broadcast a message m, it stores this message in the variable sendingi
and sets the set of acknowledgments ackedi to ∅. Then, it fifo-broadcasts it and waits until this message has
been cmb-delivered to itself (at Line 12). When a process pi fifo-delivers a message msg(m, k) from pj , it
first executes Line 6 that allows process pi to consider the messages it receives from the different processes
in FIFO order. The fifo-delivered message m may correspond to two different cases.

1. k = j: the message m corresponds to a message process pj wants to cmb-broadcast and that process
pi fifo-delivered. If moreover j = i, this means that pi fifo-delivered this message from itself.

2. k = i ̸= j: the message corresponds to an acknowledgment sent by process pj to process pi for the
message m pi wants to cmb-broadcast.

The test in Line 7 means that m is a message pi wants to cmb-broadcast (i = k) and pi considers
the present message as an acknowledgment from pj for message m it fifo-broadcast at Line 3 and updates
the variable ackedi accordingly. Then if k = j, this means that pi fifo-delivered a message m process pj
wants to cmb-broadcast. Two cases are to be considered, if i = k(= j), pi fifo-delivered its own message
m, it consequently waits until it has received at least n − t acknowledgments before cmb-delivering m at
Line 11. Otherwise, i ̸= k meaning that pi has to acknowledge message m to pk(k = j). This is done at
Line 11. This is done to ensure the Mutual ordering property. Line 13 is used to ensure the Causal
ordering property: if a correct process pj has cmb-delivered a message m from some process pk before
cmb-broadcasting a message m′, then pj has also fifo-broadcast a message msg(m, k) before its message
msg(m′, j), so Line 13 ensures that pi has cmb-delivered m from pk before treating the message msg(m′, j)
and eventually cmb-delivering m′ from pj .

A remark on complexity. Since the assumption t < n
3 is necessary to implement fifo-broadcast,

practical uses for Algorithm 2 are to be considered in the model BAMPn,t[t < n
3]. In this model, the

message on Line 10 can be sent to all processes, using fifo point-to-point communication channels, instead of
relying on fifo-broadcast. The only difference in the correctness demonstration appears in the proof of the
Mutual ordering property: ackedi eventually contains the identifiers of n − t processes whose message
msg(mi, i) is fifo-delivered to pi before the message msg(mj , j) related to a concurrent message mj from pj .
In Algorithm 2, ackedi ∩ ackedj must contain some process, which can be correct or Byzantine, so t < n/2
is sufficient. In the modified version, ackedi ∩ ackedj must contain a correct process, which is true when
t < n/3.

Correctness proof of Algorithm 2

Lemma 1. Let S be the set of pairs ⟨msg(m, k), j⟩, such that msg(m, k) is fifo-delivered by all correct
processes, and m is cmb-delivered from pk by some correct process. For all pairs ⟨msg(m, k), j⟩ ∈ S and all
correct processes pi, pi eventually executes Line 14 in the code triggered by the fifo-delivery of msg(m, k)
from pj.(The proof is given in Appendix C.)

Theorem 1 (Correctness of Algorithm 2). Algorithm 2 implements CMB-broadcast in the model
BAMPn,t[t <

n
2 , fifo_broadcast].

Proof. Our proof will go through all properties presented in Section 3 to characterize CMB-broadcast.

Validity. Suppose a correct process pi cmb-delivers a message m from a correct process pj . This happens
on Line 11, after pi fifo-delivered a message msg(m, j) from pj . By the Validity property of fifo-broadcast,
pj fifo-broadcast msg(m, j) on Line 3 after invoking cmb_broadcast(m).

Integrity. Suppose a correct process pi cmb-delivers a message m from a process pj . This happens at
most once on Line 11, since m /∈ deliveredi before (Line 8) and m ∈ deliveredi afterward (Line 12).

6

Local progress. Suppose a correct process pi cmd-broadcasts a message m. Then, pi will fifo-broadcast
msg(m, i) at Line 3 and will eventually fifo-deliver msg(m, i) from pi (itself). By Lemma 1, all correct
processes have executed Line 14 for all the messages fifo-broadcast by pi prior to the message msg(m, i).
Hence, all correct processes will treat the message msg(m, i) from pi and cmb-deliver m from pi. By Lemma 1
again, ⟨msg(m, i), i⟩ ∈ S so pi eventually executes Line 14, after having cmb-delivered m from pi.

Consistency. Suppose a correct process pi cmd-delivers a message m from a process pk. According to
Line 5, pi has fifo-delivered msg(m, k) from pk, so all correct processes fifo-deliver msg(m, k) from pk by
the Consistency property of fifo-broadcast. Hence, ⟨msg(m, k), k⟩ ∈ S and all correct processes eventually
cmb-deliver m from pk by Lemma 1.

Mutual ordering. Let pi and pj be two correct processes such that pi cmb-broadcasts a message mi

and pj cmb-broadcasts a message mj , and suppose, for contradiction, that pi cmb-delivers mi before mj

and pj cmb-delivers mi before mj . Let Si be the set ackedi when pi cmb-delivers mi, and Sj be the set
ackedj when pj cmb-delivers mj . We observe that, for all k ∈ Si, pi fifo-delivered msg(mi, i) from pk before
msg(mj , j) from pk. Indeed, otherwise, mj ∈ Deliveredi between the two fifo-deliveries (thanks to Line 13),
which contradicts the fact that pi cmb-delivered mi before mj . Similarly, for all k ∈ Sj , pj fifo-delivered
msg(mj , j) from pk before msg(mi, i) from pk. Therefore, the CS-Fifo ordering property of fifo-broadcast
implies that for all k ∈ Sj , pi fifo-delivered msg(mj , j) from pk before msg(mi, i) from pk. In other words,
Si and Sj are disjoint. Therefore, by Line 9 we have n ≥ |Si ∪Sj | = |Si|+ |Sj | > n, which is a contradiction.

CS-Fifo ordering. Let pi and pj be two correct processes, and suppose that pi cmb-broadcasts two
messages m and then m′. By Line 3, pi fifo-broadcasts msg(m, i) and msg(m′, i) in that order. By the
CS-Fifo ordering property of fifo-broadcast, pj fifo-delivers msg(m, i) before msg(m′, i) from pi. Then,
by Lines 14 and 6, pj cmb-delivers m before m′.

BS-Fifo ordering. Suppose that two correct processes pi and pj cmb-deliver two messages m and
m′, both from the same process pk. By Lines 8 and 11, the cmb-delivery of m (resp. m′) happened after
the fifo-delivery of a message msg(m, k) (resp. msg(m′, k)) from pk. Moreover, by Lines 14 and 6, these
fifo-deliveries happened in the same order as the cmb-deliveries, and in the same order for both pi and pj ,
thanks to the BS-Fifo ordering property of fifo-broadcast. Hence pi and pj cmb-deliver m and m′ in the
same order.

CS-Causal ordering. Suppose a correct process pi cmb-delivers a message m from pj , and then
cmb-broadcasts a message m′. Let pk be a correct process, and let us prove that pk does not cmb-deliver m′

before m. If i = j, the property is implied by the CS-Fifo ordering property proven above. Otherwise,
the following events happen in this order at Process pi: pi fifo-broadcast msg(m, j) (Line 10) before cmb-
delivering m from pj (Line 11), then pi cmb-broadcast m′ before fifo-broadcasting msg(m′, i) (Lines 1 and 3).
Hence, the CS-Fifo ordering property of fifo-broadcast implies that pk fifo-delivered msg(m, j) from pi
before fifo-delivering msg(m′, i) from pi, and only later cmb-delivered m′ from pi. By Lines 13, 14 and 6, pk
cmb-delivered m before cmb-delivering m′.

6 An Impossibility Result
Let us recall that the assumption t < n/3 is necessary and sufficient to implement Bracha’s Byzantine reliable
broadcast abstraction, as well as its variant used in this paper. The difference between Bracha’s abstraction
and the one employed here lies in the latter’s assurance of both CS-Fifo ordering and BS-Fifo ordering
properties. These properties impose a FIFO order of all messages delivered from any process, irrespective
of whether they are correct or Byzantine. Due to these properties, Algorithm 2 allows the upgrade from
reliable FIFO broadcast to CMB-broadcast under the assumption t < n/2. Interestingly, t < n/2 is also the
condition that allows an upgrade from reliable broadcast to mutual broadcast in the crash failure model.
The theorem proved below states that if the underlying Byzantine reliable broadcast abstraction ensures

7

CS-Fifo ordering (FIFO order when the sender is correct) but not BS-Fifo ordering (an agreement on
the delivery order when the sender is Byzantine) — an abstraction that we call weak-FIFO-broadcast — then
the upgrade to CMB-broadcast becomes infeasible with t < n/2, necessitating t < n/3. This means that the
maintenance of FIFO order, even when the sender is Byzantine, empowers the reliable broadcast abstraction
to effectively handle and mitigate the impacts of Byzantine processes, thereby enabling the emulation of an
atomic register or the CMB-broadcast abstraction.

Theorem 2. It is impossible to implement CMB-broadcast in the model BAMPn,t[t <
n
2 ,weak_fifo_broadcast],

when n ≥ 3 and t ≥ n
3 .

Proof. Let us assume that there exists an algorithm, A, which implements CMB-broadcast in the model
BAMPn,t[weak_fifo_broadcast]. even when t ≥ n

3 . We are going to show (proof by contradiction) that
there exists an execution allowed by A and does not respect the specification of CMB-broadcast.

Let us consider a system made up of n ≥ 3 processes, and let t ≥ n
3 . We can partition the set of processes

into three non-empty sub-sets P , Q and R, whose size is at most t. Let us pick two processes p ∈ P and
q ∈ Q, and let us consider three executions of A.

S1: In the first scenario, the processes in Q are Byzantine (or simply slow) and do not take any step during
the execution. All other processes are correct. Process p cmb-broadcasts a message mp, and, by the Local
progress property of CMB-broadcast, pi eventually cmb-delivers mp from itself.

S2: The second scenario is similar, except that the roles of the processes in P and Q are exchanged.
This time, the processes in P are Byzantine and do not take any step during the execution, Process q
cmb-broadcasts a message mq and eventually cmb-delivers mq from itself.

S3: In the third scenario, the processes in R are Byzantine, and the other processes are correct. In the first
stage of the execution, p cmb-broadcasts mp, and q cmb-broadcasts mq. In the second stage of the execution,
all messages between P and Q are delayed, and processes in R weak-fifo-broadcast the same messages as
in S1 and S2. Since the processes in R are Byzantine, there is no restriction on the order in which these
messages are weak-fifo-delivered by the other processes. Hence, during this second phase, all processes in P
weak-fifo-deliver the same messages as in S1, and all processes in Q weak-fifo-deliver the same messages as
in S2. Since p receives the same messages, in the same order, in S1 and S3, p cmb-delivers mp without cmb-
delivering mq. similarly, S2 and S3 are indistinguishable from q, so q cmb-delivers mq without cmb-delivering
mp. This violates the Mutual ordering property of CMB-broadcast, hence a contradiction.

7 Conclusion
This article proposes a communication abstraction called CMB-broadcast (for Causal Byzantine Mutual
Broadcast) whose computability is equivalent to that of SWMR atomic registers in a distributed system
where some processes can be Byzantine. It is an adaptation of the mutual broadcast proposed for crash-
prone systems. We first demonstrate how it can be used to implement a SWMR atomic read/append register.
Additionally, we show how to implement CMB-broadcast over a system where the number of Byzantine
processes is t < n/3. This implementation was structured in two steps to facilitate understanding. It was
built on top of another abstraction, which is Bracha’s Byzantine reliable broadcast in a FIFO version.

Interestingly, we observed that, in reality, when CMB-broadcast is implemented over reliable FIFO
broadcast, it is sufficient to assume only t < n/2. We then demonstrated that this is possible only if
the FIFO property is guaranteed regardless of whether the message sender is Byzantine or not. If this
property is restricted only to correct processes, then t < n/3 is necessary to implement CMB-broadcast over
reliable broadcast, highlighting for the first time the role of strong FIFO property in enforcing the power of
reliable broadcast in a Byzantine context.

8

References
[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing systems.

Journal of the ACM (JACM), 42(1):124–142, 1995.

[2] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presence of Failures. ACM
Trans. Comput. Syst., 5(1):47–76, 1987.

[3] Gabriel Bracha. Asynchronous Byzantine Agreement Protocols. Information and Computation,
75(2):130–143, 1987.

[4] Shir Cohen and Idit Keidar. Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snap-
shots, and Asset Transfer. In 35th International Symposium on Distributed Computing (DISC 2021),
volume 209, 2021.

[5] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Brief Announcement: The
MBroadcast Abstraction. In Proc. of the 2023 ACM Symposium on Principles of Distributed Computing,
PODC, Orlando, FL, USA, pages 282–285, 2023.

[6] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Send/Receive Patterns
Versus Read/Write Patterns in Crash-Prone Asynchronous Distributed Systems. In 37th International
Symposium on Distributed Computing, DISC 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 16:1–
16:24, 2023.

[7] Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write shared memory ab-
straction on top of asynchronous Byzantine message-passing systems. J. Parallel Distributed Comput.,
93-94:1–9, 2016.

[8] Vincent Kowalski, Achour Mostéfaoui, and Matthieu Perrin. Atomic Register Abstractions for
Byzantine-Prone Distributed Systems. In 27th International Conference on Principles of Distributed
Systems, OPODIS, Tokyo, Japan, volume 286 of LIPIcs, 2023.

[9] Leslie Lamport. On Interprocess Communication. Part I: Basic Formalism. Distributed Comput.,
1(2):77–85, 1986.

[10] Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic Read/Write Memory in
Signature-Free Byzantine Asynchronous Message-Passing Systems. Theory Comput. Syst., 60(4):677–
694, 2017.

[11] Achour Mostéfaoui and Michel Raynal. Intrusion-Tolerant Broadcast and Agreement Abstractions in
the Presence of Byzantine Processes. IEEE Trans. Parallel Distributed Syst., 27(4):1085–1098, 2016.

[12] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement in the Presence of
Faults. Journal of the ACM, 27(2):228–234, 1980.

Appendix A: Bracha’s Reliable Broadcast Algorithm
The broadcast algorithm presented in Figure 3 is Bracha’s algorithm [3] enriched with sequence numbers. On
the one hand, it enables the broadcasting of a sequence of messages rather than a single one. On the other
hand, it ensures that the different broadcast messages are delivered in FIFO order. Specifically, each correct
process delivers the same sequence of messages from each given process (possibly Byzantine). For that, each
process pi manages a local array nexti[1..n], where nexti[j] is the sequence number of the next application
message that will be fifo-delivered, by process pi, from process pj . Initially, for all i, j, nexti[j] = 1.

When a process pi invokes fifo_broadcast(m) 1, it sends the message init(m, current) (Line 3) to all
processes, where current is its next sequence number and then waits until this message is fifo-delivered to
pi itself (lines 18 and 19). The procedure fifo_broadcast is thus blocking.

9

1 operation fifo_broadcast(m) is:
2 let current ← nexti[i];
3 send init(m, current) to all processes;
4 wait until nexti[i] = current + 1;

5 when one of the following conditions holds for the first time, for each pair (j, sn):
6 • pi has received init(m, sn) from pj
7 • pi has received echo(m, j, sn) from more than n+t

2 different processes
8 • pi has received ready(m, j, sn) from more than t different processes
9 do: send echo(m, j, sn) to all processes;

10 when one of the following conditions holds for the first time, for each pair (j, sn):
11 • pi has received echo(m, j, sn) from more than n+t

2 different processes
12 • pi has received ready(m, j, sn) from at least t+ 1 different processes
13 do: send ready(m, j, sn) to all processes;
14 when the following condition holds for the first time, for each pair (j, sn):
15 • pi has received ready(m, j, sn) from at least 2t+ 1 different processes
16 do:
17 wait until nexti[j] = sn;
18 fifo_deliver m from pj ;
19 nexti[j]← sn + 1;

Algorithm 3: Implementation of FIFO-broadcast

• When a process pi receives a message init(m, current) from a process, it echoes it by sending a
message echo(m, j, sn) to all processes (Line 9). This is done to inform the other processes it received
the application message m. This echo is sent only once for each sequence number. This is because if
pj is Byzantine it can send different messages with the same sequence number.

• Then, when pi has received the same message echo(m, j, sn) from “enough” processes (where “enough”
means here “more than (n+t)/2 different processes”), and has not yet broadcast a message ready(m, j, sn),
pi does it in Line 10.

The aim of (a) the messages echo(m, j, sn), and (b) the cardinality “greater than (n+ t)/2 processes”,
is to ensure that no two correct processes can fifo-deliver distinct messages at Line 18 from pj (even if
pj is Byzantine). The aim of the messages ready(m, j, sn) is related to the liveness of the algorithm.
More precisely, it aims to allow the fifo-delivery by the correct processes of the very same message
m from pj , and this must always occur if pj is correct. It is nevertheless possible that a message
fifo_broadcast by a Byzantine process pj is never fifo-delivered by the correct processes.

• Finally, when pi has received the message ready(m, j, sn) from (t+1) different processes, it broadcasts
the same message ready(m, j, sn) , if not yet done. This is required to ensure the termination property.
If pi has received “enough” messages ready(m, j, sn) (“enough” means here “from at least (2t + 1)
different processes”), it fifo-delivers the message m fifo-broadcast by pj .

More explanations and proofs that this algorithm satisfies the properties defining the reliable broadcast
abstraction can be found in [3, 11].

Appendix B: Proof of Algorithm 1
Lemma 2 (Validity). If a read operation performed by a correct process returns log, and if the writing
process is correct, then for all s ∈ {1, ..., |log|}, log [s− 1] is the sth value written.

Proof. Suppose that the writing process pw is correct, and that a read operation performed by a correct
process pi returns log i. By the Validity, Integrity and Fifo ordering properties of CMB-broadcast,

10

the sequence of cmb-deliveries of append(_) messages by pi from pw is the same as the sequence of cmb-
broadcasts of append(_) messages by pw. This sequence is also the same as both the sequence of write
operations (Line 2), and the sequence of values appended in replicai (Line 9), whose log i is a prefix (Line 5).

Lemma 3 (Read after write). If a read done by a correct process starts after the sth write of a correct process
completes, then the read cannot return a sequence containing less than s values.

Proof. Suppose a read done by a correct process pi starts after the sth write of a correct process pw completes.
Then pw has cmb-delivered at least s of its own append(_) messages before the synch message cmb-
broadcast on Line 4. By the Mutual ordering property of CMB-broadcast, pi must also cmb-deliver at
least s append(_) messages before its own synch message. Hence, replicai contains at least s values on
Line 5.

Lemma 4 (Inclusion). Let ri and rj be two read operations, done by correct processes, that return respec-
tively log i and logj. Then log i is a prefix of logj, or logj is a prefix of log i.

Proof. By the Integrity and Fifo ordering properties of CMB-broadcast, the sequence of cmb-deliveries
of append(_) messages by any pair of correct processes is the same. Since log i and logj are two prefixes of
this common sequence, one must be a prefix of the other, following Levi’s lemma.

Lemma 5 (Read after read). Let ri and rj be two read operations, done by correct processes, that return
respectively log i and logj. If ri completes before rj starts, then log i is a prefix of logj.

Proof. Let mi be the synch message pi cmb-broadcasts on Line 6, and mj be the synch message pj cmb-
broadcasts on Line 4.

Suppose ri completes before rj starts. Then pi cmb-delivers mi before mj . By the Mutual ordering
property of CMB-broadcast, pj must also cmb-deliver mi before mj . Therefore, by the CS-Causal or-
dering property of cmb-broadcast, before cmb-delivering mj , pj must also cmb-deliver all the append(_)
messages that pi cmb-delivered before cmb-broadcasting mi. Hence, logj contains at least all the values of
log i, so by Lemma 4, log i is a prefix of logj .

Theorem 3 (Correctness of Algorithm 1). Algorithm 1 implements a wait-free and Byzantine linearizable
SWMR read/append register.

Proof. Let H be a distributed history of Algorithm 1. By lemmas 2-5, H verifies the four hypotheses of
Proposition 2, stated in [8]. Hence, H is Byzantine linearizable. Moreover, Algorithm 1 does not contain
any loop or recursion, and all its waiting times terminate thanks to the Local progress property of
CMB-broadcast. Hence, Algorithm 1 is wait-free.

Appendix C: Proof of Algorithm 2
Lemma 1. Let S be the set of pairs ⟨msg(m, k), j⟩, such that msg(m, k) is fifo-delivered by all correct
processes, and m is cmb-delivered from pk by some correct process. For all pairs ⟨msg(m, k), j⟩ ∈ S and all
correct processes pi, then pi eventually execute Line 14 in the code triggered by the fifo-delivery of msg(m, k)
from pj.

Proof. We define the binary relation ≤ on elements of S as: ⟨msg(m, k), j⟩ ≤ ⟨msg(m′, k′), j′⟩ if one of the
following conditions hold:

• j = j′ and all correct processes fifo-deliver msg(m, k) from pj before msg(m′, k′) from pj ,

• k = k′ = j and m = m′,

• there exists s ∈ S such that ⟨msg(m, k), j⟩ ≤ s ≤ ⟨msg(m′, k′), j′⟩.

11

We first remark that ≤ is a antisymmetric: this is because, by Lines 6, 13 and 14, a correct process cannot
cmb-deliver m′ before m if ⟨msg(m, k), j⟩ ≤ ⟨msg(m′, k′), j′⟩, so pairs ⟨msg(m, k), j⟩ participating in a cycle
would not match the definition of S. Hence, ≤ is an order relation. Moreover, it is well-founded because
executions have a beginning in time.

We now prove, by Noetherian induction on S, that for all ⟨msg(m, k), j⟩ ∈ S and all correct processes
pi, pi eventually execute Line 14 in the code triggered by the fifo-delivery of msg(m, k) from pj . Let
⟨msg(m, k), j⟩ ∈ S and pi be a correct process. We suppose the result is true for all s ∈ S such that
s < ⟨msg(m, k), j⟩. It is sufficient to prove that pi cannot wait forever at Line 6, 9 or 13 after its fifo-delivery
of msg(m, k) from pj .

Line 6 By induction, the property holds for all messages fifo-broadcast by pj prior to msg(m, k), so pj
eventually executes Line 14 sn − 1 times, and pi is not blocked on Line 6.

Line 9 By induction, all correct processes have executed Line 14 for all the messages fifo-broadcast by pi
prior to the message msg(m, i). Hence, all correct processes (at least n−t) will eventually fifo-broadcast
msg(m, i) after fifo-delivering msg(m, i) from pi. Therefore, pi cannot block at Line 9.

Line 13 By the definition of S, a correct process has cmb-delivered m from pk. By Lines 8 and 11, this
process has fifo-delivered a message msg(m, k) from pk, so all correct processes do so by the Consis-
tency property of fifo-broadcast. Hence, ⟨msg(m, k), k⟩ ∈ S, and ⟨msg(m, k), k⟩ < ⟨msg(m, k), j⟩.
By induction, pi has executed Line 14 upon fifo-delivery of msg(m, k) from pk, after cmb-delivering m
from pk. Hence, pi is not blocked on Line 13.

12

	Introduction
	Computing Model
	Causal Mutual Byzantine Broadcast
	Implementation of a SWMR atomic register
	Implementation of CMB-broadcast
	An Impossibility Result
	Conclusion

