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THE GENERALIZED EULERIAN POWER SUMS
∑n

k=1 k
mzk

RAYMOND MORTINI

Abstract. We give a representation of the generalized Eulerian power sums∑n
k=1 k

mzk.

1. Introduction

Let N = {0, 1, 2, . . . } and N∗ = {1, 2, . . . }. It is a very ancient result, may be
already known by Euler, that for m ∈ N∗

(1.1) Em(z) :=
∞∑
k=1

kmzk =

∑m
n=1

[
m
n

]
zn

(1− z)m+1
,

where
[
m
n

]
are the Eulerian numbers given by

[m
n

]
:=

n−1∑
i=0

(−1)i
(
m+ 1

i

)
(n− i)m (n ≤ m).

For a proof see [5, 6] as well as [1] and [7, p.143]. Note that
[
m
n

]
∈ N, as the

binomial coefficients have this propertry. Let us point out that the Eulerian numbers
should not to be mixed up with the Euler numbers, both are quite different classes of
numbers (see [7]). Eulerian numbers also appear in combinatorics counting certain
permutations (see [3] or [7, p. 144f]). Properties of the Eulerian numbers are given
in [5, 3, 7] and are of course listed on wikipedia. One important one is the symmetry:

(1.2)
[m
n

]
=

[
m

m− n+ 1

]
.

The intention of our small note is to give for m ∈ N a similar representation of
the finite Taylor sums

En,m(z) :=
n∑

k=1

kmzk

of the functions Em. We call these functions generalized Eulerian power sums, as
they generalize of course the numbers

∑n
k=1 k

m.
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On Mathstackexchange [9] it was asked for a general formula for En,m. For in-
stance, as every undergraduate student of mathematics should know,

En,0(z) =
z − zn+1

1− z
.

As well illustrated in [9], the explicit formulas get very difficult with increasing power
m. For instance

En,1(z) =
nzn+2 − (n+ 1)zn+1 + z

(1− z)2
,

and

En,2(z) =
−n2zn+3 + (2n2 + 2n− 1)zn+2 − (n− 1)2zn+1 + z2 + z

(1− z)3
.

When dealing with this question, I was surprised that one could readily give such
a general formula, and I posted this on [9] under my abbreviated prename “Ray”.
Here I present the details, hoping that the readers of these Mathematics Newsletters
of the Ramanujan Mathematical society will enjoy seeing how to develop such a
formula.

2. The explicit value of the generalized Eulerian sums

Our proof will be based on the method given in [5], which amounts in using
the difference operator Dp. That is, let (cn)n∈Z be a double sided sequence of real
numbers and put

D0cn = cn, D1cn = cn − cn−1

Dp+1cn = D1(Dpcn), (p ∈ N∗).
It is easily seen by induction (and of course well known) that

(2.1) Dpcn =

p∑
j=0

(−1)j
(
p

j

)
cn−j.

The crux is now the following fact, which is easily proven by induction, too: if
c−n = 0 for n ∈ N∗ and lim supn→∞

n
√
|cn| ≤ 1 then

(2.2) (1− z)p
∞∑
n=0

cnz
n =

∞∑
n=0

(Dpcn)zn, |z| < 1.

We are now ready to give the value for the generalized Eulerian sums.
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Theorem 2.1. Let m ∈ N. Then, for z ∈ C \ {1},

(2.3)
n∑

k=1

kmzk =
1

(1− z)m+1

max{1,m}∑
j=0

(aj − bj,n)zj + (1− zn+1)

max{1,m}∑
j=0

bj,nz
j

 ,

where a0 := a0(m) := 0,

aj := aj(m) :=

j−1∑
i=0

(−1)i
(
m+ 1

i

)
(j − i)m =

[
m

j

]
, (j ∈ N∗),

and

bj,n := bj,n(m) :=

j∑
i=0

(−1)i
(
m+ 1

i

)
(j − i+ 1 + n)m, (j ∈ N).

For technical reasons, and in order to better compare the aj with the bj,n, we

replaced here
[
m
j

]
by aj (these are the Eulerian numbers). Note, though, that all

the coefficients aj and bj,n depend on the parameter m.

Proof. We first take |z| < 1. Then we may write En,m(z) as

n∑
k=1

kmzk =
∞∑
k=1

kmzk −
∞∑

k=n+1

kmzk

=
∞∑
k=1

kmzk − zn+1

∞∑
k=0

(k + n+ 1)mzk.

Hence, by (2.2),

(1− z)m+1

n∑
k=1

kmzk = (1− z)m+1

∞∑
k=1

kmzk − zn+1(1− z)m+1

∞∑
k=0

(k + n+ 1)mzk

= (1− z)m+1Em(z)− zn+1

∞∑
k=0

(Dm+1ck)zk,

where ck =

{
(k + n+ 1)m if k ∈ N
0 if k < 0.

By equation (2.1)

bk,n := Dm+1ck =
k∑

i=0

(−1)i
(
m+ 1

i

)
(k − i+ 1 + n)m.

Now let m ≥ 1. Since for positive indices ck is a polynomial of degree m,
Dm+1(ck) = 0 for k > m, and by using (1.1), we conclude that
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(2.4) (1− z)m+1

n∑
k=1

kmzk =
m∑
k=0

akz
k − zn+1

m∑
k=0

bk,nz
k,

from which we deduce the assertion of the theorem whenever m ≥ 1. If m = 0, then

ak(0) =
k−1∑
i=0

(−1)i
(

1

i

)
(k − i)0 =

{
1 if k = 1

0 if k ≥ 2.

and

bk,n(0) =
k∑

i=0

(−1)i
(

1

i

)
(k − i+ 1 + n)0 =

{
1 if k = 0

0 if k ≥ 1.

Hence the right hand side in (2.3) equals
z − zn+1

1− z
, which coincides with En,0(z).

Thus formula (2.3) holds for |z| < 1. The unicity theorem for holomorphic func-
tions now shows the validity of the formula for all z ∈ C, z 6= 1. �

Remark 2.2. Here we make the following observations (note that ak = ak(m) =[
m
k

]
and bk,n = bk,n(m)):

(1) By taking z = 1 in (2.4), we see that for every n ∈ N∗ and m ∈ N∗,
m∑
k=0

bk,n(m) =
m∑
k=0

ak(m) = m!,

where the last equality comes from [5, formula (3)]. An amazing fact!
(2) Recall that for n,m ∈ N∗ and

[
m
0

]
:= 0,

En,m(1) =
n∑

k=1

km =
m∑
j=0

[
m

j

](
n+ j

m+ 1

)
.

In fact, by Wopitzky’s formula (see [8], [3, p. 255] 1, and [7, p. 139]) for
m ∈ N∗ and x ∈ R,

xm =
m∑
j=0

[
m

j

](
x+ j − 1

m

)
.

Hence
n∑

k=1

km =
n∑

k=1

m∑
j=0

[
m

j

](
k + j − 1

m

)
=

m∑
j=0

[
m

j

] n∑
k=1

(
k + j − 1

m

)

=
m∑
j=0

[
m

j

](
n+ j

m+ 1

)
.

1 Attention: the symbol

〈
n
p

〉
in [3] corresponds to our

[
n

p + 1

]
.
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A similar formula for En,m(1) in terms of the Stirling numbers of the second
kind is given e.g. in [2, p. 456] respectively [7, p. 212], and the standard
Bernoulli formula is nicely presented in [7, p. 211].

By the way, a nice natural proof (similar to that in [4]) of Worpitzky’s

formula can be given as follows, by posing
[
m
j

]
= 0 if m ∈ N∗ and j > m:

∞∑
k=1

kmzk
(1.1)
=

∑m
n=1

[
m
n

]
zn

(1− z)m+1

=

(
m∑

n=0

[m
n

]
zn

) (
∞∑
n=0

(−1)n
(
−m− 1

n

)
zn

)

=

(
∞∑
n=0

[m
n

]
zn

) (
∞∑
n=0

(
m+ n

n

)
zn

)
Cauchy prod.

=
∞∑
n=0

(
n∑

j=0

[
m

j

] (
m+ n− j
n− j

))
zn.

A comparison of the coefficients and the facts that
[
m
j

]
= 0 for j > m as

well as
[
m
0

]
= 0 for m ∈ N∗ yields

nm =

min {n,m}∑
j=1

[
m

j

] (
m+ n− j

m

)
.

Now if n < m, then
(
m+n−j

m

)
= 0 for n < j ≤ m. Hence, using (1.2),

nm =
m∑
j=1

[
m

j

] (
m+ n− j

m

)
=

m∑
j=1

[
m

m− j + 1

] (
m+ n− j

m

)

=
k:=m−j+1

m∑
k=1

[m
k

] (n+ k − 1

m

)
.

Now consider the polynomials p(x) = xm and

q(x) =
m∑
k=1

[m
k

](x+ k − 1

m

)
.

Then p and q have degree at most m and coincide for x = n ∈ N∗. Hence
they are equal.
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(3) By taking z = −1 in (2.4), we obtain for n,m ∈ N∗

En,m(−1) =
n∑

k=1

km(−1)k = 2−m−1

(
m∑
k=0

(−1)k
(
ak(m) + (−1)nbk,n(m)

))

= 2−m−1

(
m∑
k=0

(−1)k
( [m

k

]
+ (−1)nbk,n(m)

))
.

A further representation of En,m(−1) is given in [7, p. 219] in terms of the Euler
polynomials. It would be interesting to give the exact relations between the Euler
polynomials and our coefficients bj,m(n).

Recall from Remark 2.2, that

m∑
k=0

[m
k

]
= m!.

The associated alternating sum can also be computed, (see [7, p. 222]):

Cm :=
m∑
k=0

(−1)k−1
[m
k

]
= 2m+1 (2m+1 − 1)

Bm+1

m+ 1
,

where Bn is the n-th Bernoulli number, defined to be f (n)(0) for the holomorphic
function

f(z) =

{ z

ez − 1
if 0 < |z| < 2π

1 if z = 0.

In particular, Cm = 0 if m is even. This last assertion also follows from the symmetry
of the Eulerian numbers

[
m
k

]
. Usually, the numbers Tn := |C2n−1| are called the

tangent numbers, because

∞∑
n=1

Tn
x2n−1

(2n− 1)!
= tanx, (|x| < π).

We therefore call Cm the signed tangent number. It is easy to see that Cm ∈ N (since
the Eulerian coefficients belong to N).

Here are the first Eulerian, Bernoulli and tangent numbers:
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�
[
m
1

] [
m
2

] [
m
3

] [
m
4

] [
m
5

] [
m
6

] [
m
7

]
m=1 1
m=2 1 1
m=3 1 4 1
m=4 1 11 11 1
m=5 1 26 66 26 1
m=6 1 57 302 302 57 1
m=7 1 120 1191 2416 1191 120 1

...
. . .

B0 = 1 B1 = −1
2

B2 = 1
6

B4 = − 1
30

B6 = 1
42

B8 = − 1
30

B10 = 5
66

B12 = − 691
2730

B14 = 7
6

B16 = −3617
510

B18 = 43867
798

B20 = −174 611
330

B22 = 854 513
138

B24 = −236 364 091
2730

· · ·
Note that B2n+1 = 0 for all n ∈ N∗. And finally, we conclude this remark by

giving the first signed tangent numbers:

C1 = 1 C3 = −2 C5 = 16 C7 = −272 C9 = 7 936 C11 = −353 792

C13 = 22 368 256 C15 = −1 903 757 312 · · ·

Remark 2.3. Instead of the finite differences calculus we applied here to obtain our
formula 2.3, one may also use the differential operator (z d

dz
)m to obtain a formula

for
∑n

k=1 k
mzk. This is based though on an inductive argument, necessitating an a

priori knowledge of the formula. Its proof is lengthier. So I find our approach here
more natural. This differential calculus approach to Em(z) =

∑∞
k=1 k

mzk was done
for instance in [6].
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