

computer-assisted historical language comparison: an African linguistics perspective

Promise Dodzi Kpoglu 6th June 2024, UCAD, Dakar

promise-dodzi.kpoglu@cnrs.fr/promisedodzi@gmail.com

The research is being funded by a grant from the European Research Council (ERC) under the European Union's Horizon Europe Framework Programme (HORIZON) grant number 101045195.

Outline

• Introduction

- General introduction
- Objectives
- Significance
- From data to cognate sets in automatic approaches
- Data in this study:
 - The raw data
 - Data cleaning steps
- Cognate detection
 - \circ The input
 - The cognate set
- Conclusion

Introduction

- Confronted with a number of languages that show variant degrees of similarity and differences, one of the first tasks of the linguist/anthropologist is to understand the relationships between these languages.
- Historically, two main approaches have been employed:
 - Swadesh-like approaches (Lexicostatistics)
 - Greenberg-like approaches(Mass comparison)
- Whatever the approach, some discrete (non mutually exclusive) steps are often involved in such historical linguistics work.

Introduction

- Discrete (mutually non-exclusive) steps can involve:
 - Cognate identification: words that are related, especially in form see Jäger 2019.
 - Establishment of sound correspondences –see List et al 2022, Kim et al 2023.
 - Proto-form reconstruction- See Meloni et al 2021 for instance.
 - Time-depth estimation See Gray & Atkinson 2003, 2006.

0	Phylogenetic	relationships –	-See Rama et a	ee Rama et al 2018.					
	Language	Family	Time-depth	Proto-form	Cognates				
	French	Romance	~1000	cane [kane]	chien [ʃiɛ̃]				
	Italian	Romance	~1000	cane [kane]	cane [kane]				
	Spanish	Romance	~1000	cane [kane]	can [kan]				

Objectives

- I concentrate on cognate-detection and show how automated methods can be employed in this task.
- The objectives of this presentation are thus two-fold:
 - Show how raw data is processed for automated approaches to comparative historical linguistics work.
 - Demonstrate the methods involved in cognate detection.
 - Present preliminary results from these methods used on data available within the BANG project.

Significance

- The results in this presentation are pertinent for two reasons:
 - Data processing techniques presented here can be relevant for other African languages.
 - Methods used in this study are transferable to workflows defined for different projects that involve linguistic data.
 - Perfected methods are going to be used with data in which Bangime, the object of study of the current project, will be integrated.

Computational methods in cognate detection

- Computationally, it is generally understood that cognate detection involves two major steps (Rama et al 2018: 4):
 - Word similarity calculation: how close, often phonetically, are groups of words?
 - Cognate set partitioning : proposing sets and putting proposed cognates in these sets.
- A third stage induced by this two-step approach is phonetic alignment cognate sets are aligned (List et al 2022:90).
 - Align the proposed cognate sets for further analysis.

Computational methods in cognate detection

- Alignment analyses have the advantage of :
 - helping to model differences between sequences.
 - allowing us to compare sequences i.e. cognates.

DOCULECT	LECT CONCEPT						ALIGNMENTS						
Ampari	(e.g. bird) fly	k	ì	r		- Ì-		У	é		156 🗆		
BankanTey	(e.g. bird) fly	k	í	S		í		У	é		156 🗆		
BenTey	(e.g. bird) fly	k	í	s		í		У	é		156 🗆		
Nanga	(e.g. bird) fly	k	í	s		í		У	é		156 🗆		
PergeTegu	(e.g. bird) fly	k	í	r		í		У	é		156 🗆		
TommoSoTongoTongo	(e.g. bird) fly	k	íí	1		í		У	é		156 🗆		
YandaDom	(e.g. bird) fly	k	í			í.		У	é		156 🗆		

DOCULECT	CONCEPT	ALI	LIGNMENTS						EDIT			
Ampari	(e.g. bird) fly	k	ì	-	r		ì		У	é		156 🗆
BankanTey	(e.g. bird) fly	k	í		S		í		У	é		156 🗆
BenTey	(e.g. bird) fly	k	í		S		í		У	é		156 🗆
Nanga	(e.g. bird) fly	k	í		S		í		У	é		156 🗆 😑
PergeTegu	(e.g. bird) fly	k	í		r		í		У	é		156 🗆
TommoSoTongoTongo	(e.g. bird) fly	k	í	Í			í		У	é		156 🗆
YandaDom	(e.g. bird) fly	k	í	-			í		У	é		156 🗆

Data in this study: the raw data

- Data is from the Dogon and Bangime Linguistics project.
- Data similar to data curated by linguists working on the field.

English	français	core	Toro Tegu (To	Ben Tey (Ben	Bankan-Tey (Nanga (Anda,	Donno So	Jamsay (Doue
domestic anima	animal domestique (surt	1	àrùzàká ~ àrzā	àrsĕ:-m\\àrsĕ:	jáwdì-m∖\jáwo	gàsègé	bèlú	àsègé, gàsègé
(sb's) livestock	bétail (l'ensemble des an	3		jáwdù	jáwdi	jáwdi		jáwdi, gàsègè
(young herder's	animal favori (d'un jeun	3	gáfèl	gábêl	gáfêl	gábéri		gápê1
camel	chameau	1	nó	ò:ɲù₩²ô-m	ວໍ:ɲê ⁿ -m\\ວໍ:ɲê ⁿ	ວ້gວ້-ກວ້ກວິ	ခဲ့ရာခဲ-yခဲ့ရာဝ	ὸγὸ-μùŋó
cat	chat	1	niw ⁿ á	ni-niwªĕ-m\\n	nùmă-m\\nùm	dòndíyê	gámmà	nì-nìwªé
cow, bull (any b	bovin (vache ou taureau)	1	nàŋá	nă:-m\\nă:	nă:-m\\nă:	nàŋá	nàŋá	nàŋá
calf	veau	2	nàŋà-[ìrª-í:]	nà: yǐ-m	nà:-yî-m\\nà:-	nàŋà yî:	nàŋà-î:	nàŋ-î:"
cow (female)	vache	2	nàŋà-yá	nà: yǎ-m		nàŋà yă:		nàŋà-ná:
cow that has ca	vache qui a mis bas au n	3	nàŋà-yà-ná:	nà: ná:-m	nà:-yǎ-m\\nà:-	nàŋà đé:		
cow (with a cal	vache (avec un veau)	3		nà: yàyô-m		nàŋà yî: dè:		nàŋà-ná:
heifer, young co	génisse, jeune vache (qu	2	nàŋà-yà gìrĕy	nà: gùrò-m	wi:gè-m\\wi:g	nàŋà gùrá, nài	nàŋà-gùló	nàŋà gùró
bull	taureau	2	nàŋà-àrá	nà: ár≞à-m		nàŋà árªâ	nàŋà àná	nàŋà àr¤á
bull (castrated)	taureau (castré)	2	nàŋà-àrà pólù	nà: pòrú-m	nà:-ár¤à-m\\nà	nàŋà pòrí	nàŋà pòr-ú	nàŋà pòrú
bull (uncastrate	taureau (non castré)	2	nàŋà-àrà bòbè	nà: jàŋgú-m	nà:-jǐ-m\\nà:-j	nàŋà jàŋí	nàŋà kálàndù	nàŋà jăŋ
bull (uncastrate	taureau (non castré, jeun	3		nà: já: kírìm		nàŋà kóróbóri		nàŋà kóróbó:r
dog	chien	1	nènú	ìnjž-m\\ìnjź	ǹjèrû-m∖\ǹjèrí	nèr ^a î	ìdú	կյմ

Data in this study: data cleaning steps

- The steps taken to get the data into computer digestable format are of three main types:
 - All manual process
 - Semi-manual process
- Manual process involved:
 - Removal of non alpha-numeric symbols (',', ')', '/')
 - 'Columnization' and 'Rowing':
 - Columns: ID, language, concepts, singular, plural
 - Rows: 1 ID, 1 language, 1 concept, 1 singular form, 1 plural form
 - Consensus forms, for especially verbs

Data in this study:data cleaning steps

• Data after manual process:

ID	VARID	DOCULECT	GLOSS	SINGULAR	PLURAL
		20002201	02000	CITCOLIAT	1 EOTO LE
1	0	BankanTey	domestic animal (esp. livestock	jáwdì-m	jáwdì
1	1	BankanTey	domestic animal (esp. livestock	dá:bà-m	dá:bà
2	0	BenTey	domestic animal (esp. livestock	àrsě:-m	àrsě:
3	0	Bunoge	domestic animal (esp. livestock	kómbò	kombo=gè
4	0	DogulDomBendiely	domestic animal (esp. livestock	bélè-g	bɛlɛ-g-yà
4	1	DogulDomBendiely	domestic animal (esp. livestock	bélè-gù	bɛlɛ-gi-yà
5	0	DonnoSo	domestic animal (esp. livestock	bàlú	bèlú
5	1	DonnoSo	domestic animal (esp. livestock	bèlú	bèlú=mbè
6	0	JamsayGourou	domestic animal (esp. livestock	gàr sègé	gàr sègé
7	0	JamsayDouentza	domestic animal (esp. livestock	à sègé	à sègé=bé
7	1	JamsayDouentza	domestic animal (esp. livestock	gà sègé	gà sègé=bé
8	0	JamsayMondoro	domestic animal (esp. livestock	à sège	à sègé
9	0	Mombo	domestic animal (esp. livestock	dèbù bślí	Ū.
9	1	Mombo	domestic animal (esp. livestock	bélí	
10	0	BonduSoNajamba	domestic animal (esp. livestock	dúmé-ngó	dúmé:
10	1	BonduSoKindige	domestic animal (esp. livestock	dùmó:-n	dúmè:
11	0	Nanga	domestic animal (esp. livestock	gà sègé	gà sègé
12	0	Penange	domestic animal (esp. livestock	dá:bá	da:ba=gé
13	0	PergeTegu	domestic animal (esp. livestock	à sègé	
14	0	TebulUre	domestic animal (esp. livestock	à sègé	à sègè-mbó
14	1	TebulUre	domestic animal (esp. livestock	gà sègé	gà sègè-mbó
15	0	TiranigeBoui	domestic animal (esp. livestock	bèl	bel=aè
15	1	TiranigeNingo	domestic animal (esp. livestock	bèlì	beli=ge

Data in this study: data cleaning stens

IPA

Data in this study: data cleaning steps

• Data after semi-manual process:

1	DOCULECT	GLOSS	IPA
2	BankanTey	domestic animal	dʒáw+dì+m
3	BankanTey	domestic animal	dá.ábà+m
4	BenTey	domestic animal	àrsè.é+m
5	Bunoge	domestic animal	kó+m.bò
6	DogulDomBendi	domestic animal	bélè+g
7	DogulDomBendi	domestic animal	bélè+gù
8	DonnoSo	domestic animal	bàlú
9	DonnoSo	domestic animal	bàlú
10	JamsayGourou	domestic animal	gàr+sè+gé
11	JamsayDouentz	domestic animal	àsè+gé
12	JamsayDouentz	domestic animal	gàsè+gé
13	JamsayMondoro	domestic animal	àsè+gɛ
14	Mombo	domestic animal	dèbù+bślí
15	Mombo	domestic animal	bálí
16	BonduSoNajamt	domestic animal	dúmé+ŋ.gó
17	BonduSoKindig∈	domestic animal	dùmó.ó+n
18	Nanga	domestic animal	gàsè+gé
19	Penange	domestic animal	dá.ábá
20	PergeTegu	domestic animal	àsè+gé

Cognate detection: the input

- For cognate detection to be efficient, data must have not just enough words, but also enough comparable word pairs; the higher the better.
- List(2017) suggests a minimum of 100 comparable words i.e. 100 concept pairs.

288 concept pairs

Cognate detection: the input
Cleaned data had 20 languages with a minimum of 53% concept coverage i.e. 288 concepts.

Cognate detection: the input

• The languages that the cleaned dataset contains are shown below.

language	items	coverage
BankanTey	787	0.83
BenTey	861	0.91
BonduSoNajamba	827	0.87
Bunoge	575	0.61
DogulDomBendiely	501	0.53
DogulDomKundialang	542	0.57
DonnoSo	719	0.76
JamsayDouentza	869	0.92
JamsayGourou	420	0.44
Mombo	805	0.85
Nanga	863	0.91
Penange	596	0.63
PergeTegu	799	0.84
TebulUre	584	0.62
Tiranige	566	0.60
TogoKan	814	0.86
TommoSoTongoTongo	908	0.96
ToroTegu	822	0.87
YandaDom	786	0.83
YornoSo	849	0.90

- The new data are then fed into the Lexstat model of Lingpy a model that has been shown to be impressively effective for automated comparative historical linguistics (List et al 2023).
- The Lingpy model outputs a .tsv file that contains the determined cognate sets.
- COGID in the .tsv file is indicative of cognacy.

ID	DOCULECT	CONCE	EPT IPA	TOKENS	SONARS	PROSTRI	NGS	CLASSES	LANGID	NUMBERS	WEIGHTS	DUPLICA	TES	COGID		
#																
17132	BenTey (1P1	subject	pronominal))	j	j	6	Α	J	2	2.J.C	2.0	0	1		
17133	Bunoge (1P1	subject	pronominal))	ŋ	ŋ	4	Α	N	4	4.N.C	2.0	0	3		
17134	DogulDomBendi	.ely	(1Pl sub	oject pro	nominal)	ó	ó	7	Х	U	5	5.U.V	1.5	0	4
17135	DonnoSo (1P1	subject	pronominal))	ŋ	ŋ	4	Α	N	7	7.N.C	2.0	0	3		
17136	DonnoSo (1P1	subject	pronominal))	j.ŋ	jŋ	64	AN	JN	7	7.J.C 7	.N.c	2.0 0.8	0	1	
17137	JamsayDouentz	a (1P1	subject pro	onominal)		j	j	6	Α	J	8	8.J.C	2.0	0	1	
17138	BonduSoNajamb	a (1P1	subject pro	onominal)		j	j	6	Α	J	3	3.J.C	2.0	0	1	
17139	Nanga (1Pl	subject	pronominal))	j	j	6	Α	J	11	11.J.C	2.0	0	1		
17140	Penange (1P1	subject	pronominal))	ŋ	ŋ	4	Α	N	12	12.N.C	2.0	0	3		
17141	PergeTegu	(1P1	subject pro	onominal)		j	j	6	Α	J	13	13.J.C	2.0	0	1	
17142	TebulUre	(1P1	subject pro	onominal)		j.~	j~	6 4	AN	J9	14	14.J.C	14.9.c	2.0 0.8	0	1
17143	Tiranige	(1P1	subject pro	onominal)		ní	n í	47	AX	NI	15	15.N.C	15.I.V	2.0 1.5	0	11
17144	Tiranige	(1P1	subject pro	onominal)		nì#v	nì#v	4793	AX_A	NI_B	15	15.N.C	15.I.V 19	5 15.	B.C	2.0
17145	TogoKan (1P1	subject	pronominal))	έmέ	έmέ	747	XBZ	EME	16	16.E.V	16.M.C 1	6.E.V	1.5 1.75	6.8	0_
17146	TommoSoTongoT	ongo	(1Pl sub	oject pro	nominal)	ú	ú	7	Х	Υ	17	17.Y.V	1.5	0	13

- Alignments can be obtained using the Alignment class in Lingpy:
- Alignments can then be visualized using Edictor (List et al 2017).

ID	DOCULECT	CONCEPT	IPA	TOKENS	COGID
8954	BankanTey	(man's) sister	pòjâ+m	pòjâ+m	2822
8955	BenTey	(man's) sister	pòjà.á	pòjà á	[2822]
8956	DogulDomBendiely	(man's) sister	sáà	s á à	284
8957	DogulDomKundialang	(man's) sister	sà.áŋ	sàáŋ	284
8958	DonnoSo	(man's) sister	sà.à	s àà	284
8959	DonnoSo	(man's) sister	jà.àsà.à	jàà sàà	2873
8960	JamsavDouentza	(man's) sister	ièsà.á	i È S à Á	2873
8962	TebulUre	(man's) sister	sá	s á	284
8963	Tiranige	(man's) sister	bà.à	b àà	289
8964	TommoSoTongoTongo	(man's) sister	sáá	s áá	284

• Another option is to obtain the distance matrix calculated from the cognate detection algorithm – the lower, the closer.

• An even more exciting option is to use the distance matrix to obtain a phylogenetic tree (either via clustering algorithms, or the more specialized methods like UPGMA)

Conclusion

- This study has sought to show how raw data, from an African linguistics fieldwork, can be processed for automated computation in historical linguistics.
 - An even more exciting approach involves going through a CLDF workflow
- Three process have been noted as critical:
 - Data formatting: 'columnization' and 'rowing'
 - Data cleaning: deletions and concatenations
 - Data preparation: segmentation and stabilization
- Once data is processed, various algorithms exist to conduct highly specialized modeling that can give critical insights.
- More importantly is the fact that, these methods are applicable to various linguistic landscapes, and is especially useful for the African case, where debates still rage on about some proposed phylogenetic relationships.
- They thus can be used to either confirm these relationships, or call them into question.

Data in this study: the raw data

- Data is from the Dogon and Bangime Linguistics project.
- Data similar to data curated by linguists working on the field.

English	français	core	Toro Tegu (To	Ben Tey (Ben	Bankan-Tey (Nanga (Anda,	Donno So	Jamsay (Doue
domestic anima	animal domestique (surt	1	àrùzàká ~ àrzi	àrsĕ:-m\\àrsĕ:	jáwdì-m∖\jáwo	gàsègé	bèlú	àsègé, gàsègé
(sb's) livestock	bétail (l'ensemble des an	3		jáwdù	jáwdi	jáwdì		jáwdi, gàsègè
(young herder's	animal favori (d'un jeun	3	gáfèl	gábêl	gáfêl	gábéri		gápê1
camel	chameau	1	nó	ວໍ:nùw ⁿ ວໍ-m	ồ:µê ⁿ -m\\ồ:µê ⁿ	ວ້gວ້-ກວ້ຖວິ	ວໍ່ຫຼວ່-yoໍ່ຫຼຸດ	ວ້γວ່-ກຸນກູດ໌
cat	chat	1	niw ⁿ á	ni-niwªĕ-m\\n	nùmă-m\\nùm	dòndíyê	gámmà	nì-nìw ⁿ é
cow, bull (any b	bovin (vache ou taureau)	1	nàŋá	nă:-m\\nă:	nă:-m\\nă:	nàŋá	nàŋá	nàŋá
calf	veau	2	nàŋà-[ìr¤-í:]	nà: yǐ-m	nà:-yî-m\\nà:-	nàŋà yî:	nàŋà-î:	nàŋ-î: ⁿ
cow (female)	vache	2	nàŋà-yá	nà: yǎ-m		nàŋà yă:		nàŋà-ná:
cow that has ca	vache qui a mis bas au n	3	nàŋà-yà-ná:	nà: ná:-m	nà:-yǎ-m\\nà:-	nàŋà đé:		
cow (with a cal	vache (avec un veau)	3		nà: yàyô-m		nàŋà yî: dè:		nàŋà-ná:
heifer, young co	génisse, jeune vache (qu	2	nàŋà-yà gìrĕy	nà: gùrò-m	wi:gè-m\\wi:g	nàŋà gùrá, nài	nàŋà-gùló	nàŋà gùró
bull	taureau	2	nàŋà-àrá	nà: ár¤à-m		nàŋà árªâ	nàŋà àná	nàŋà àr¤á
bull (castrated)	taureau (castré)	2	nàŋà-àrà pólù	nà: pòrú-m	nà:-árªà-m\\nà	nàŋà pòrí	nàŋà pòr-ú	nàŋà pòrú
bull (uncastrate	taureau (non castré)	2	nàŋà-àrà bòbè	nà: jàŋgú-m	nà:-jǐ-m\\nà:-j	nàŋà jàŋí	nàŋà kálàndù	nàŋà jăŋ
bull (uncastrate	taureau (non castré, jeun	3		nà: já: kírìm		nàŋà kóróbóri	i.	nàŋà kóróbó:r
dog	chien	1	nènú	ìnjě-m\\ìnjé	ǹjèrû-m∖\ǹjèrí	nèr ⁿ î	ìdú	կմ

Thank you

All code used for this presentation is publicly available on Github at: https://github.com/PromiseDodzi/UCAD-presentation

Bibliography

Atkinson, Q. D., & Gray, R. D. (2006). How old is the Indo-European language family? Illumination or more moths to the flame. In *Phylogenetic methods and the prehistory of languages* (pp. 91-109).

Blum, F., & List, J.-M. (2023). Trimming phonetic alignments improves the inference of sound correspondence patterns from multilingual wordlists. In *Proceedings of the 5th Workshop on Computational Typology and Multilingual NLP* (pp. 52-64). Association for Computational Linguistics.

Creissels, D. (2019). Morphology in Niger-Congo languages. In Oxford Research Encyclopedia of Linguistics.

Dimmendaal, G. J. (2008). Language ecology and linguistic diversity on the African continent. Language and Linguistics Compass, 2(5), 840-858.

Forkel, R., Moran, S., List, J. M., Greenhill, S. J., Ashby, L. C., Gorman, K., & Kaiping, G. (2019). Segments: Unicode standard tokenization routines and orthography profile segmentation [Software Library, Version 2.1.3].

Forkel, R., List, J. M., Greenhill, S. J., Rzymski, C., Bank, S., Cysouw, M., ... & Gray, R. D. (2018). Cross-Linguistic Data Formats, advancing data sharing and re-use in comparative linguistics. *Scientific data*, 5(1), 1-10.

Gray, R. D., & Atkinson, Q. D. (2003). Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature, 426(6965), 435-439.

Hantgan-Sonko, A. (2019). Linguistic support for an early Dogon diffusion. Poster presented at the Peopling History of Africa conference, Geneva, Switzerland.

Hantgan-Sonko, A., & List, J. M. (2022). Bangime: Secret language, language isolate, or language island? A computer-assisted case study. *Papers in Historical Phonology*, 7, 1-43. Heath, J. (2017). A grammar of Bunoge (Dogon, Mali).

Heath, J. (2017). A grammar of Tebul Ure (Dogon, Mali).

Heath, J. (2023). A grammar of Tebul Ure (Dogon, Mali).

Hochstetler, J. L., Durieux, J. A., & Durieux-Boon, E. I. (2004). Sociolinguistic survey of the Dogon language area. SIL International.

Kim, Y. M., Chang, K., Cui, C., & Mortensen, D. (2023). Transformed protoform reconstruction. arXiv preprint arXiv:2307.01896.

List, J. M. (2012). Multiple sequence alignment in historical linguistics. In Proceedings of ConSOLE (Vol. 19, pp. 241-260).

List, J. M. (2017). Historical language comparison with LingPy and EDICTOR. https://doi.org/10.5281/zenodo.1042205.

List, J. M., Forkel, R., & Hill, N. W. (2022). A new framework for fast automated phonological reconstruction using trimmed alignments and sound correspondence patterns. *arXiv* preprint arXiv:2204.04619.

List, J. M., Walworth, M., Greenhill, S. J., Tresoldi, T., & Forkel, R. (2018). Sequence comparison in computational historical linguistics. *Journal of Language Evolution*, 3(2), 130-144.

List, J.-M. (2012a). LexStat: Automatic detection of cognates in multilingual wordlists. In *Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resources* (pp. 117-125). Stroudsburg.

List, J.-M. (2012b). SCA: Phonetic alignment based on sound classes. In M. Slavkovik & D. Lassiter (Eds.), New directions in logic, language, and computation (pp. 32-51). Berlin and Heidelberg.

List, J.-M., Greenhill, S., & Forkel, R. (2023). LingPy Documentation Release 2.6.

List, J.-M., Walworth, M., Greenhill, S. J., & Tresoldi, T. (2017). The potential of automatic word comparison for historical linguistics. PLOS ONE, 12(1), 1-18.

Moran, S., & Prokić, J. (2013). Investigating the relatedness of the endangered Dogon languages. Literary and Linguistic Computing, 28(4), 676-691.

Moran, S., Forkel, R., & Heath, J. (2016). Dogon and Bangime linguistics. Jena: Max Planck Institute for the Science of Human History.

Rama, T., List, J. M., Wahle, J., & Jäger, G. (2018). Are automatic methods for cognate detection good enough for phylogenetic reconstruction in historical linguistics? *arXiv* preprint arXiv:1804.05416.

