
HAL Id: hal-04617777
https://hal.science/hal-04617777v1

Submitted on 20 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Database Repairing with Soft Functional Dependencies
Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, Muhammad

Tibi

To cite this version:
Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, Muhammad Tibi. Database Repairing
with Soft Functional Dependencies. ACM Transactions on Database Systems, 2024, 49 (2), pp.1-34/8.
�10.1145/3651156�. �hal-04617777�

https://hal.science/hal-04617777v1
https://hal.archives-ouvertes.fr

Database Repairing with Soft Functional Dependencies

NOFAR CARMELI
∗
, Inria, LIRMM, Univ Montpellier, CNRS, France

MARTIN GROHE, RWTH Aachen University, Germany

BENNY KIMELFELD, Technion – Israel Institute of Technology, Israel

ESTER LIVSHITS
∗
, University of Edinburgh, UK

MUHAMMAD TIBI, Technion – Israel Institute of Technology, Israel

A common interpretation of soft constraints penalizes the database for every violation of every constraint,

where the penalty is the cost (weight) of the constraint. A computational challenge is that of finding an optimal

subset: a collection of database tuples that minimizes the total penalty when each tuple has a cost of being

excluded. When the constraints are strict (i.e., have an infinite cost), this subset is a “cardinality repair” of

an inconsistent database; in soft interpretations, this subset corresponds to a “most probable world” of a

probabilistic database, a “most likely intention” of a probabilistic unclean database, and so on. Within the class

of functional dependencies, the complexity of finding a cardinality repair is thoroughly understood. Yet, very

little is known about the complexity of finding an optimal subset for the more general soft semantics. The

work described in this manuscript makes significant progress in that direction. In addition to general insights

about the hardness and approximability of the problem, we present algorithms for two special cases (and some

generalizations thereof): a single functional dependency, and a bipartite matching. The latter is the problem of

finding an optimal “almost matching” of a bipartite graph where a penalty is paid for every lost edge and every

violation of monogamy. For these special cases, we also investigate the complexity of additional computational

tasks that arise when the soft constraints are used as a means to represent a probabilistic database via a factor

graph, as in the case of a probabilistic unclean database.

CCS Concepts: • Information systems → Data cleaning; • Theory of computation → Incomplete, incon-

sistent, and uncertain databases.

Additional Key Words and Phrases: Database inconsistency, database repairs, integrity constraints, soft

constraints, functional dependencies

1 INTRODUCTION
Various challenges in data management are based on soft variants of database constraints (also

referred to as weak or approximate constraints). In constraint discovery and mining, for instance,

the goal is to find constraints, such as Functional Dependencies (FDs) [9, 19, 22, 30] and beyond [8,

23, 29], that generally hold in the database but not necessarily in a perfect manner. There, the reason

for the violations might be rare events (e.g., agreement on the zip code but not the state) or noise

(e.g., mistyping). Soft constraints also arise when reasoning about uncertain data [16, 20, 33, 34]—

the database is viewed as a probabilistic space over possible worlds, and the violation of a weak

constraint in a possible world is viewed as evidence that affects the world’s probability.

Our investigation concerns the latter application of soft constraints. To be more precise, the

semantics is that of a parametric factor graph: the probability of a possible world is the product

of factors where every violation of the constraint contributes one factor; in turn, this factor is

a weight that is assigned upfront to the constraint. This formalism has been adopted in various

∗
Part of this work was done while the author was at Technion – Israel Institute of Technology.

Authors’ addresses: Nofar Carmeli, nofar.carmeli@inria.fr, Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France;

Martin Grohe, grohe@informatik.rwth-aachen.de, RWTHAachen University, Aachen, Germany; Benny Kimelfeld, bennyk@

cs.technion.ac.il, Technion – Israel Institute of Technology, Haifa, Israel; Ester Livshits, ester.livshits@ed.ac.uk, University

of Edinburgh, Edinburgh, UK; Muhammad Tibi, m7mdtb@cs.technion.ac.il, Technion – Israel Institute of Technology, Haifa,

Israel.

, Vol. 1, No. 1, Article . Publication date: June 2024.

2 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

database frameworks that involve uncertainty and soft interpretation of constraints [2, 13, 31, 33–

35], and is highly inspired by successful concepts such as the Markov Logic Network (MLN) [32].
1

In these applications, the weights are typically learned from examples. Once we have the weights,

the computational problems are the conventional in probabilistic modeling: marginal inference

(compute the probability of a query answer) and maximum likelihood (find the most probable

world)—the problem that we focus on here.

More specifically, we consider the case where constraints are FDs. By taking the logarithms of

the factors, the problem we study can be formally defined as follows. We are given a database 𝐷

and a set Δ of FDs, where every tuple and every FD has a weight (which is a nonnegative number).

We wish to obtain a cleaner subset 𝐸 of 𝐷 by deleting tuples. The cost of the subset 𝐸 includes a

penalty for every deleted tuple, and a penalty for every violation of (i.e., pair of tuples that jointly

violate) an FD; the penalties are the weights of the tuple and the FD, respectively. The goal is to find

a subset 𝐸 with a minimal cost. In what follows, we refer to such 𝐸 as an optimal subset and to the

optimization problem of finding an optimal subset as soft repairing. The optimal subset corresponds

to the “most likely intention” in the Probabilistic Unclean Database (PUD) framework of De Sa,

Ilyas, Kimelfeld, Ré and Rekatsinas [33] in a restricted case that is studied in their work; the PUD

model provides the theoretical formulation of the HoloClean [31] and HoloDetect [17] systems.

The optimal subset is also referred to as the “most probable world” in the probabilistic database

model of Sen, Deshpande and Getoor [34]. In the special case where the FDs are hard constraints

(i.e., their weight is infinite or just too large to pay), an optimal subset is simply what is known as a

“cardinality repair” [26] or, equivalently [25], a “most probable database” [16].

Even though the problem has arisen and been attacked in several systems and frameworks,

including successful systems such as HoloClean, the assumption has always been that this problem

is intractable and, hence, heuristic solutions were deployed. The computational challenge of soft

repairing is that there are exponentially many candidate subsets. And indeed, the problem can be

computationally intractable for certain combinations of FDs. An easy argument shows that the

problem is at least as computationally hard as in the case of hard constraints (e.g., as shown by

De Sa et al. [33]), and there are cases where the latter is intractable [25]. Nevertheless, there are

also many cases where the problem is tractable for hard constraints (and, as we explain below, past

results show precisely how to classify a set of FDs into the tractable or intractable side). In these

cases, is the soft version more difficult than the hard counterpart (i.e., finding a cardinality repair)?

Not necessarily. De Sa et al. [33] showed otherwise for the case of a key constraint, where they

give a polynomial-time algorithm. This is a restricted case, and they left the more general case

(that we study here) open. Indeed, we found it challenging to generalize their tractability beyond a

single key constraint. Nevertheless, we have made a substantial progress towards a full answer to

the question, and in this article we describe our findings.

Formally, we investigate the data complexity of the problem, where the database schema and

the FD set are fixed, and the input consists of the database 𝐷 and all involved weights. Moreover,

we assume that 𝐷 consists of a single relation; this is done without loss of generality, since the

problem boils down to soft repairing each relation independently (since an FD does not involve

more than one relation). As aforesaid, the complexity of the problem is very well understood in the

case of hard constraints (cardinality repairs). Gribkoff, Van den Broeck and Suciu [16] established

complexity results for the case of unary FDs (having a single attribute on the left-hand side),

and Livshits, Kimelfeld and Roy [25] completed the picture to a full (effective) dichotomy over

all possible sets of FDs. For example, the problem is solvable in polynomial time for the FD sets

1
More precisely, an MLN can be viewed as a database with weak constraints, where the set of facts includes all possible

tuples over the (finite) domains of the attributes.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 3

{𝐴 → 𝐵}, {𝐴 → 𝐵, 𝐵 → 𝐴} and {𝐴 → 𝐵, 𝐵 → 𝐴, 𝐵 → 𝐶}, but is NP-hard for {𝐴 → 𝐵, 𝐵 → 𝐶}.
Livshits et al. [25] also gave approximation upper bounds for the problem, and these results were

later strengthened by Miao et al. [28] who gave inapproximability results and tighter upper bounds,

in addition to empirical evidence of effectiveness via a practical implementation.

When FDs are soft (and violations are allowed), the problem seems to be fundamentally more

challenging, both to solve and to reason about. As said earlier, for every Δ where it is intractable to

find a cardinality repair, the soft version is also intractable. But the other direction is false (under

conventional complexity assumptions). For example, soft repairing is hard for Δ = {𝐴 → 𝐵, 𝐵 →
𝐴, 𝐵 → 𝐶}, for the following reason. We can set the weights of 𝐴 → 𝐵 and 𝐵 → 𝐶 to be very high,

making each of them a hard constraint in effect, and the weight of 𝐵 → 𝐴 very low, making it

ignorable in effect. Hence, an optimal subset is a cardinality repair for {𝐴 → 𝐵, 𝐵 → 𝐶} that, as
said above, is hard to compute. So, which sets of FDs have a tractable soft repairing? The only

polynomial-time algorithm we are aware of is the aforementioned algorithm of De Sa et al. [33]

for the special case of a single key constraint, that is, Δ = {𝑋 → 𝑌 } where 𝑋𝑌 contain all of the

schema attributes.

We first generalize the tractability of De Sa et al. [33] from a key constraint to an arbitrary FD.

Like theirs, our algorithm employs dynamic programming, but in a more involved fashion. This is

because their algorithm is based on the fact that in a key constraint𝑋 → 𝑌 , any two tuples that agree

on 𝑋 are necessarily conflicting. We also show that our algorithm can be generalized to additional

sets of FDs. For example, it turns out that the FD set {name → address , name address → email}
is tractable as well. (Note that the address attribute on the left-hand side of the second FD is not

redundant, as in the ordinary semantics, since the FDs are treated as soft constraints.) In Section 4

we phrase the more general condition that this FD set satisfies.

While trying, we could not find any way of generalizing the dynamic-programming algorithm

beyond the above class. At that point of our research, we were conjecturing that this class captures

all tractable cases. Yet, to our surprise, we were proven wrong. We investigated the case of a

matching constraint that required a special treatment in the case of hard constraints [25]. These

are FD sets Δ = {𝑋 → 𝑌,𝑋 ′ → 𝑌 ′} over a schema with the attributes 𝐴1, . . . ,𝐴𝑘 where 𝑋 ∪ 𝑌 =

𝑋 ′ ∪ 𝑌 ′ = 𝑋 ∪ 𝑋 ′ = {𝐴1, . . . , 𝐴𝑘 } and there are no attributes other than 𝐴1, . . . , 𝐴𝑘 . The simplest

example is {𝐴 → 𝐵, 𝐵 → 𝐴} over the binary schema (𝐴, 𝐵) that represents a bipartite graph, and the
problem is that of finding the best “almost matching” of a bipartite graph where a penalty is paid for

every lost edge and every violation of monogamy. A more involved example is {𝐴𝐵 → 𝐶,𝐴𝐶 → 𝐵}
over the schema (𝐴, 𝐵,𝐶). For such constraints, we were able to employ a tool that played a key

role in our polynomial-time algorithm: reduction to the Minimum Cost Maximum Flow (MCMF)

problem [14]. In this version of the flow problem, each edge has a capacity and a cost, and the goal

is to find, among the maximum flows, the one with the least total cost.

The general conclusion is that we identified two main techniques that can be used for solving the

problem of repairing with soft constraints in an exact manner: the first is a nontrivial generalization

of the dynamic programming that was used previously for a single key [33], and the second is a

connection to a flow problem with costs (that, as far as we are aware, has not been applied yet in

the context of data repairing). Whether our algorithms cover all of tractable cases remains an open

problem for future investigation. (In the Conclusions we discuss the simplest FD sets where the

question is left unsolved.) We do show, however, that there is a polynomial-time approximation

algorithm with an approximation factor 3, that is, an algorithm that returns a subset where the

penalty is at most three times the optimum.

Next, we investigate the soft constraints beyond the challenge of optimal repairing. Recall

that soft repairing is the problem of finding the most probable world of a probabilistic database

represented as a parametric factor graph, where the soft constraints are used as the templates for

, Vol. 1, No. 1, Article . Publication date: June 2024.

4 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

the factors. Hence, we can view the soft constraints as representing a probabilistic database that

is driven by the randomness of repairing. With that in mind, other fundamental tasks arise. One

example is that of marginal inference, where the goal is to compute the probability of an event such

as the inclusion of a tuple (or at least one tuple that satisfies some condition). Marginal inference

often requires the computation of the normalization factor of the factor graph, a number known

as the partition function [6, 32]. In turn, the partition function is also needed for other related

tasks such as computing the most probable explanation and weight learning [12, 27]. Another

general tool for solving probabilistic inference tasks is that of sampling, that is, generating a random
subset of the database where the probability of each subset is the same as its probability in the

representation via the soft constraints. This is a challenging tasks in discriminative models (as

opposed to generative models) such as soft constraints.

Focusing on the two tractable FD sets for soft repairing, we investigate the complexity of three

tasks: marginal inference, computation of the partition function, and sampling. In the case of

marginal inference, we consider queries that test for the existence of a given tuple (i.e., we wish to

compute the marginal probability of the tuple), and more generally, the containment of at least one

tuple from a given subset (e.g., all of the tuples that satisfy some property). We show that these

tasks can be solved in polynomial time for a single FD and the aforementioned generalization; in

contrast, we prove that for {𝐴 → 𝐵, 𝐵 → 𝐴} it is intractable (#P-hard) to compute the partition

function, and marginal inference is intractable already for the query that asks whether the database

is nonempty.

Comparison to an earlier conference version. A preliminary version of this manuscript has been

published in conference proceedings [3]. Compared to that version, this manuscript includes several

additions. The main addition is the investigation of the probabilistic inference tasks that were not

mentioned in the conference version. In particular, Section 6 is new. Another addition is a discussion

on the FD sets that are not covered by our algorithms, and specifically the reason why the set

{𝐴 → 𝐵,𝐴 → 𝐶} is apparently more challenging computationally than (the logically equivalent)

{𝐴 → 𝐵𝐶} when FDs are interpreted as soft constraints. This discussion is given in Section 4.3.

Finally, throughout the manuscript, we include additional examples, discussions, and explanations.

Organization. The rest of the manuscript is organized as follows. We give the formal setup and

the problem definition in Section 2. We then discuss the complexity of the general problem and its

relationship to past results in Section 3. We describe our algorithm for soft repairing in Sections 4

and 5 for a single FD and a matching constraint, respectively. We investigate the probabilistic

inference tasks in Section 6, and finally conclude in Section 7.

2 FORMAL SETUP
We begin with preliminary definitions and terminology that we use throughout the manuscript.

2.1 Databases, FDs and Repairs
For the main problem that we study in this work (defined later as Problem 2.1), it suffices to consider

a database with a single relation. Hence, we define schemas and databases accordingly. A relation
schema 𝑅(𝐴1, . . . , 𝐴𝑘) consists of a relation symbol 𝑅 and a set {𝐴1, . . . , 𝐴𝑘 } of attributes. A database
𝐷 over 𝑅 is a set of facts 𝑓 of the form 𝑅(𝑐1, . . . , 𝑐𝑘), where each 𝑐𝑖 is a constant. We denote by 𝑓 [𝐴𝑖]
the value that the fact 𝑓 associates with attribute 𝐴𝑖 (i.e., 𝑓 [𝐴𝑖] = 𝑐𝑖). Similarly, if 𝑋 = 𝐵1 · · ·𝐵𝑘 is

a sequence of attributes from {𝐴1, . . . , 𝐴𝑘 }, then 𝑓 [𝑋] is the tuple (𝑓 [𝐵1], . . . , 𝑓 [𝐵𝑘]). We assume

that every fact 𝑓 ∈ 𝐷 is associated with a nonnegative weight, hereafter denoted𝑤 𝑓 . (The weight

of a fact is sometimes derived from a validity/existence probability [16, 34].)

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 5

A Functional Dependency (FD) over the relation schema 𝑅(𝐴1, . . . , 𝐴𝑘) is an expression 𝜑 of the

form 𝑋 → 𝑌 where 𝑋,𝑌 ⊆ {𝐴1, . . . , 𝐴𝑘 }. A violation of an FD in a database 𝐷 is a pair {𝑓 , 𝑔} of
tuples from 𝐷 that agrees on the left-hand side (i.e., 𝑓 [𝑋] = 𝑔[𝑋]) but disagrees on the right-hand

side (i.e., 𝑓 [𝑌] ≠ 𝑔[𝑌]). An FD 𝑋 → 𝑌 is trivial if 𝑌 ⊆ 𝑋 . We denote by vio(𝐷,𝜑) the set of all the
violations of the FD 𝜑 in 𝐷 . We say that 𝐷 satisfies 𝜑 , denoted 𝐷 |= 𝜑 , if it has no violations (i.e.,

vio(𝐷,𝜑) is empty). The database 𝐷 satisfies a set Δ of FDs, denoted by 𝐷 |= Δ, if 𝐷 satisfies every

FD in Δ; otherwise, 𝐷 violates Δ (denoted 𝐷 ̸ |= Δ). An FD 𝑋 → 𝑌 is entailed by an FD set Δ if every

database 𝐷 that satisfies Δ also satisfies 𝑋 → 𝑌 . The closure of an attribute set 𝑋 w.r.t. Δ, denoted
Closure∆ (𝑋), is the set of all attributes 𝐴 such that the FD 𝑋 → {𝐴} is entailed by Δ. We assume

that every FD 𝜑 ∈ Δ has a nonnegative weight denoted by𝑤𝜑 .

When there is no risk of ambiguity, we may omit the specification of the relation schema

𝑅(𝐴1, . . . , 𝐴𝑘) and simply assume that the involved databases and constraints are all over the same

schema.

Let 𝐷 be a database and let Δ be a set of FDs. A repair (of 𝐷 w.r.t. Δ) is an inclusion-maximal

consistent subset 𝐸; that is, 𝐸 ⊆ 𝐷 and 𝐸 |= Δ, and moreover, 𝐸′ ̸ |= Δ for every 𝐸′
such that

𝐸 ⊊ 𝐸′ ⊆ 𝐷 . Note that the number of repairs can be exponential in the number of facts of 𝐷 . A

cardinality repair is a repair 𝐸 of a maximal cardinality (i.e., |𝐸 | ≥ |𝐸′ | for every repair 𝐸′
).

2.2 Soft Constraints
We define the concept of soft constraints (or weak constraints or weighted rules) in the standard way

of “penalizing” the database for every missing fact, on the one hand, and every violation, on the

other hand. This is the concept adopted in past work such as the parfactors of De Sa et al. [33], the
soft keys of Jha et al. [20], and the PrDB model of Sen et al. [34]. The concept can be viewed as a

special case of the Markov Logic Network (MLN) [32].

Formally, let 𝐷 be a database and Δ a set of FDs. The cost of a subset 𝐸 of a database 𝐷 is then

defined as follows.

cost(𝐸 | 𝐷) def

=
©­«

∑︁
𝑓 ∈ (𝐷\𝐸)

𝑤 𝑓
ª®¬ + ©­«

∑︁
𝜑∈Δ

𝑤𝜑 |vio(𝐸, 𝜑) |
ª®¬ (1)

As for the computational model, we assume that every weight is a rational number 𝑟/𝑞 that is

represented using the numerator and the denominator, namely (𝑟, 𝑞), where each of the two is an

integer represented in the standard binary manner.

2.3 Problem Definition: Soft Repairing
The main problem we study in this manuscript, referred to as soft repairing, is the optimization

problem of finding a database subset with a minimal cost. Since we consider the data complexity

of the problem, we associate with each relation schema and set of FDs a separate computational

problem.

Problem 2.1 (Soft Repairing). Let 𝑅(𝐴1, . . . , 𝐴𝑘) be a relation schema and Δ a set of FDs. Soft
repairing (for 𝑅(𝐴1, . . . , 𝐴𝑘) and Δ) is the following optimization problem: Given a database 𝐷 , find
an optimal subset of 𝐷 , that is, a subset 𝐸 of 𝐷 with a minimal cost(𝐸 | 𝐷).

Note that a cardinality repair is an optimal subset in the special case where the weight 𝑤𝜑 of

every FD 𝜑 is∞ (or just higher than the cost of deleting the entire database), and the weight𝑤 𝑓

of every fact 𝑓 is 1. Livshits et al. [25] studied the complexity of finding a weighted cardinality
repair, which is the same as a cardinality repair but the weight𝑤 𝑓 of every fact 𝑓 can be arbitrary.

Hence, both types of cardinality repairs are consistent (i.e., the constraints are strictly satisfied).

, Vol. 1, No. 1, Article . Publication date: June 2024.

6 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

Flights

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

UA123 United Airlines 01/01/2021 NY UT N652NW 2

UA123 Delta 01/01/2021 LA NY N652NW 1

DL456 Southwest 02/01/2021 NC MA N713DX 2

DL456 Southwest 03/01/2021 NJ FL N245DX 1

DL456 Delta 03/01/2021 CA IL N819US 4

(a) 𝐷

Flights

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 NY UT N652NW 2

DL456 Southwest 02/01/2021 NC MA N713DX 2

DL456 Southwest 03/01/2021 NJ FL N245DX 1

(b) 𝐸1

Flights

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

DL456 Delta 03/01/2021 CA IL N819US 4

(c) 𝐸2

Flights

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

UA123 United Airlines 01/01/2021 NY UT N652NW 2

DL456 Delta 03/01/2021 CA IL N819US 4

(d) 𝐸3

Fig. 1. For the relation Flights(Flight,Airline,Date,Origin,Destination,Airplane) and the FDs Flight →
Airline (with 𝑤𝜑1

= 5) and Flight Airline Date → Destination (with 𝑤𝜑2
= 1), a database 𝐷 , a cardinality

repair 𝐸1, a weighted cardinality repair 𝐸2, and an optimal subset 𝐸3.

In contrast, an optimal subset in the general case may violate one or more of the FDs. In the next

section we recall the known complexity results for cardinality and weighted cardinality repairs.

Example 2.2. Our running example is based on the database of Figure 1 over the relation schema

Flights(Flight,Airline,Date,Origin,Destination,Airplane)

that contains information about domestic flights in the United States. The weight of each tuple

appears on the rightmost column. The FD set ∆ consists of the following FDs:

• Flight → Airline: a flight is associated with a single airline.

• Flight Airline Date → Destination: a flight on a certain date has a single destination.

We assume that the weight of the first FD is 5, and the weight of the second FD is 1.

The database 𝐸1 of Figure 1 is a cardinality repair of 𝐷 as no repair of 𝐷 can be obtained by

removing less then three facts. However, 𝐸1 is not a weighted cardinality repair, since its cost is

eight, while the cost of 𝐸2 is six. The reader can easily verify that 𝐸2 is a weighted cardinality repair

of 𝐷 . Finally, 𝐸3 is not a repair of 𝐷 in the traditional sense as it contains a violation of the second

FD, but it is an optimal subset of 𝐷 with cost(𝐸3 | 𝐷) = 5. □

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 7

Algorithm 1 Simplify(Δ)
Remove trivial FDs from ∆

if ∆ is not empty then
find a removable pair (𝑋,𝑌) of attribute set
Δ := Δ − 𝑋𝑌

return Δ

Remark 2.3. We end this section with a comment about the case of multiple relations, which is
beyond our formal setup. When the database has multiple relations and each relation schema has
associated soft FDs, soft repairing decomposes to the individual relations straightforwardly: the least-
cost subset of 𝐷 consists of the least-cost subset of each relation of 𝐷 . Hence, it suffices to discuss the
problem in the simple case of a single-relation database.

3 PRELIMINARY COMPLEXITY ANALYSIS
We consider the data complexity of the problem of computing an optimal subset. We assume

that the schema and the set of FDs are fixed, and the input consists of the database. Livshits et

al. [25] studied the problems of finding a cardinality repair and a weighted cardinality repair, and

established a dichotomy over the space of all the sets of functional dependencies. In particular, they

introduced an algorithm that, given a set Δ of FDs, decides whether:

(1) A weighted cardinality repair can be computed in polynomial time; or
(2) Finding a (weighted) cardinality repair is APX-complete.

2

No other possibility exists. The algorithm is a recursive procedure that attempts to simplify Δ at

each iteration by finding a removable pair (𝑋,𝑌) of attribute sets, and removing every attribute of

𝑋 and 𝑌 from all the FDs in Δ (which we denote by ∆ − 𝑋𝑌). We say that a pair (𝑋,𝑌) of attribute
sets is removable if it satisfies the following properties:

• Closure∆ (𝑋) = Closure∆ (𝑌),
• 𝑋𝑌 is nonempty,

• the left-hand side of every FD in Δ includes either 𝑋 or 𝑌 .

Note that the sets 𝑋 and 𝑌 may be the same, and then the condition states that every FD contains

𝑋 on the left-hand side.

The simplification procedure for an FD set ∆ is depicted here as Algorithm 1. If we are able to

transform Δ to an empty set of FDs by repeatedly applying simplifications, then the algorithm

returns true and finding an optimal consistent subset is solvable in polynomial time. Otherwise, the

algorithm returns false and the problem is APX-complete. We state their result for later reference.

Theorem 3.1. [25] Let Δ be a set of FDs. If Δ can be emptied via Simplify(∆) steps, then a weighted
cardinality repair can be computed in polynomial time; otherwise, finding a cardinality repair is
APX-complete.

The hardness side of Theorem 3.1 immediately implies the hardness of the more general soft-

repairing problem. Yet, the other direction (tractability generalizes) is not necessarily true. As

discussed in the Introduction, if Δ = {𝐴 → 𝐵, 𝐵 → 𝐴, 𝐵 → 𝐶}, then Δ, as a set of hard constraints,

is classified as tractable according to Algorithm 1; however, this is not the case for soft constraints.

We can generalize this example by stating that if Δ contains a subset that is hard according to

Theorem 3.1, then soft repairing is hard. (This does not hold when considering only hard constraints,

2
Recall that APX is the class of NP optimization problems that admit constant-ratio approximations in polynomial time.

Hardness in APX is via the so called “PTAS” reductions (cf. textbooks on approximation complexity, e.g., [15]).

, Vol. 1, No. 1, Article . Publication date: June 2024.

8 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

as the example shows that there exists an easy Δ with a hard subset.) In the following sections, we

are going to discuss tractable cases of FD sets. Before that, we will show that the problem becomes

tractable if one settles for an approximation.

3.1 Approximation
The following theorem shows that soft repairing admits a constant-ratio approximation, for the
constant three, in polynomial time. This means that there is a polynomial-time algorithm for finding

a subset with a cost of at most three times the minimum.

Theorem 3.2. For all FD sets, soft repairing admits a 3-approximation in polynomial time.

Proof. We reduce soft repairing to the problem of finding a minimum weighted set cover where

every element belongs to 3 sets. A simple greedy algorithm finds a 3-approximation to this problem

in linear time [18].

We set the elements to be {({𝑓 , 𝑔}, 𝛿) | 𝑓 , 𝑔 ∈ 𝐷, 𝛿 ∈ Δ, 𝑓 and 𝑔 contradict 𝛿}. Each element

({𝑓 , 𝑔}, 𝛿) belongs to three sets: 𝑓 with weight𝑤 𝑓 , 𝑔 with weight𝑤𝑔, and ({𝑓 , 𝑔}, 𝛿) with weight

𝑤𝛿 . Each minimal solution to this set cover problem can be translated to a soft repair: the selected

sets that correspond to tuples are removed in the repair. Indeed, a minimal set cover of such a

construction has to resolve each conflict by either paying for the removal of at least one of the

tuples or paying for the violation. □

In terms of formal complexity, Theorem 3.2 implies that the problem of soft repairing is in

APX (for every set of FDs). From this, from Theorem 3.1 and from the discussion that follows

Theorem 3.1, we conclude the following.

Corollary 3.3. Let Δ be a set of FDs. Soft repairing for Δ is in APX. Moreover, if any subset of Δ
cannot be emptied via Simplify(∆) steps, then soft repairing is APX-complete for Δ.

In the next two sections, we present exact algorithms for soft repairing with respect to restricted

classes of FD sets.

4 ALGORITHM FOR A SINGLE FUNCTIONAL DEPENDENCY
In this section, we consider the case of a single functional dependency, and present a polynomial-

time algorithm for soft repairing. Later on (in Section 4.2), we will extend the algorithm to a more

general class of FD sets.

4.1 Single FD

We assume that the single FD is 𝜑
def

= 𝑋 → 𝑌 and that our input database is 𝐷 . We split 𝐷 into

blocks and subblocks, as we explain next. The blocks of 𝐷 are the maximal subsets of 𝐷 that agree

on the 𝑋 values. Denote these blocks by 𝐷1, . . . , 𝐷𝑚 . Note that there are no conflicts across blocks;

hence, we can solve the problem separately for each block and then an optimal subset 𝐸 is simply

the union of optimal subsets 𝐸𝑖 of the blocks 𝐷𝑖 :

𝐸 =

𝑚⋃
𝑖=1

𝐸𝑖

The subblocks of a block 𝐷𝑖 are the maximal subsets of 𝐷𝑖 that agree on the 𝑌 values (in addition

to the 𝑋 values). We denote these subblocks by 𝐷𝑖,1, . . . , 𝐷𝑖,𝑞𝑖 . Note that two facts from the same

subblock are consistent, while two facts from different subblocks are conflicting.

Example 4.1. Consider the database 𝐷 of Figure 1 and the FD Flight → Airline. The database has

two blocks:

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 9

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

UA123 United Airlines 01/01/2021 NY UT N652NW 2

UA123 Delta 01/01/2021 LA NY N652NW 1

corresponding to the value UA123 of the attribute Flight, and

Flight Airline Date Origin Destination Airplane

DL456 Southwest 02/01/2021 NC MA N713DX 2

DL456 Southwest 03/01/2021 NJ FL N245DX 1

DL456 Delta 03/01/2021 CA IL N819US 4

corresponding to the value DL456 of the attribute Flight. We denote these blocks by 𝐷1 and 𝐷2,

respectively.

The first block can be further split into the following two subblocks:

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

UA123 United Airlines 01/01/2021 NY UT N652NW 2

Flight Airline Date Origin Destination Airplane

UA123 Delta 01/01/2021 LA NY N652NW 1

corresponding the values United Airlines and Delta of the attribute Airline and denoted 𝐷1,1

and 𝐷1,2, respectively. Similarly, the second block is split into the following two subblocks 𝐷2,1 and

𝐷2,2, corresponding to the values Southwest and Delta of the attribute Airline, respectively.

Flight Airline Date Origin Destination Airplane

DL456 Southwest 02/01/2021 NC MA N713DX 2

DL456 Southwest 03/01/2021 NJ FL N245DX 1

Flight Airline Date Origin Destination Airplane

DL456 Delta 03/01/2021 CA IL N819US 4

From here we continue with dynamic programming. For a number 𝑗 ∈ {0, . . . , 𝑞𝑖 }, where 𝑞𝑖 is
the number of subblocks of 𝐷𝑖 , and a number 𝑘 ∈ {0, . . . , |𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗 |} of facts, we define the
following values that we are going to compute:

• 𝐶 [𝑖, 𝑗, 𝑘] is the cost of an optimal subset of 𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗 (i.e., the union of the first 𝑗

subblocks) with precisely 𝑘 facts.

• 𝐹 [𝑖, 𝑗, 𝑘] is a subset of 𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗 that realizes 𝐶 [𝑖, 𝑗, 𝑘], that is,
|𝐹 [𝑖, 𝑗, 𝑘] | = 𝑘 ∧ cost

(
𝐹 [𝑖, 𝑗, 𝑘] | 𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗

)
= 𝐶 [𝑖, 𝑗, 𝑘]

Note that if multiple choices of 𝐹 [𝑖, 𝑗, 𝑘] exist, we select an arbitrary one. Once we compute the

𝐹 [𝑖, 𝑞𝑖 , 𝑘], we are done since it then suffices to return the best subset over all 𝑘 :

𝐸𝑖 = 𝐹 [𝑖, 𝑞𝑖 , 𝑘] for 𝑘 = argmin

𝑘

𝐶 [𝑖, 𝑞𝑖 , 𝑘]

Example 4.2. We continue Example 4.1. We assume that the weight𝑤𝜑 of the FD Flight → Airline

is 5. Consider the block 𝐷2 and its subblock 𝐷2,1. The value 𝐶 [2, 1, 𝑘], for any 𝑘 , is the cost of an
optimal subset of 𝐷2,1 with 𝑘 facts. We have the following:

𝐶 [2, 1, 0] = 2 + 1 = 3 (as we have to delete both facts),

, Vol. 1, No. 1, Article . Publication date: June 2024.

10 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

𝐶 [2, 1, 1] = 1 (as deleting the second fact is less costly than deleting the first),

𝐶 [2, 1, 2] = 0 (as there are no violations of the FD in a subblock).

Hence, when considering only the subblock 𝐷2,1, an optimal subset is the one that contains both

facts. Now, we also consider the subblock 𝐷2,2. Here, the value𝐶 [2, 2, 𝑘], for any 𝑘 , is the cost of an
optimal subset of 𝐷2,1 ∪ 𝐷2,2 with 𝑘 facts. We have that:

𝐶 [2, 2, 0] = 𝐶 [2, 1, 0] + 4 = 7

as we have to delete all three facts. This is equivalent to choosing an optimal subset of 𝐷2,1 with 0

facts (represented by the term 𝐶 [2, 1, 0]) and an optimal subset of 𝐷2,2 with 0 facts. Moreover,

𝐶 [2, 2, 1] = 𝐶 [2, 1, 0] = 3

since keeping the fact of 𝐷2,2 is less costly than keeping any fact of 𝐷2,1; hence, we choose an

optimal subset of 𝐷2,1 with 0 facts (represented by the term𝐶 [2, 1, 0]) and an optimal subset of 𝐷2,2

with 1 fact. We also have that:

𝐶 [2, 2, 2] = 𝐶 [2, 1, 2] + 4 = 4

as if we keep a fact from each subblock, we will have to pay the cost 5 of the FD violation. Thus,

deleting the only fact of 𝐷2,2 has the lowest cost, and this option is obtained by choosing an optimal

subset of 𝐷2,1 with 2 facts (and cost 𝐶 [2, 1, 2]) and an optimal susbet of 𝐷2,2 with 0 facts. Finally,

𝐶 [2, 2, 3] = 𝐶 [2, 1, 2] + 5 + 5 = 10

because the fact of 𝐷2,2 violates the FD with every fact of 𝐷2,1. Here, we choose an optimal subset

of 𝐷2,1 with 2 facts (and cost𝐶 [2, 1, 2]) and an optimal subset of 𝐷2,2 with 1 fact, and pay 5 for each

violation of the FD. We conclude that an optimal subset of 𝐷2,1 ∪ 𝐷2,2 (hence, of the block 𝐷2) is

the one that keeps the fact of 𝐷2,2 and removes the facts of 𝐷2,1; the cost of this subset is 3.

We now generalize the idea of Example 4.2 and show how to compute 𝐶 [𝑖, 𝑗, 𝑘] and 𝐹 [𝑖, 𝑗, 𝑘].
We will focus on the former, as the latter is obtained by straightforward bookkeeping. The key

observation is that if we decide to delete 𝑡 facts from 𝐷𝑖, 𝑗 , then we always prefer to delete the 𝑡

facts with the minimal weight. We use this observation as follows.

For a subblock 𝐷𝑖, 𝑗 and 𝑡 ∈ {0, . . . , |𝐷𝑖, 𝑗 |}, denote by top(𝑡, 𝐷𝑖, 𝑗) an arbitrary subset of 𝐷𝑖, 𝑗 with 𝑡

facts of the highest weight. Hence, top(𝑡, 𝐷𝑖, 𝑗) is obtained by taking a prefix of size 𝑡 when sorting

the tuples of 𝐷𝑖, 𝑗 from the heaviest to the lightest. Then 𝐶 [𝑖, 𝑗, 𝑘] is computed as follows.

𝐶 [𝑖, 𝑗, 𝑘] =


0 𝑗 = 0 and 𝑘 = 0;

∞ 𝑗 = 0 and 𝑘 > 0;

min

𝑡 ∈{0,...,𝑘 }

(
𝐶 [𝑖, 𝑗 − 1, 𝑘 − 𝑡] + 𝑡 (𝑘 − 𝑡)𝑤𝜑 + ∑

𝑓 ∈𝐷𝑖,𝑗 \
top(𝑡,𝐷𝑖,𝑗)

𝑤 𝑓

)
otherwise.

The first two cases (where 𝑗 = 0) refer to the case where the database is empty. If we need an empty

repair, this has no cost as we remove no tuples and violate no FDs. If we need a larger repair, then

this is not possible, and we treat the cost as infinite. If the database we repair is nonempty (the third

case), we go over all options for the number 𝑡 of facts taken from the subblock 𝐷𝑖, 𝑗 and choose an

option with the minimum cost. This cost consists of the following components:

• The cost of repairing within 𝐷𝑖, 𝑗 with 𝑡 tuples is
∑

𝑓 ∈𝐷𝑖,𝑗 \top(𝑡,𝐷𝑖,𝑗) 𝑤 𝑓 . This is the cost of

removing every fact that is not in top(𝑡, 𝐷𝑖, 𝑗) from the 𝑗th subblock.

• The cost of repairing within 𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗−1 with 𝑘 − 𝑡 tuples is 𝐶 [𝑖, 𝑗 − 1, 𝑘 − 𝑡].

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 11

Algorithm 2 L/C-Simplify(Δ)
1: remove trivial FDs from Δ
2: if ∆ is not empty then
3: find 𝐴 such that in each FD, 𝐴 is either an lhs attribute or a consensus attribute

4: Δ := Δ −𝐴

5: return Δ

• The cost of violations between 𝐷𝑖,1 ∪ · · · ∪ 𝐷𝑖, 𝑗−1 and 𝐷𝑖, 𝑗 is 𝑡 (𝑘 − 𝑡)𝑤𝜑 . This is the cost of

the violations in which the 𝑗th subblock participates: any combination of a fact from 𝐷𝑖, 𝑗

and a fact from the other subblocks is a violation of 𝜑 .

This completes the description of the algorithm. The correctness is a straightforward conclusion

from this description due to the definition of the cost in Equation (1). In conclusion, we establish

the following theorem.

Theorem 4.3. In the case of a single FD, soft repairing can be solved in polynomial time.

In the next section, we extend our algorithm beyond a single FD and, accordingly, establish a

generalization of Theorem 4.3, namely Theorem 4.5.

4.2 Generalization
We now show how the idea from the previous section can be generalized to some FD sets beyond

singletons. An attribute𝐴 is an lhs attribute of an FD 𝑋 → 𝑌 if𝐴 ∈ 𝑋 , and it is a consensus attribute
of 𝑋 → 𝑌 if 𝑋 = ∅ and 𝐴 ∈ 𝑌 (hence, 𝑋 → 𝑌 states that all tuples should have the same 𝐴 value).

The simplification step of Algorithm 2 removes an attribute 𝐴 if for every FD in ∆, it is either an

lhs or a consensus attribute.

Clearly, if ∆ consists of a single FD, then it can be emptied by repeatedly applying L/C-Simplify

steps. We will show that soft repairing for ∆ is solvable in polynomial time whenever it can be

emptied via L/C-Simplify(∆) steps. Next, we show an example that involves multiple FDs.

Example 4.4. Consider the database and the FD set of our running example (Example 2.2). This FD

set, which we denote here by ∆1, can be emptied via L/C-Simplify(∆) steps, by selecting attributes

in the following order:

{Flight → Airline , Flight Airline Date → Destination}
Flight :{∅ → Airline , Airline Date → Destination}
Airline :{Date → Destination}
Date :{∅ → Destination}

Destination :{}
Hence, this section shows that soft repairing can be solved in polynomial time for ∆1.

Next, consider the FD set ∆2 consisting of the following FDs: Flight → Airline and Flight Date →
Destination. This FD set is logically equivalent to ∆1; hence, they both entail the exact same

cardinality repairs. However, these sets are no longer equivalent when considering soft repairing.

In particular, two facts that agree on the values of the Flight and Date attributes, but disagree on

the values of the Airline and Destination attributes, violate only one FD in ∆1 but two FDs in ∆2,

which affects the cost of keeping these two tuples in the database. In fact, the FD set ∆2 cannot

be emptied via L/C-Simplify(∆) steps, as after removing the Flight attribute, no other attribute is

either an lhs or a consensus attribute of the remaining FDs. The complexity of soft repairing for ∆2

remains an open problem. □

, Vol. 1, No. 1, Article . Publication date: June 2024.

12 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

Note that whenever Δ can be emptied via L/C-Simplify(∆) steps, it can also be emptied via

Simplify(∆) steps. Indeed, if L/C-Simplify(∆) eliminates the attribute 𝐴, then we can take: (a)
𝑋 = {𝐴} and 𝑌 = ∅ in Algorithm 1 if 𝐴 is a consensus attribute of some FD, or (b) 𝑋 = 𝑌 = {𝐴}
if 𝐴 is an lhs attribute of every FD. This is expected due to Theorem 3.1 and the observation of

Section 3 that soft-repairing is hard whenever computing a cardinality repair is hard.

We now present a polynomial-time algorithm for soft repairing in the case where ∆ can be

emptied via L/C-Simplify(∆) steps. Our algorithm generalizes the idea of the algorithm for a single

FD, and we again use dynamic programming. The main observation is as follows. Let 𝐴 be an

attribute chosen by L/C-Simplify(∆), and let 𝐷1, . . . , 𝐷𝑚 be the maximal subsets of 𝐷 that agree

on the value of 𝐴, which we refer to as blocks (w.r.t. 𝐴). Two facts from different blocks violate all
of the FDs wherein 𝐴 is a consensus attribute and none of the FDs wherein 𝐴 is an lhs attribute.

Therefore, to compute the cost of a soft repair, each pair of facts from different blocks is charged

with the violation of all FDs wherein 𝐴 is a consensus attribute. Then, we can remove 𝐴 from all

FDs and continue the computation separately for each block.

We fix an order of the attributes in which they can be removed with L/C-Simplify. Intuitively,

we handle the attributes one after the other in that order. When we handle the ℓth attribute, the

first ℓ − 1 attributes already have a predefined value, stored as an assignment 𝜏 . To support the

computation, as we did in the case of a single FD, we further allow to restrict the number 𝑗 of

values that we can consider for the currently handled (ℓth) attribute and to restrict the number 𝑘 of

tuples we keep.

More specifically, our recursion computes the cost of repairing a certain subset of the database

according to a simplified set of FDs by keeping a predetermined number of tuples:

• The FD set we consider is the one obtained after removing the first ℓ − 1 attributes via

L/C-Simplify(Δ) steps.
• The database we consider is the original one filtered as follows: for each of the first ℓ − 1

attributes, we only keep tuples with a specific value, given by the assignment 𝜏 ; for the ℓth

attribute, we only keep the tuples with the first 𝑗 possible values for this attribute.

• The repair must consist of exactly 𝑘 tuples.

We now set some notation. Let ∆ be an FD set that can be emptied via L/C-Simplify(∆) steps, and
let𝐴1, . . . , 𝐴𝑛 be the attributes in the order of such an elimination process. For each ℓ ∈ {1, . . . , 𝑛+1},
we denote by ∆ℓ the FD set in line 2 of the ℓth iteration of this execution (after removing the trivial

FDs). Thus, ∆1 contains every non-trivial FD of ∆, and ∆𝑛+1 is empty. We also denote by 𝑤ℓ the

total weight of the FDs in ∆ℓ of which 𝐴ℓ is a consensus attribute (if there are no such FDs, then

𝑤ℓ = 0). Given 1 ≤ ℓ ≤ 𝑛 + 1, if 𝜏 is an assignment to the attributes 𝐴1, . . . , 𝐴ℓ−1, then 𝐷𝜏
denotes

the database 𝜎𝜏𝐷 (i.e., the database that contains all the tuples that agree with 𝜏 on the values of

the attributes 𝐴1, . . . , 𝐴ℓ−1). We denote by 𝐷𝜏
1
, . . . , 𝐷𝜏

𝑞𝜏ℓ
the blocks of 𝐷𝜏

w.r.t. 𝐴ℓ . That is, 𝑞
𝜏
ℓ
denotes

the number of different values that 𝐴ℓ can take in 𝐷𝜏
, while 𝐷𝜏

1
, . . . , 𝐷𝜏

𝑞𝜏ℓ
denote a partition of 𝐷𝜏

according to the value of 𝐴ℓ . Moreover, we denote by 𝜏 ∧ (𝐴ℓ = 𝑗) the assignment to the attributes

𝐴1, . . . , 𝐴ℓ given by block 𝐷𝜏
𝑗
. We denote by 𝐹 [ℓ, 𝜏, 𝑗, 𝑘] an optimal subset of 𝐷𝜏

1
∪ · · · ∪𝐷𝜏

𝑗
of size 𝑘

w.r.t. ∆ℓ , and we denote its cost by 𝐶 [ℓ, 𝜏, 𝑗, 𝑘]. Thus, our recursion is defined by 4 parameters: ℓ is

the index of the currently handled attribute, 𝜏 is the assignment to the ℓ − 1 previously handled

attributes, 𝑗 is the number of values we are allowed to choose from for the currently handled

attribute 𝐴ℓ , and 𝑘 is the number of tuples we need to keep.

According to the cost definition in Equation (1), our goal is to compute 𝐹 [1, ∅, 𝑞∅
1
, 𝑘] for 𝑘 =

argmin𝑘 𝐶 [1, ∅, 𝑞∅1 , 𝑘]. We again focus on the computation of 𝐶 [ℓ, 𝜏, 𝑗, 𝑘], as 𝐹 [ℓ, 𝜏, 𝑗, 𝑘] can be

obtained similarly with bookkeeping. The DP algorithm we propose is given by the following

formula.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 13

𝐶 [ℓ, 𝜏, 𝑗, 𝑘] =



∑
𝑓 ∈𝐷𝜏 \top(𝑘,𝐷𝜏)

𝑤 𝑓 ℓ = 𝑛 + 1,

0 𝑗 = 0, 𝑘 = 0,

∞ 𝑗 = 0, 𝑘 > 0,

min

𝑡 ∈{0,...,𝑘 }

(
𝐶 [ℓ, 𝜏, 𝑗 − 1, 𝑘 − 𝑡] + 𝑡 (𝑘 − 𝑡)𝑤ℓ +

𝐶 [ℓ + 1, 𝜏 ∧ (𝐴ℓ = 𝑗), 𝑞𝜏∧(𝐴ℓ=𝑗)
ℓ+1

, 𝑡]
) otherwise.

The first line (where ℓ = 𝑛 + 1) refers to the case where the FD set is empty. Since no FDs need to

be taken into account, the optimal subset of 𝐷𝜏
of size 𝑘 consists of the 𝑘 facts of the highest weight,

and its cost is the sum of weights of all other facts. The next two lines (where 𝑗 = 0) refer to the case

where the database is empty. If we need an empty repair, this has no cost as we remove no tuples

and violate no FDs. If we need a larger repair, this is not possible, and we treat the cost as infinite.

The fourth line refers to the general case that does not fall within one of the previously-mentioned

edge cases. In this case, we reduce the problem by determining how many tuples in the repair use a

specific value for the currently handled attribute 𝐴ℓ . More specifically, we determine the number of

tuples 𝑡 taken from the last block 𝐷𝜏
𝑗
by going over all options for 𝑡 and taking one with minimum

cost. The cost has three components:

• The cost of repairing within 𝐷𝜏
𝑗
with 𝑡 tuples is𝐶 [ℓ + 1, 𝜏 ∧ (𝐴ℓ = 𝑗), 𝑞𝜏∧(𝐴ℓ=𝑗)

ℓ+1
, 𝑡]. Within 𝐷𝜏

𝑗
,

all tuples have 𝐴ℓ = 𝑗 , and so it is enough to find an optimal repair for the set of FDs from

which 𝐴ℓ is removed.

• The cost of repairing within 𝐷𝜏
1
, . . . , 𝐷𝜏

𝑗−1
with 𝑘 − 𝑡 tuples is 𝐶 [ℓ, 𝜏, 𝑗 − 1, 𝑘 − 𝑡].

• The cost of violations between 𝐷𝜏
𝑗
and 𝐷𝜏

1
∪ . . . ∪ 𝐷𝜏

𝑗−1
is 𝑡 (𝑘 − 𝑡)𝑤ℓ . Here we pay 𝑤ℓ for

every pair of facts from the two parts since every such pair is a violation of the FDs in which

𝐴ℓ is a consensus attribute.

The given recursion can be computed in polynomial time via dynamic programming. Therefore,

we conclude the following generalization of Theorem 4.3.

Theorem 4.5. Let Δ be a set of FDs. If Δ can be emptied via L/C-Simplify(∆) steps, then soft
repairing for Δ is solvable in polynomial time.

4.3 Limitations of the Algorithm
We now discuss the limitations of our dynamic programming approach. In particular, we explain

the challenges in extending it to other simple FD sets, even those that are logically equivalent to a

single FD. Consider the FD set ∆1 = {𝐴 → 𝐵𝐶} over 𝑅(𝐴, 𝐵,𝐶). In our algorithm for a single FD, we

split the database into blocks (that is, partitions through grouping by 𝐴) and then, for each block,

we go over its subblocks (i.e., partitions by 𝐵𝐶) one by one. The main observation here is that when

we consider a certain subblock, the facts we choose to keep from this subblock will be in conflict

with every fact of the previous subblocks. This does not depend on the specific facts that we choose

to keep from the current subblock or the previous ones. The cost of the new violations that we

introduce also does not depend on the specific facts that we choose from the current subblock, but

it depends only on the number of facts that we keep (and the weight of the FD).

Now, consider the FD set ∆2 = {𝐴 → 𝐵,𝐴 → 𝐶} over 𝑅(𝐴, 𝐵,𝐶). While ∆1 and ∆2 are equivalent

as hard constraints, they are not equivalent as soft constraints, even if both of them have the same

weight. (See Bárány et al. [4] for a more detailed discussion about the difference between the logical

view of constraints and their interpretation as weighted factor graphs.) It is again the case that we

can split the database into blocks of facts that agree on the value of attribute 𝐴 and these blocks

, Vol. 1, No. 1, Article . Publication date: June 2024.

14 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

𝐴 𝐵 𝐶

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

Fig. 2. A database 𝐷 over 𝑅(𝐴, 𝐵,𝐶).

are independent. Now, let us again try to split each block into subblocks of facts that agree on

the values of both attributes 𝐵 and 𝐶 . When we consider a certain subblock, the cost of the new

violations that we introduce again does not depend on the specific facts that we choose to keep

from this subblock, as they all agree on the values of both 𝐵 and 𝐶 and, so, they are involved in the

same violations. However, the cost of these new violations does depend on the specific facts that

we chose to keep from the previous subblocks, as two facts from different subblocks may violate

only the FD 𝐴 → 𝐵, only the FD 𝐴 → 𝐶 , or both FDs, and each one of these options entails a

different cost. Hence, for the FD set ∆2, the information regarding the number of facts from the

previous subblocks (the value 𝑘 − 𝑡 in the definition of 𝐶 [𝑖, 𝑗, 𝑘]) is insufficient. When we consider

the 𝑗th subblock, we have to take into account every possible combination of values ℓ1, . . . , ℓ𝑗−1

that represent the number of facts we chose to keep from the previous 𝑗 − 1 subblocks. In this case,

the running time of the algorithm is no longer polynomial, but rather exponential.

The following example illustrates the differences between the FD set ∆1 and ∆2.

Example 4.6. Consider the simple database of Figure 2 (where the weight of each fact is one) and

the FD set ∆1. Assume that𝑤𝐴→𝐵𝐶 = 1. This database consists of a single block with four subblocks:

𝐷1 = {(0, 0, 0)}, 𝐷2 = {(0, 0, 1)}, 𝐷3 = {(0, 1, 0)}, and 𝐷4 = {(0, 1, 1)}. Assume that, in the dynamic

programming algorithm, we go over the subblocks in the order 𝐷1, 𝐷2, 𝐷3, 𝐷4. When we consider

the last subblock 𝐷4, if we decide to keep the only fact of this subblock, then we have to pay 1

for each fact of the previous subblocks that we decided to keep. This is because the fact (0, 1, 1)
violates the FD 𝐴 → 𝐵𝐶 with every other fact of the database.

Now, consider the FD set ∆2 and assume that𝑤𝐴→𝐵 = 𝑤𝐴→𝐶 = 1. If we use the same approach,

when we consider the subblock 𝐷4, the additional cost that we have to pay for keeping the only

fact of 𝐷4 now depends on the specific choices we made for the previous subblocks. This holds

since the cost of a violation between (0, 1, 1) and (0, 0, 1) is 1, as these two facts jointly violate

the FD 𝐴 → 𝐵. The same holds for the violation between (0, 1, 1) and (0, 1, 0), as these two facts
jointly violate the FD 𝐴 → 𝐶 that is associated with the same weight. But the cost of a violation

between (0, 1, 1) and (0, 0, 0) is 2, as these facts violate both FDs. Hence, to compute the cost of the

additional violations, we not only need to know the total number of facts we chose to keep from

the previous subblocks, but the number of facts we chose to keep from each individual subblock;

thus, we need to consider exponentially many options. □

5 ALGORITHM FOR MATCHING CONSTRAINTS
In this section, we describe a polynomial-time algorithm for the special case of bipartite matching

where the schema is 𝑅(𝐴, 𝐵) and Δ
def

= {𝐴 → 𝐵, 𝐵 → 𝐴}. Note that each of the two FDs has a

separate weight. In Section 5.1, we extend the algorithm into the more general case of (what we

refer to as) a matching constraint, where the FD set Δ states two keys that cover all of the attributes.

(We give the precise definition in Section 5.1.)

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 15

𝐴 𝐵

𝑓1 𝑎1 𝑏1

𝑓2 𝑎1 𝑏2

𝑓3 𝑎1 𝑏3

𝑓4 𝑎2 𝑏1

𝑓5 𝑎2 𝑏2

𝑓6 𝑎3 𝑏3

(a) Database

𝑓6𝑓5𝑓4

𝑓3𝑓2𝑓1

(b) Conflict graph

Fig. 3. A database over 𝑅(𝐴, 𝐵) and its conflict graph w.r.t. {𝐴 → 𝐵, 𝐵 → 𝐴}.

In the remainder of this section, we assume the input 𝐷 over 𝑅(𝐴, 𝐵). We begin with an observa-

tion. For 𝐸 ⊆ 𝐷 it holds that: ∑︁
𝑓 ∈ (𝐷\𝐸)

𝑤 𝑓 =
∑︁
𝑓 ∈𝐷

𝑤 𝑓 −
∑︁
𝑓 ∈𝐸

𝑤 𝑓

Since the value

∑
𝑓 ∈𝐷 𝑤 𝑓 does not depend on the choice of 𝐸, minimizing the value

(∑
𝑓 ∈ (𝐷\𝐸)𝑤 𝑓

)
+(∑

𝜑∈Δ𝑤𝜑 |vio(𝐸, 𝜑) |
)
is the same as minimizing the value

(∑
𝑓 ∈𝐸−𝑤 𝑓

)
+
(∑

𝜑∈Δ𝑤𝜑 |vio(𝐸, 𝜑) |
)
. We

use the following notation:

𝑤𝐷 (𝐸) = ©­«
∑︁
𝑓 ∈𝐸

−𝑤 𝑓
ª®¬ + ©­«

∑︁
𝜑∈Δ

𝑤𝜑 |vio(𝐸, 𝜑) |ª®¬
To solve the problem, we construct a reduction to the Minimum Cost Maximum Flow (MCMF)

problem. The input toMCMF is a flow networkN , that is, a directed graph (𝑉 , 𝐸) with a source node 𝑠
having no incoming edges and a sink node 𝑡 having no outgoing edges. Each edge 𝑒 ∈ 𝐸 is associated

with a capacity 𝑐𝑒 and a cost 𝑐 (𝑒). A flow 𝑓 of N is a function 𝑓 : 𝐸 → R such that 0 ≤ 𝑓 (𝑒) ≤ 𝑐𝑒
for every 𝑒 ∈ 𝐸, and moreover, for every node 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} it holds that ∑𝑒∈𝐼𝑣 𝑓 (𝑒) =

∑
𝑒∈𝑂𝑣

𝑓 (𝑒)
where 𝐼𝑣 and𝑂𝑣 are the sets of incoming and outgoing edges of 𝑣 , respectively. Amaximum flow is a

flow 𝑓 that maximizes the value

∑
(𝑠,𝑣) ∈𝐸 𝑓 (𝑠, 𝑣), and a minimum cost maximum flow is a maximum

flow 𝑓 with a minimal cost, where the cost of a flow is defined by

∑
𝑒∈𝐸 𝑓 (𝑒) · 𝑐 (𝑒). We say that

𝑓 is integral if all values 𝑓 (𝑒) are integers. It is known that, whenever the capacities are integral

(i.e., natural numbers, as will be in our case), an integral minimum cost maximum flow exists and,

moreover, can be found in polynomial time [1, Chapter 9].

From𝐷 we construct𝑛 instancesN1, . . . ,N𝑛 of theMCMF problem, where𝑛 is the number of facts

in 𝐷 , in the following way. First, we denote the FD 𝐴 → 𝐵 by 𝜑1 and the FD 𝐵 → 𝐴 by 𝜑2. We also

denote by𝐷.𝐴 the set of values occurring in attribute𝐴 in𝐷 (that is,𝐷.𝐴 = {a | ∃𝑓 ∈ 𝐷 (𝑓 [𝐴] = a)}).
We do the same for attribute 𝐵 and denote by 𝐷.𝐵 the set of values that occur in attribute 𝐵 in 𝐷 .

For each value a ∈ 𝐷.𝐴 we denote by #𝐷.𝐴 (a) the number of appearances of the value a in attribute

𝐴 (i.e., the number of facts 𝑓 ∈ 𝐷 such that 𝑓 [𝐴] = a). Similarly, we denote by #𝐷.𝐵 (b) the number

of appearances of the value b in attribute 𝐵 in 𝐷 . Observe that

vio(𝐷,𝜑1) =
1

2

·
∑︁

a∈𝐷.𝐴

[#𝐷.𝐴 (a) · (#𝐷.𝐴 (a) − 1)]

, Vol. 1, No. 1, Article . Publication date: June 2024.

16 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

𝑢𝑏3

(𝑖 − 1)𝑤𝜑2

𝑠
𝑘 𝑢1

𝑏2

𝑢2

𝑏1

𝑐 = 0

𝑢1

𝑏1

𝑠′

𝑣1

𝑎1

𝑣2

𝑎1

𝑣3

𝑎1

𝑣1

𝑎2

𝑣2

𝑎2

𝑣1

𝑎3

𝑐 (𝑣𝑖𝑎, 𝑣𝑎) =
(𝑖 − 1)𝑤𝜑1

𝑐 = 0

= −𝑤 𝑓

𝑐 (𝑣𝑖𝑎, 𝑢𝑏)

𝑣𝑎1
𝑢𝑏1

𝑢𝑏2
𝑣𝑎2

𝑐 = 0

𝑡

𝑢2

𝑏3

𝑢1

𝑏3

𝑢2

𝑏2𝑣𝑎3

𝑐 (𝑢𝑏, 𝑢𝑖𝑏) =

Fig. 4. The network N𝑘 constructed from the database of Figure 3a. The capacity of all edges is 1, except for

the edge (𝑠, 𝑠′) that has capacity 𝑘 .

since every fact of the form 𝑅(a, b) violates 𝜑1 with every fact 𝑅(a, c) where b ≠ c. Similarly, it

holds that

vio(𝐷,𝜑2) =
1

2

·
∑︁

b∈𝐷.𝐵

[#𝐷.𝐵 (b) · (#𝐷.𝐵 (b) − 1)]

Next, we describe the construction of the network N𝑘 . Our construction for the database of

Figure 3a is illustrated in Figure 4. Note that Figure 3b depicts the conflict graph of the database of

Figure 3a w.r.t. Δ = {𝐴 → 𝐵, 𝐵 → 𝐴}, which contains a vertex for each fact in the database and an

edge between two vertices if the corresponding facts jointly violate an FD of Δ. The blue edges in
the conflict graph are violations of the FD 𝐴 → 𝐵 and the red edges are violations of the FD 𝐵 → 𝐴.

For each𝑘 ∈ {1, . . . , 𝑛}we construct the networkN𝑘 that consists of the set {𝑠, 𝑠′, 𝑡}∪𝑉 ∪𝐴∪𝐵∪𝑈
of nodes where:

• 𝐴 = {𝑣a | a ∈ 𝐷.𝐴}
• 𝐵 = {𝑢b | b ∈ 𝐷.𝐵}
• 𝑉 = {𝑣𝑖a | a ∈ 𝐷.𝐴, 1 ≤ 𝑖 ≤ #𝐷.𝐴 (a)}
• 𝑈 = {𝑢𝑖b | b ∈ 𝐷.𝐵, 1 ≤ 𝑖 ≤ #𝐷.𝐵 (b)}

N𝑘 contains the following edges:

• (𝑠, 𝑠′), with cost 𝑐 (𝑠, 𝑠′) = 0

• (𝑠′, 𝑣𝑖a) for every 𝑣𝑖a ∈ 𝑉 , with cost 𝑐 (𝑠′, 𝑣𝑖a) = 0

• (𝑣𝑖a, 𝑣a) for every value a ∈ 𝐷 , with cost 𝑐 (𝑣𝑖a, 𝑣a) = (𝑖 − 1) ·𝑤𝜑1

• (𝑣a, 𝑢b) for every a ∈ 𝐷.𝐴 and b ∈ 𝐷.𝐵 such that 𝑓 = 𝑅(a, b) occurs in 𝐷 , with cost

𝑐 (𝑣a, 𝑢b) = −𝑤 𝑓

• (𝑢b, 𝑢𝑖b) for every value b ∈ 𝐷 , with cost 𝑐 (𝑢b, 𝑢𝑖b) = (𝑖 − 1) ·𝑤𝜑2

• (𝑢𝑖b, 𝑡) for every 𝑢
𝑖
b ∈ 𝑈 , with cost 𝑐 (𝑢𝑖b, 𝑡) = 0

The capacity of the edge (𝑠, 𝑠′) is 𝑘 and the capacity of the other edges is 1. The intuition for

the construction is as follows. A network with edges of the form (𝑣a, 𝑢b) that are connected to a

source on one side and a target on the other corresponds to a matching, which in turn corresponds

to a traditional repair. To allow violations of 𝐴 → 𝐵, we add the vertices 𝑣𝑖a. The cost of a violation

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 17

of this FD is defined by the cost of the edges (𝑣𝑖a, 𝑣a). In particular, if we keep 𝑘 facts of the form

𝑅(a, ·) for some a ∈ 𝐷.𝐴 we pay

∑𝑘
𝑖=1

(𝑖 − 1)𝑤𝜑1
for violations of 𝜑1. We include the vertices 𝑢𝑖b to

similarly allow violations of 𝐵 → 𝐴. The discarding of facts is discouraged by offering gain for the

edges (𝑣a, 𝑢b). Finally, to prevent the case where the flow always fills the entire network (which

corresponds to taking all facts and paying for all violations), we introduce the edge (𝑠, 𝑠′) which
limits the capacity of the network, and enables us to find the minimum cost flow of a given size 𝑘 .

We will show that for every 𝑘 , the cost of the solution to the MCMF problem onN𝑘 will be the cost

of the “cheapest” subinstance of 𝐷 of size 𝑘 . Hence, the solution to our problem is the cost of the

minimal solution among all the instances N1, . . . ,N𝑛 .

Given an integral flow 𝑓 in N𝑘 , the repair 𝐷 [𝑓] induced by 𝑓 , is the set of facts 𝑅(a, b) corre-
sponding to edges of the form (𝑣a, 𝑢b) such that 𝑓 (𝑣a, 𝑢b) = 1. Moreover, given a subinstance 𝐸 of

𝐷 of size 𝑘 , we denote by 𝑓𝐸 the integral flow in N𝑘 defined as follows.

• 𝑓𝐸 (𝑠, 𝑠′) = 𝑘

• 𝑓𝐸 (𝑠′, 𝑣𝑖a) = 1 for 1 ≤ 𝑖 ≤ #𝐸.𝐴(a) and 𝑓𝐸 (𝑠′, 𝑣𝑖a) = 0 for 𝑖 > #𝐸.𝐴(a) for every a ∈ 𝐸.𝐴

• 𝑓𝐸 (𝑣𝑖a, 𝑣a) = 1 for 1 ≤ 𝑖 ≤ #𝐸.𝐴(a) and 𝑓𝐸 (𝑣𝑖a, 𝑣a) = 0 for 𝑖 > #𝐸.𝐴(a) for every a ∈ 𝐸.𝐴

• 𝑓𝐸 (𝑣a, 𝑢b) = 1 if 𝑅(a, b) ∈ 𝐸 and 𝑓𝐸 (𝑣a, 𝑢b) = 0 otherwise

• 𝑓𝐸 (𝑢b, 𝑢𝑖b) = 1 for 1 ≤ 𝑖 ≤ #𝐸.𝐵(b) and 𝑓𝐸 (𝑢b, 𝑢𝑖b) = 0 for 𝑖 > #𝐸.𝐵(b) for every b ∈ 𝐸.𝐵

• 𝑓𝐸 (𝑢𝑖b, 𝑡) = 1 for 1 ≤ 𝑖 ≤ #𝐸.𝐵(b) and 𝑓𝐸 (𝑢𝑖b, 𝑡) = 0 for 𝑖 > #𝐸.𝐵(b) for every b ∈ 𝐸.𝐵

The reader can easily verify that 𝑓𝐸 is indeed an integral flow in N𝑘 . Clearly, the value of the flow

is 𝑘 .

We have the following lemma.

Lemma 5.1. Every integral solution 𝑓 to MCMF on N𝑘 satisfies cost(𝑓) = 𝑤𝐷 (𝑓 [𝐷]).

Proof. First, note that it cannot be the case that 𝑓 (𝑠′, 𝑣 𝑗a) = 0 while 𝑓 (𝑠′, 𝑣𝑖a) = 1 for some

𝑗 < 𝑖 and 𝑖 ∈ {1, . . . , #𝐷.𝐴 (a)}. Otherwise, we can construct a different integral flow 𝑓 ′ with
𝑓 ′ (𝑠′, 𝑣 𝑗a) = 𝑓 ′ (𝑣 𝑗a, 𝑣a) = 1, 𝑓 ′ (𝑠′, 𝑣𝑖a) = 𝑓 ′ (𝑣𝑖a, 𝑣a) = 0, and 𝑓 ′ (𝑒) = 𝑓 (𝑒) for every other edge 𝑒 . It

holds that cost(𝑓 ′) = cost(𝑓) − 𝑐 (𝑣𝑖a, 𝑣a) + 𝑐 (𝑣
𝑗
a, 𝑣a), and since 𝑐 (𝑣𝑖a, 𝑣a) > 𝑐 (𝑣 𝑗a, 𝑣a) we will have that

cost(𝑓 ′) < cost(𝑓) in contradiction to the fact that 𝑓 is a solution to MCMF on N𝑘 . Therefore,

for every a ∈ 𝐷.𝐴, if the flow entering the node 𝑣a is ℓ , then 𝑓 (𝑠′, 𝑣𝑖a) = 𝑓 (𝑣𝑖a, 𝑣a) = 1 if 𝑖 ≤ ℓ

and 𝑓 (𝑠′, 𝑣𝑖a) = 𝑓 (𝑣𝑖a, 𝑣a) = 0 otherwise. Thus, the total cost of the edges of the form (𝑣𝑖a, 𝑣a) is∑ℓ
𝑖=1

[
(𝑖 − 1)𝑤𝜑1

]
= 1

2
ℓ (ℓ − 1)𝑤𝜑1

. By the definition of 𝑓 [𝐷], there are #𝑓 [𝐷] .𝐴 (a) edges of the form
(𝑣a, 𝑢b) for which 𝑓 (𝑣a, 𝑢b) = 1. By the definition of a flow, this is also the flow entering the node

𝑣a, and we have that ℓ = #𝑓 [𝐷] .𝐴 (a). We conclude that the total cost of the flow on edges of the

form (𝑣𝑖a, 𝑣a) is ∑︁
a∈ 𝑓 [𝐷] .𝐴

[
1

2

· #𝑓 [𝐷] .𝐴 (a) · (#𝑓 [𝐷] .𝐴 (a) − 1) ·𝑤𝜑1

]
= vio(𝑓 [𝐷], 𝜑1) ·𝑤𝜑1

.

The same argument shows that the total cost of the flow on edges of the form (𝑢b, 𝑢𝑖b) is vio(𝑓 [𝐷], 𝜑2)·
𝑤𝜑2

.

Finally, the total cost of the edges of the form (𝑣a, 𝑢b) is
∑

𝑔∈ 𝑓 [𝐷] (−𝑤𝑔) by the definition of 𝑓 [𝐷]
and the construction of the network. We conclude that:

cost(𝑓) = ©­«
∑︁

𝑔∈ 𝑓 [𝐷]
(−𝑤𝑔)ª®¬ + vio(𝑓 [𝐷], 𝜑1) ·𝑤𝜑1

+ vio(𝑓 [𝐷], 𝜑2) ·𝑤𝜑2

and cost(𝑓) = 𝑤𝐷 (𝑓 [𝐷]) by definition. □

, Vol. 1, No. 1, Article . Publication date: June 2024.

18 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

The next lemma follows straightforwardly from the construction of N𝑘 and the definition of 𝑓𝐸 .

Lemma 5.2. Every subinstance 𝐸 of 𝐷 satisfies cost(𝑓𝐸) = 𝑤𝐷 (𝐸).
Now, let 𝐸 be an optimal subset of 𝐷 w.r.t. Δ and assume that |𝐸 | = 𝑘 . Let 𝑓 ∗ be a solution with

the minimum cost among all the solutions to MCMF onN1 . . . ,N𝑛 . Lemma 5.2 implies that there is

an integral flow 𝑓𝐸 in N𝑘 such that cost(𝑓𝐸) = 𝑤𝐷 (𝐸). Hence, we have that cost(𝑓 ∗) ≤ 𝑤𝐷 (𝐸). By
applying Lemma 5.1 on 𝑓 ∗, there is another subinstance 𝐸′

of 𝐷 such that𝑤𝐷 (𝐸′) = cost(𝑓 ∗). Since
𝐸 is an optimal subset, we have that𝑤𝐷 (𝐸) ≤ 𝑤𝐷 (𝐸′). Overall, we have that cost(𝑓 ∗) ≤ 𝑤𝐷 (𝐸) ≤
𝑤𝐷 (𝐸′) = cost(𝑓 ∗), and we conclude that cost(𝑓 ∗) = 𝑤𝐷 (𝐸). Therefore, by taking the solution

with the lowest cost among all solutions to MCMF on N1, . . . ,N𝑛 , we indeed find a solution to our

problem, and that concludes the description of our algorithm.

Example 5.3. Consider again the database of Figure 3a. Assume that:

𝑤𝜑1
= 𝑤𝜑2

= 2 𝑤 𝑓1 = 𝑤 𝑓2 = 𝑤 𝑓3 = 𝑤 𝑓4 = 𝑤 𝑓5 = 𝑤 𝑓6 = 1

Since the cost of a violation is “too high” in this case (i.e., it is always cheaper to delete a fact

involved in a violation than to keep the violation), an optimal subset in this case is, in fact, an optimal

repair in the traditional sense (that is, when the constraints are assumed to be hard constraints).

One possible optimal repair in this case is {𝑓2, 𝑓4, 𝑓6}. The flow corresponding to this repair in the

network N3 is illustrated in Figure 5a.

Now, assume that:

𝑤𝜑1
= 𝑤𝜑2

= 1 𝑤 𝑓1 = 𝑤 𝑓2 = 𝑤 𝑓3 = 𝑤 𝑓4 = 𝑤 𝑓5 = 𝑤 𝑓6 = 3

In this case, the cost of deleting a fact is “too high”, since each fact is involved in at most two

violations, and the cost of keeping the violation is lower than the cost of removing facts involved

in the violation. Therefore, the database itself is an optimal subset, and the corresponding flow in

the network N6 is illustrated in Figure 5b.

As another example, assume that:

𝑤𝜑1
= 𝑤𝜑2

= 1 𝑤 𝑓1 = 𝑤 𝑓2 = 𝑤 𝑓5 = 2,𝑤 𝑓3 = 𝑤 𝑓4 = 1,𝑤 𝑓6 = 3

Here an optimal subset consists of the facts in {𝑓1, 𝑓2, 𝑓5, 𝑓6}, and the corresponding flow in the

network N4 is illustrated in Figure 5c. If we modify the weight of 𝜑2 and define 𝑤𝜑2
= 4, while

keeping the rest of the weight intact, it is now cheaper to delete the fact 𝑓2 rather than keep the

violations it is involved in with 𝑓1 and 𝑓5; hence, an optimal subset in this case is {𝑓1, 𝑓5, 𝑓6}, and the
corresponding flow in the network N3 is illustrated in Figure 5d. □

We therefore establish the following.

Theorem 5.4. Soft repairing is solvable in polynomial time for 𝑅(𝐴, 𝐵) and Δ = {𝐴 → 𝐵, 𝐵 → 𝐴}.
Note that the FD set {𝐴 → 𝐵} over 𝑅(𝐴, 𝐵) is in fact a special case of the result of Theorem 5.7, as

we can compute an optimal subset for this FD set using the algorithm described above by defining

𝑤𝐵→𝐴 = 0. However, this algorithm works only for the case where the single FD is a key and fails

to compute the correct solution when the schema contains attributes that do not appear in the FD.

The algorithm described in the proof of Theorem 4.3, on the other hand, can handle this case and

does not assume anything about the underlying schema.

5.1 Generalization
We now extend our algorithm beyond bipartite matching to the more general case of a matching

constraint. By a “matching constraint” we refer to the case of Δ̂ = {𝑋 → 𝑌,𝑋 ′ → 𝑌 ′} over a
schema 𝑅(𝐴1, . . . , 𝐴𝑘) where 𝑋 ∪ 𝑌 = 𝑋 ′ ∪ 𝑌 ′ = 𝑋 ∪ 𝑋 ′ = {𝐴1, . . . , 𝐴𝑘 }. An example follows.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 19

𝑠 𝑢𝑏2

𝑘 = 3

𝑢1

𝑏1

𝑢2

𝑏1

𝑢1

𝑏2

𝑢2

𝑏2

𝑢1

𝑏3

𝑢2

𝑏3

𝑡𝑠′

𝑣1

𝑎1

𝑣2

𝑎1

𝑣3

𝑎1

𝑣1

𝑎2

𝑣2

𝑎2

𝑣1

𝑎3

𝑣𝑎1
𝑢𝑏1

𝑣𝑎2

𝑣𝑎3
𝑢𝑏3

(a)

𝑡

𝑣1

𝑎1

𝑣2

𝑎1

𝑣3

𝑎1

𝑣1

𝑎2

𝑣2

𝑎2

𝑣1

𝑎3

𝑣𝑎1
𝑢𝑏1

𝑢𝑏2
𝑣𝑎2

𝑣𝑎3
𝑢𝑏3

𝑠
𝑘 = 6

𝑢1

𝑏1

𝑢2

𝑏1

𝑢1

𝑏2

𝑢2

𝑏2

𝑢1

𝑏3

𝑢2

𝑏3

𝑠′

(b)

𝑡

𝑣1

𝑎1

𝑣2

𝑎1

𝑣3

𝑎1

𝑣1

𝑎2

𝑣2

𝑎2

𝑣1

𝑎3

𝑣𝑎1
𝑢𝑏1

𝑢𝑏2
𝑣𝑎2

𝑣𝑎3
𝑢𝑏3

𝑠
𝑘 = 4

𝑢1

𝑏1

𝑢2

𝑏1

𝑢1

𝑏2

𝑢2

𝑏2

𝑢1

𝑏3

𝑢2

𝑏3

𝑠′

(c)

𝑡

𝑣1

𝑎1

𝑣2

𝑎1

𝑣3

𝑎1

𝑣1

𝑎2

𝑣2

𝑎2

𝑣1

𝑎3

𝑣𝑎1
𝑢𝑏1

𝑢𝑏2
𝑣𝑎2

𝑣𝑎3
𝑢𝑏3

𝑠
𝑘 = 3

𝑢1

𝑏1

𝑢2

𝑏1

𝑢1

𝑏2

𝑢2

𝑏2

𝑢1

𝑏3

𝑢2

𝑏3

𝑠′

(d)

Fig. 5. The flow in the network N𝑘 corresponding to an optimal subset of the database of Figure 3a for

different weights.

, Vol. 1, No. 1, Article . Publication date: June 2024.

20 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

Example 5.5. Consider the database of our running example (Figure 1), and the following FDs:

• Flight Airline Date → Origin Destination Airplane,

• Origin Destination Airplane Date → Flight Airline.

The reader can easily verify that these two FDs form a matching constraint. On the other hand,

consider the set consisting of the following two FDs:

• Flight Date → Airline Origin Destination Airplane,

• Origin Destination Airplane Date → Flight Airline.

Here, we do not have a matching constraint since while it holds that

𝑋 ∪ 𝑌 = 𝑋 ′ ∪ 𝑌 ′ = {Flight,Airline,Date,Origin,Destination,Airplane} ,
the set 𝑋 ∪ 𝑋 ′

misses the Airline attribute. □

The generalization of Theorem 5.4 from Δ = {𝐴 → 𝐵, 𝐵 → 𝐴} over 𝑅(𝐴, 𝐵) to the general case

of a matching constraint is fairly straightforward. Given an input 𝐷̂ for soft repairing over 𝑅 and Δ̂,

we construct an input 𝐷 over 𝑅 and Δ by defining unique values 𝑎(𝜋𝑋 (ˆ𝑓)) and 𝑏 (𝜋𝑋 ′ (ˆ𝑓)) for the
projections 𝜋𝑋 (ˆ𝑓) and 𝜋𝑋 ′ (ˆ𝑓) over 𝑋 and 𝑋 ′

, respectively, of every fact
ˆ𝑓 of 𝐷̂ . Then, the database

𝐷 is simply the set of all the pairs 𝑎(𝜋𝑋 ˆ𝑓) and 𝑏 (𝜋𝑋 ′ ˆ𝑓) for all facts ˆ𝑓 of 𝐷 :

𝐷
def

= {(𝑎(𝜋𝑋 ˆ𝑓), 𝑏 (𝜋𝑋 ′ ˆ𝑓)) | ˆ𝑓 ∈ 𝐷̂}

In addition, we define 𝑤 𝑓
def

= 𝑤 ˆ𝑓
whenever 𝑓 = (𝑎(𝜋𝑋 ˆ𝑓), 𝑏 (𝜋𝑋 ′ ˆ𝑓)) and 𝑤𝐴→𝐵

def

= 𝑤𝑋→𝑌 and

𝑤𝐵→𝐴
def

= 𝑤𝑋 ′→𝑌 ′ . Note that the mapping 𝑓 → ˆ𝑓 is reversible since 𝑋 ∪ 𝑋 ′ = {𝐴1, . . . , 𝐴𝑘 }. So,
in order to solve soft repairing for 𝐷̂ , we solve it for 𝐷 and transform every fact 𝑓 of 𝐷 into the

corresponding fact
ˆ𝑓 of 𝐷̂ .

Example 5.6. Consider the matching constraint from Example 5.5. Figure 6 demonstrates the

reduction in this case.

We get the following result. The proof is by showing the correctness of the reduction.

Theorem 5.7. Soft repairing is solvable in polynomial time whenever Δ is a pair of FDs that
constitutes a matching constraint.

Proof. We prove that 𝐷 has a subset 𝐸 with cost(𝐸 | 𝐷) = 𝑘 if and only if 𝐷̂ has a subset 𝐸 with

cost(𝐸 | 𝐷̂) = 𝑘 . Let 𝐸 be a subset of 𝐷 with cost 𝑘 . Let 𝐸 be a subset of 𝐷̂ that includes the fact
ˆ𝑓

for every 𝑓 ∈ 𝐸. By definition, we have that
∑

𝑓 ∈ (𝐷\𝐸)𝑤𝑓
=
∑

𝑓 ∈ (𝐷̂\𝐸)𝑤 ˆ𝑓
; hence, it is left to show that∑

𝜑∈∆
𝑤𝜑 |vio(𝐸, 𝜑) | =

∑
𝜑̂∈∆̂

𝑤𝜑̂ |vio(𝐸, 𝜑) |. Let 𝑓 , 𝑔 ∈ 𝐸 such that {𝑓 , 𝑔} ̸|= (𝐴 → 𝐵). Hence, it holds
that 𝑓 [𝐴] = 𝑔[𝐴] while 𝑓 [𝐵] ≠ 𝑔[𝐵]. From the construction of 𝐷 , we have that 𝜋𝑋 ˆ𝑓 = 𝜋𝑋𝑔, while

𝜋𝑋 ′ ˆ𝑓 ≠ 𝜋𝑋 ′𝑔. Thus, there is an attribute 𝐴𝑖 ∈ 𝑋 ′
such that

ˆ𝑓 [𝐴𝑖] ≠ 𝑔[𝐴𝑖] and since 𝐴𝑖 ∉ 𝑋 and

𝑋 ∪ 𝑌 = {𝐴1, . . . , 𝐴𝑘 }, it holds that 𝐴𝑖 ∈ 𝑌 . We conclude that { ˆ𝑓 , 𝑔} ̸|= (𝑋 → 𝑌). We can similarly

prove that if {𝑓 , 𝑔} ̸|= (𝐵 → 𝐴), then { ˆ𝑓 , 𝑔} ̸|= (𝑋 ′ → 𝑌 ′). Finally, because 𝑤𝐴→𝐵 = 𝑤𝑋→𝑌 and

𝑤𝐵→𝐴 = 𝑤𝑋 ′→𝑌 ′ it holds that
∑

𝜑∈∆
𝑤𝜑 |vio(𝐸, 𝜑) | =

∑
𝜑̂∈∆̂

𝑤𝜑̂ |vio(𝐸, 𝜑) |.
For the other direction, let 𝐸 be a subset of 𝐷̂ , and let 𝐸 be the subset of 𝐷 that includes the fact 𝑓

for every
ˆ𝑓 ∈ 𝐸. It is again straightforward that

∑
𝑓 ∈ (𝐷\𝐸)𝑤𝑓

=
∑

𝑓 ∈ (𝐷̂\𝐸)𝑤 ˆ𝑓
. Now, let

ˆ𝑓 , 𝑔 ∈ 𝐸 such

that { ˆ𝑓 , 𝑔} ̸|= (𝑋 → 𝑌). We have that
ˆ𝑓 [𝐴𝑖] = 𝑔[𝐴𝑖] for every 𝐴𝑖 ∈ 𝑋 ; thus, 𝜋𝑋 ˆ𝑓 = 𝜋𝑋𝑔 and from

the construction of 𝐷 , it holds that 𝑓 [𝐴] = 𝑔[𝐴]. On the other hand, the fact that
ˆ𝑓 [𝐴𝑖] ≠ 𝑔[𝐴𝑖] for

some 𝐴𝑖 ∈ 𝑌 together with the fact that 𝑋 ∪ 𝑌 = 𝑋 ∪ 𝑋 ′ = {𝐴1, . . . , 𝐴𝑘 } imply that 𝜋𝑋 ′ ˆ𝑓 ≠ 𝜋𝑋 ′𝑔

and 𝑓 [𝐵] ≠ 𝑔[𝐵]. Hence, {𝑓 , 𝑔} ̸|= (𝐴 → 𝐵). We can similarly prove that if { ˆ𝑓 , 𝑔} ̸|= (𝑋 ′ → 𝑌 ′),

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 21

Flights

Flight Airline Date Origin Destination Airplane

UA123 United Airlines 01/01/2021 LA NY N652NW 3

UA123 United Airlines 01/01/2021 NY UT N652NW 2

UA123 Delta 01/01/2021 LA NY N652NW 1

DL456 Southwest 02/01/2021 NC MA N713DX 2

DL456 Southwest 03/01/2021 NJ FL N245DX 1

DL456 Delta 03/01/2021 CA IL N819US 4

(a) 𝐷̂

⇓
Flights

(Flight, Airline, Date) (Origin, Destination, Airplane, Date)

𝑎(UA123, United Airlines, 01/01/2021) 𝑏(LA, NY, N652NW, 01/01/2021) 3

𝑎(UA123, United Airlines, 01/01/2021) 𝑏(NY, UT, N652NW, 01/01/2021) 2

𝑎(UA123, Delta, 01/01/2021) 𝑏(LA, NY, N652NW, 01/01/2021) 1

𝑎(DL456, Southwest, 02/01/2021) 𝑏(NC, MA, N713DX, 02/01/2021) 2

𝑎(DL456, Southwest, 03/01/2021) 𝑏(NJ, FL, N245DX, 03/01/2021) 1

𝑎(DL456, Delta, 03/01/2021) 𝑏(CA, IL, N819US, 03/01/2021) 4

(b) 𝐷

Fig. 6. A reduction to a bipartite matching from the matching constraint Flight Airline Date →
Origin Destination Airplane and Origin Destination Airplane Date → Flight Airline.

then {𝑓 , 𝑔} ̸|= (𝐵 → 𝐴), which again implies that

∑
𝜑∈∆

𝑤𝜑 |vio(𝐸, 𝜑) | =
∑

𝜑̂∈∆̂
𝑤𝜑̂ |vio(𝐸, 𝜑) |, and

the concludes our proof. □

The extension of the algorithm from bipartite matching {𝐴 → 𝐵, 𝐵 → 𝐴} to general matching

constraints raises the question of whether the algorithm could be naturally extended to a more

general class of FD sets. This problem is left as a challenge for future research.

6 PROBABILISTIC CHALLENGES
We now discuss the reasoning about soft constraints from a view broader than the discussion thus

far. Recall from the Introduction that, in the bigger context, the semantics we adopt is that of a

parametric factor graph, where the probability of a possible world is the product of factors. In turn,

we get a factor from every violation of a constraint and from every deletion of a fact. With that

perspective in mind, the problem of soft repairing (Problem 2.1) is one kind of a fundamental task

in probabilistic inference, and there are several others that should be studied.

To be more precise, we adopt the convention (e.g., [32–34, 37]) that the weight is converted

into a multiplicative factor, typically through the exponent function. In particular, a violation of

constraint 𝜑 contributes to the product the factor exp(−𝑤𝜑), and a deleted fact 𝑓 contributes the

factor exp(−𝑤 𝑓). In the sequel, we will denote the factors by 𝐹𝜑 and 𝐹𝑓 , respectively and assume

that they are strictly positive. The probability of a possible world is proportional to the product of

its factors, and then normalization is required for this product to define a true probability space.

To be more precise, each subset 𝐸 of 𝐷 is viewed as a possible world (i.e., a deterministic sample

database) with the unnormalized probability

U𝐷 [𝐸]
def

=
∏

𝑓 ∈𝐷\𝐸
𝐹𝑓 ·

∏
𝜑∈Δ

𝐹
|vio(𝐸,𝜑) |
𝜑 . (2)

, Vol. 1, No. 1, Article . Publication date: June 2024.

22 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

Recall that vio(𝐷,𝜑) is the set of all the violations of the FD 𝜑 in 𝐷 . For example, in the typical con-

version of weights into factors we haveU𝐷 [𝐸] = 𝑒−cost(𝐸 |𝐷)
where cost(𝐸 | 𝐷) is the cost function

defined in Equation (1). The probability space is then defined by straightforwardly normalizing:

Pr𝐷 [𝐸]
def

= U𝐷 [𝐸]/𝑍 (𝐷)
where 𝑍 (𝐷) is the partition function (or normalization constant) defined naturally as

𝑍 (𝐷) def

=
∑︁
𝐸⊆𝐷

U𝐷 [𝐸] . (3)

6.1 Computational Challenges
With the above probability space defined, the problem of soft repairing is simply that of finding a

world 𝐸 with a maximal probability — a problem known in computational statistics as Maximum
a Posteriori (MAP) inference or Most Probable Explanation (MPE) inference, and in the context of

database cleaning as that of computing the most likely intention [33], the most probable world [34],

or the most probable database [16]. Some other inference problems that arise from this viewpoint

follow.

Problem 6.1 (Marginal Inference). Let 𝑅(𝐴1, . . . , 𝐴𝑘) be a relation schema, Δ a set of FDs, and
𝑄 a Boolean query over 𝑅(𝐴1, . . . , 𝐴𝑘). Marginal inference (of 𝑄 for 𝑅(𝐴1, . . . , 𝐴𝑘) and Δ) is the
following computational problem: Given a database 𝐷 , compute the probability

Pr𝐷 [𝑄]
def
=

∑︁
𝐸⊆𝐷
𝐸 |=𝑄

Pr𝐷 [𝐸] .

One straightforward approach to solving marginal inference approximately, with error guar-

antees, is the Monte Carlo sampling: evaluate the query over samples from the distribution, and

take the average over all samples. Yet, for that we need to have a sampling procedure, where the

probability of each 𝐸 is the same as (precisely or approximately) its probability Pr𝐷 [𝐸] in the true

distribution. This problem is often challenging in probability spaces defined via factor graphs

(known as discriminative rather than generative).

Problem 6.2 (Sampling). Let 𝑅(𝐴1, . . . , 𝐴𝑘) be a relation schema and Δ a set of FDs. Sampling

(for 𝑅(𝐴1, . . . , 𝐴𝑘) and Δ) is the following computational problem: Given a database 𝐷 , generate a
random subset of 𝐷 , so that the probability 𝑝 (𝐸) of generating every 𝐸 ⊆ 𝐷 is equal to Pr𝐷 [𝐸].
As implied by the definition of the probability in Equation (2), one may need to compute the

partition function 𝑍 (𝐷) in order to conduct marginal inference and sampling. In general, this need

arises in other tasks such as MPE and weight learning [12, 27]. Hence, we formally define this task

as well.

Problem 6.3 (Partition-Function Computation). Let 𝑅(𝐴1, . . . , 𝐴𝑘) be a relation schema and Δ
a set of FDs. Partition-function computation (for 𝑅(𝐴1, . . . , 𝐴𝑘) and Δ) is the following computational
problem: Given a database 𝐷 , compute 𝑍 (𝐷).
Remark 6.4. We again note that extending the problems discussed here to multiple relations is

straightforward. For example, sampling a possible world entails independent sampling from each
relation, and the partition function of the database is the product of the partition functions of the
individual relations. In the case of marginal inference, we have looked at queries over a single relation,
so other relations have no impact on the outcome. Yet, a nontrivial question is regarding cross-relation
queries, such as conjunctive queries, where the problem inherits the computational hardness featured
by tuple-independent probabilistic databases [10, 11].

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 23

6.1.1 Numerical Representation. For the sake of formal complexity analysis, in the remainder

of this section we will assume that the factors 𝐹𝑓 and 𝐹𝜑 are given directly as input rather than

represented through the weights𝑤 𝑓 and𝑤𝜑 , respectively. The importance of this assumption is that

the conversion from a weight𝑤 to the factor 𝑒−𝑤 requires the application of the exponent function,

and then we immediately encounter the problem of numerical imprecision since the cost becomes

irrational even if the weight is rational. The implication would be that every upper and lower

bound would require to involve either approximation or an alternative (symbolic) representation

of numbers.
3
Hence, we assume that each fact 𝑓 is given along with its factor 𝐹𝑓 > 0, and each

FD 𝜑 is given along with its factor 𝐹𝜑 > 0; each factor is represented as a pair of positive integers

in the usual binary system, where the first and second numbers stand for the numerator and the

denominator, respectively, of a rational number.

6.2 Algorithms for a Single FD
We show that for a set Δ that consists of a single FD 𝜑 , all three problem have a polynomial time

solution.

6.2.1 Computing the Partition Function. We start by showing that the partition function 𝑍 (𝐷)
can be computed in polynomial time, given a database 𝐷 . As in the case of soft repairing for a

single FD, we split 𝐷 into blocks 𝐷1, . . . , 𝐷𝑛 . As there are no conflicts across blocks, it is rather

straightforward that:

𝑍 (𝐷) =
𝑛∏
𝑖=1

𝑍 (𝐷𝑖)

Hence, we focus on the computation of the partition function for a single block that we denote by

𝐷 ′
. Let 𝐷 ′

1
, . . . , 𝐷 ′

𝑚 be the subblocks of 𝐷 ′
w.r.t. 𝜑 , according to some arbitrary order.

Consider a block 𝐷 ′
of size ℓ . We number the facts in the block by 1, . . . , ℓ such that the facts of

each subblock are consecutive. We denote by 𝑇 [𝑗, 𝑘, 𝑡] the value of the partition function when

restricted to subsets 𝐸 that are contained in {𝑓1, . . . , 𝑓𝑗 }, and where the facts of 𝐸 are additionally

penalized for any violations they have with 𝑡 additional facts in the subblock of 𝑓𝑗 and 𝑘 additional

facts in subblocks that occur after the subblock of 𝑓𝑗 . Our goal is then to compute 𝑇 [ℓ, 0, 0].
We denote by SB(𝑓) the subblock that contains the fact 𝑓 . The computation in each case separates

to two disjoint cases: (1) we remove the fact 𝑓𝑗 and (2) we keep this fact.

𝑇 [𝑗, 𝑘, 𝑡] =


𝐹𝑓𝑗 + (𝐹𝜑)𝑘 𝑗 = 1;

𝐹𝑓𝑗 ·𝑇 [𝑗 − 1, 𝑘, 𝑡] + (𝐹𝜑)𝑘 ·𝑇 [𝑗 − 1, 𝑘, 𝑡 + 1] 𝑗 > 1 and SB(𝑓𝑗−1) = SB(𝑓𝑗);
𝐹𝑓𝑗 ·𝑇 [𝑗 − 1, 𝑘 + 𝑡, 0] + (𝐹𝜑)𝑘 ·𝑇 [𝑗 − 1, 𝑘 + 𝑡 + 1, 0] 𝑗 > 1 and SB(𝑓𝑗−1) ≠ SB(𝑓𝑗).

In the base case, 𝑗 = 1, meaning there is only one fact. We either remove the fact 𝑓1, which

contributes the factor 𝐹𝑓1 , or we keep this fact and pay for 𝑘 violations among 𝑓1 and the facts of

𝐷 ′
2
, . . . , 𝐷 ′

𝑚 . We next describe the case of 𝑗 > 1.

In case we remove 𝑓𝑗 (corresponding to the first summand of all cases), the deleted fact contributes

the factor 𝐹𝑓𝑗 . If 𝑓𝑗−1 and 𝑓𝑗 belong to the same subblock 𝐷 ′
𝑖 , this factor is then multiplied by

𝑇 [𝑗 − 1, 𝑘, 𝑡] because a subset 𝐸 of {𝑓1, . . . , 𝑓𝑗 } that does not contain 𝑓𝑗 and where the facts of 𝐸

are penalized for violations with 𝑡 additional facts of 𝐷 ′
𝑖 and 𝑘 additional facts of 𝐷 ′

𝑖+1
, . . . , 𝐷 ′

𝑚

is in fact a subset of {𝑓1, . . . , 𝑓𝑗−1} that satisfies the same property. If, on the other hand, 𝑓𝑗−1

belongs to the subblock 𝐷 ′
𝑖−1

while 𝑓𝑗 belongs to the subblock 𝐷 ′
𝑖 , then we multiply the factor 𝐹𝑓𝑗

3
Note that this problem did not arise in the previous sections, since there we were interested in the sum of weights and did

not need to transform them into factors.

, Vol. 1, No. 1, Article . Publication date: June 2024.

24 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

by 𝑇 [𝑗 − 1, 𝑘 + 𝑡, 0] since a subset 𝐸 of {𝑓1, . . . , 𝑓𝑗 } that does not contain 𝑓𝑗 and where the facts of

𝐸 are penalized for violations with 𝑡 additional facts of 𝐷 ′
𝑖 and 𝑘 additional facts of 𝐷 ′

𝑖+1
, . . . , 𝐷 ′

𝑚

is a subset of {𝑓1, . . . , 𝑓𝑗−1} which facts are penalized for violations with 𝑘 + 𝑡 additional facts of

𝐷 ′
𝑖 , . . . , 𝐷

′
𝑚 .

In case we keep 𝑓𝑗 (corresponding to the second summand of all cases), we have 𝑘 additional

violations between 𝑓𝑗 and the additional facts of the subblocks occuring after the subblock of 𝑓𝑗 ;

these violations contribute the factor (𝐹𝜑)𝑘 . This factor is then multiplied by 𝑇 [𝑗 − 1, 𝑘, 𝑡 + 1] if
𝑓𝑗−1 and 𝑓𝑗 belong to the same subblock 𝐷 ′

𝑖 , because a subset 𝐸 of {𝑓1, . . . , 𝑓𝑗 } that contains 𝑓𝑗 and
where the facts of 𝐸 are penalized for violations with 𝑡 additional facts of 𝐷 ′

𝑖 and 𝑘 additional facts

of 𝐷 ′
𝑖+1

, . . . , 𝐷 ′
𝑚 consists of the fact 𝑓𝑗 and a subset 𝐸′

of {𝑓1, . . . , 𝑓𝑗−1} where the facts of 𝐸′
are

penalized for violations with 𝑡 + 1 additional facts of 𝐷 ′
𝑖 (including 𝑓𝑗) and 𝑘 additional facts of

𝐷 ′
𝑖+1

, . . . , 𝐷 ′
𝑚 . If 𝑓𝑗−1 belongs to the subblock 𝐷 ′

𝑖−1
while 𝑓𝑗 belongs to the subblock 𝐷 ′

𝑖 , then we

multiply the factor (𝐹𝜑)𝑘 by 𝑇 [𝑗 − 1, 𝑘 + 𝑡 + 1, 0] since a subset 𝐸 of {𝑓1, . . . , 𝑓𝑗 } that contains 𝑓𝑗
and where the facts of 𝐸 are penalized for violations with 𝑡 additional facts of 𝐷 ′

𝑖 and 𝑘 additional

facts of 𝐷 ′
𝑖+1

, . . . , 𝐷 ′
𝑚 consists of 𝑓𝑗 and a subset 𝐸′

of {𝑓1, . . . , 𝑓𝑗−1} whose facts are penalized for

violations with 𝑘 + 𝑡 + 1 additional facts of 𝐷 ′
𝑖 , . . . , 𝐷

′
𝑚 (including the fact 𝑓𝑗).

This completes the description of the algorithm. Hence, we get the following.

Theorem 6.5. In the case of a single FD, the partition function can be computed in polynomial time.

Alternative Algorithm. We now present an alternative algorithm for computing the partition

function in polynomial time in the case of a single FD. While the previous algorithm is simpler,

the upcoming algorithm has the advantage that it is naturally extensible to the more general case

where the set of FDs can be emptied via L/C-Simplify(∆), as we establish later in Section 6.3.

As a first step, we compute the following value for every subblock 𝐷 ′
𝑖 of the block 𝐷 ′

:

𝑃 [𝐷 ′
𝑖 , 𝑘]

def

=
∑︁
𝐸⊆𝐷 ′

𝑖

|𝐸 |=𝑘

U[𝐸 | 𝐷 ′
𝑖] .

That is, 𝑃 [𝐷 ′
𝑖 , 𝑘] is the contribution of all the subsets of 𝐷 ′

𝑖 of size 𝑘 to 𝑍 (𝐷 ′
𝑖).

Let 𝑓1, . . . , 𝑓𝑟 be an arbitrary order over the facts of 𝐷 ′
𝑖 . For ℓ ∈ {1, . . . , 𝑟 } we denote by 𝑃 [𝐷 ′

𝑖 , 𝑘, ℓ]
the value of the partition function when restricted to subsets 𝐸 of 𝐷 ′

𝑖 that such that 𝐸 ⊆ {𝑓1, . . . , 𝑓ℓ }
and |𝐸 | = 𝑘 . Formally,

𝑃 [𝐷 ′
𝑖 , 𝑘, ℓ]

def

=
∑︁

𝐸⊆{ 𝑓1,...,𝑓ℓ }
|𝐸 |=𝑘

U[𝐸 | {𝑓1, . . . , 𝑓ℓ }] .

Note that the cost is with respect to the part of the database that is considered up to this point in the

dynamic programming, and so, we useU[𝐸 | {𝑓1, . . . , 𝑓ℓ }]. We then have that 𝑃 [𝐷 ′
𝑖 , 𝑘] = 𝑃 [𝐷 ′

𝑖 , 𝑘, 𝑟].
We now show how to compute the value 𝑃 [𝐷 ′

𝑖 , 𝑘, ℓ] using dynamic programming.

𝑃 [𝐷 ′
𝑖 , 𝑘, ℓ] =


0 if ℓ = 1 and 𝑘 ∉ {0, 1};
𝐹𝑓1 if ℓ = 1 and 𝑘 = 0;

1 if ℓ = 1 and 𝑘 = 1;

𝑃 [𝐷 ′
𝑖 , 𝑘, ℓ − 1] · 𝐹𝑓ℓ + 𝑃 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1] otherwise.

For ℓ = 1 (i.e., when we consider only the first fact), we have a single world of cardinality zero

(i.e., ∅) with the factor 𝐹𝑓1 , a single world of cardinality one (i.e., {𝑓1}) with the factor 1, and no

worlds of cardinality 𝑘 ∉ {0, 1}. For ℓ > 1, each world of cardinality 𝑘 either contains 𝑘 facts from

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 25

{𝑓1, . . . , 𝑓ℓ−1}, in which case we have the additional factor of removing the fact 𝑓ℓ , or 𝑘 − 1 facts

from {𝑓1, . . . , 𝑓ℓ−1} and the fact 𝑓ℓ , which incurs no additional cost.

Now, we use the values 𝑃 [𝐷 ′
𝑖 , 𝑘] to compute the value 𝑃 ′ [𝐷 ′, 𝑘], which is defined in the same

way as 𝑃 [𝐷 ′
𝑖 , 𝑘], except that we consider subsets of 𝐷 ′

. Clearly, we have that:

𝑍 (𝐷 ′) =
|𝐷 ′ |∑︁
𝑘=0

𝑃 ′ [𝐷 ′, 𝑘] .

As in the case of 𝑃 [𝐷 ′
𝑖 , 𝑘], we use dynamic programming to compute the value 𝑃 ′ [𝐷 ′, 𝑘]. Here, we

denote by 𝑃 ′ [𝐷 ′, 𝑘, ℓ] the value of the partition function when restricted to subsets 𝐸 of𝐷 ′
such that

𝐸 ⊆ {𝐷 ′
1
, . . . , 𝐷 ′

ℓ } and |𝐸 | = 𝑘 . Hence, 𝑃 ′ [𝐷 ′, 𝑘] = 𝑃 ′ [𝐷 ′, 𝑘,𝑚], and we focus on the computation of

𝑃 [𝐷 ′, 𝑘, ℓ]. We have that:

𝑃 ′ [𝐷 ′, 𝑘, ℓ] =
{
𝑃 ′ [𝐷 ′

ℓ , 𝑘] if ℓ = 1;∑𝑘
𝑡=0

𝑃 ′ [𝐷 ′, 𝑡, ℓ − 1] · 𝑃 ′ [𝐷 ′
ℓ , 𝑘 − 𝑡] · (𝐹𝜑)𝑡 · (𝑘−𝑡) otherwise.

That is, every subset 𝐸 of cardinality 𝑘 of {𝐷 ′
1
, . . . , 𝐷 ′

ℓ } consists of a subset 𝐸1 of cardinality 𝑡 of

{𝐷 ′
1
, . . . , 𝐷 ′

ℓ−1
} and a subset 𝐸2 of cardinality 𝑘 − 𝑡 of 𝐷ℓ , for some 𝑡 ≤ 𝑘 . The value (𝐹𝜑)𝑡 · (𝑘−𝑡) is

the total factor due to the violations among the facts of 𝐸1 and the facts of 𝐸2. This concludes our

computation of the partition function for a single FD.

6.2.2 Marginal Inference. We show that for a single FD, we can compute the probability Pr𝐷 [𝑄]
in polynomial time for any Boolean query 𝑄 that tests for the existence of a tuple that meets a

certain condition (e.g., a Boolean CQ with a single atom). More precisely, we consider queries 𝑄

that ask whether the database contains one or more facts from a given subset 𝐶 of 𝐷 . In particular,

such a query can test the existence of an individual fact 𝑓 (meaning that 𝐶 = {𝑓 } and then the

goal is to compute the marginal probability of 𝑓) or be a condition about projected attributes (e.g.,

“grade=100”). We refer to such queries as tuple properties. We make the assumption that we can

efficiently test whether a given fact satisfies a given tuple property. As we state in Section 7, we

defer to future work the consideration of richer classes of queries.

The computation of the marginal inference is similar to that of the partition function. We again

start by considering a single subblock 𝐷 ′
𝑖 , for which we define the following values:

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, 1]

def

=
∑︁
𝐸⊆𝐷 ′

𝑖

|𝐸 |=𝑘
𝐸 |=𝑄

U[𝐸 | 𝐷 ′
𝑖]

which is the unnormalized probability of all the subsets of 𝐷 ′
𝑖 of size 𝑘 that entail 𝑄 and

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, 0]

def

=
∑︁
𝐸⊆𝐷 ′

𝑖

|𝐸 |=𝑘
𝐸 ̸ |=𝑄

U[𝐸 | 𝐷 ′
𝑖]

which is the unnormalized probability of all the subsets of 𝐷 ′
𝑖 of size 𝑘 that do not entail 𝑄 . As in

the case of 𝑃 [𝐷 ′
𝑖 , 𝑘], we compute these values using dynamic programming over the facts 𝑓1, . . . , 𝑓𝑟

of 𝐷 ′
𝑖 . For that purpose, we define the values 𝑀𝑄 [𝐷 ′

𝑖 , 𝑘, ℓ, 𝑏] (for 𝑏 ∈ {0, 1}) that further restrict
the subsets 𝐸 that we consider to those that are contained in {𝑓1, . . . , 𝑓ℓ }. Then, in the case where

, Vol. 1, No. 1, Article . Publication date: June 2024.

26 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

{𝑓ℓ } |= 𝑄 (hence, every subset that contains 𝑓ℓ entails 𝑄), we have that:

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ, 1] =


0 if ℓ = 1 and 𝑘 ≠ 1;

1 if ℓ = 1 and 𝑘 = 1;

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 1] · 𝐹𝑓ℓ +𝑀𝑄 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1, 0] +
𝑀𝑄 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1, 1] otherwise.

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ, 0] =


0 if ℓ = 1 and 𝑘 ≠ 0;

𝐹𝑓1 if ℓ = 1 and 𝑘 = 0;

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 0] · 𝐹𝑓ℓ otherwise.

In the case where ℓ = 1 (i.e. when we consider subsets of {𝑓1}), if we keep 𝑓1, then the query

is entailed and there is no cost for removing a fact or violating an FD, while if we remove 𝑓1,

this contributes the factor 𝐹𝑓1 and the query is not entailed. In the case where ℓ ≠ 1, in order to

entail the query, we either need to keep 𝑓ℓ , and then we can choose any subset of size 𝑘 − 1 of

{𝑓1, . . . , 𝑓ℓ−1} (which contributes the factor𝑀𝑄 [𝐷 ′
𝑖 , 𝑘 − 1, ℓ − 1, 0] +𝑀𝑄 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1, 1]), or we
remove 𝑓ℓ (with factor 𝐹𝑓ℓ) and choose a subset that entails the query from {𝑓1, . . . , 𝑓ℓ−1} (with
factor 𝑀𝑄 [𝐷 ′

𝑖 , 𝑘, ℓ − 1, 1]). In order to not entail the query, we need to remove 𝑓ℓ (contributing

the factor 𝐹𝑓ℓ) and choose a subset that does not entail the query from {𝑓1, . . . , 𝑓ℓ−1} (with factor

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 0]).

In the case where {𝑓ℓ } ̸|= 𝑄 (where the inclusion or exclusion of 𝑓ℓ has no impact on the entailment

of 𝑄) we have:

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ, 1] =

{
0 if ℓ = 1;

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 1] · 𝐹𝑓ℓ +𝑀𝑄 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1, 1] otherwise.

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ, 0] =


0 if ℓ = 1 and 𝑘 ∉ {0, 1};
𝐹𝑓1 if ℓ = 1 and 𝑘 = 0;

1 if ℓ = 1 and 𝑘 = 1;

𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 0] · 𝐹𝑓ℓ +𝑀𝑄 [𝐷 ′

𝑖 , 𝑘 − 1, ℓ − 1, 0] otherwise.

When ℓ = 1 (i.e. when we consider subsets of {𝑓1}), the query is not entailed regardless of our

choice to keep or remove 𝑓1, but the removal of this fact contributes the factor 𝐹𝑓1 . In the case where

ℓ ≠ 1, in order to entail the query, we either need to keep 𝑓ℓ , and then we need to choose a subset

of size 𝑘 − 1 of {𝑓1, . . . , 𝑓ℓ−1} that entails 𝑄 (which contributes the factor𝑀𝑄 [𝐷 ′
𝑖 , 𝑘 − 1, ℓ − 1, 1]), or

we remove 𝑓ℓ (with factor 𝐹𝑓ℓ) and choose a subset of size 𝑘 that entails 𝑄 from {𝑓1, . . . , 𝑓ℓ−1} (with
factor𝑀𝑄 [𝐷 ′

𝑖 , 𝑘, ℓ − 1, 1]). In order to not entail the query, we either need to keep 𝑓ℓ , and then we

need to choose a subset of size 𝑘 − 1 of {𝑓1, . . . , 𝑓ℓ−1} that does not entail 𝑄 (which contributes the

factor𝑀𝑄 [𝐷 ′
𝑖 , 𝑘 − 1, ℓ − 1, 0]), or we remove 𝑓ℓ (with factor 𝐹𝑓ℓ) and choose a subset of size 𝑘 that

does not entail 𝑄 from {𝑓1, . . . , 𝑓ℓ−1} (with factor𝑀𝑄 [𝐷 ′
𝑖 , 𝑘, ℓ − 1, 0]).

Now, we use the values𝑀𝑄 [𝐷 ′
𝑖 , 𝑘] to compute𝑀 ′

𝑄
[𝐷 ′, 𝑘] that is defined in a similar way over

the subsets of 𝐷 ′
. We again use dynamic programming over the subblocks 𝐷 ′

1
, . . . , 𝐷 ′

𝑚 of 𝐷 ′
, and

compute the values𝑀 ′
𝑄
[𝐷 ′, 𝑘, ℓ] that are restricted to subsets contained in 𝐷 ′

1
∪ · · · ∪ 𝐷 ′

ℓ . It holds

that:

𝑀 ′
𝑄 [𝐷 ′, 𝑘, ℓ, 𝑏] =


𝑀𝑄 [𝐷 ′

ℓ , 𝑘, 𝑏] if ℓ = 1;∑
𝑏1,𝑏2

𝑏=1−[(1−𝑏1) · (1−𝑏2)]

∑𝑘
𝑡=0

𝑀 ′
𝑄
[𝐷 ′, 𝑡, ℓ − 1, 𝑏1] ·

𝑀𝑄 [𝐷 ′
ℓ , 𝑘 − 𝑡, 𝑏2] · (𝐹𝜑)𝑡 · (𝑘−𝑡)

otherwise.

Note that the only case when 1 − [(1 − 𝑏1) · (1 − 𝑏2)] = 0 is when 𝑏1 = 𝑏2 = 0.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 27

At this point, we have that values 𝑀 ′
𝑄
[𝐷 ′, 𝑘, 𝑏] for 𝑏 ∈ {0, 1} for every block 𝐷 ′

of 𝐷 . Now, a

subset 𝐸 of 𝐷 entails𝑄 if and only if (𝐸∩𝐷 ′) |= 𝑄 for at least one block 𝐷 ′
of 𝐷 . Hence, we now use

dynamic programming over the blocks 𝐷1, . . . , 𝐷𝑛 of 𝐷 to compute the values𝑀 ′′
𝑄
[𝐷,𝑘, 𝑏] (defined

similarly to 𝑀 ′
𝑄
[𝐷 ′, 𝑘, 𝑏], but over the subsets of 𝐷). This computation is very similar to that of

𝑀 ′
𝑄
[𝐷 ′, 𝑘, 𝑏], with the main difference being that there are no violations among facts of different

blocks (hence, we remove the factor (𝐹𝜑)𝑡 · (𝑘−𝑡) from the second case). In particular, we have that:

𝑀 ′′
𝑄 [𝐷,𝑘, ℓ, 𝑏] =


𝑀 ′

𝑄
[𝐷ℓ , 𝑘, 𝑏] if ℓ = 1;∑

𝑏1,𝑏2

𝑏=1−[(1−𝑏1) · (1−𝑏2)]

∑𝑘
𝑡=0

𝑀 ′′
𝑄
[𝐷, 𝑡, ℓ − 1, 𝑏1] ·𝑀 ′

𝑄
[𝐷ℓ , 𝑘 − 𝑡, 𝑏2] otherwise.

and𝑀 ′′
𝑄
[𝐷,𝑘, 𝑏] = 𝑀 ′′

𝑄
[𝐷,𝑘, 𝑛, 𝑏].

Finally, we are only interested in the values 𝑀 ′′
𝑄
[𝐷,𝑘, 1] (as we compute that probability of

entailing 𝑄) and we need to normalize them using the partition function 𝑍 (𝐷) that we computed

in the previous section. Formally,

Pr𝐷 [𝑄] =
1

𝑍 (𝐷)

|𝐷 |∑︁
𝑘=1

𝑀 ′′
𝑄 [𝐷,𝑘, 1]

and that concludes our computation of the marginal inference. We establish the following.

Theorem 6.6. In the case of a single FD, marginal inference of tuple properties is solvable in
polynomial time.

6.2.3 Sampling. We continue with the case that Δ consists of a single FD 𝜑 and show that, given a

database 𝐷 , we can sample a random subset in polynomial time.

As before, since there are no conflicts across blocks, we can handle one block at a time, and we

focus on sampling a subset of a single block 𝐷 ′
. The general idea is to iterate over the facts of 𝐷 ′

in some predefined (arbitrary) order and select, for each fact, whether or not to include it in the

sample. Let 𝐸 be a subset of 𝐷 ′
, and let 𝑓𝑗 be the 𝑗th fact of 𝐷 ′

in our order. We denote by𝑀𝐸,𝑗 the

event that denotes the membership of 𝑓𝑗 in a sample precisely as in 𝐸; that is, if 𝑓𝑗 ∈ 𝐸 then𝑀𝐸,𝑗

is the event that 𝑓𝑗 is in the sample, and otherwise, 𝑀𝐸,𝑗 is the event that 𝑓𝑗 is not in the sample.

Then, the probability that 𝐸 is obtained through the sampling procedure is as follows.

Pr𝐷 ′ [𝐸] = Pr𝐷 ′ [𝑀𝐸,1, . . . , 𝑀𝐸, |𝐷 ′ |] =
|𝐷 ′ |∏
𝑗=1

Pr𝐷 ′ [𝑀𝐸,𝑗 | 𝑀𝐸,1, . . . , 𝑀𝐸,𝑗−1] (4)

Therefore, we can sample one fact at a time, where at each step the probability of taking the next

fact depends on the choices that were made before. If the previous choices are 𝐵1, . . . , 𝐵 𝑗−1, where

𝐵𝑘 is some decision regarding the 𝑘th fact of 𝐷 ′
(either keeping or removing it), then we take the

next fact with probability Pr𝐷 ′ [𝐶 𝑗 | 𝐵1, . . . , 𝐵 𝑗−1], where𝐶 𝑗 is the event of taking the 𝑗 th fact of 𝐷 ′
.

Given a database 𝐷 and an event 𝑋 , denote by W𝐷 (𝑋) the sum of the weights of all subsets of 𝐷

where 𝑋 holds. That is,

W𝐷 (𝑋) def

=
∑︁
𝐸⊆𝐷
𝐸 |=𝑋

U[𝐸 | 𝐷] .

Therefore, we randomly select 𝑓𝑗 in each step, with the following probability:

Pr𝐷 ′ [𝐶 𝑗 | 𝐵1, . . . , 𝐵 𝑗−1] =
Pr𝐷 ′ [𝐵1, . . . , 𝐵 𝑗−1,𝐶 𝑗]

Pr𝐷 ′ [𝐵1, . . . , 𝐵 𝑗−1]
=

W𝐷′ (𝐵1,...,𝐵 𝑗−1,𝐶 𝑗)
𝑍 (𝐷 ′)

W𝐷′ (𝐵1,...,𝐵 𝑗−1)
𝑍 (𝐷 ′)

=
W𝐷 ′ (𝐵1, . . . , 𝐵 𝑗−1,𝐶 𝑗)

W𝐷 ′ (𝐵1, . . . , 𝐵 𝑗−1)

, Vol. 1, No. 1, Article . Publication date: June 2024.

28 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

From our discussion so far we conclude that, in order to sample, it is enough to compute values

of the form W𝐷 ′ (𝐵𝑖 , . . . , 𝐵 𝑗) where 𝐵𝑘 is either the event that the 𝑘th fact is taken or the event

that this fact is not taken. This can easily be done using the approach from Section 6.2.1. As every

summand in the formula for the partition function matches either the choice of taking a fact or not

taking it, we simply use the same formula while replacing by zero the summands that correspond

to the choices opposite to what we wish to compute.

The correctness follows from Equation (4). Let 𝐸 be a possible sampled outcome. Since this

subset is chosen through a series of decisions with the probabilities given by the equation, it will

be selected with probability Pr𝐷 ′ [𝐸], as required. Consequently, we establish the following.

Theorem 6.7. In the case of a single FD, sampling can be done in polynomial time.

6.3 Generalization Beyond a Single FD
Similarly to soft repairing, the tractability results that we established in the previous section can be

generalized to FD sets ∆ that can be emptied by repeatedly applying L/C-Simplify(∆) depicted in

Algorithm 2. In this section, we show how the algorithms can be extended to this generalization.

We first show how to compute the partition function. Let ∆ be an FD set that is emptied by

L/C-Simplify. Consider the input relation𝐷 . Our goal is to compute the value𝑍 (𝐷). For convenience,
we will make the assumption that all attributes of 𝐷 appear in ∆. (This assumption simplifies the

base case of our dynamic programming, as we explain next.) Observe that we can make this

assumption since, otherwise, we can always add to ∆ the FD 𝛾 = ∅ → 𝐴1 . . . 𝐴𝑛 with the factor

𝐹𝛾 = 1 (hence, have no impact on the semantics), where {𝐴1, . . . , 𝐴𝑛} is the set of all attributes of
𝐷 . Clearly, if ∆ can be emptied by L/C-Simplify before the addition of 𝛾 , then it can be likewise

emptied after the addition of 𝛾 .

Similarly to what we have done in Section 4.2, the idea is that we repeatedly partition the

database according to each attribute 𝐴 that L/C-Simplify(∆) eliminates. In other words, we apply

group-by 𝐴 for every such 𝐴, and continue grouping each partition recursively according to the

future attributes that L/C-Simplify(∆) eliminates. We refer to each partition that we get as a group.
Suppose that 𝐴1, . . . , 𝐴𝑛 are the attributes in the order of their elimination by the algorithm. Hence,

each group is defined by an assignment of database values to 𝐴1, . . . , 𝐴𝑖 for some 𝑖 = 0, . . . , 𝑛. We

can view the process as defining a tree over the groups, where:

• The root is the full database 𝐷 ;

• The children of each group 𝐷 ′
, which is defined by an assignment to 𝐴1, . . . , 𝐴𝑖 , are the

pairwise-disjoint groups that form a partition of 𝐷 ′
by extending the assignment to 𝐴𝑖+1.

See Figure 7 for an illustration. Note that the tree may have duplicates, that is, situations where 𝐷 ′

is equal to its single child 𝐷1, if it happens to be the case that all tuples of 𝐷
′
agree on 𝐴𝑖 . Also note

that the number of vertices of this tree is polynomial in the size of 𝐷 , since the depth is the number

𝑛 of attributes and each level has at most |𝐷 | vertices (since the level forms a partition of 𝐷).

For each group 𝐷 ′
defined by an assignment to the attributes 𝐴1, . . . , 𝐴𝑖 we compute the values

𝑄 [𝐷 ′, 𝑘] that is the contribution to 𝑍 (𝐷 ′) from all of the subsets of 𝐷 ′
of cardinality 𝑘 . That is:

𝑃 [𝐷 ′, 𝑘] def

=
∑︁
𝐸⊆𝐷 ′
|𝐸 |=𝑘

U[𝐸 | 𝐷 ′] .

This is enough, since then we have

𝑍 (𝐷) =
|𝐷 |∑︁
𝑘=0

𝑃 [𝐷,𝑘] .

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 29

∆
′ = {}

𝐴 𝐵 𝐶

𝐷

𝐷′

𝐷1 𝐷2

∆
′ = {∅ → 𝐵𝐶, 𝐵 → 𝐶}

∆ = {𝐴 → 𝐵𝐶,𝐴𝐵 → 𝐶}

∆
′ = {∅ → 𝐶}

Fig. 7. An illustration of the tree implied by the elimination order 𝐴, 𝐵,𝐶 via L/C-Simplify(∆). Here, 𝐴1 = 𝐴,

𝐴2 = 𝐵 and 𝐴3 = 𝐶 . The FD set ∆
′ = ∆ −𝐴1 − · · · −𝐴𝑖 is shown for every level 𝑖 .

We will compute the 𝑃 [𝐷 ′, 𝑘] in a bottom-up fashion. Let us begin with the leaves. In each leaf

𝐷 ′
we have a single fact 𝑓 (hence, the FDs cannot be violated). This is true since 𝐴1, . . . , 𝐴𝑛 include

all attributes of the database, due to the assumption that we made at the beginning of this section.

Therefore, we get that

𝑃 [𝐷 ′, 𝑘] =


𝐹𝑓 if 𝑘 = 0;

1 if 𝑘 = 1;

0 otherwise.

corresponding to the two worlds ∅ (having the unnormalized probability 𝐹𝑓) and {𝑓 } (having the

unnormalized probability 1).

Next, we consider an internal group 𝐷 ′
that is defined by an assignment to the attributes

𝐴1, . . . , 𝐴𝑖 . By the definition of 𝐷 ′
, all of the tuples agree on all of the attributes 𝐴1, . . . , 𝐴𝑖 , but not

necessarily on 𝐴𝑖+1, . . . , 𝐴𝑛 . Let 𝐷1, . . . , 𝐷𝑚 be the children of 𝐷 ′
that are obtained by grouping 𝐷 ′

by 𝐴𝑖+1. (See Figure 7 for an illustration.) We break 𝑃 [𝐷 ′, 𝑘] into values 𝑃 [𝐷 ′, 𝑘, ℓ] that restricts
𝑃 [𝐷 ′, 𝑘] to the union 𝐷1 ∪ · · · ∪ 𝐷ℓ :

𝑃 [𝐷 ′, 𝑘, ℓ] def

=
∑︁

𝐸⊆𝐷1∪···∪𝐷ℓ

|𝐸 |=𝑘

U[𝐸 | 𝐷1 ∪ · · · ∪ 𝐷ℓ]

Hence, 𝑃 [𝐷 ′, 𝑘] = 𝑃 [𝐷 ′, 𝑘,𝑚].
It is then left to compute 𝑃 [𝐷 ′, 𝑘, ℓ]. Let ∆

′ = ∆ −𝐴1 − · · · −𝐴𝑖 , that is, the FD set obtained by

eliminating 𝐴1, . . . , 𝐴𝑖 (as done by applying L/C-Simplify(∆) repeatedly), and let 𝐴 = 𝐴𝑖+1. Observe

that the attribute𝐴 occurs in every nontrivial FD of ∆
′
, either on the right-hand side of a consensus

FD or on the left-hand side of another FD. Let 𝐹𝐴 be product of the factors of all FDs in ∆ that

become nontrivial consensus FDs in ∆
′
. (Note that distinct FDs in ∆ may become the same FD in ∆

′

due to the elimination of 𝐴1 − · · · −𝐴𝑖 . See, e.g., ∅ → 𝐵𝐶 and 𝐵 → 𝐶 in Figure 7.) Then 𝑃 [𝐷 ′, 𝑘, ℓ]
is the sum of the contributions of unions 𝐸 ∪ 𝐸′

of subsets 𝐸 of 𝐷1, . . . , 𝐷ℓ−1 and 𝐸
′
of 𝐷ℓ such that

|𝐸 | = 𝑡 and |𝐸′ | = 𝑘 − 𝑡 for 𝑡 = 0, . . . , 𝑘 . The contribution of such 𝐸 ∪ 𝐸′
is the product of three

factors:

• The unnormalized probability of 𝐸, summed up to 𝑃 [𝐷 ′, 𝑡, ℓ − 1] that we computed in the

previous iteration;

• The unnormalized probability 𝐸′
, summed up to 𝑃 [𝐷ℓ , 𝑘 − 𝑡] that we computed in a previous

step of the bottom-up evaluation;

, Vol. 1, No. 1, Article . Publication date: June 2024.

30 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

• The factor contributed by violating the consensus FDs of ∆
′
(all of which contain 𝐴), that is,

(𝐹𝐴)𝑡 · (𝑘−𝑡) .
Note that no cost is incurred by the non-consensus FDs, since there are no violations between 𝐷𝑖s

as they disagree on the lhs attribute 𝐴.4 Hence, we get the following:

𝑃 [𝐷 ′, 𝑘, ℓ] =
{
𝑃 [𝐷1, 𝑘] if ℓ = 1;∑𝑘

𝑡=0
𝑃 [𝐷 ′, 𝑡, ℓ − 1] · 𝑃 [𝐷ℓ , 𝑘 − 𝑡] · (𝐹𝐴)𝑡 · (𝑘−𝑡) otherwise.

This concludes the computation of the partition function. For the marginal inference of a Boolean

condition over tuples, we apply a similar extension to the algorithm of Section 6.2.2. Moreover, the

sampling algorithm of Section 6.2.3 generalizes immediately as it only requires the computation of

marginal probabilities and is otherwise unaware of the actual FDs. We conclude the following.

Theorem 6.8. Let Δ be a set of FDs. If Δ can be emptied via L/C-Simplify(∆) steps, then the following
can be performed in polynomial time: (a) computation of the partition function, (b) computation of a
marginal probability for a tuple condition, and (c) sampling.

We conclude that, similarly to soft repairing, the probabilistic challenges are tractable for the

case of a single FD and its generalization. In the next section, we show that this is not the case for
matching constraints.

6.4 Hardness for Matching Constraints
In this section, we focus on matching constraints. We show that while soft repairing can be solved in

polynomial time for such constraints, this is no longer the case when considering other probabilistic

challenges. In particular, we show the following.

Theorem 6.9. Computing the partition function is #P-hard for 𝑅(𝐴, 𝐵) and ∆ = {𝐴 → 𝐵, 𝐵 → 𝐴}.

Proof. Consider the FD set {𝐴 → 𝐵, 𝐵 → 𝐴} over𝑅(𝐴, 𝐵). We show that computing the partition

function is #P-hard via a reduction from the problem of computing the number of matchings in a

bipartite graph, known to be #P-complete [36]. The idea is the following. We add to the database 𝐷

a fact 𝑅(𝑢, 𝑣) for every edge (𝑢, 𝑣) in the bipartite graph 𝐺 . We associate a high weight with each

of the FDs, so that the contribution to the partition function of subsets that do not correspond to

matchings (i.e., subset that violate the constraints) is very low. Then, we define 𝐹𝑓 = 1 for every fact

𝑓 of the database, so that the contribution to the partition function of each subset that corresponds

to a matching is 1. More formally, we define:

𝐹𝐴→𝐵 = 𝐹𝐵→𝐴 = 2
−|𝐷 |

Then, the value of the partition function is:

𝑍 (𝐷) = 2
−|𝐷 | ·𝑘1 + · · · + 2

−|𝐷 | ·𝑘𝑛 +𝑚
where 𝑛 is the number of subsets 𝐸1, . . . , 𝐸𝑛 of 𝐷 that violate the FDs and𝑚 is the number of subsets

of 𝐷 that satisfy the FDs. For each subset 𝐸𝑖 , we denote by 𝑘𝑖 the number of violations of the FDs in

𝐸𝑖 (i.e., the number of fact pairs that jointly violate an FD). Note that𝑚 is the number of matchings

in 𝐺 ; hence, our goal is to obtain this value, given 𝑍 (𝐷).
We have the following:

2
−|𝐷 | ·𝑘1 + · · · + 2

−|𝐷 | ·𝑘𝑛 ≤ 𝑛 · 2
−|𝐷 |

4
Note that the algorithm does not ignore the non-consensus FDs of ∆

′
—each of them becomes a consensus FD in deeper

parts of the tree, as also illustrated in Figure 7.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 31

Now, 2
|𝐷 |

is the total number of subsets of 𝐷 . Clearly, the empty subset satisfies the constraints;

hence, we have that 𝑛 < 2
|𝐷 |

and we conclude that:

2
−|𝐷 | ·𝑘1 + · · · + 2

−|𝐷 | ·𝑘𝑛 < 1

Therefore, in order to obtain𝑚 from the partition function it is sufficient to take the integer part of

𝑍 (𝐷). □

From the hardness of the partition function we can also conclude the hardness of marginal

inference, even for the simplest tuple property.

Theorem 6.10. For 𝑅(𝐴, 𝐵) and ∆ = {𝐴 → 𝐵, 𝐵 → 𝐴}, it is #P-hard to compute the probability
that the database is nonempty (i.e., marginal inference for the tautology tuple property).

Proof. We show a reduction from the problem of computing the partition function, which is

#P-hard due to Theorem 6.9. Let 𝐷 be a given database over 𝑅(𝐴, 𝐵), and let 𝑄𝑡 be the tautology

query. The non-normalized probability that 𝐷 is empty is given by

∏
𝑓 ∈𝐷 𝐹𝑓 . Hence, the probability

of 𝑄𝑡 (i.e., that a random world is nonempty) is given by:

Pr𝐷 [𝑄𝑡] = 1 − ©­«
∏
𝑓 ∈𝐷

𝐹𝑓
ª®¬ /𝑍 (𝐷)

Hence, from Pr𝐷 [𝑄𝑡] we can compute the partition function:

𝑍 (𝐷) =
∏

𝑓 ∈𝐷 𝐹𝑓

1 − Pr𝐷 [𝑄𝑡]
This concludes the proof. □

The complexity of sampling is left open for future research. In particular, we do not knowwhether

Theorem 6.9 is also true for the sampling problem.

7 CONCLUSIONS AND OPEN PROBLEMS
We studied the complexity of soft repairing for functional dependencies, where the goal is to find

an optimal subset under penalties of deletion and constraint violation. The problem is harder than

that of computing a cardinality repair, and we have developed two new, nontrivial algorithms

solving natural special cases. A full classification of the FD sets remains an open challenge for

future research; specifically, the question is what fragment of the positive side of the dichotomy of

Livshits et al. [25] remains positive when softness is allowed. We have also shown that the problem

becomes tractable if we settle for a 3-approximation.

Open Problems. Several directions are left open for future work. A direct open problem is to

characterize the class of tractable FDs via a full dichotomy. The simplest sets of FDs where the

complexity of soft repairing is open are the following:

• {𝐴 → 𝐵,𝐴 → 𝐶}. As discussed in Section 4.3, this problem is different from {𝐴 → 𝐵𝐶} that
consists of a single FD, even though the two sets are logically equivalent when viewed as in

the traditional sense as hard constraints.

• {𝐴 → 𝐵, 𝐵 → 𝐴} in the case where the schema has attributes different from𝐴 and 𝐵, starting

with 𝑅(𝐴, 𝐵,𝐶).
• {∅ → 𝐴, 𝐵 → 𝐶}.

The problem is also open for classes of constraints that are more general than FDs, including

equality-generating dependencies (EGDs), denial constraints, and inclusion dependencies. Yet, the

problem for these types of dependencies is open already in the case of cardinality repairs, with the

, Vol. 1, No. 1, Article . Publication date: June 2024.

32 Nofar Carmeli, Martin Grohe, Benny Kimelfeld, Ester Livshits, and Muhammad Tibi

exception of some cases of EGDs [24]. Another clear direction is that of update repairs where we
are allowed to change cell values instead of (or in addition to) deleting tuples and where complexity

results are known for hard constraints [21, 25].

We also discussed some fundamental tasks that apply to every probabilistic model. In our case,

we adopted the convention that the soft constraints are interpreted as the templates for the factors

of a factor-graph representation of the probabilistic database. In terms of our contributed results,

we only touched the tip of the iceberg and there is much more to be done, as many questions are

then left open for future research:

• Handling more general FD sets and constraints beyond FDs;

• Allowing approximate solutions for the tasks, with error guarantees;

• Proving lower bounds for sampling (and for the other challenges regarding the FD sets that

we have not considered);

• Evaluating cross-relation queries such as joins, conjunctive queries, and beyond.

This work can be naturally generalized to the goal of constructing, in addition to the database

repair, a revised set ∆ of constraints that better reflects the current data (since, e.g., some FDs

became obsolete or outdated). This challenge has been studied in the past under the restriction that

the repair is consistent with respect to the revised constraints [5, 7], whereas our optimization goal

may allow for a balance between the change in the data, the revision of the constraints, and the

level of violation.

Finally, we remark that all of the algorithms presented in this manuscript have been designed as

proofs of tractability. We believe that there is much to be done in order to transform them into

practical solvers of realistic problems, and this is also an important direction for future research.

ACKNOWLEDGMENTS
This work has been funded by the Israel Science Foundation (ISF) under grant 768/19, and the

German Research Foundation (DFG) under grants GR 1492/16-1 and KI 2348/1-1.

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory, algorithms and applications. Prentice Hall, 1993.
[2] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with constraints using dedupalog. In ICDE, pages 952–963.

IEEE Computer Society, 2009.

[3] A. authors. Anatomized title.

[4] V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena. Declarative probabilistic programming with datalog.

ACM Trans. Database Syst., 42(4):22:1–22:35, 2017.
[5] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin. On the relative trust between inconsistent data and inaccurate

constraints. In ICDE, pages 541–552. IEEE Computer Society, 2013.

[6] P. Blunsom and M. Osborne. Probabilistic inference for machine translation. In EMNLP, pages 215–223. ACL, 2008.
[7] F. Chiang and R. J. Miller. A unified model for data and constraint repair. In ICDE, pages 446–457. IEEE Computer

Society, 2011.

[8] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB, 6(13):1498–1509, 2013.
[9] C. Combi, M. Mantovani, A. Sabaini, P. Sala, F. Amaddeo, U. Moretti, and G. Pozzi. Mining approximate temporal

functional dependencies with pure temporal grouping in clinical databases. Comp. in Bio. and Med., 62:306–324, 2015.
[10] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB J., 16(4):523–544, 2007.
[11] N. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM,

59(6):30:1–30:87, 2012.

[12] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman. Accelerated adaptive markov chain for partition function

computation. In NIPS, pages 2744–2752, 2011.
[13] C. Ge, S. Mohapatra, X. He, and I. F. Ilyas. Kamino: Constraint-aware differentially private data synthesis. Proc. VLDB

Endow., 14(10):1886–1899, 2021.
[14] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive approximation. Math. Oper. Res.,

15(3):430–466, Aug. 1990.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Database Repairing with Soft Functional Dependencies 33

[15] T. F. Gonzalez, editor. Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC, 2007.

[16] E. Gribkoff, G. V. den Broeck, and D. Suciu. The most probable database problem. In BUDA, 2014.
[17] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot learning for error detection. In SIGMOD

Conference, pages 829–846. ACM, 2019.

[18] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on computing,
11(3):555–556, 1982.

[19] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: an efficient algorithm for discovering functional and

approximate dependencies. Comput. J., 42(2):100–111, 1999.
[20] A. K. Jha, V. Rastogi, and D. Suciu. Query evaluation with soft-key constraints. In PODS, pages 119–128, 2008.
[21] S. Kolahi and L. V. S. Lakshmanan. On approximating optimum repairs for functional dependency violations. In ICDT,

volume 361 of ACM International Conference Proceeding Series, pages 53–62. ACM, 2009.

[22] S. Kruse and F. Naumann. Efficient discovery of approximate dependencies. Proc. VLDB Endow., 11(7):759–772, 2018.
[23] E. Livshits, A. Heidari, I. F. Ilyas, and B. Kimelfeld. Approximate denial constraints. Proc. VLDB Endow., 13(10):1682–1695,

2020.

[24] E. Livshits, I. F. Ilyas, B. Kimelfeld, and S. Roy. Principles of progress indicators for database repairing. CoRR,
abs/1904.06492, 2019.

[25] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional dependencies. ACM Trans. Database
Syst., 45(1):4:1–4:46, 2020.

[26] A. Lopatenko and L. E. Bertossi. Complexity of consistent query answering in databases under cardinality-based and

incremental repair semantics. In ICDT, volume 4353 of Lecture Notes in Computer Science, pages 179–193. Springer,
2007.

[27] D. Lowd and P. M. Domingos. Efficient weight learning for markov logic networks. In PKDD, volume 4702 of Lecture
Notes in Computer Science, pages 200–211. Springer, 2007.

[28] D. Miao, Z. Cai, J. Li, X. Gao, and X. Liu. The computation of optimal subset repairs. Proc. VLDB Endow., 13(11):2061–2074,
2020.

[29] E. H. M. Pena, E. C. de Almeida, and F. Naumann. Discovery of approximate (and exact) denial constraints. Proc. VLDB
Endow., 13(3):266–278, 2019.

[30] F. Pennerath, P. Mandros, and J. Vreeken. Discovering approximate functional dependencies using smoothed mutual

information. In KDD, pages 1254–1264. ACM, 2020.

[31] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with probabilistic inference. Proc. VLDB
Endow., 10(11):1190–1201, 2017.

[32] M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1-2):107–136, Feb. 2006.
[33] C. D. Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas. A formal framework for probabilistic unclean databases. In

ICDT, volume 127 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[34] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and exploiting rich correlations in probabilistic databases. VLDB
J., 18(5):1065–1090, 2009.

[35] D. Suciu. Probabilistic databases for all. In PODS, pages 19–31. ACM, 2020.

[36] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410–421, 1979.
[37] C. Zhang, C. Ré, M. J. Cafarella, J. Shin, F. Wang, and S. Wu. Deepdive: declarative knowledge base construction.

Commun. ACM, 60(5):93–102, 2017.

, Vol. 1, No. 1, Article . Publication date: June 2024.

	Abstract
	1 Introduction
	2 Formal Setup
	2.1 Databases, FDs and Repairs
	2.2 Soft Constraints
	2.3 blackProblem Definition: Soft Repairing

	3 Preliminary Complexity Analysis
	3.1 Approximation

	4 Algorithm for a Single Functional Dependency
	4.1 Single FD
	4.2 Generalization
	4.3 Limitations of the Algorithm

	5 Algorithm for Matching Constraints
	5.1 Generalization

	6 Probabilistic Challenges
	6.1 Computational Challenges
	6.2 Algorithms for a Single FD
	6.3 Generalization Beyond a Single FD
	6.4 Hardness for Matching Constraints

	7 Conclusions and Open Problems
	References

