
HAL Id: hal-04617763
https://hal.science/hal-04617763

Submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

EvoStore: Towards Scalable Storage of Evolving
Learning Models

Robert Underwood, Meghana Madhyastha, Randal Burns, Bogdan Nicolae

To cite this version:
Robert Underwood, Meghana Madhyastha, Randal Burns, Bogdan Nicolae. EvoStore: Towards
Scalable Storage of Evolving Learning Models. HPDC’24: 34nd International Symposium on High-
Performance Parallel and Distributed Computing, Jul 2024, Pisa, Italy. �10.1145/3625549.3658679�.
�hal-04617763�

https://hal.science/hal-04617763
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

EvoStore: Towards Scalable Storage of Evolving Learning Models
Robert Underwood
runderwood@anl.gov

Argonne Nat. Laboratory
Lemont, Illinois, USA

Meghana Madhyastha
mmadhya1@jhu.edu

Johns Hopkins University
Baltimore, Maryland, USA

Randal Burns
randal@cs.jhu.edu

Johns Hopkins University
Baltimore, Maryland, USA

Bogdan Nicolae
bnicolae@anl.gov

Argonne Nat. Laboratory
Lemont, Illinois, USA

ABSTRACT
Deep Learning (DL) has seen rapid adoption in all domains. Since
trainingDLmodels is expensive, both in terms of time and resources,
application workflows that make use of DL increasingly need to
operate with a large number of derived learning models, which
are obtained through transfer learning and fine-tuning. At scale,
thousands of such derived DL models are accessed concurrently by
a large number of processes. In this context, an important question
is how to design and develop specialized DL model repositories
that remain scalable under concurrent access, while addressing key
challenges: how to query the DL model architectures for specific
patterns? How to load/store a subset of layers/tensors from a DL
model? How to efficiently share unmodified layers/tensors between
DL models derived from each other through transfer learning? How
to maintain provenance and answer ancestry queries? State of art
leaves a gap regarding these challenges. To fill this gap, we intro-
duce EvoStore, a distributed DL model repository with scalable
data and metadata support to store and access derived DL models
efficiently. Large-scale experiments on hundreds of GPUs show sig-
nificant benefits over state-of-art with respect to I/O and metadata
performance, as well as storage space utilization.

CCS CONCEPTS
• Software and its engineering→ Checkpointing; • Computing
methodologies→ Neural networks; • Information systems
→ Parallel and distributed DBMSs.

KEYWORDS
AI, Model Repository, Network Architecture Search, Regulartized
Evolution, Distributed, AI for HPC
ACM Reference Format:
Robert Underwood, Meghana Madhyastha, Randal Burns, and Bogdan Nico-
lae. 2024. EvoStore: Towards Scalable Storage of Evolving Learning Models
. In The 33rd International Symposium on High-Performance Parallel and
Distributed Computing (HPDC ’24), June 3–7, 2024, Pisa, Italy. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3625549.3658679

1 INTRODUCTION
Deep learning (DL) applications are rapidly transforming all as-
pects of our society. As the data sizes, data pattern complexity and
scope of the problems keep increasing, the DL models have evolved
from all perspectives: size (number of parameters), depth (number
of layers/tensors) and structure (layers with multiple inputs/out-
puts interconnected using directed graphs that feature divergent
branches, fork-join, etc.). Training DL models from scratch is an
expensive task, both in terms of resources and time [14].

HPDC ’24, June 03–07, 2024, Pisa, Italy
2024. ACM ISBN 979-8-4007-0413-0/24/06. . . $15.00
https://doi.org/10.1145/3625549.3658679

As a consequence, alternatives such as the reuse of DL models
through transfer learning [35] and fine-tuning [8] are becoming
increasingly popular. Specifically, instead of training a DL model
from scratch, we can start from a previously trained DL model
by reusing its model parameters. If necessary, the architecture
can be adjusted by adding or removing layers (and initializing
the new layers with random parameters). Then, the model can be
refined further with fresh input data through additional training.
Using this approach, in a typical setup, the derived DL models can
be trained much faster, not only because of faster convergence
(thanks to a better starting point), but also because of techniques
that accelerate each training iteration (e.g., freezing some of the
layers and excluding them from the backward pass [6]).

Motivation: To facilitate transfer learning and fine-tuning, it is
necessary to store promising snapshots of DL models in a scalable
repository, from where they can be later reused to obtain derived
DL models. This is challenging for several reasons:

Storage space efficiency: When the transferred layers are frozen
during the training, only a subset of the tensors change, which
leads to a large number of DL models that end up sharing the same
tensors. In this case, writing a full copy of a derived DL model
back to the repository wastes storage space, as unmodified tensors
are duplicated unnecessarily. On the other hand, if we store each
tensor only once, multiple DL models may have references to it.
Thus, removing a DL model from the repository is a challenging
operation that requires specialized garbage collection techniques.

Scalable I/O access performance under concurrency: AI workflows
running on HPC systems are often composed of a large number of
distributed processes that need to perform transfer learning under
concurrency. For example, ensemble learning and network archi-
tecture search (NAS) [13][38] evaluate a large number of related
candidate models in parallel. Such approaches can benefit from
transfer learning [24]. As a consequence, the repository needs to
remain scalable despite concurrent reads and writes of DL models.

Scalable query support for model architectures:Asmore DLmodels
keep accumulating in the repository (either completely new or
derived from other DL models through transfer learning), more
candidates that can serve as a source for transfer learning become
available. Combined with the growing complexity of the DL model
architectures, the problem of how to identify the best candidate for
transfer learning in a scalable fashion is challenging. In particular,
there is a need to formulate and efficiently respond to queries that
look for specific architectural features and patterns in the whole
collection of DL models stored on the repository.

Ancestry and provenance: When transfer learning is applied re-
peatedly to obtain a long chain of DL models that are derived from
each other, it is important to study the ancestry and provenance
of the DL models in order to be able to explain their behavior and
reason about their reliability. For example, we may be interested in

https://orcid.org/0000-0002-1464-729X
https://orcid.org/0009-0002-5593-8752
https://orcid.org/0000-0002-2924-1997
https://orcid.org/0000-0002-0661-7509
https://doi.org/10.1145/3625549.3658679
https://doi.org/10.1145/3625549.3658679

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

questions such as: what is the most recent common ancestor of two
DL models obtained through transfer learning? Which ancestor
“owns” a given frozen layer that remain unchanged in other DL
models derived from it?

Limitations of State-of-Art: Each of the challenges introduced
above is insufficiently addressed by the state-of-art approaches.
With respect to storage space efficiency, most approaches serial-
ize DL models and independent, self-contained objects (typically
files) that duplicate any frozen layers that are reused across derived
models. Only a small number of checkpointing approaches adopt
incremental storage techniques (notably Check-n-Run [12]) during
the training of the same model. They do not support different mod-
els that share common parts. With respect to scalable I/O access
under concurrency, traditional DL model serialization formats (e.g.,
HDF5 [17] or SavedModel [1]) have significant overheads and typi-
cally use parallel file systems to store the resulting files. These are
optimized for bulk I/O access, which does not match the need for
partial I/O to enable fine-grain access to individual tensors needed
to transfer individual layers and to store incremental differences.
With respect to query support, the most common solution is to
use a metadata server that catalogs the models based on search
criteria and annotations. Such a solution does not scale, since the
metadata server becomes a bottleneck when serving a large num-
ber of concurrent queries. To our best knowledge, the problem of
ancestry and provenance has received very little attention and is
solved using inefficient ad-hoc techniques that iterate over all DL
models and extract metadata about their architecture on-demand.

Key Insights and Contributions: To address the aforemen-
tioned limitations, in this paper we introduce EvoStore, a distributed
DL model repository with scalable, fine-grain I/O access and incre-
mental storage allowing reading/writing only data that is changed
at the tensor-level, which is complemented by a decentralized meta-
data infrastructure to provide efficient best candidate and prove-
nance query support. Unlike state of art approaches, EvoStore dis-
tributes the tensors among a large number of storage providers and
caches them in-memory, which introduces an opportunity to break
free from the I/O bottlenecks of parallel file systems, to eliminate
the redundant storage of shared tensors and to provide lightweight
metadata management. We summarize our contributions as follows:
(1) We introduce several key design principles that underline the

novelty of our approach: (1) incremental tensor storage and
garbage collection techniques based on the notion of owner
maps; (2) consolidated sets of tensors that are distributed at
scale and accessed using low-overhead RDMA techniques to
enable fine-grained I/O access under concurrency; (3) techniques
to organize and query the architecture metadata of DL models
for the longest common directed graph prefix, which we introduce
as a best-match pattern for transfer learning; (4) a distributed
metadata query engine that searches for the best match among
all DL models in the repository. We present these in Section 4.1.

(2) We introduce several algorithms and considerations that enable
an efficient implementation of the design principles (Section 4.2).
We design and implement EvoStore, a DL model repository re-
search prototype that illustrates the design principles and algo-
rithms in real life. EvoStore integrates with the Tensorflow and
DeepHyper runtimes (Section 4.3). Furthermore, we introduce

the application of such a scalable repository in the context of a
network architecture search scenario that is based on transfer
learning (Section 2).

(3) We evaluate our approach in a series of scalability experiments
that involve both micro-benchmarks and real-life network archi-
tecture search applications based on transfer learning. We show
significant speed-up and better scalability compared with other
approaches for metadata queries, and I/O requests involving
subsets of tensors and resulting in better end-to-end application
runtime. These contributions are presented in Section 5.

Limitations of the Proposed Approach: We focus on stor-
ing derived DL models by capturing low-overhead checkpoints of
the model parameters into a lineage. Specifically, each checkpoint
includes a compact representation of the model architecture, a col-
lection of tensors that represent the differences with respect to the
original model parameters, and an owner map that enables reading
the inherited parameters. This is sufficient to address a majority of
transfer learning and fine tuning scenarios. However, under certain
circumstances, it is necessary to capture additional information,
notably the optimizer state used during training. This is relevant in
scenarios that need to adjust a model after a setback (e.g., failures
or lack of convergence) and continue the original training from
where it left. We will add support for such scenarios in future work.

2 MOTIVATING SCENARIO: NAS
To illustrate the need for a flexible repository such as EvoStore that
satisfies the requirements introduced above, we choose to focus on
network architecture search (NAS) [13], which can take advantage
of transfer learning extensively at a large scale. However, it is
important to note that EvoStore is a generic DL model repository
that can be leveraged to facilitate many other scenarios related to
transfer learning and fine-tuning.

NAS Fundamentals: A typical NAS explores a large number
of candidate models from a search space that is based on a set of
rules that define what choices are possible. The set of all choices
that define the architecture of a valid candidate model is called a
candidate sequence.

A common approach to finding good candidates is to simply
sample the search space randomly [21]. This process is illustrated
in Figure 1: a controller process is responsible to randomly sample
the search space and produce candidate sequences, which are then
distributed among worker processes in an embarrassingly paral-
lel fashion. Each worker process constructs a DL model from the
candidate sequence, trains it superficially (e.g., for a single epoch) ,
and reports the quality metric of the DL model (e.g., classification
accuracy) to the controller. The controller retains the top-K best
performers, which are then further refined (e.g., fully trained for
many more epochs) and their viability is assessed based on various
criteria (e.g., accuracy, size, inference speed, etc.).

However, if the search space is large, such an approach takes a
long time to complete, uses large amounts of resources and may
produce poor results [3]. Thus, a better approach is to have the
controller guide the exploration of the search space rather than
randomly sample from it. A common approach is to decide what
new candidate sequences to try next based on the quality metrics

EvoStore: Towards Scalable Storage of Evolving Learning Models HPDC ’24, June 03–07, 2024, Pisa, Italy

Figure 1: Network architecture search based on transfer learn-
ing facilitated by a DL model repository.

of the previously explored candidates. For example, the aged evo-
lution algorithm [10] starts with an initial random population of
candidate sequences and then generates new candidate sequences
by mutating the best candidate out of a randomly chosen subset of
the population, much like genetic algorithms. The size of the popu-
lation can be limited to a maximum of 𝑁 candidates by dropping
the worst performers as the population evolves.

Assuming each DL model is trained from scratch, it is enough to
simply store 𝑁 candidate sequences and their quality metrics on
the controller to fully describe the entire population. However, this
comes at the expense of high training overhead, which limits the
number and quality of the explored DL model candidates within a
given time limit and/or resource budget [24].

NAS with Transfer Learning: NAS introduces an opportunity
to leverage transfer learning find better candidates and/or accelerate
the search [24]. For example, in the case of aged evolution, each DL
model candidate is obtained as a mutation of a previously explored
DL model candidate. Therefore, the population is composed of a
large number of candidates that share a similar architecture. Thus,
we can initialize the weights of a new candidate from a previously
explored ancestor whose architecture is similar. Doing so enables
the new candidate to benefit from the experience of the entire
lineage of ancestors, which makes the superficial training more
accurate as an estimation of the quality metric. This improves the
odds of better quality models being selected in the top-K.

One of the most commonly used transfer learning strategies is
to fine-tune the last layers of an ancestor model by inheriting and
freezing the first layers [6]. This approach accelerates superficial
training, because each backward pass needs to be applied only
to the last layers that are updated. For sequential models, the first
layers correspond to the longest common prefix of the new candidate
and ancestor sequences.

By generalization, when the model architecture is an arbitrary
directed graph, the longest common prefix is the set of vertices
𝑉 , for which 𝑣 ∈ 𝑉 if and only if: (1) the choice of 𝑣 is identical
both for the ancestor and the new candidate; (2) all vertices whose
outputs are inputs for 𝑣 are also included in 𝑉 . This is a recursive
definition: if the input layer matches, it is included in 𝑉 ; any other
matching layers connected to the input layer are also included in𝑉 ,

pa
re

nt
gr

an
dp

ar
en

t

ch
ild

From Grandparent
From Parent
New in Child

2
1

3

65

4

7

A

2
1

3

65

4

7

2
1

3

65

4

7

B

Submodel

Figure 2: Example of three DLmodel architecture graphs. The
longest common prefix (LCP) between the parent and the
grandparent is {1, 2, 3} and between the parent and the child
is {1, 2, 3, 4, 5}. By transferring and freezing the LCP during
training, only 13 unique layers need to be stored compared
with 21 layers in the case when the three DL models are
stored independently.

etc. For example, Figure 2 illustrates the longest common prefix for
a chain of two transfer learning operations: parent and grandparent
share the same architecture for layers {1, 2, 3} but not {4, 5}. Even
if 7 also shared the same architecture, the longest common prefix
would have remained {1, 2, 3}. Similarly, the child shares the same
architecture with the parent for all layers except 6. In this case, the
longest common prefix is {1, 2, 3, 4, 5}. For the rest of this paper, we
use longest common prefix to refer to the generalized form.

Problem Formulation: To enable a NAS transfer learning strat-
egy as discussed in Section 2, we need a DL model repository ca-
pable of (1) storing the entire population of 𝑁 candidates (both
architecture and layer weights); (2) retiring DL models that are re-
placed in the population; (3) given a new candidate, identifying the
ancestor with the longest common prefix (and preferring the one
with the highest quality metrics in case of a tie); (3) selectively read
only the tensors corresponding to the longest common prefix from
the ancestor and transfer them to the new candidate; (4) selectively
writing only the tensors that have changed after training the new
candidate; (5) given a set of DL models (e.g., top-K best performers
after the search), extracting the lineage of each DL model (chain of
ancestors) and/or find the most recent common ancestor of a DL
model pair. An illustration of how this repository fits in the NAS
workflow is depicted in Figure 1.

Given a large number of workers that need to load and store
the DL model candidates under concurrency, this NAS scenario
illustrates the challenges discussed in Section 1: the need for incre-
mental storage and garbage collection to achieve space efficiency,
scalable I/O access performance under concurrency, scalable meta-
data query support to efficiently answer longest common prefix
queries under concurrency, ancestry, and provenance support. Our
goal is to design such a repository that addresses these challenges.

3 RELATEDWORK
DL Model Checkpointing: Popular runtimes such as Tensor-

flow and PyTorch serialize DL Model into various formats (e.g.
HDF5 [17] or SavedModel [1]) used to checkpoint and resume the

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

training later. These formats include additional unnecessary in-
formation such as the optimizer state and implement inefficient
serialization that incurs high I/O overheads. Optimized checkpoint-
ing approaches exist for data-parallel training [29]. They take ad-
vantage of multiple identical replicas to parallelize the writes of
different shards. Other checkpointing efforts such as CheckFreq
and Check-n-Run [12, 28] focus on determining the optimal check-
pointing interval through systematic online profiling, which is
important for resilience but not our scenario. FlameStore [34] aims
to reduce the serialization overheads by directly capturing and
storing the tensors at their final destination (in-memory, local file
system). DStore [27] extends this principle by adopting fine-grained
RDMA-enabled storage and efficient partial read support. Overall,
the lack of important features (e.g., no metadata query support, no
incremental storage for DStore) or different scope (e.g., only incre-
mental storage of the same model for Check-n-Run) makes such
approaches insufficient in the scenarios targeted by our approach.

Web-enabled DL Model Repositories: are optimized for col-
laborative rapid application development. They enable users to
upload, classify, curate, and search for DL models. Prominent exam-
ples include open repositories such as TensorflowHub [36], PyTorch
Hub [32], Caffe’s Model Zoo [18]. Some efforts, such as DLHub [22]
target scientific applications specifically. For web-enabled reposi-
tories, the emphasis is on providing rich features and ease-of-use,
rather than high performance and scalability. One notable feature
is the versioning of DL models. For example, Data Version Control
(DVC) [20] relies on Git’s version control capabilities to store meta-
data references to large binary and textual objects that represent
training data and DL model checkpoints. However, the serializa-
tion and actual storage of the tensors is outside of the scope of the
repository and delegated to web-based RPCs or parallel file systems
that are not optimized for small non-contiguous data transfers.

Network Architecture Search: Several aspects such as search
space, candidate estimation and search strategy. are summarized
in various surveys [4, 13]. Search spaces are well documented in
the image classification community [9, 41]. Other domains rely
on expert input (e.g., cancer research [2]). Regarding candidate
estimation, one-shot NAS techniques [25, 31] training a supernet
that contains all possible architectures in the search space, which
reduces the search duration. However, this approach suffers from
poor candidate quality [42]. Regarding the search strategy, there
are multiple approaches possible: random search [5], Bayesian op-
timization [7, 19], evolutionary methods [10, 23, 26, 33], and rein-
forcement learning [2, 43]. These approaches are subject to various
trade-offs. Transfer learning based on our DL model repository
approach can complement a majority of such approaches.

To our knowledge, we are the first to consider the problem design-
ing a decentralized DL model repository that meets the scalability
and performance requirements of HPC infrastructures under con-
currency, while simultaneously focusing on fine-grain tensor-level
access, incremental storage, and lineage.

4 EVOSTORE: SYSTEM DESIGN
4.1 Design Principles

Incremental StorageBased on Sharing Frozen Layers: Trans-
fer learning typically results in unmodified layers in the derived DL
models because of the practice of freezing some layers inherited
from the ancestors. The proportion of frozen layers can be very
high (e.g., 50% on the average in NAS scenarios [37]). Thus, it is
important to share unmodified layers using incremental storage in
order to save storage space and speed up writes. To this end, we
organize the repository into a lineage of derived DL models, each
of which has exactly one ancestor. The lineage may have many
branches that evolve independently into potentially long chains.
Each derived DL model uses its ancestor as a reference to compute
a difference in terms of new/modified layers. The repository stores
only this difference, which results in unique copies of unmodified
layers that may be indirectly inherited by a large number of derived
DL models, effectively resulting in large storage space savings.

In this context, an important challenge is how to identify the dif-
ferences at fine granularity such as to maximize the deduplication
potential. This is non-trivial because widely-used ML libraries (e.g.,
Keras [16]) consider layers as recursive structures that can share
identical content at any level, from large structures to individual
tensors. We devise fast algorithms (detailed in Section 4.2) to com-
pute differences between derived DL models at tensor-level, at the
finest possible granularity.

Lightweight Lineage Based on Owner Maps: A simple so-
lution that simply persists the fine-grain difference between the
derived DL model and its ancestor to the repository (together with
a reference to the ancestor) is optimal with respect to write through-
put, but introduces a high read throughput penalty later when the
DL model needs to be reused. This is because the entire chain of
incremental writes needs to be examined in order to reconstruct
the DL model. Moreover, with an increasing chain length in the lin-
eage, the overhead of the read requests grows proportionally. Thus,
such a simple solution does not scale with an increasing number
of derived DL models in the repository. To address this issue, we
take the following approach: first, we extract the leaf layers and
their tensors from the model architecture (a process detailed in Sec-
tion 4.2). Then, we construct an owner map that assigns each tensor
to an owner, i.e., the most recent ancestor that modified the tensor.
Initially, a DL model not obtained through transfer learning owns
all its tensors. Any other model obtained through transfer learning
inherits the owner map of its ancestor, which it then updates to set
itself as the owner only for the new/modified tensors. For example,
in Figure 2, if we freeze the layers of the longest common prefix
during training, then the grandparent needs to be stored entirely
and the parent needs to store {4, 5, 6, 7} and mark {1, 2, 3} as be-
longing to the grandparent in the owner map. Similarly, the child
needs to store {6, 7} and mark {4, 5} as belonging to the parent and
{1, 2, 3} as belonging to the grandparent in the owner map. Using
this approach, we can efficiently serve read requests by consulting
a single owner map, whose complexity does not depend on the
number of ancestors.

Overall this, approach uses relatively little metadata regardless
of the access patterns. It is at most hundreds of KB (128 bits per

EvoStore: Towards Scalable Storage of Evolving Learning Models HPDC ’24, June 03–07, 2024, Pisa, Italy

leaf-layer) which is negligible compared with the actual size of the
models and layers themselves.

Owner Maps as a Foundation for Provenance: With min-
imal extensions, the owner maps introduced above are naturally
fitted to answer several types of provenance queries. Specifically,
since the owner of each tensor is simultaneously the most recent
ancestor that modified the tensor, we can directly use the owner
map to identify what ancestors contributed to the composition of a
given DL model and what tensors they affected. Furthermore, by
introducing a global ordering of the owners (e.g., based on a times-
tamp at which their write request occurred), we can also determine
what chain of transfer learning operations resulted in a given DL
model stored by the repository. Using this approach, only a single
consolidated data structure needs to be accessed without any need
to synchronize with other DL models and their metadata, which
facilitates scalability under concurrent access.

Distributed RDMA-enabled Tensor Storage with Owner-
Based Consolidation: to achieve scalability, the owner map of
each new DL model and the corresponding collection of modified
tensors are distributed among a set of providers, each of which em-
ploys a local key-value store to persist the tensors and the owner
maps. The providers can either be co-located with the application
processes on the same compute nodes or be deployed separately on
dedicated nodes. There are two challenges in this context: (1) how
to enable the clients to find out what providers to contact to recover
the architecture and/or content of the DL model, and (2) how to
distribute the requests of concurrent clients to different providers
to achieve load balancing and scalability. To this end, we leverage
the fact that each owner map fully describes the composition of
the DL model. Thus, we use a simple static hashing scheme that
maps a model ID to a provider ID. Then, to store a new DL model,
we consolidate the new tensors and send them in bulk together
with the owner map to the provider ID that corresponds to the
new DL model ID. Note that the unmodified tensors are already
stored by other providers. To reconstruct a DL model, we follow the
reverse process: we contact the provider to obtain the owner map,
then follow the owner map to recover the tensors from the corre-
sponding providers. This way, we obtain a good balance between
scattering the tensors among the providers while retaining local-
ity (i.e., tensors likely to be accessed together end up on the same
provider). Combined with low-latency RDMA operations, such as
scheme enables high performance and scalability under concurrent
accesses. Furthermore, since each provider stores both the owner
maps and the tensors, it simultaneously acts as a data and metadata
provider. This simplifies the deployment and management of the
DL model repository.

Distributed garbage collection using reference counting:
In NAS, it is possible to remove a model’s layers when a model
leaves the population of models that are being evolved. By modify-
ing the search framework to indicate this to the model repository,
it is possible to retire models to save space for new models.

If no tensors are shared across the DL models, then retiring a
model is a trivial operation that simply needs to remove all tensors
and metadata corresponding to the model. However, when tensors

are shared across DL models, each model may feature many differ-
ent ancestors in its owner map. Thus, retiring an ancestor cannot
simply remove all the tensors it owns, because each tensor may
be reused by an arbitrary number of descendants. To address this
challenge, we take the following approach: each provider embeds
each segment that it reuses for bulk RDMA read requests with a
reference counter. This reference counter is incremented for all
tensors involved in the owner map of a write request. Similarly,
the reference counter is decremented for all tensors of a DL model
that is being retired taking𝑂 (𝑘) time where 𝑘 is the number of leaf
layers in the model.Note that k is small for even advanced models.
GPT-3 has only 96 layers [40]. While the metadata of the retired
model is always fully removed, its owned tensors are only removed
when the reference counter drops down to zero. Note that due to
different ownership, the tensors may be scattered across multiple
providers. In this case, we employ a similar strategy as above (the
client issues multiple bulk operations in parallel to the providers),
which results in similar benefits.

Distributed provider-side collective metadata queries: An
increasing number of DL models stored in the repository results in
an explosion of the metadata associated with them. Our decentral-
ized approach distributes the coupled data/metadata, which enables
concurrent clients to perform scalable queries about individual DL
models because it is likely that the metadata of different DL models
ends up on different providers. Most of the provenance queries fall
into this category. However, the longest common prefix queries
follow a different pattern: a client needs to scan the whole metadata
in order to find the best ancestor for transfer learning. Furthermore,
for each potential ancestor, it is non-trivial to determine the longest
common prefix when the model architecture is a generic graph (we
study this problem in-depth in Section 4.2). Therefore, a naive solu-
tion that iteratively collects the individual metadata about each DL
model determines the longest common prefix and retains the best
candidate does not scale. To address this issue, starting from the
observation that the providers are mostly idle because the majority
of I/O transfers are performed using bulk RDMA operations, we
take a map-reduce-inspired solution instead: the client broadcasts
the architecture of the given DL model to all providers, which in
parallel determines the best match among their local metadata. This
is followed by an asynchronous reduction step to find the global
best match, which is then retained by the client. Using this approach
not only avoids additional overheads involved in metadata transfers
but also distributes the computational load.

4.2 Zoom on Architecture Graphs, Owner Maps
and Longest Common Prefix Queries

As mentioned in Section 2, in the general case, the model archi-
tecture is an arbitrary graph. In practice, the layers are typically
expressed recursively (e.g., Keras [16]). They may form a nested
architecture of submodels that eventually are composed of leaf
layers (holding relevant parameters such as weights, biases, etc.).
Therefore, it is not enough to simply consider the original layers
for the purpose of identifying the longest common prefix.

To illustrate this, we can revisit the DL models whose architec-
ture graphs are depicted in Figure 2. The grandparent model is
composed of the leaf layer {1, 2, 5, 6, 7} and submodel 𝐴 = {3, 4}.

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

Input :Architecture of model𝑀
Output :Best𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 and its LCP set 𝑃𝑟𝑒 𝑓 𝑖𝑥
𝐺 ← graph of M based on unique vertex IDs
𝑃𝑟𝑒 𝑓 𝑖𝑥 ← ∅
𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ← None
foreach𝐴 ∈ 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 do

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑄𝑢𝑒𝑢𝑒 (𝐺.𝑟𝑜𝑜𝑡)
𝑃 ← ∅
foreach 𝑣 ∈ 𝐺 do

𝑉𝑖𝑠𝑖𝑡𝑠 [𝑣] ← 0
end
while 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ≠ ∅ do

𝑢 ← 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .𝑝𝑜𝑝_𝑓 𝑟𝑜𝑛𝑡 ()
𝑃 ← 𝑃 ∪ {𝑢}
foreach 𝑣 ∈ 𝐺 [𝑢] .𝑜𝑢𝑡_𝑒𝑑𝑔𝑒𝑠 do

if ∃𝑣 ∈ 𝐴[𝑢] .𝑜𝑢𝑡_𝑒𝑑𝑔𝑒𝑠 then
𝑉𝑖𝑠𝑖𝑡𝑠 [𝑣] ← 𝑉𝑖𝑠𝑖𝑡𝑠 [𝑣] + 1
if 𝑉𝑖𝑠𝑖𝑡𝑠 [𝑣] =
𝑚𝑎𝑥 (𝐺 [𝑣] .𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒,𝐴[𝑣] .𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒) then

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑣)
end

end
end

end
if |𝑃 | > |𝑃𝑟𝑒 𝑓 𝑖𝑥 | then

𝑃𝑟𝑒 𝑓 𝑖𝑥 ← 𝑃

𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ← 𝐴

end
end
return (𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 , 𝑃𝑟𝑒 𝑓 𝑖𝑥)

Algorithm 1: Find Longest Common Prefix

The parent model uses the same leaf layer {1, 2}, but there’s also
a partial match with submodel 𝐴, as both parent and grandparent
share leaf-layer 3. Therefore, if we do not decompose the 𝐴 into
leaf layers and instead consider it as a single unit, then the longest
common prefix is shorter. Similarly, the child model uses the same
leaf layers as the parent on both branches except for {6, 7}. How-
ever, 6 is part of submodel 𝐵. Again, the longest common prefix
would have been shorter if we didn’t decompose 𝐵 into leaf layers.

Moreover, since the child is part of a transfer learning chain and
inherits leaf layer from both grandparent and parent, the opportu-
nity to identify longer common prefixes by considering matches
at leaf-layer granularity grows proportionally to the number of
transfers in the chain. In turn, this increases the effectiveness of
transfer learning. Similarly, by organizing the owner maps around
leaf layer instead of arbitrary layers, we improve the effectiveness
of the de-duplication that can be leveraged by incremental storage
since it is strongly correlated with the longest common prefix.

Decomposing a DL model into leaf layers and extracting the ar-
chitecture graph is non-trivial. We cannot simply match the names
of the layers, because identical names may be used for different
layer configurations, and, conversely, different names may be used
for identical layer configurations. Thus, we “flatten” the model
architecture into a single hierarchy of leaf layers. Flattening re-
cursively visits all complex layers starting from the input layer
in a deterministic fashion (e.g., a breath-first-search). During this
process, we construct two data structures: (1) a compact architec-
ture graph of the leaf layers that assigns unique IDs to the vertices
and retains the edges between the vertices; (2) the owner map that
initially assigns the new DL model ID as the owner of each vertex.

Then, based on the compact architecture graph of the new DL
model (denoted𝐺) we broadcast each longest common prefix query

to all providers. The providers work in parallel to identify the best
match according to Algorithm 1. Specifically, each provider checks
all locally stored DL models that can act as ancestors for transfer
learning. These compact architecture graphs of the ancestors are
part of the𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 set. We start with an empty 𝑃𝑟𝑒 𝑓 𝑖𝑥 . Then, for
each ancestor 𝐴 ∈ 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 , we expand a set of frontier vertices
(retained in a queue denoted 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟) starting from the root of 𝐺 ,
by visiting all matching vertices that can be reached from a frontier
vertex both in 𝐴 and 𝐺 . A vertex of 𝐺 has a match in 𝐴 if their
leaf-layer architectures are identical. We maintain a visit counter
𝑉𝑖𝑠𝑖𝑡𝑠 for each vertex. When the counter reaches the maximum
in-degree of a vertex in both 𝐴 and 𝐺 , then the frontier can be
expanded by this vertex, which is now eligible to be added to 𝑃𝑟𝑒 𝑓 𝑖𝑥 .
This process repeats until the frontier cannot be expanded any
longer. The worst-case complexity of a single longest common
prefix calculation between𝐺 and 𝐴 is 𝑂 (𝑚𝑖𝑛(|𝑉𝐺 |, |𝑉𝐴 |), because
we may need to visit the all vertices of one of the two graphs
and because a directed acyclic graph can have only 𝑂 (|𝑉 |) edges.
However, in practice, the longest common prefix is often smaller
than the full graph [37] resulting in the complexity only increasing
linearly in the number of locally stored ancestors 𝐴.

The results returned by the providers are reduced to obtain the
best overall match for transfer learning. Then, to obtain the final
owner map of𝐺 , we need to consult the corresponding owner map
of 𝐴 and assign to all vertices belonging to the longest common
prefix the corresponding owner ID from 𝐴. The rest of the vertices
will retain𝐺 as their owner. At this point, we can separately contact
the providers to read the tensors that are part of the longest common
prefix and to perform the transfer learning. Later, once we are ready
to store the newDLmodel back to the repository, we need to contact
a single provider, which will store the compact architecture graph,
owner map, and the consolidated, modified tensors.

4.3 Implementation Details
Core implementation of EvoStore: We designed and built a

research prototype based on the principles in Section 4.1. Specif-
ically, we follow a client-server design. The clients are libraries
that the applications link with and expose a C++ low-level API to
issue longest common prefix (LCP) queries (which transparently
broadcast and reduce the results) and to read/write subsets of ten-
sors. The client is responsible for interpreting the owner maps and
optimizing the RDMA communication with multiple providers in
parallel. To this end, we rely on optimized HPC-oriented remote
procedure calls (RPCs), as provided by the Mochi [34] collection of
composable building blocks. Specifically, we use Thallium, which
is a C++ wrapper on top of Mercury and Argobots. The providers
use an extensible key-value store abstraction that can be used to
group and store tensors and fine granularity either in-memory and
persistently using underlying backends such as C++ synchronized
memory pools or RocksDB [30].

Most DL applications construct and use DL models through
high-level AI runtimes such as Tensorflow and PyTorch. Thus, we
implemented a Python library that relies on the low-level C++ client
API to expose higher level primitives that handle both LCS queries,
transfer learning and retiring of DL models in a user-friendly fash-
ion. At the same time, this approach overcomes the multi-threaded

EvoStore: Towards Scalable Storage of Evolving Learning Models HPDC ’24, June 03–07, 2024, Pisa, Italy

Figure 3: EvoStore architecture diagram.

limitations of Python due to the global interpreter lock, which en-
ables the C++ clients to fully take advantage of asynchrony and
parallelism.

Integration with DeepHyper: We integrated EvoStore with
DeepHyper [2, 3], a NAS framework specifically designed for use
on HPC systems. It relies on MPI communications to synchronize
the controller with a large number of workers. The design of Deep-
Hyper is modular and allows a plugin-able search strategy on the
controller. For this work, we use the aged evolution search strat-
egy [10], which is briefly summarized in Section 2. The workers
also support plugin-able evaluation and training of the DL model
candidates. We use the default plugin that trains the DL model
candidate for one epoch and reports the training accuracy to the
controller.

The original DeepHyper implementation does not support trans-
fer learning. Thus, we contributed extensions to enable transfer
learning for NAS. Specifically, this involves two aspects. First, we
modified the candidate evaluation function used by the workers
to (1) broadcast a longest common prefix query to the EvoStore
providers, (2) use the reduced result to perform transfer learning
from the best match available in EvoStore; (3) train the DL model
using a modified strategy that freezes the transferred layers (for
one epoch); (4) write back the new DL model to EvoStore; (5) report
the training accuracy to the controller. Second, we modified the
search strategy of the controller to retire DL model candidates from
EvoStore when they are dropped from the population of active DL
model candidates. The overall architecture is depicted in Figure 3.

5 EXPERIMENTAL EVALUATION
5.1 Setup
Our experiments were conducted on the Polaris HPC system hosted
at Argonne National Laboratory. It comprises 560 compute nodes,
each of which is equipped with a 32-core AMD Zen 3 processor,
512 GB of DDR4 RAM, 4 Nvidia A100 GPUs (40 GB high bandwidth
memory per GPU), and 2 TB of local SSD storage. The nodes are in-
terconnected with a dual Slingshot 10 network fabric. The compute
nodes have access to a Lustre parallel file system of 100 PB capac-
ity. It features 150 object storage targets (OSTs) and 40 metadata
targets, with an aggregate data transfer rate of up to 650 GB/s. For
software, we use Deephyper 0.4.2, TensorFlow 2.9, Mercury 2.1.0

using OFI verbs provided in libfabric, Argobots 1.1, and Thallium
0.10.0 compiled using GCC-11.2 and Cuda 11.6.5.

5.2 Compared Approaches
We compare our approach with several state-of-the-art approaches
and alternative implementations, as described below.

DL Model Repository, Denoted HDF5+PFS. This approach
stores and loads DL models to/from HDF5 [17] files. It is part of the
standard TensorFlow distribution and is implemented in Keras. The
store primitive first copies the content of the tensors into NumPy
arrays (by launching a separate Tensorflow execution context),
then writes the arrays into an HDF5 file using the HDF5 Python
bindings. The load primitive implements the reverse process. This is
the fastest available format (alternatives such as SavedModel are 2×
to 17× slower [27]). The underlying backend for the HDF5 files is
the Lustre parallel file system. All aspects of I/O under concurrency
are handled transparently by Lustre.

Query ProcessingUsingRedis, DenotedRedis−Queries. This
approach implements a centralized DL model metadata repository
that enables longest common prefix queries (LCP).We use Redis [15]
to store the DL model architectures as key-value pairs. It serves
LCP queries by iterating over all key-value pairs and retaining the
best match. To handle concurrent queries efficiently, we use native
support for atomic put/get operations, which we extended with
an optimized transactional support using specialized reader-writer
locks (needed to handle concurrent LCP queries and add/retire
operations). Redis−Queries is used with HDF5−PFS to provide a full
end-to-end equivalent solution comparable with our approach for
the end to end comparisons.

When Redis-queries is used with a model repository, several
locks are required to handle concurrent read and write operations.
We breifly describe these here. For Redis-queries, to add a model a
global writer metadata lock is acquired, and then a model architec-
ture specific writer lock is attempted to be acquired. If this succeeds,
the reference count for the model is incremented and the metadata
lock is dropped. After dropping the metadata lock, the weights are
written. When the weights are persisted to the PFS, the metadata
writer lock is re-acquired and the model is published to the list
of architectures stored. If grabbing the model architecture specific
lock fails, the model architecture is already registered and the add
procedure ends without storing weights after incrementing the
model reference count. Retiring does the inverse. It grabs a writer
lock for the metadata, and then it decrement the reference count. If
the reference count hits zero, the model architecture specific lock
is acquired, the model is unpublished from the list of models, and
the metadata lock is freed. Finally the store is storage is freed and
the model architecture specific lock is freed. Lastly, are the queries
themselves. For queries, a reader lock is acquired for the metadata.
After this lock is acquired, the set of published models is iterated
over to identify the longest common prefix match. The best identi-
fied model has it reference count incremented, and the reader lock
is released. After the weights are transferred, the reference count is
decremented, if necessary retirement of the model is preformed as
described above beginning with the reference count hitting zero.

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

This careful coordination ensures that only the required locks
and types of locks acquired are held only when strictly necessary.
The simpler process described above for EvoStore is possible be-
cause the model weights and storage are managed jointly by EvoS-
tore and cannot be out of sync with the external storage.

NAS: DeepHyper Without Transfer Learning, Denoted
DH−NoTransfer. This approach is the original DeepHyper [2] im-
plementation that uses the same regularized evolution search strat-
egy [10] as described in Section 4.3. Unlike our extensions to Deep-
Hyper, it simply trains each DL model candidate with random
weights from scratch, without applying transfer learning. We use
this approach as a baseline in our real-life NAS application scenar-
ios, to showcase the benefits of adopting transfer learning from the
previous models identified in the context of NAS.

5.3 Methodology
We evaluate the performance and scalability of the approaches
described in Section 5.2 both with micro-benchmarks and a real-life
NAS application.

Mirco-benchmarks: We designed and implemented a series of
micro-benchmarks that make it possible to isolate and study sepa-
rately both the aspects of incremental storage and query processing.
Regarding incremental storage, our micro-benchmark includes an
architecture generator that can be configured with a variety of
parameters: total model size, number of leaf layers, and variations
between the layers. Using this approach, we can simulate different
LCP lengths, which enables us to control the total size of the mod-
ified tensors as a fraction of the total size of the DL model being
written to the DL repository. Regarding query processing, we rely
on the DeepSpace library (which is part of DeepHyper) to generate
a variety of DL model architectures that are both diverse and show-
case complex architectural features with alternative branches and
submodels. Thus, we can generate complex leaf-layer architecture
graphs that stress the query processing algorithms.

Real-Life Application: NAS for CANDLE:. To show the im-
pact of our approach in end-to-end experiments, we have chosen
the ATTN problem from the ECP CANDLE project [39]. CANDLE
aims to address a series of related cancer research problems using
large-scale deep learning. In particular, the ATTN problem aims to
model cancer responses to drugs. To this end, it relies on DL models
to infer the responses. In this context, NAS is used to find a model
architecture that results in extremely high inference accuracy. We
use the search space for ATTN from [11] with 3.1× 1057 candidates.

5.4 Results: Scalability of Incremental Model
Storage

Our first series of experiments focuses on the performance and the
scalability of incremental storage. To this end, we deploy EvoStore
on an increasing number of compute nodes, each of which hosts
one provider and four workers that are assigned to a dedicated GPU.
EvoStore was configured to use the in-memory KV store backend
based on C++ synchronized pools (as mentioned in Section 4.3).

The experiment proceeds in two phases. First, each worker pro-
cess uses our architecture generator to obtain a model that is 4 GB
large and is comprised of 100 evenly-sized layers. Then, eachworker

Figure 4: Incremental storage: EvoStore vs. HDF5+PFS. EvoS-
tore takes advantage of incremental storage to achieve up
to 5x higher aggregated write bandwidth compared with
HDF5+PFS. Furthermore, it consistently achieves 25% higher
write bandwidth for full DL model writes. In this case,
HDF5+PFS is used without the Redis metadata server.

simulates a partial write of a new DL model by assuming a fixed
number of layers remain frozen, while the rest are modified and
need to be written to the DL repository. The number of frozen lay-
ers remains the same for all workers. Then, in the next phase, the
workers are synchronized using a barrier to start writing their DL
models to the DL repository, which produces a highly concurrent
write pattern.

We vary the number of GPUs from 8 to 256 (weak scalability)
and the fraction of the tensors being written (which coincides with
the total size of the modified tensors) from 25% to 100% (i.e., full
writes). We measure the aggregated write bandwidth, which is
calculated as the sum of the individual write bandwidths observed
by the workers under concurrency. In turn, the individual write
bandwidth is normalized to the total model size (i.e., total model
size 4 GB divided by the time taken to store the DL model). The
normalization enables us to reason about how effective incremental
storage is at accelerating the writing of a DL model for a decreasing
fraction of modified tensors.

We compare EvoStorewithHDF5+PFS. Recall thatHDF5+PFS is not
capable of incremental storage. Therefore, regardless of the number
of modified tensors, HDF5+PFS always writes the full model, which
is why we only need to evaluate a single 100% setting for it. The
results are depicted in Figure 4. As can be observed, our approach
shows high scalability for an increasing number of GPUs for all
fractions ranging from 25% to 100%. This effect is observable despite
the decreasing size of the modified tensors, which emphasizes the
latency of the writes. We attribute this to our RDMA-centric design
that consolidates the modified tensors, which in turn minimizes
the write latency. Furthermore, another trend is visible: even for
full model writes (100%), our approach is significantly faster than
HDF5+PFS at all scales, retaining a 25% higher aggregated write
bandwidth. As expected, in the case of partial writes, EvoStore is up
to 5x faster. We attribute this difference to the higher overheads of
HDF5 serialization and the lower I/O bandwidth of the OSTs.

EvoStore: Towards Scalable Storage of Evolving Learning Models HPDC ’24, June 03–07, 2024, Pisa, Italy

Figure 5: Strong Scalability of LCP Query Processing: 10k
queries issued by a variable number of workers against a
catalog of 60k DL model architectures. EvoStore maintains
high scalability overRedis−Queries and provides up to 3 orders
of magnitude faster query processing. Redis−Queries does not
scale beyond 32 GPUs (marked with an asterisk). In this
figure, no model weights are read/written in either case so
HDF5+PFS is not used in the Redis-queries .

5.5 Results: Scalability of Metadata Query
Processing

Next we focuse on the longest common prefix (LCP) queries under
concurrency. EvoStore is deployed in the same configuration as
above. We compare EvoStore with Redis−Queries, which is deployed
on a dedicated compute node.

The experiment consists of two phases. In the first phase, we
use the DeepSpace library to generate a large number (60k) of DL
model architectures, as described in Section 5.3. These architectures
are serialized in JSON format and used to populate the metadata
of EvoStore and Redis−Queries. Since the experiment focuses on the
queries, the actual DL model tensors are not stored. Then, in the sec-
ond phase, we synchronize the workers to perform a large number
(10k) of LCP queries under concurrency.

We study the strong scalability of both approaches by varying the
number of concurrent workers from 1 up to 512 while keeping the
total number of queries fixed (10k). Each worker issues the same
number of queries, which enables us to enforce load balancing
during our study.

Figure 5 shows the results. As can be observed, even for a single
worker under no concurrency, EvoStore is more than an order of
magnitude faster. We attribute this difference to our optimized com-
pact architecture graph in-memory representation, which enables
our LCP algorithm to quickly iterate over the entire catalog of 60k
DL models. On the other hand, Redis−Queries uses the Redis API to
iterate over the same catalog, whose performance is significantly
worse. Furthermore, our approach maintains excellent scalability:
despite an increasing number of concurrent workers, the query pro-
cessing throughput remains stable. This observation underlines the
efficient implementation of broadcasts and reductions in EvoStore,
which effectively distributes the LCP query workload among the

Figure 6: Accuracy of the DL model candidates over time:
DeepHyper based on transfer learning facilitated by EvoStore
produces candidates with high accuracy (>80%) much faster
than DH−NoTransfer. Furthermore, the average accuracy of
the candidates is significantly higher and the overall runtime
is significantly shorter.

providers. On the other hand, the Redis−Queries throughput sharply
drops even at moderate scales and stops beyond 32 GPUs.

5.6 Results: Scalability of NAS for CANDLE
Our last series of experiments evaluate the real-life end-to-end
benefits of our approach for NAS. Specifically, we solve the ATTN
problem of CANDLE detailed in Section 5.3.

To enable a fair comparison, we configure the DeepHyper con-
troller to use a fixed pseudo-random number generator seed, which
improves reproducibility of results. We limit the maximum number
of explored DL model candidates (population size) to 1000 and con-
sider two scales: 128 and 256 workers (each worker on a dedicated
GPU).

It is important to compare the accuracy over time of both Deep-
Hyper without transfer to amethod that uses transfer. To our knowl-
edge, our approach is the first to fully implement a transfer learning
pipeline in network architecture search. Prior to our work, it is un-
clear how much benefit there is to model quality vs simply not
performing transfers which introduces I/O overhead. It was also
possible that models discovered in the same NAS process could
decrease or not effect the quality of future models. However, as we
will show in subsequent paragraphs, it both improves quality of
model over all, but also decrease the time to identify a high quality
model.

First, we discuss the overall DL model accuracy and end-to-end
runtime of EvoStore vs. DH−NoTransfer for the maximum scale (256
GPUs). The results are depicted in Figure 6. As can be observed,
with EvoStore, DeepHyper produces high-quality (with an accuracy
of over 80%) DL model candidates much faster than the original
version (without transfer learning). Specifically, with transfer learn-
ing, high-quality candidates are found almost immediately after the
search process has started, while in the case of DH−NoTransfer, this
happens no sooner than 1/3 into the search process. Furthermore,
the overall quality of the DL model candidates is much higher with

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

Figure 7: Time To Target Objective: DeepHyper based on
transfer learning facilitated by EvoStore produces DL model
candidates above target accuracy faster thanDH−NoTransfer at
different scales (128, 256GPUs). Inmany cases,DH−NoTransfer
cannot reach a given target accuracy at all (marked with
asterisk).

transfer learning, both in terms of averages and top performers.
Finally, we observe that transfer learning reduces the end-to-end
runtime to explore 1000 candidates by almost 30%. Thus, we con-
clude our approach has a double advantage: it simultaneously in-
creases the overall population quality and significantly reduces the
end-to-end NAS runtime.

Next, we discuss the runtime needed to reach a given target
objective: finding a DL model candidate with an accuracy above
a given threshold. We vary both the scale (128, 256 GPUs) and
the accuracy threshold. The results are depicted in Figure 7. As
can be observed, in the case of 128 GPUs, transfer learning based
on EvoStore is 3x faster than DH−NoTransfer at finding a DL model
candidate above 90% accuracy. After that, DH−NoTransfer cannot
find a better candidate at all. Moving to 256 GPUs, DH−NoTransfer
takes significantly less than in the case of 128 GPUs to find a candi-
date above 90% accuracy. Even so, transfer learning is 2.5x faster
in achieving the same objective. As the target accuracy increases,
DH−NoTransfer manages to find suitable candidates with up to 94%
accuracy. On the other hand, our approach keeps finding suitable
candidates faster above 96% accuracy both with 128 and 256 GPUs.

A careful observer may notice that the search time of EvoStore-
256 vs EvoStore-128 longer in Figure 7 only at the .91 accuracy
threshold. Parallelism plays some role in how the candidates are
generated. Even with a fixed seed, there is non-determinism in the
order that model evaluations are completed. This non-determinism
means that the search algorithm may have a different set of can-
didates to evolve from even when using the same seed. Thus, 128
GPUs can beat 256 GPUs because low accuracy thresholds may
be reachable with fewer luckier candidates. At a higher accuracy
threshold, luck plays a smaller role and the number of candidates
needed to reach it is similar for both 128 and 256 GPUs.

Next, we focus on the weak scalability of the end-to-end run-
time to completely evaluate all 1000 candidates for an increasing
number of GPUs (128, 256). In addition to DH−NoTransfer, we also

Figure 8: End-to-end runtime: transfer learning with
EvoStore reduces the end-to-end runtime compared with
DH−NoTransfer. The gap increases as the number of GPUs
increases. In this figure, HDF5+PFS uses a metadata server
implemented in Redis

compare EvoStore with transfer learning based on HDF5+PFS (which
uses Redis−Queries for metadata management). As can be observed
in Figure 8, HDF5+PFS is close to DH−NoTransfer, which implies that
the training speed-up enabled by freezing the transferred layers
are offset by high metadata and I/O overheads, whose effect is am-
plified under concurrency. This makes HDF5+PFS a poor choice as
a DL model repository compared to our approach under realistic
scenarios. On the other hand, our approach exhibits a significant re-
duction in the end-to-end runtime compared with both approaches,
which is close to the lower bound (i.e., assuming an infinitely fast
DL model repository). Specifically, the interactions with EvoStore
(LCS queries, load/store) cause an overhead that is less than 2% of
the end-to-end runtime. Thus, EvoStore shows negligible overheads
and remains scalable under realistic scenarios, enabling the training
to fully take advantage of frozen layers.

We studied the above findings in greater detail by plotting the
evolution of the training tasks in the case of 128 GPUs. Figure 9
depicts the start and finish times (X axis) of each task running
on each GPU (Y axis) for all three approaches. As expected, in
the case of DH−NoTransfer, the training tasks roughly start and
finish in waves. On the other hand, both in the case of EvoStore
and HDF5+PFS the pattern formed by the training tasks becomes
irregular, hinting at uneven training durations due to a variable
number of frozen layers 1. In the case of HDF5+PFS, the training
tasks take visibly longer to finish, confirming the higher overheads.
We studied a breakdown of these overheads and found that up to
18% is caused by higher I/O overheads, and up to 24% is caused by
higher metadata overheads. The rest of 58% is caused by the higher
variability of the task runtimes (standard deviation of 17.91 vs. 16.15
in the case EvoStore), which results in delays on the controller. Thus
we conclude our approach shows another promising advantage over
HDF5+PFS: improved stability of techniques that leverage transfer
learning.

1As the search progresses, we start with 0% and eventually increase to ≈ 50% layers
frozen as the search progresses for the reasons outlined in [37]

EvoStore: Towards Scalable Storage of Evolving Learning Models HPDC ’24, June 03–07, 2024, Pisa, Italy

Figure 9: Task evolution expressed as start/finish timestamp
(X axis) on each of 128 GPUs (Y axis). DH-No Transfer has
greater contention with a stronger wave behavior than EvoS-
tore and HDF5+PFS. In this figure, HDF+PFS uses Redis for a
metadata server

Figure 10: Storage Space Overhead: EvoStore uses 3.5× less
space than HDF5+PFS when DL model candidates are not re-
tired by the NAS search strategy. When the candidates are
retired, EvoStore uses 5.3× less space that in the previous case
and 1.7× less space thanHDF5+PFS. Retirement for HDF5+PFS
is implmemented using Redis to track metadata

Finally, we discuss the storage space used by EvoStore vs.HDF5+PFS
with Redis for metadata. We compare both approaches in two sce-
narios: when DL model candidates are allowed to accumulate in the
repository without being retired, and, respectively, when they are
retired by the search strategy as soon as they are eliminated from
the active population. As can be observed in Figure 10, there is a
large gap between EvoStore and HDF5+PFS, both with and without
retirement. This demonstrates that the DL model candidates have a
high degree of similarity, which leads to long common prefixes and
therefore a large degree of transfer learning. Thanks to incremental
storage, EvoStore avoids an explosion of storage space overhead both

with and without retirement, which makes it is a viable strategy
in both cases to unlock the multiple benefits of transfer learning
discussed above (higher quality of DL model candidates, less time
to target candidate accuracy and shorter end-to-end runtime).

6 CONCLUSIONS
We introduce EvoStore, a distributed DL model repository designed
to store and retrieve DL models organized into a lineage, which is
an instrumental capability for transfer learning and fine-tuning. To
this end, we contributed with several concepts (incremental storage
based on owner maps, specialized metadata query support, and
garbage collection, fine-grain tensor storage) and readily available
implementation integrated within the AI ecosystem.

We demonstrated the benefits of our approach in comparison
with several approaches at scale (up to 512 GPUs), both using micro-
benchmarks and a real-life NAS problem, which we extended to
take advantage of transfer learning. Results show up to 3x higher
DL model write throughput, up to 1000x faster metadata queries, 3x
faster NAS discovery of high-quality models, 25% faster end-to-end
runtime and up to 5x less storage space utilization compared with
state-of-art.

Encouraged by these promising results, in future work we plan
to explore several avenues: (1) different NAS strategies with more
frequent transfer learning (e.g., zero-cost proxies with a few itera-
tions instead of a full epoch); (2) leverage ancestry and provenance
queries to explain the quality of the DL model candidates; (3)apply
our approach to other transfer learning scenarios different from
NAS (notably continual learning).

Zero cost proxies offer the opportunity to reduce the training
costs. With reduced training costs, the percentage of the workflow
dominated by I/O increases potentially requiring further improve-
ments over the approach described here, but also possibly present
new quality trade offs than what is presented above.

We also want to explore if the lineage of the models can be used
to explain or debug model performance on a particular type of data
similar to how git does for source code. This kind of workflow poses
the opportunity to do aggressive pre-fetching of models to workers
given known access pattern.

Lastly, applying the approaches outlined above to continual learn-
ing presents a different set of challenges and opportunities. In con-
tinual learning, there may be additional factors to consider when
choosing which model to transfer from such as the age of the model.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357. This
research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy, Office of
Science, under contract number DE-AC02-06CH11357.

REFERENCES
[1] The TensorFlow Authors. 2022. Tensorflow SavedModel. https://www.tensorflow.

org/guide/saved_model.
[2] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram

Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable

https://www.tensorflow.org/guide/saved_model
https://www.tensorflow.org/guide/saved_model

HPDC ’24, June 03–07, 2024, Pisa, Italy Underwood et al.

reinforcement-learning-based neural architecture search for cancer deep learn-
ing research. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 37, 33 pages.
https://doi.org/10.1145/3295500.3356202

[3] Prasanna Balaprakash, Michael Salim, Thomas D. Uram, Venkat Vishwanath, and
Stefan M. Wild. 2018. DeepHyper: Asynchronous Hyperparameter Search for
Deep Neural Networks. In HiPC’18: The IEEE 25th International Conference on
High Performance Computing. IEEE, Bengaluru, India, 42–51.

[4] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying Parallel and Distributed
Deep Learning: An In-depth Concurrency Analysis. ACM Comput. Surv. 52, 4,
Article 65 (aug 2019), 43 pages. https://doi.org/10.1145/3320060

[5] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. J. Mach. Learn. Res. 13, null (feb 2012), 281–305.

[6] Francois Chollet. 2018. Deep learning with Python. Manning Publications, Shelter
Island, NY.

[7] Georgi Dikov and Justin Bayer. 2019. Bayesian Learning of Neural Network
Architectures. In Proceedings of the Twenty-Second International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 89), Kamalika Chaudhuri and Masashi Sugiyama (Eds.). PMLR, 730–738.
https://proceedings.mlr.press/v89/dikov19a.html

[8] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Yang Zonghan, Yusheng Su,
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang,
Juanzi Li, and Maosong Sun. 2023. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine Intelligence 5 (2023), 1–16.
https://doi.org/10.1038/s42256-023-00626-4

[9] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=HJxyZkBKDr

[10] Romain Égelé, Prasanna Balaprakash, Isabelle Guyon, Venkatram Vishwanath,
Fangfang Xia, Rick Stevens, and Zhengying Liu. 2021. AgEBO-Tabular: Joint
Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel
Training for Tabular Data. In SC ’21: The 2021 International Conference for High
Performance Computing, Networking, Storage and Analysis. St. Louis, USA, Article
30, 14 pages.

[11] Romain Égelé, Prasanna Balaprakash, Isabelle Guyon, Venkatram Vishwanath,
Fangfang Xia, Rick Stevens, and Zhengying Liu. 2021. AgEBO-Tabular: Joint
Neural Architecture and Hyperparameter Search with Autotuned Data-Parallel
Training for Tabular Data. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 30,
14 pages. https://doi.org/10.1145/3458817.3476203

[12] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. {Check-N-Run}: A checkpointing system for training
deep learning recommendation models. In NSDI’22: The 19th USENIX Symposium
on Networked Systems Design and Implementation. Renton, USA, 929–943.

[13] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 1 (2019), 1997–2017.

[14] Teven Le Scao et al. 2023. BLOOM: A 176B-Parameter Open-Access Multilingual
Language Model. arXiv:2211.05100 [cs.CL]

[15] Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and Michael Factor.
2016. Using Storage Class Memory Efficiently for an In-Memory Database.
In SYSTOR ’16: The 9th ACM International Symposium on Systems and Storage
Conference. Haifa, Israel, Article 21, 1 pages.

[16] Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing.
[17] HDF5. 2023. Hierarchical Data Format. https://www.hdfgroup.org/HDF5/.
[18] Jia, Yngqing and Shelhamer, Evan. 2014. Model Zoo. https://caffe.berkeleyvision.

org/model_zoo.html.
[19] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,

and Eric P Xing. 2018. Neural Architecture Search with Bayesian Optimisation
and Optimal Transport. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

[20] Ruslan Kuprieiev, skshetry, Dmitry Petrov, Paweł Redzyński, Peter Rowlands,
Casper da Costa-Luis, Alexander Schepanovski, Ivan Shcheklein, Gao, Batuhan
Taskaya, David de la Iglesia Castro, Jorge Orpinel, Fábio Santos, Ronan Lamy,
Aman Sharma, Dave Berenbaum, daniele, Zhanibek, Dani Hodovic, Nikita Ko-
denko, Andrew Grigorev, Earl, Nabanita Dash, George Vyshnya, maykulkarni,
Max Hora, Vera, and Sanidhya Mangal. 2022. DVC: Data Version Control - Git
for Data & Models. https://doi.org/10.5281/zenodo.7387773

[21] Liam Li and Ameet Talwalkar. 2020. Random Search and Reproducibility for Neu-
ral Architecture Search. In PMLR’20: The 35th Uncertainty in Artificial Intelligence
Conference. Tel Aviv, Israel, 367–377.

[22] Zhuozhao Li, Ryan Chard, Logan Ward, Kyle Chard, Tyler J. Skluzacek, Yadu
Babuji, Anna Woodard, Steven Tuecke, Ben Blaiszik, Michael J. Franklin, and
Ian Foster. 2021. DLHub: Simplifying publication, discovery, and use of machine
learning models in science. J. Parallel and Distrib. Comput. 147 (2021), 64–76.

[23] Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Mi-
ikkulainen. 2019. Evolutionary Neural AutoML for Deep Learning. In Proceedings
of the Genetic and Evolutionary Computation Conference.

[24] Hongyuan Liu, Bogdan Nicolae, Sheng Di, Franck Cappello, and Adwait Jog. 2021.
Accelerating DNN Architecture Search at Scale Using Selective Weight Transfer.
In CLUSTER’21: The 2021 IEEE International Conference on Cluster Computing.
Portland, USA, 82–93.

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations
(ICLR).

[26] Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sanchez Ramos, and José Ranilla
Pastor. 2017. Hyper-Parameter Selection in Deep Neural Networks Using Parallel
Particle Swarm Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion.

[27] Meghana Madhyastha, Robert Underwood, Randal Burns, and Bogdan Nicolae.
2023. DStore: A Lightweight Scalable Learning Model Repository with Fine-
Grained Tensor-Level Access. In ICS’23: The 2023 International Conference on
Supercomputing. Orlando, USA, 133–143. https://hal.inria.fr/hal-04119926

[28] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In FAST’21: 19th USENIX Conference
on File and Storage Technologies. 203–216.

[29] Bogdan Nicolae, Jiali Li, Justin Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. 2020. DeepFreeze: Towards Scalable Asynchronous Check-
pointing of Deep Learning Models. In CGrid’20: 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing. Melbourne, Australia, 172–
181.

[30] Keren Ouaknine, Oran Agra, and Zvika Guz. 2017. Optimization of RocksDB for
Redis on Flash. In ICCDA ’17: The 2017 International Conference on Compute and
Data Analysis. Association for Computing Machinery, Lakeland, USA, 155–161.

[31] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Effi-
cient Neural Architecture Search via Parameters Sharing. In ICML’18: The 2018
International Conference on Machine Learning.

[32] Pytorch. 2018. PyTorch Hub. https://pytorch.org/hub/.
[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized

Evolution for Image Classifier Architecture Search. In AAAI’19: The 2019 AAAI
Conference on Artificial Intelligence.

[34] Robert B. Ross, George Amvrosiadis, Philip Carns, Charles D. Cranor, Matthieu
Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K. Gutierrez, Robert
Latham, Bob Robey, Dana Robinson, Bradley Settlemyer, Galen Shipman, Shane
Snyder, Jerome Soumagne, and Qing Zheng. 2020. Mochi: Composing Data
Services for High-Performance Computing Environments. Journal of Computer
Science and Technology 35, 1 (2020), 121–144.

[35] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chun-
fang Liu. 2018. A Survey on Deep Transfer Learning. In ICANN’18: 27th Interna-
tional Conference on Artificial Neural Networks and Machine Learning, Vol. 11141.
Rhodes, Greece, 270–279.

[36] TensorFlow. 2023. TensorFlow Hub. https://www.tensorflow.org/hub/overview.
[37] Robert Underwood, Meghana Madhyastha, Randal Burns, and Bogdan Nicolae.

2023. Understanding Patterns of Deep Learning Model Evolution in Network
Architecture Search. In HiPC’23: The 2023 IEEE 30th International Conference on
High Performance Computing, Data, and Analytics. Goa, India, 97–106.

[38] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken,
Arber Zela, Debadeepta Dey, and Frank Hutter. 2023. Neural Architecture Search:
Insights from 1000 Papers. arXiv:2301.08727 [cs.LG]

[39] Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik, Nichol-
son T. Collier, John Bauer, Fangfang Xia, Thomas Brettin, Rick Stevens, Jamaludin
Mohd-Yusof, Cristina Garcia Cardona, Brian Van Essen, and Matthew Baughman.
2018. CANDLE/Supervisor: a workflow framework for machine learning applied
to cancer research. BMC Bioinformatics 19, 18 (2018).

[40] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. 2023. A brief overview of ChatGPT: The history, status quo and
potential future development. IEEE/CAA Journal of Automatica Sinica 10, 5
(2023), 1122–1136.

[41] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. 2019. NAS-Bench-101: Towards Reproducible Neural Architecture
Search. In ICML’19: The 2019 International Conference on Machine Learning.

[42] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo.
2021. Few-shot Neural Architecture Search. In ICML’21: The 2021 International
Conference on Machine Learning.

[43] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In ICLR’17: The 2017 International Conference on Learning Representa-
tions.

https://doi.org/10.1145/3295500.3356202
https://doi.org/10.1145/3320060
https://proceedings.mlr.press/v89/dikov19a.html
https://doi.org/10.1038/s42256-023-00626-4
https://openreview.net/forum?id=HJxyZkBKDr
https://doi.org/10.1145/3458817.3476203
https://arxiv.org/abs/2211.05100
https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://doi.org/10.5281/zenodo.7387773
https://hal.inria.fr/hal-04119926
https://pytorch.org/hub/
https://arxiv.org/abs/2301.08727

	Abstract
	1 Introduction
	2 Motivating Scenario: NAS
	3 Related Work
	4 EvoStore: System Design
	4.1 Design Principles
	4.2 Zoom on Architecture Graphs, Owner Maps and Longest Common Prefix Queries
	4.3 Implementation Details

	5 Experimental Evaluation
	5.1 Setup
	5.2 Compared Approaches
	5.3 Methodology
	5.4 Results: Scalability of Incremental Model Storage
	5.5 Results: Scalability of Metadata Query Processing
	5.6 Results: Scalability of NAS for CANDLE

	6 Conclusions
	Acknowledgments
	References

