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Abstract

Grover Search is currently one of the main quantum algorithms leading to hybrid

quantum-classical methods that reduce the worst-case time complexity for some combina-

torial optimization problems. Specifically, the combination of Quantum Minimum Finding

(obtained from Grover Search) with dynamic programming has proved particularly efficient

in improving the complexity of NP-hard problems currently solved by classical dynamic

programming. For these problems, the classical dynamic programming complexity in

O∗(cn), where O∗ denotes that polynomial factors are ignored, can be reduced by a hybrid

algorithm to O∗(cnquant), with cquant < c. In this paper, we provide a bounded-error hybrid

algorithm that achieves such an improvement for a broad class of NP-hard single-machine

scheduling problems for which we give a generic description. Moreover, we extend

this algorithm to tackle the 3-machine flowshop problem. Our algorithm reduces the

exponential-part complexity compared to the best-known classical algorithm, sometimes at

the cost of an additional pseudo-polynomial factor.

keywords: Discrete Optimization, Quantum computing, Scheduling, Dynamic Program-

ming

1 Introduction

The fields of quantum computing and combinatorial optimization are becoming every day more

closely linked, thanks to the work of the quantum computing community, as well as the more re-

∗This is an extension of the conference paper of Grange et al. (2023a).
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cent interest of the operations research community that has been focusing on the new quantum

paradigm. More precisely, there are two types of quantum algorithms for solving optimization

problems. The first type encompasses heuristics, often designed today as hybrid quantum-

classical algorithms, such as the class of Variational Quantum Algorithms described by Cerezo

et al. (2021) or by Grange et al. (2023b) and, within it, the famous Quantum Approximate

Optimization Algorithm (QAOA) of Farhi et al. (2014). Essentially, these algorithms require

the optimization problem to be formulated as a QUBO (Quadratic Unconstrained Binary Opti-

mization) and can be implemented on current noisy quantum computers because the quantum

part can be made rather small. Among others, the problems of MAX-CUT (Farhi et al., 2014),

Travelling Salesman Problem (Ruan et al., 2020), MAX-3-SAT (Nannicini, 2019), Graph Col-

oring (Tabi et al., 2020) and Job Shop Scheduling (Kurowski et al., 2023) are reformulated as

QUBO and solved with hybrid heuristics on small instances. However, due to the small size of

instances processed today and the nature of heuristics whose performances are evaluated em-

pirically, no quantum advantage with these heuristics is emerging yet. This is where the second

type of quantum algorithms differ: they are exact algorithms (i.e. that output the optimal

solution with a high probability of success) that provide theoretical speed-ups for several types

of problems and algorithms, as displayed by Nannicini (2022) and Sutter et al. (2020). Notice

that with the current quantum hardware, it is impossible to implement them today because of

the huge size of quantum resources they require.

Grover (1996) provides one key exact quantum algorithm, that achieves a quadratic speed-up

when searching for a specific element in an unsorted table, where the complexity is computed as

the number of queries of the table and is done by an oracle. Grover Search represents the routine

of many exact quantum algorithms. For instance, Durr and Hoyer (1996) use Grover Search as

a subroutine for a hybrid quantum-classical algorithm that finds the minimum of an unsorted

table, resulting in the algorithm called Quantum Minimum Finding. Later, Ambainis et al.

(2019) combine Quantum Minimum Finding with dynamic programming to address NP-hard

vertex ordering problems, such as the Traveling Salesman Problem (TSP) or the Minimum

Set Cover problem. The problems of interest must satisfy a specific property which implies

that they can be solved by classical dynamic programming in O∗(cn), where c is usually not

smaller than 2. Henceforth, we use O∗ which is the usual asymptotic notation that ignores the

polynomial factors in the complexity. The hybrid algorithm of Ambainis et al. (2019) reduces

the complexity to O∗(cnquant) for cquant < c. As an example, Held and Karp (1970) dynamic

programming solves the TSP in O∗(2n) whereas the hybrid algorithm of Ambainis et al. (2019)

achieves to solve it in O∗(1.728n) by combining the dynamic programming recurrence of Held
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and Karp with Quantum Minimum Finding. Following the work of Ambainis et al. (2019), other

NP-hard problems have been tackled with the idea of combining Grover Search (or Quantum

Minimum Finding) and classical dynamic programming. This has led to quantum speed-ups

for the Steiner Tree problem (Miyamoto et al., 2020) and the graph coloring problem (Shimizu

and Mori, 2022).

The purpose of this work is to provide a hybrid quantum-classical algorithm, adapting the

seminal idea of Ambainis et al. (2019), that reduces the time complexity of solving NP-hard

scheduling problems. For that, we propose an extended version of well-known Dynamic Pro-

gramming Across the Subsets (DPAS) recurrences used to solve combinatorial optimization

problems like scheduling problems (see e.g. T’kindt et al. (2022)). Notice that DPAS is a com-

mon technique for designing exact algorithms for NP-hard problems as described by Woeginger

(2003).

Scheduling problems and DPAS. A scheduling problem lies in finding the optimal assign-

ment of a set of jobs to machines over time. Each job j is defined by at least a processing time

pj and possibly additional data like a due date dj , a deadline d̃j , or even a weight wj reflecting

its priority. One or more machines can process the set of jobs, however, at any time point, a

machine can only process one job at a time. The computation of a schedule is done to minimize

a given objective function.

In Sections 2 and 3, we consider single-machine scheduling problems. Let [n] := {1, . . . , n}

be the set of jobs to schedule on the machine. While a solution to a single-machine scheduling

problem is described by a starting time for each job on the machine, it is standard to describe

instead such a solution by a permutation π ∈ S[n] of the n jobs. Indeed, the starting times can be

directly deduced from the order of jobs in the permutation and the potential constraints thanks

to the following assumptions. First, we assume that only one job can be processed at any time

on the machine. Second, we deal only with non-preemptive scheduling, meaning that a job must

be run to completion when it started. Henceforth, we use the permutation representation for

the solutions. In Section 5, we consider the 3-machine flowshop of n jobs. The definition of this

problem, introduced in the above-mentioned section, makes also a solution entirely described

by a permutation of [n] even if there are 3 machines.

Throughout this paper, we use the usual notation α|β|γ, introduced by Graham et al. (1979),

to describe the scheduling problem consisting of α machines, with the constraints β and the

criterion γ to be minimized. For instance, 1|d̃j |
∑

j wjCj is the problem of minimizing the total

weighted completion time with deadline constraints on a single machine. The reader interested

in scheduling can refer to any textbook in scheduling, e.g. to Pinedo (2012).
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The single-machine scheduling problems addressed in this work are those that satisfy the

Dynamic Programming Across the Subsets (DPAS) property. It means that these problems

can be solved by Dynamic Programming where the optimal solution for a set of jobs J ⊆ [n] is

computed as the best concatenation overall j ∈ J of the optimal solution for J \ {j} and the

cost of setting j as the last processed jobs. Specifically, if we note OPT[J ] the optimal value

for processing the set J of jobs, the recursion is

OPT[J ] = min
j∈J

OPT[J \ {j}] + ϕj

(∑
k∈J

pk

)
, (1)

where ϕj is a function depending on job j. This generic recursion captures many single-machine

scheduling problems as recalled in the survey of T’kindt et al. (2022), leading to the worst-case

time complexity of O∗(2n) to solve all these problems. This naturally raises the question of

the existence of moderate exponential-time algorithms with a complexity O∗(cn) where c < 2.

The question has been answered positively for specific problems such as minimizing the total

weighted completion time with precedence constraints in O∗((2− ϵ)n) for small ϵ > 0 by Cygan

et al. (2014). But, as far as we know, no generic method provides such an improvement for a

broad class of scheduling problems. In this paper, we present a hybrid algorithm that solves the

problems satisfying (1) in O∗(1.728n), sometimes with an additional pseudo-polynomial factor

in the complexity that comes from the generalization of the recurrence.

Our contributions. We extend existing recurrences for scheduling problems leading to a

quantum speed-up for solving a general class of scheduling problems. The dynamic programming

recurrences are adapted to solve scheduling problems with a proposed hybrid algorithm Q-

DDPAS, which is an extension of the algorithm of Ambainis et al. (2019). In particular, it

applies to problems with temporal constraints and non-linear objective functions. Specifically,

we cover three types of problems that satisfy three different kinds of dynamic programming

properties. For each of them, the best-known classical time complexity is in O∗(2n) that is

reduced inO∗(pseudop·1.728n) by the hybrid algorithm of this paper, where pseudop is a pseudo-

polynomial factor. Not only it applies to problems for which the dynamic programming property

is based on the addition of optimal values of the problem on sub-instances (as done by Grange

et al. (2023a)) but it also relates to problems for which the dynamic programming naturally

applies on the composition of optimal values of the problem on sub-instances. Furthermore,

we address the 3-machine flowshop problem that differs from previous problems by the nature

of the recurrence property and widens the range of problems solved by the hybrid algorithm.

Last, we also propose an approximation scheme for the 3-machine flowshop problem based on

the hybrid algorithm. We summarize in Table 1 the complexities of several NP-hard scheduling
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problems through which we illustrate the recurrences in this paper.

Problem Our hybrid algorithm Best classical algorithm

1|d̃j |
∑

wjCj O∗ (
∑

pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1||
∑

wjTj O∗ (
∑

pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1|prec|
∑

wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ (Cygan et al., 2014)

1|rj |
∑

wjUj O∗ ((∑wj)
3 ·
∑

pj · 1.728n
)

O∗(
∑

wj ·
∑

pj · 2n) (Ploton and T’kindt, 2022)

1|rj |
∑

wjCj O∗ ((∑wj)
3 · (
∑

pj)
4 · 1.728n

)
O∗(

∑
wj · (

∑
pj)

2 · 2n) (Ploton and T’kindt, 2022)

F3||Cmax O∗ ((∑ pij)
4 · 1.728n

)
O∗(3n) (Shang et al., 2018; Ploton and T’kindt, 2023)

Table 1: Comparison of worst-case time complexities between our hybrid algorithm and the

best-known classical algorithm

Structure of the paper. First, we present in Section 2 problems for which the dynamic

programming property is based on the addition of optimal values of the problem on sub-instances

(called Additive DPAS). We begin with the example of problem 1|d̃j |
∑

j wjCj and then provide

a generic description of the problems at stake. We describe the related hybrid algorithm (called

Q-DDPAS) as it is usually done in the algorithmic quantum literature, namely with a high-level

description where quantum boxes interact with the classical part. We provide a rigorous and

detailed description of the circuit-based implementation for interested readers in our companion

paper (Grange et al., 2024). Similarly, we tackle in Section 3 problems for which the dynamic

programming property is based on the addition of optimal values of the problem on sub-instances

(called Composed DPAS), beginning with the example of problem 1|rj |
∑

wjUj . We provide

in Section 4 some applications of Q-DDPAS to the scheduling literature. Lastly, in Section 5,

we consider the 3-machine flowshop problem, for which the dynamic programming recurrence

applies to its decision version. It results in a slightly different hybrid algorithm. Additionally,

we provide an approximation scheme for this problem, based on the hybrid algorithm, that

disposes of the pseudo-polynomial factor in the time complexity. We recall in Appendix A

useful bounds to derive the complexities of the proposed algorithms.

2 Additive DPAS

In this section, we present problems for which the dynamic programming recursion is based

on the addition of optimal values of problems for sub-instances. Next, we detail the hybrid
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algorithm Q-DDPAS to solve these problems.

2.1 A scheduling example

The NP-hard single-machine scheduling problem at stake is the minimization of the total

weighted completion time with deadline constraints, often referred to as 1|d̃j |
∑

j wjCj in the

scheduling literature. The input is given, for each job j ∈ [n], by a weight wj , a processing time

pj and a deadline d̃j before which the job must be completed. We define the completion time

Cj(π) of job j as the end time of the job on the machine for the permutation π. So, if j starts

as time t for the permutation π, then Cj(π) = t+ pj . The problem aims at finding the feasible

permutation for which the total weighted sum of completion times is minimal. A permutation

π is feasible if Cj(π) ≤ d̃j for all job j. Thus, the problem can be formulated as follows:

min
π∈Π

n∑
j=1

wjCj(π) ,

where the set of feasible permutations is Π = {π ∈ S[n] |Cj(π) ≤ d̃j , ∀j ∈ [n]} .

This problem satisfies two recurrences. For deriving them, we need to introduce the set

T :=
r
0,
∑n

j=1 pj

z
, where we use the notation Ja, bK = {a, a+1, . . . , b} for integers a and b. For

J ⊆ [n] and t ∈ T , we define OPT[J, t] as the optimal value of the problem in which only jobs

in J are scheduled from time t. Thus, solving our nominal problem 1|d̃j |
∑

j wjCj amounts to

compute OPT[[n], 0].

The first recurrence comes from the standard Dynamic Programming Across the Subsets

(DPAS) described in (1). However, compared to usual DPAS, we introduce an extra parameter

t necessary for the solution with our hybrid algorithm as explained later. The idea of this

recurrence is to get the optimal value of our problem for jobs in J and starting at time t

by finding, over all jobs j ∈ J , the permutation that ends by j with the best cost value. It

is possible to do so because no matter what the optimal permutation of the first (|J | − 1)

jobs is, the cost of setting job j at the end of the permutation is always known. Indeed, the

time taken to process all jobs in J \ {j} is always
∑

k∈J\{j} pk. Thus, the completion time

of j is defined by cj = t +
∑

k∈J pk. It results that the cost of setting j at the end of the

permutation is wj(t+
∑

k∈J pk). It also implies that the deadline constraint for job j is satisfied

if t+
∑

k∈J pk ≤ d̃j . Specifically, for all J ⊆ [n] and for all t ∈ T , we have

OPT[J, t] = min
j∈J

OPT[J \ {j}, t] +


wj

(
t+

∑
k∈J

pk

)
if t+

∑
k∈J

pk ≤ d̃j

+∞ otherwise

, (2)

initialized by OPT[∅] = 0.
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The second recurrence generalizes the previous one. For this recurrence, the principle of

computing OPT[J, t] is similar to (2) but instead of setting one job at the end of the permutation,

we choose |J |/2 jobs and set them to be the half last jobs of the permutation. Specifically, for

all J ⊆ [n] of even cardinality and t ∈ T , we have

OPT[J, t] = min
X⊆J

|X|=|J|/2

{
OPT[X, t] + OPT[J \X, t+

∑
i∈X

pi]
}
, (3)

initialized by, ∀j ∈ [n] and t ∈ T , OPT[{j}, t] =


wj(pj + t) if d̃j ≥ pj + t

+∞ otherwise
.

For a given X ⊆ J of size |J |/2, recurrence (3) computes the best permutation of jobs in X

starting at time t, and the best permutation of jobs in J \X starting at time t+
∑

k∈X pk as we

know that, as before, no matter what is the optimal permutation for jobs in X, the time taken

to process them all is exactly
∑

k∈X pk.

The two above recurrences have been illustrated with problem 1|d̃j |
∑

j wjCj . In the next

section, we propose a general formulation of these recurrences that will be used to elaborate

our algorithm as general as possible to solve a broad class of scheduling problems.

2.2 General formulation of recurrences

Let us consider the following general scheduling problem:

P : min
π∈Π

f(π) ,

where Π ⊆ S[n] is the set of feasible permutations of [n] := {1, . . . , n} according to given

constraints and f is the objective function. We introduce a related problem P useful for deriving

the dynamic programming recursion, for which we specify the instance: for J ⊆ [n] and t ∈ Z,

P (J, t) : min
π∈Π(J,t)

f(π, J, t) (4)

as the nominal scheduling problem P that schedules only jobs in J and starts the schedule at

time t. Let us note OPT[J, t] the optimal value of P (J, t). It results that solving P amounts to

solving P ([n], 0), and it can be performed by Q-DDPAS if the related problem P satisfies the

two recurrences (Add-DPAS) and (Add-D-DPAS) below. Henceforth, we denote by 2[n] the set

of all subsets of [n], and by Ja, bK the set {a, a+1, . . . , b}. Let us introduce the first recurrence.

Property 2.1 (Additive DPAS). There exists a function g : 2[n] × [n]× T → R, computable in

polynomial time, such that, for all J ⊆ [n] and for all t0 ∈ T ,

OPT[J, t0] = min
j∈J

{
OPT[J \ {j}, t0] + g(J, j, t0)

}
(Add-DPAS)

7



initialized by OPT[∅, t0] = 0.

Lemma 2.2. Dynamic programming (Add-DPAS) solves P in O∗(2n).

Proof. We solve Equation (Add-DPAS) for all J such that |J | = k, and for t0 = 0, starting from

k = 1 to k = n. For a given J , the values {OPT[J \ {j}, 0] : j ∈ J} are known, so OPT[J, 0]

is computed in time poly(n) · k according to Equation (Add-DPAS) (the computation of g is

polynomial). Eventually, the total complexity of computing OPT[[n], 0] is
∑n

k=1 poly(n)k
(
n
k

)
=

poly(n) · n · 2n−1 = O∗(2n).

Throughout, we commit a slight abuse of language by letting (Add-DPAS) both refer to the

property satisfied by a given optimization problem and to the resulting dynamic programming

algorithm. Notice the presence of the additional parameter t0 in the above definition, which

is typically absent in the scheduling literature. In particular, t0 is a constant throughout the

whole recursion (Add-DPAS) and does not impact the resulting computational complexity. The

use of that extra parameter in T shall be necessary later when applying our hybrid algorithm.

Property 2.1 expresses that finding the optimal value of P for jobs in J and starting at time

t is done by finding over all jobs j ∈ J the permutation that ends by j with the best cost value.

Function g represents the cost of j being the last job of the permutation. Notice that isolating

the last job of the permutation is a usual technique in scheduling as displayed in (1). In the

second recurrence below, we provide a similar scheme, where instead of one job, we isolate

half of the jobs in J , turning the computation of g to the solution of another problem on a

sub-instance with |J |/2 jobs.

Property 2.3 (Additive Dichotomic DPAS). There exist two functions τshift : 2
[n]×2[n]×T → T

and h : 2[n] × 2[n] × T → R, computable in polynomial time, such that, for all J ⊆ [n] of even

cardinality, and for all t ∈ T ,

OPT[J, t] = min
X⊆J

|X|=|J|/2

{
OPT[X, t] + h(J,X, t) + OPT[J \X, τshift(J,X, t)]

}
(Add-D-DPAS)

initialized by the values OPT[{j}, t] for each j ∈ [n] and t ∈ T .

For a given X ⊆ J , the above recursion computes the best permutation of jobs in X starting

at time t, and the best permutation of jobs in J \X starting at time τshift, adding the function

h that represents the cost of the concatenation between these two permutations.

Remark 2.4. We observe that problem (4) satisfies recurrence (Add-DPAS) if and only if it

satisfies (Add-D-DPAS). This can be seen by developing recursively both recurrences, which

essentially leads to optimization problems over π ∈ S[n], whose objective functions respectively
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involve g in the first case and h and τshift in the second case. Here, one readily verifies that g

can then be defined from h and τshift and reciprocally.

Despite the previous remark, the two recurrences differ on the size of the subsets considered

along the recursions, leading to different formulations and therefore require more or less sub-

problems to be solved optimally in the dynamic programming process. This is formalized in

the following proposition. Note that we use the notation f1(n) = ω(f2(n)) if f1 dominates

asymptotically f2.

Lemma 2.5. Dynamic programming (Add-D-DPAS) solves P in ω(|T | · 2n).

The proof is given in the Supplementary Materials. Notice that if n is not a power of 2, we

can still add fake jobs without changing the following conclusion: solving P with (Add-DPAS) is

faster than with (Add-D-DPAS). However, in the next section, we describe a hybrid algorithm

Q-DDPAS that improves the complexity of solving P by combining recurrences (Add-DPAS)

and (Add-D-DPAS) with a quantum subroutine.

2.3 Hybrid algorithm for Additive DPAS

In this subsection, we describe our hybrid algorithm Q-DDPAS adapted from the work

of Ambainis et al. (2019). Notice that it assumes to have a quantum random access memory

(QRAM) (Giovannetti et al., 2008), namely, to have a classical data structure that stores

classical information but can answer queries in quantum superposition. We underline that this

latter assumption is strong because QRAM is not yet available on current universal quantum

hardware. First, let us introduce the Quantum Minimum Finding algorithm of Durr and

Hoyer (1996), which constitutes a fundamental subroutine in our algorithm. This algorithm

essentially applies several times Grover Search (Grover, 1996) and provides a quadratic speedup

for the search of a minimum element in an unsorted table.

Definition 2.6 (Quantum Minimum Finding (Durr and Hoyer, 1996)). Let f : [n] → Z be a

function. Quantum Minimum Finding computes the minimum value of f and the corresponding

minimizer argmini∈[n]{f(i)}. The complexity of Quantum Minimum Finding is O (
√
n · Cf (n)),

where O(Cf (n)) is the complexity of computing a value of f .

Remark 2.7 (Success probability and bounded-error algorithm (Bernstein and Vazirani, 1993)).

Durr and Hoyer (1996) prove that Quantum Minimum Finding computes the minimum value

with a probability of success strictly larger than 1
2 , independent of n. Thus, for ϵ > 0, finding

the minimum value with probability (1 − ϵ) is achieved by repeating O(log 1
ϵ ) times Quantum
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Minimum Finding. Henceforth, we refer to this statement when we write that Quantum Mini-

mum Finding finds the minimum value with high probability. Equivalently, we say that this is

a bounded-error algorithm. More generally, in the rest of the paper, we call a bounded-error

algorithm an algorithm that provides the optimal solution with a probability as close to 1 as we

want by repeating it a number of times independent of the instance size.

Next, we describe the algorithm of Ambainis et al. (2019) adapted for our Additive DPAS

recurrences which implies extra parameters in T . We call it Q-DDPAS and it consists essentially

of calling recursively twice Quantum Minimum Finding and computing classically the left terms.

Without loss of generality, we assume that 4 divides n. This can be achieved by adding at

most three fake jobs and, therefore, does not change the algorithm complexity. Q-DDPAS

consists of two steps. First, we compute classically by (Add-DPAS) the optimal values of P

on sub-instances of n/4 jobs and for all starting times t ∈ T . Second, we call recursively

two times Quantum Minimum Finding with (Add-D-DPAS) to find optimal values of P on

sub-instances of n/2 jobs starting at any time t ∈ T , and eventually of n jobs starting at

t = 0 (corresponding to the optimal value of the nominal problem P). Specifically, we describe

Q-DDPAS in Algorithm 1.

Algorithm 1: Q-DDPAS for Additive DPAS

Input: Problem P satisfying (Add-DPAS) and (Add-D-DPAS)

Output: OPT[[n], 0] with high probability

begin classical part

for X ⊆ [n] such that |X| = n/4, and t ∈ T do

1 Compute OPT[X, t] with (Add-DPAS) and store the results in the QRAM;

begin quantum part

2 Apply Quantum Minimum Finding with (Add-D-DPAS) to find OPT[[n], 0];

3 To get values for the Quantum Minimum Finding above (the values OPT[J, t] for

J ⊆ [n] of size n/2 and t ∈ T ), apply Quantum Minimum Finding

with (Add-D-DPAS);

4 To get values for the Quantum Minimum Finding above (the values OPT[X, t′] for

X ⊆ [n] of size n/4 and t′ ∈ T ), get them on the QRAM

Theorem 2.8. The bounded-error algorithm Q-DDPAS (Algorithm 1) solves P in O∗(|T | ·

1.754n).

The detailed proof of the correctness of the algorithm, involving the description of the gate
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implementation, is detailed in the companion paper Grange et al. (2024), with all the low-level

details for implementing the algorithm.

Proof. Hereafter, we provide a high-level proof. The upper bounds to simplify the complexities

are detailed in the Appendix A.

• Classical part: computing all OPT[X, t] for all X of size n/4 and for all t ∈ T (Step 1) is

done by (Add-D-DPAS) in time O∗
(
|T | ·

∑n/4
k=1 k

(
n
k

))
= O∗(|T | · 20.811n).

• Quantum part: according to Quantum Minimum Finding complexity (Defini-

tion 2.6), computing OPT[[n], 0] with Quantum Minimum Finding (Step 2) is done

in O
(√(

n
n/2

)
· C1(n)

)
, where C1(n) is the complexity of computing OPT[J, t] for a J of

size n/2 and t ∈ T . The essence of the quantum advantage here is that we do not need to

enumerate all sets J and all time t but we apply the Quantum Minimum Finding in paral-

lel to all at once. Notice that
(

n
n/2

)
is the number of balanced bi-partitions of [n], namely

the number of elements we search over to find the minimum of Equation (Add-D-DPAS)

when computing OPT[[n], 0]. Thus, C1(n) is exactly the complexity of Quantum

Minimum Finding applied on Step 3, namely C1(n) = O
(√(n/2

n/4

)
· C2(n)

)
where C2(n)

is the complexity of computing OPT[X, t′] for X of size n/4 and t′ ∈ T . Those values are

already computed and stored in the QRAM (Step 1), namely, C2(n) = O∗(1). Thus, the

quantum part complexity is O∗
(√(

n
n/2

)(n/2
n/4

))
= O∗(20.75n).

Eventually, Q-DDPAS complexity is the maximum of the classical and the quantum part com-

plexity. Specifically, the total complexity is O∗(|T | · 20.811n) = O∗(|T | · 1.754n).

We observe that the complexity of Q-DDPAS can be further reduced by performing a third

call to Equation (Add-D-DPAS) as suggested by Ambainis et al. (2019).

Observation 2.9. A slight modification of Q-DDPAS reduces the complexity to O∗(|T |·1.728n).

Proof. The slight modification of Q-DDPAS amounts to adding a level of recurrence in the

quantum part so that the complexity of the classical part reduces whereas the complexity of the

quantum part increases so that both are equal and thus minimize the total complexity. The third

call searches for the best concatenation among all the bi-partitions of size (0.945 · n4 , 0.055 ·
n
4 )

(that are integers asymptotically), i.e. solving

OPT[J, t] = min
X⊆J

|X|=0.945|J|

{
OPT[X, t] + h(J,X, t) + OPT[J \X, τshift(J,X, t)]

}
.

The classical part computes all OPT[X, t] for X of size 0.945 · n4 and 0.055 · n4 , in O
∗(1.728n) .

The quantum part applies three levels of recurrence of Quantum Minimum Finding, computing
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the minimum over functions with a domain of size
(

n
n/2

)
,
(n/2
n/4

)
and

( n/4
0.945·n/4

)
respectively. Its

complexity is then O∗
(√(

n
n/2

)(n/2
n/4

)( n/4
0.945·n/4

))
= O∗(1.728n) (see Appendix A).

Notice that the classical part of Q-DDPAS can be replaced by any classical algorithm A, if

A computes in O∗(|T | · 1.728n) all OPT[X, t] for X ⊆ [n] of size n/4 and t ∈ T . Moreover, if

A happens to reduce the classical part complexity O∗(|T | · cn) for c < 1.728, the complexity of

Q-DDPAS can also be reduced in the same spirit as the slight modification of Observation 2.9.

The application of Q-DDPAS for Additive DPAS to the specific problem 1|d̃j |
∑

j wjCj in-

troduced in Section 2.1 is given in Section 4.1, together with other scheduling examples. Before

introducing other types of problems tackled by Q-DDPAS in the next section, we provide some

insights to underline why the use of the quantum subroutine Quantum Minimum Finding in Q-

DDPAS must be carefully combined with classical computation to achieve a quantum speedup.

Remark 2.10. Solving P with (Add-DPAS) and replacing each classical computation of the

minimum by the quantum subroutine Quantum Minimum Finding would not improve the best

classical complexity. Indeed, the complexity would be
∑n

k=1 poly(n)
√
k
(
n
k

)
= O∗(2n) .

Remark 2.11. Solving P exclusively by recursive calls to Quantum Minimum Finding (thus

avoiding the classical computations for sets of size n/4) would not improve the classical complex-

ity. Using recurrence (Add-D-DPAS), which is the quantum part of Algorithm 1 with roughly

log2(n) recursive calls, would give a complexity in O
(√(

n
n/2

)(n/2
n/4

)
. . .
(
2
1

))
that is worse than

O∗(2n). Using recurrence (Add-DPAS) would be even worse because it would require n recursive

calls leading to the complexity O(
√

n(n− 1) . . . 1).

3 Composed DPAS

In this section, we study scheduling problems whose constraints enable only the composition of

problems on sub-instances. We describe the adaptation of Q-DDPAS for these problems.

3.1 A scheduling example

We begin with the specific problem of minimizing the total weighted number of late jobs with

release date constraints, often referred to as 1|rj |
∑

wjUj in the literature. The input is given

by, for each job j ∈ [n], a weight wj , a processing time pj , a release date rj that is the time

from which the job can be scheduled (and not before), and a due date dj that indicates the

time after which the job is late. Thus, a job j is late in permutation π if its completion time

is larger than dj , namely if Cj(π) > dj . We name Uj(π) = 1Cj(π)>dj its indicator function of

lateness. This problem aims at finding the feasible permutation, namely where each job starts
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after its release date, for which the total weighted number of late jobs is minimal. Thus, the

problem can be formulated as follows:

min
π∈Π

n∑
j=1

wjUj(π) ,

where the set of feasible solutions is Π = {π ∈ S[n] |Cj(π) ≥ rj + pj} .

This problem does not satisfy the recurrences (Add-DPAS) and (Add-D-DPAS) because the

release date constraints do not allow the addition of sub-instances. Let us take the example

of (Add-D-DPAS). The starting time of the second half of jobs J \ X in (Add-D-DPAS) can

be known only if we know the optimal permutation of the first half job, which is in opposition

with the dynamic programming principle. Indeed, the release dates enable empty slots in the

scheduling on the first half job such that the time to process all these jobs is not always equal

to
∑

k∈X pk and can be larger.

This observation leads to different recurrences, where the time to process the jobs would

be known by dynamic programming. For that, we define an auxiliary problem on which the

recurrences apply and we introduce a new set of parameters E :=
r
0,
∑n

j=1wj

z
. For J ⊆ [n],

t ∈ T :=
r
0,
∑n

j=1 pj

z
∪{+∞} and ϵ ∈ E, we note OPT[J, t, ϵ] the minimum makespan, i.e. the

completion time of the last job, for jobs in J beginning at time t where the weighted number

of late jobs is exactly ϵ. Notice that by convention, OPT[J, t, ϵ] = +∞ if there is no feasible

solution, i.e. if
{
π ∈ SJ : Cj(π) ≥ max(t, rj) + pj ,∀j ∈ J and

∑
j∈J wjUj(π) = ϵ

}
= ∅. Thus,

our initial problem 1|rj |
∑

wjUj is

min
ϵ∈E
{ϵ : OPT[[n], 0, ϵ] < +∞} .

The following recurrence that satisfies the auxiliary problem is inspired by the work of Lawler

(1990) for the problem of minimizing the total weighted number of late jobs on a single machine

under preemption and release date constraints (1|rj , pmtn|
∑

wjUj). For J ⊆ [n], t ∈ T , ϵ ∈ E,

OPT[J, t, ϵ] = min
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ], 0

]
︸ ︷︷ ︸

job j is not late

,OPT
[
{j},OPT[J \ {j}, t, ϵ− wj ], wj

]
︸ ︷︷ ︸

job j is late

}
.

In this recurrence, for each j ∈ J , we impose j as the last job of the permutation and distinguish

two cases, whether it is late or not. Notice that the starting time of j is known and equal to

OPT[J \{j}, t, .] which represents the value for the time parameter. The recurrence is initialized
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by, for j ∈ [n], t ∈ T and ϵ ∈ E,

OPT[{j}, t, ϵ] =



Cj := max(t, rj) + pj , if Cj ≤ dj and ϵ = 0

+∞, if Cj > dj and ϵ = 0 , or if Cj ≤ dj and ϵ = wj

Cj , if Cj > dj and ϵ = wj

+∞, if ϵ ∈ J1, wj − 1K ∪ Jwj + 1,
n∑

k=1

wkK

This recurrence generalizes into the following dichotomic version for which, instead of setting

the last job of the permutation, we set the half-last jobs. For all J ⊆ [n] of even cardinality,

t ∈ T and ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E

X∈J:|X|=|J|/2

{
OPT

[
X,OPT[J \X, t, ϵ− ϵ′], ϵ′

]}
,

initialized by the same values of OPT[{j}, t, ϵ] for j ∈ [n], t ∈ T and ϵ ∈ E. Next, we provide

generic recurrences to consider problems for which the composition of sub-instances is possible.

3.2 General formulation of recurrence

Let us consider a scheduling problem with n jobs

P : min
π∈Π

f(π) ,

where Π ⊆ S[n] is the set of feasible permutations of [n] := {1, . . . , n} according to given

constraints and f is the objective function. Following the example detailed in the previous

subsection, we consider an auxiliary problem P ′ useful for deriving the dynamic programming

recursion, for which we specify the instance: for J ⊆ [n] the jobs to be scheduled, t ∈ Z the

starting time of the schedule and ϵ ∈ Z, we define

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

f ′(π, J, t, ϵ) , (5)

where f ′, respectively Π′, is the objective function, respectively the feasible set, are different

from those of P. We assume that solving P amounts to finding the smallest ϵ ∈ Z such that

the auxiliary problem P ′ is bounded. Specifically,

P : min
ϵ∈Z

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
. (6)

To solve the nominal problem P by classical dynamic programming, problem P ′ must satisfy

recurrence (Comp-DPAS) or recurrence (Comp-D-DPAS) below (as in Remark 2.4, we can state

that a problem satisfies one if and only if it satisfies the other one). As we explain later, solving

P with our hybrid algorithm requires problem P ′ to satisfy the two recurrences.
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Property 3.1 (Composed DPAS). For all J ⊆ [n], t ∈ T and ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E
j∈J

{
OPT

[
{j},OPT[J \ {j}, t, ϵ− ϵ′], ϵ′

]}
, (Comp-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], ϵ ∈ E and t ∈ T . Notice that for

J ⊆ [n], t ∈ T and ϵ ∈ E, we adopt the convention OPT[J, t, ϵ] = +∞ for ϵ /∈ E.

Recurrence (Comp-DPAS) differs from recurrence (Add-DPAS) in two aspects. First, the

optimal values of the problem on sub-instances are composed, and not added, because of the

nature of the constraints. Second, the search for the minimum value is done not only over all

jobs in J , but also over all values in E. More precisely, for a given ϵ0 ∈ E, the optimal value of

P ′(J, t, ϵ0) is the minimum value of all possible composition of optimal values of the problem on

sub-instances with parameters ϵ1 and ϵ2 such that ϵ1 + ϵ2 = ϵ0. We have the following result.

Lemma 3.2. (Comp-DPAS) solves P in O∗(|E|3 · |T | · 2n).

Proof. Let ϵ0 ∈ E. Similarly to the proof of Lemma 2.2, we show that (Comp-DPAS) solves

P ′([n], 0, ϵ0) in O∗(|E|2 · |T | · 2n). Indeed, to compute OPT[[n], 0, ϵ0], we need to solve Equa-

tion (Comp-DPAS) for all J such that |J | = k starting from k = 1 to k = n, and for all t ∈ T

and ϵ ∈ E. For a given J , t ∈ T and ϵ ∈ E, the values {OPT[J \{j}, t′, ϵ′] : j ∈ J, t′ ∈ T, ϵ′ ∈ E}

and {OPT[{j}, t′, ϵ′] : j ∈ J, t′ ∈ T, ϵ′ ∈ E} are known, so OPT[J, t, ϵ] is computed in time

|E| · k according to Equation (Comp-DPAS). Eventually, the total complexity of computing

OPT[[n], 0, ϵ0] is
∑n

k=1 |T | · |E|2 · k
(
n
k

)
= O∗(|T | · |E|2 · 2n). Moreover, solving P amounts to

solving P ′([n], 0, ϵ) ,for all ϵ ∈ E, according to (6). The complexity results directly from the

above complexity of computing OPT[[n], 0, ϵ0], for ϵ0 ∈ E.

The auxiliary problem P ′ must satisfy the following recurrence (Comp-D-DPAS) in addition

to recurrence (Comp-DPAS).

Property 3.3 (Composed Dichotomic DPAS). For all J ⊆ [n] of even cardinality, t ∈ T and

ϵ ∈ E,

OPT[J, t, ϵ] = min
ϵ′∈E

X∈J:|X|=|J|/2

{
OPT

[
X,OPT[J \X, t, ϵ− ϵ′], ϵ′

]}
, (Comp-D-DPAS)

initialized by the values of OPT[{j}, t, ϵ] for all j ∈ [n], t ∈ T and ϵ ∈ E.

Lemma 3.4. (Comp-D-DPAS) solves P in ω(|E|3 · |T | · 2n).

Proof. This proof is essentially the same as the one of Lemma 2.5 with the same modifications

that for the proof of Lemma 3.2.
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As for the Additive DPAS, we notice that, with a classical dynamic programming algo-

rithm, the time complexity to solve P with recurrence (Comp-DPAS) is better than with recur-

rence (Comp-D-DPAS). Next, we show that the hybrid algorithm applied to problems satisfying

Additive DPAS recurrences can be easily adapted to tackle problems satisfying Composed DPAS

recurrences.

3.3 Hybrid algorithm for Composed DPAS

The hybrid algorithm for Composed DPAS derives naturally from Algorithm 1. It amounts

to replacing the recurrence (Add-DPAS), respectivelly (Add-D-DPAS), by (Comp-DPAS), re-

spectivelly (Comp-D-DPAS), resulting in Algorithm 2. Eventually, we use Algorithm 2 as a

subroutine to solve Equation (6), i.e. to solve the nominal problem P.

Algorithm 2: Q-DDPAS for Composed DPAS

Input: ϵ0 ∈ E, auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)

Output: OPT[[n], 0, ϵ0] with high probability

begin classical part

for X ⊆ [n] such that |X| = n/4, and t ∈ T do

Compute OPT[X, t, ϵ0] with (Comp-DPAS) and store the results in the QRAM;

begin quantum part

Apply Quantum Minimum Finding with (Comp-D-DPAS) to find OPT[[n], 0, ϵ0];

To get values for the Quantum Minimum Finding above (the values OPT[J, t, ϵ] for

J ⊆ [n] of size n/2, t ∈ T and ϵ ∈ E), apply Quantum Minimum Finding

with (Comp-D-DPAS);

To get values for the Quantum Minimum Finding above (the values OPT[X, t′, ϵ′]

for X ⊆ [n] of size n/4, t′ ∈ T and ϵ′ ∈ E), get them on the QRAM

Lemma 3.5. Let ϵ0 ∈ E. The bounded-error algorithm Q-DDPAS (Algorithm 2) solves

P ′([n], 0, ϵ0) in O∗(|E|2 · |T | · 1.754n).

Notice that the implementation of this algorithm is slightly different from the one of Algo-

rithm 1, mainly due to the operation of composition. The details are given in the companion

paper (Grange et al., 2024).

Theorem 3.6. The bounded-error Algorithm 3, with Q-DDPAS as a subroutine, solves P in

O∗(|E|3 · |T | · 1.754n).
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Algorithm 3: Meta-algorithm with subroutine Q-DDPAS for Composed DPAS

Input: Auxiliary problem P ′ satisfying (Comp-DPAS) and (Comp-D-DPAS)

Output: min
ϵ∈E

{
ϵ : OPT[[n], 0, ϵ] < +∞

}
with high probability

1 ϵ∗ ← +∞;

2 for ϵ ∈ E do

3 Solve P ([n], 0, ϵ) with Algorithm 2;

4 if OPT[[n], 0, ϵ] < +∞ and ϵ < ϵ∗ then

5 ϵ∗ ← ϵ;

6 Return ϵ∗

As for the case of Q-DDPAS for Additive DPAS, we can reduce the exponential part of Q-

DDPAS complexity for Composed DPAS, by the modification indicated in Observation 2.9, thus

leading to the following observation.

Observation 3.7. A slight modification of the Q-DDPAS algorithm can reduce the complexity

of Algorithm 3 to O∗(|E|3 · |T | · 1.728n).

We illustrate in Section 4.2 the application of Q-DDPAS for Composed DPAS to the problem

1|rj |
∑

wjUj described in Section 3.1, together with another similar scheduling problem.

4 Application to the scheduling literature

In Section 2.2 and Section 3.2, we provided general formulations of problems satisfying Addi-

tive and Composed DPAS recurrences. Next, we illustrate these recurrences with several NP-

hard single-machine scheduling problems enabling their resolution with our hybrid algorithm

Q-DDPAS. The list of problems is non-exhaustive but highlights the structures’ specificity of

scheduling problems that enable such recurrences. Eventually, for each problem, we compare

in Table 1 the worst-case time complexity of Q-DDPAS with the complexity of the best-known

moderate exponential-time exact algorithm. Q-DDPAS improves the exponential-part complex-

ity, sometimes at the cost of an additional pseudo-polynomial factor.

4.1 Scheduling with deadlines and precedence constraints

Single-machine scheduling problems with no constraints, deadline constraints or precedence

constraints satisfy the addition of optimal values of the problem on sub-instances. We provide

next several examples of problems that satisfy Additive DPAS and thus can be solved by Q-
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DDPAS (Algorithm 1).

In Subsection 2.1, we have presented the problem of minimizing the total weighted completion

time with deadline constraints (1|d̃j |
∑

j wjCj). The formulation needed the set T to be equal

to J0,
n∑

j=1

pjK, hence its resolution with Q-DDPAS is in O∗(
∑

pj · 1.728n) according to Obser-

vation 2.9. Next, we give two more examples, beginning with the strongly NP-hard scheduling

problem with minimization of the total weighted tardiness. Henceforth, we note p(J) =
∑

j∈J pj

the sum of processing times of the jobs in J ⊆ [n].

Example 1 (Minimizing the total weighted tardiness, 1||
∑

j wjTj). For each job j ∈ [n], we

are given a weight wj, a processing time pj, and a due date dj that indicates the time after

which the job is late. Thus, a job j is late in permutation π if its completion time is larger than

dj, and we define as Tj(π) = max(0, Cj(π) − dj) its tardiness. Our problem aims at finding

the permutation that minimizes the total weighted tardiness, referred to as 1||
∑

j wjTj in the

scheduling literature. Let T = J0,
∑n

j=1 pjK be the set of all possible starting times. We define

the related problem P of Equation (4) as follows: for J ⊆ [n] and t ∈ T , Π(J, t) = SJ , and for

π ∈ Π(J, t):

f(π, J, t) =
∑
j∈J

wj max(0, Cj(π)− dj + t) ,

where max(0, Cj − dj + t) represents the tardiness of job j for the effective due date (dj − t).

Problem 1||
∑

j wjTj satisfies both Additive DPAS recurrences. Indeed, Equation (Add-DPAS)

is valid with: ∀J ⊆ [n], ∀j ∈ J,∀t ∈ T,

g(J, j, t) = wj max(0, p(J)− dj + t) ,

where the computation of g is polynomial (linear). Moreover, Equation (Add-D-DPAS) is valid

for the following functions: ∀X ⊆ J ⊆ [n] s.t. |X| = |J |/2, ∀t ∈ T,

τshift(J,X, t) = t+ p(X) and h(J,X, t) = 0 (7)

initialized by, for j ∈ [n] and t ∈ T , OPT[{j}, t] = wj max(0, pj − dj + t) .

We consider the scheduling problem with precedence constraints and minimization of the total

weighted completion time that is also NP-hard. Conversely to the two previous examples, the

set T is reduced to {0}, and function h translates the potential infeasibility of the concatenation

of problem P on two sub-instances.

Example 2 (Minimizing the total weighted completion time with precedence constraints,

1|prec|
∑

j wjCj). We are given, for each job j ∈ [n], a processing time pj, a weight wj, and a

set of precedence constraints K = {(i, j) : i ≺ j}. A pair of jobs (i, j) in K implies that i must
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precede j in the permutation, namely that i must be processed before j. Our problem, denoted by

1|prec|
∑

j wjCj, aims at finding the feasible permutation, i.e. that respects the precedence con-

straints, that minimizes the total weighted completion time. Let be T = {0}. Here, an instance

of the problem P of Equation (4) under consideration is only indexed by the chosen subset of [n].

Thus, we consider the problem P as follows: for J ⊆ [n], Π(J, 0) = {π ∈ SJ |π respects K} ,

and for π ∈ Π(J, 0): f(π, J, 0) =
∑

j∈J wjCj(π) . Our problem 1|prec|
∑

j wjCj satisfies both

Additive DPAS recurrences. Indeed, Equation (Add-DPAS) is valid for:

∀J ⊆ [n], ∀j ∈ J, g(J, j, 0) =


+∞ if ∃(j, k) ∈ E|k ∈ J

wjp(J) otherwise
,

where the computation of g is polynomial (quadratic). This problem P also satis-

fies (Add-D-DPAS). Indeed, Equation (Add-D-DPAS) is valid for the following functions:

∀X ⊆ J ⊆ [n] such that |X| = |J |/2,

τshift(J,X, 0) = 0 and h(J,X, 0) =


+∞ if ∃(j, k) ∈ E|j ∈ J \X and k ∈ X

p(X) ·
∑

j∈J\X

wj otherwise

where the computation of h is polynomial (quadratic). The initialization is, for j ∈ [n],

OPT[{j}, 0] = wjpj .

The three NP-hard scheduling problems examples described above can be solved with Q-

DDPAS for Additive DPAS (Algorithm 1). We illustrate in Table 2 the worst-case time complex-

ities of solving them with Q-DDPAS and compare them with the complexities of the best-known

exact classical algorithms. Q-DDPAS improves the complexity of the exponent but sometimes

at the cost of a pseudo-polynomial factor.

Problem Q-DDPAS for Additive DPAS Best classical algorithm

1|d̃j |
∑

wjCj O∗ (
∑

pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1||
∑

wjTj O∗ (
∑

pj · 1.728n) O∗(2n) (T’kindt et al., 2022)

1|prec|
∑

wjCj O∗ (1.728n) O∗((2− ϵ)n), for small ϵ (Cygan et al., 2014)

Table 2: Comparison of complexities between Q-DDPAS and the best-known classical algorithm

for some scheduling problems satisfying (Add-DPAS) and (Add-D-DPAS)
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4.2 Scheduling with release date constraints

Single-machine scheduling problems with release date constraints do not satisfy the addition

of optimal values of the problem on sub-instances but enable the composition of them. We

illustrate this notion with two examples of problems that satisfy Composed DPAS and thus can

be solved by Q-DDPAS (Algorithm 2).

We have presented in Subsection 3.1 an example that is the problem of minimizing the

weighted number of late jobs with release date constraints (1|rj |
∑

wjUj). We have shown that

the two sets to define the auxiliary problem are E = J0,
∑n

j=1wjK and T = J0,
∑n

j=1 pjK∪{+∞}.

Thus, Q-DDPAS solves this problem in O∗ ((∑wj)
3 ·
∑

pj · 1.728n
)
according to Observa-

tion 3.7. Next, we present another example which is the strongly NP-hard problem of min-

imizing the total weighted completion time with release date constraints.

Example 3 (Minimizing the total weighted completion time with release date constraints,

1|rj |
∑

wjCj). Each job j ∈ [n] has a weight wj, a processing time pj, and a release date rj. This

problem aims at finding the feasible permutation, namely where each job starts after its release

date, for which the total weighted completion time is minimal. Let T = J0,
∑n

j=1 pjK ∪ {+∞}

and E = J0,
∑n

j=1wj ·
∑n

j=1 pjK. For a given ϵ ∈ E, we consider the problem P ′ of Equation (5)

as follows: ∀J ⊆ [n], t ∈ T,

P ′(J, t, ϵ) : min
π∈Π′(J,t,ϵ)

Cmax(π) ,

where Cmax is the makespan, and

Π′(J, t, ϵ) = {π ∈ SJ : Cj(π) ≥ max(t, rj) + pj and
∑
j∈J

wjCj(π) = ϵ} ,

where Cj is the completion time of job j. Problem P ′ satisfies the two Composed DPAS re-

currences (Comp-DPAS) and (Comp-D-DPAS). The initialization of the recurrences is, for

j ∈ [n], t ∈ T and ϵ ∈ E,

OPT[{j}, t, ϵ] =


Cj := max(t, rj) + pj , if ϵ = wjCj

+∞, otherwise

We synthesize in Table 3 the worst-case time complexities achieved by Q-DDPAS on the

examples of scheduling problems satisfying the Composed DPAS recurrences. We compare

them with the best-known classical complexities for exact algorithms. The latter comes from

the algorithm of Inclusion-Exclusion designed by Ploton and T’kindt (2022), which provides a

generic method to solve such problems. We observe that Q-DDPAS improves the exponential

part of the complexity, at a cost of a higher degree for the pseudo-polynomial factor.
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Problem Q-DDPAS for Composed DPAS Best classical algorithm

1|rj |
∑

wjUj O∗ ((∑wj)
3 ·
∑

pj · 1.728n
)

O∗(
∑

wj ·
∑

pj · 2n) , (Ploton and T’kindt, 2022)

1|rj |
∑

wjCj O∗ ((∑wj)
3 · (
∑

pj)
4 · 1.728n

)
O∗(

∑
wj · (

∑
pj)

2 · 2n) , (Ploton and T’kindt, 2022)

Table 3: Comparison of complexities between Q-DDPAS and the best-known classical algorithm

for some scheduling problems satisfying (Comp-DPAS) and (Comp-D-DPAS)

5 Decision-based DPAS

We saw in the previous section that the recurrence to solve P can be applied to a minimization

problem, possibly involving an auxiliary problem. Sometimes, the recurrence does not apply

directly to a minimization problem but to a decision problem. This is the case of the 3-machine

flowshop problem. In this section, we adapt the hybrid algorithm Q-DDPAS to solve this

problem. Notice that it easily generalizes to the m-flowshop problem, for m ≥ 4.

5.1 3-machine flowshop and dynamic programming

We consider the permutation flowshop problem on 3 machines for n jobs with minimizing the

makespan as the objective function. This strongly NP-hard problem is often referred to as

F3||Cmax in the literature, as mentioned by Shang et al. (2018). Each job j ∈ [n] consists of 3

operations Oij for i ∈ [3], each operation being processed on the i-th machine. We note pij the

processing time of operation Oij . Each machine performs at most one operation at a time. For

each job j, operations must be processed in the specific order O1j , O2j , O3j : the first operation

gets processed on the first machine, then the second operation gets processed on second machine

(as soon as the first operation is finished and the second machine is available), and eventually

the third operation gets processed on the third machine (as soon as the second operation is

finished and the third machine is available). Thus, only the processing order of the jobs has

to be decided, implying that a solution is entirely described by the permutation of jobs on the

first machine. Thus, the problem can be formulated as

min
π∈S[n]

Cmax(π) , (8)

where Cmax is the maximum completion time, namely the completion time of the last job

processed on the last machine (third machine). Because the two techniques presented so far do

not apply to (8), we present an alternative approach involving the decision counterpart of the

above optimization problem.

We introduce below a decision problem for deriving the recurrences. For that, we define the
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bounded set

T =

u

v0,
∑

j∈[n],i∈[3]

pij

}

~ ⊆ Z .

Definition 5.1 (Decision problem). For J ⊆ [n], β⃗ = (β2, β3) ∈ T 2 and ϵ⃗ = (ϵ2, ϵ3) ∈ T 2,

we define the decision problem D(J, β⃗, ϵ⃗) on a sub-instance associated with jobs in J as the

following question: “Does there exist a permutation π ∈ SJ such that, for i ∈ {2, 3}, bi(π) ≥ βi ,

and ei(π) ≤ ϵi ?”, where bi(π), respectively ei(π), denotes the time at which the first operation

begins, respectively the last operation ends, on the i-th machine.

In other words, problem D(J, β⃗, ϵ⃗) asks whether or not there exists a feasible permutation

with jobs in J such that it holds between the two temporal fronts β⃗ and ϵ⃗. Notice that it is not

necessary to impose any beginning and ending time for the first machine (i = 1). Indeed, the

problem is time-invariant, thus we can always consider that the scheduling problem starts at

time 0, and that the total completion time on the first machine is known and equal to the sum

of processing times of the scheduled jobs. Notice that the number of parameters is four for the

3-machine flowshop, but generalizes to 2(m− 1) parameters for the m-machine flowshop.

With these notations, P can be cast as follows:

P : min
c∈T

{
c : D[[n], (0, 0), (c, c)] = True

}
. (9)

The decision problem D satisfies both recurrences (Dec-DPAS) and (Dec-D-DPAS) below.

Property 5.2 (Decision DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

(
D[{j}, β⃗, t⃗] ∧D[J \ {j}, t⃗⊖ p1j , ϵ⃗⊖ p1j ]

)
, (Dec-DPAS)

where t⃗ ∈ [β⃗, ϵ⃗] means that the i-th coordinate of t⃗ is between the i-th coordinates of β⃗ and ϵ⃗,

and where operation v⃗ ⊖ c, for a vector v⃗ and a constant c, subtracts c to each coordinate of v⃗.

This latter recurrence enables P to be solved by a classical dynamic programming algorithm.

Lemma 5.3. (Dec-DPAS) solves P in O∗(|T |4 · 2n).

Proof. First, we can show that, for a given β⃗0, ϵ⃗0 ∈ T 2, (Dec-DPAS) solves D([n], β⃗0, ϵ⃗0) in

O∗(|T |4 · 2n). This is essentially the same lines of the proof as in Lemma 2.2. Second, to solve

P, we make a dichotomic search over T to find the minimum c ∈ T such that D([n], (0, c), (0, c))

is True according to Equation (9). Thus, (Dec-DPAS) is called log2(|T |) times. Because |T | =∑
pij is a pseudo-polynomial term of the instance, the total complexity is O∗(log2(|T |) · |T |4 ·

2n) = O∗(|T |4 · 2n) .
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Property 5.4 (Decision Dichotomic DPAS). For all J ⊆ [n] of even cardinality, β⃗ ∈ T 2 and

ϵ⃗ ∈ T 2,

D[J, β⃗, ϵ⃗] =
∨

X⊆J:|X|=|J|/2,
t⃗∈[β⃗,⃗ϵ]

D[X, β⃗, t⃗] ∧D[J \X, t⃗⊖
∑
j∈X

p1j , ϵ⃗⊖
∑
j∈X

p1j ]

 . (Dec-D-DPAS)

Lemma 5.5. (Dec-D-DPAS) solves P in ω(|T |4 · 2n).

Proof. This proof is similar to the proof of Lemma 2.5, with the argument that a dichotomic

search is polynomial in the size of the instance as in the proof of Lemma 5.3.

Once again, we observe that recurrence (Dec-DPAS) outperforms recurrence (Dec-D-DPAS)

to solve by classical dynamic programming our problem P. In the next section, we describe how

we adapt Q-DDPAS to take advantage of those two recurrences to solve the 3-machine flowshop

problem.

5.2 Hybrid algorithm for Decision-based DPAS

We call Q-Dec-DDPAS the adapted decision version of Q-DDPAS. The main difference

is that instead of searching for a minimum value in a set in recurrence (Add-D-DPAS)

or (Comp-D-DPAS), we search for a True value in a set in recurrence (Dec-D-DPAS). Thus,

it essentially amounts to replacing Quantum Minimum Finding with the algorithm of Boyer

et al. (1998) specified below, which extends Grover Search (Grover, 1996).

Definition 5.6 (Grover Search Extension (Boyer et al., 1998)). Let f : [n] → {0, 1} be a

function. Grover Search Extension computes with high probability the logical OR of all the f

values and the corresponding antecedent(s) x ∈ [n] such that f(x) = 1. The complexity of

Grover Search Extension is O (
√
n · Cf (n)), where O(Cf (n)) is the complexity of computing a

value of f .

Notice that we cannot use Grover Search because we do not know the number of x such that

f(x) = 1. The generalization of Boyer et al. (1998) enables us to deal with an unknown number

of solutions while keeping the same complexity of Grover Search. Moreover, if there are t ∈ N∗

solutions, the complexity is O
(√

n/t · Cf (n)
)

but, having no bounds on t whenever we call

Grover Search Extension, we omit it in the complexity.

Lemma 5.7. Let β⃗0, ϵ⃗0 ∈ T 2. The bounded-error algorithm Q-Dec-DDPAS (Algorithm 4) solves

D([n], β⃗0, ϵ⃗0) in O∗((
∑

pij)
4 · 1.754n).
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Algorithm 4: Q-Dec-DDPAS for 3-machine flowshop

Input: β⃗0, ϵ⃗0 ∈ T 2, decision problem D satisfying (Dec-DPAS) and (Dec-D-DPAS)

Output: D[[n], β⃗0, ϵ⃗0] with high probability

begin classical part

for X ⊆ [n] : |X| = n/4 and β⃗, ϵ⃗ ∈ T 2 do

Compute D[X, β⃗, ϵ⃗] with (Dec-DPAS) and store the results in the QRAM;

begin quantum part

Apply Grover Search Extension with (Dec-D-DPAS) to find D[[n], β⃗0, ϵ⃗0];

To get values for the Grover Search Extension above (the values D[J, β⃗, ϵ⃗] for

J ⊆ [n] of size n/2 and β⃗, ϵ⃗ ∈ T ), apply Grover Search Extension

with (Dec-D-DPAS);

To get values for Grover Search Extension above (the values D[X, β⃗′, ϵ⃗′] for X ⊆ [n]

of size n/4 and β⃗′, ϵ⃗′ ∈ T ), get them on the QRAM;

The proof is essentially the same as for Theorem 2.8, detailed in Supplementary Materi-

als. All the details of correctness and low-level implementation are given in our companion

paper (Grange et al., 2024).

Algorithm 5: Meta-algorithm with subroutine Q-Dec-DDPAS for the 3-machine flow-

shop

Input: 3-machine flowshop

Output: Minimum makespan with high probability

1 c∗ ← +∞;

2 for c ∈ T do

3 Solve D([n], (0, 0), (c, c)) with Algorithm 4;

4 if D[[n], (0, 0), (c, c)] and c < c∗ then

5 c∗ ← c;

6 Return c∗

Theorem 5.8. The bounded-error Algorithm 5 solves the 3-machine flowshop in O∗((
∑

pij)
4 ·

1.754n) with high probability.

Once again, as mentioned in Observation 2.9, the complexity can be reduced thanks to a

slight modification on the Q-Dec-DDPAS that constitutes the subroutine, thus leading to the

following observation.
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Observation 5.9. A slight modification of Algorithm 5 reduces the complexity of solving the

3-machine flowshop in O∗((
∑

pij)
4 · 1.728n) with high probability.

This new method improves the best-known classical algorithm that is in O∗(3n) or in O∗(M ·

2n) if there exists a constant M such that pij ≤ M , for all i ∈ [3], j ∈ [n], presented by Shang

et al. (2018) and Ploton and T’kindt (2023). Hybrid quantum-classical bounded-error Algo-

rithm 5 reduces the exponential part of the time complexity at the cost of a pseudo-polynomial

factor. For most cases, this factor is negligible because the numerical values of 3-machine flow-

shop instances are small compared to the exponential part value. However, we present in the

next subsection a way to dispose of this factor with an approximation scheme.

It is worth noting that the previous algorithm easily generalizes to the m-machine flowshop

problem. Indeed, the only difference is the description of the temporal front that necessitates

2(m− 1) parameters.

Observation 5.10. The bounded-error Algorithm 5 generalizes to solve the m-machine flowshop

in O∗((
∑

pij)
2(m−1) · 1.728n) with high probability.

Notice that Ploton and T’kindt (2023) present a classical resolution for the m-machine flow-

shop by Inclusion-Exclusion in O∗((
∑

pij)
m · 2n).

5.3 Approximation scheme for the 3-machine flowshop

We present an approximation scheme for the 3-machine flowshop problem that trades the

pseudo-polynomial factor in the complexity of Q-Dec-DDPAS and the optimality of the al-

gorithm for a polynomial factor in 1
ϵ and an approximation factor of (1 + ϵ). In other words,

we provide Algorithm 6 that finds a solution in time O∗ ( 1
ϵ3
· 1.728n

)
for which the makespan

is not greater than (1+ϵ) times the optimal makespan. The latter point denotes that this is an

ϵ-approximation scheme. Our algorithm belongs to the class of moderate exponential-time ap-

proximation algorithms. Notice that the 3-machine flowshop problem does not admit an FPTAS

(fully polynomial-time approximation scheme) because it is strongly NP-hard, meaning that no

ϵ-approximation algorithm exists to solve the 3-machine flowshop in time O
(
poly(n, 1ϵ )

)
unless

P = NP (Vazirani, 2001). In comparison, Hall (1998) provides for the m-machine flowshop prob-

lem an FPT-AS (fixed-parameter tractable approximation scheme), namely an ϵ-approximation

algorithm that runs in time O(f(ϵ, κ) · poly(n)) for κ a fixed parameter of the instance and f

a computable function. Hall (1998) choose κ to be the number of machines of the flowshop,

leading to an FPT-AS that runs in time O
(
n3.5 · (mϵ )

m4

ϵ2

)
. In our case, we consider the case

m = 3.
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Algorithm 6: Hybrid approximation scheme for the 3-machine flowshop

Input: ϵ > 0, 3-machine flowshop on n jobs with processing times {pij : i ∈ [3], j ∈ [n]}

Output: solution at most 1 + ϵ times the optimal solution

1 P = max
i∈[3],j∈[n]

{pij};

2 K = ϵP
n+2 ;

3 for i ∈ [3], j ∈ [n] do

4 p′ij = ⌈
pij
K ⌉;

5 Solve the 3-machine flowshop on n jobs with new processing times {p′ij : i ∈ [3], j ∈ [n]}

with Algorithm 5 that outputs permutation π′;

6 Return π′

Lemma 5.11. Let π∗ be an optimal solution of the 3-machine flowshop problem, for the pro-

cessing times {pij : i ∈ [3], j ∈ [n]}. Let π′ be the output of Algorithm 6. We have

Cmax(π
′) ≤ (1 + ϵ) · Cmax(π

∗) .

Next, we introduce two observations necessary to prove Lemma 5.11. The proofs are omitted

because of their simplicity.

Observation 5.12. Let π be a permutation and let be α ∈ R∗
+. We note Cmax(π) the makespan

of π of the 3-machine flowshop for processing times {pij : i ∈ [3], j ∈ [n]}. We note C ′
max(π)

the makespan of π of the 3-machine flowshop for processing times {p′ij : i ∈ [3], j ∈ [n]} such

that p′ij := αpij for all i, j. Then, C ′
max(π) = αCmax(π) . Notice that for p′ij ≤ αpij, we have

C ′
max(π) ≤ αCmax(π) even if the critical path in π may differ to obtain Cmax and C ′

max.

Observation 5.13. Let π be a permutation and let β ∈ R such that β ≥ − min
i∈[3],j∈[n]

{pij}.

We note Cmax(π) the makespan of π of the 3-machine flowshop for processing times {pij : i ∈

[3], j ∈ [n]}. We note C ′′
max(π) the makespan of π of the 3-machine flowshop for processing

times {p′′ij : i ∈ [3], j ∈ [n]} such that p′′ij := pij + β for all i ∈ [3], j ∈ [n]. Then, C ′′
max(π) ≤

Cmax(π) + β(n+ 2) . Notice that for p′′ij ≤ pij + β, we still have C ′′
max(π) ≤ Cmax(π) + β(n+ 2)

even if the critical path in π may differ to obtain Cmax and C ′′
max.

Proof of Lemma 5.11. Let be ϵ > 0. The new processing times considered p′ij := ⌈pijK ⌉ imply

that
pij
K ≤ p′ij <

pij
K + 1. We note C ′

max the makespan of the new problem, i.e. the 3-machine

flowshop problem with processing times {p′ij : i ∈ [3], j ∈ [n]}.

On the one hand, we have p′ij <
pij
K + 1, for all i ∈ [3], j ∈ [n]. Thus, according to Obser-

vations 5.12 and 5.13 considering the optimal permutation π∗, C ′
max(π

∗) ≤ Cmax(π∗)
K + n + 2 ,
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namely, because K > 0,

KC ′
max(π

∗) ≤ Cmax(π
∗) +K(n+ 2) . (10)

On the other hand, we have
pij
K ≤ p′ij . Thus, according to Observation 5.12 considering the

output permutation π′ of Algorithm 6, Cmax(π′)
K ≤ C ′

max(π
′) , namely, because K > 0,

Cmax(π
′) ≤ KC ′

max(π
′) ≤ KC ′

max(π
∗) (11)

≤ Cmax(π
∗) +K(n+ 2) = Cmax(π

∗) + ϵP (12)

≤ Cmax(π
∗) + ϵCmax(π

∗) = (1 + ϵ)Cmax(π
∗) , (13)

where (11) comes from the fact that π′ is the optimal solution for makespan C ′
max, (12)

results from Equation (10), and (13) is true because the makespan is always larger than

P = max
i∈[3],j∈[n]

{pij}.

Theorem 5.14. Algorithm 6 is an approximation scheme for the 3-machine flowshop problem

and outputs a solution whose makespan it at most (1 + ϵ) times the optimal value in time

O∗ ( 1
ϵ3
· 1.728n

)
.

Proof. First, according to Lemma 5.11, Algorithm 6 outputs a solution whose makespan it at

most (1 + ϵ) times the optimal value. Second, Algorithm 5 solves the new problem in time

O∗((
∑

p′ij)
4 · 1.728n) = O∗( 1

ϵ4
· 1.728n). Indeed,∑

p′ij ≤
∑(pij

K
+ 1
)
=

1

K

∑
pij + 3n ≤ 1

K
· 3nP + 3n =

3n(n+ 2)

ϵ
+ 3n .

Thus,
∑

p′ij ≤ poly(n, 1ϵ ).

6 Conclusion

In this work, we propose generalized dynamic programming recurrences for NP-hard scheduling

problems to solve a broad class of such problems with our hybrid algorithm Q-DDPAS which is

an adapted version of the quantum-classical algorithm of Ambainis et al. (2019). Q-DDPAS pro-

vides a quantum speed-up to their exact resolution. Specifically, our hybrid algorithm reduces

the best-known classical time complexity, often equal to O∗(2n) for single-machine problems

and O∗(3n) for the 3-machine flowshop, to O∗(1.728n), sometimes at the cost of an additional

pseudo-polynomial factor as summarized in Table 1. Future work should be dedicated to finding

a quantum brick, e.g. (Grover, 1996), Quantum Fourier Transform (Kitaev, 1995) or Quantum

Walks (Aharonov et al., 2001), that could speedup exponential algorithms such as Sort-and-

Search (Lenté et al., 2013), Inclusion-Exclusion (Ploton, 2023) or Branch-and-Reduce (T’kindt

et al., 2022).
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A Useful upper bounds

We define the binary entropy of ϵ ∈]0, 1[ by H(ϵ) = −(ϵ log2(ϵ)+(1− ϵ) log2(1− ϵ)) . We remind

some useful upper bounds of binomial coefficients Ambainis et al. (2019):(
n

k

)
≤ 2H(

k
n)·n, ∀k ∈ J1, nK and

k∑
i=1

(
n

i

)
≤ 2H(

k
n)·n, ∀k ∈

r
1,

n

2

z
.

Thus, it leads to the following upper bounds to compute the complexities of interest:

n/4∑
i=k

(
n

k

)
≤ 20.811n,

0.945·n/4∑
k=1

(
n

k

)
≤ 20.789n,

√(
n

n/2

)(
n/2

n/4

)
≤ 20.75n,

√(
n

n/2

)(
n/2

n/4

)(
n/4

0.945 · n/4

)
≤ 20.789n
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