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Abstract

When dealing with right-censored data, where
some outcomes are missing due to a limited
observation period, survival analysis —known
as time-to-event analysis— focuses on predict-
ing the time until an event of interest occurs.
Multiple classes of outcomes lead to a clas-
sification variant: predicting the most likely
event, a less explored area known as competing
risks. Classic competing risks models couple
architecture and loss, limiting scalability.

To address these issues, we design a strictly
proper censoring-adjusted separable scoring
rule, allowing optimization on a subset of the
data as each observation is evaluated indepen-
dently. The loss estimates outcome probabil-
ities and enables stochastic optimization for
competing risks, which we use for efficient gra-
dient boosting trees. SurvivalBoost not
only outperforms 12 state-of-the-art models
across several metrics on 4 real-life datasets,
both in competing risks and survival settings,
but also provides great calibration, the ability
to predict across any time horizon, and com-
putation times faster than existing methods.

1 INTRODUCTION

We all die at some point. Some applications call for
predicting not if but when an event of interest is likely

*Equal contribution.
Corresponding author: julie.alberge@inria.fr,
vincent@probabl.ai

Proceedings of the 28th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

to occur. In such a setting of time-to-event regression,
samples often have unobserved outcomes, e.g. indi-
viduals that have not been followed long enough for
the event of interest to occur. Limiting the analysis
to fully observed samples creates a censoring bias. To
address this, survival analysis models use dedicated
corrections for censorship. These have long been cen-
tral to health applications [Zhu et al., 2016, Chaddad
et al., 2016, Gaynor et al., 1993]. Nowadays, survival
analysis is also used in diverse fields, such as predictive
maintenance [Rith et al., 2018, Susto et al., 2015], or
user-engagement studies [Maystre and Russo]. Survival
analysis has led to many dedicated models, such as the
Kaplan and Meier [1958] estimator or the Cox [1972]
proportional hazard model.

Competing risks analysis generalizes survival analysis
to multiple events, determining which will happen first
[Susto et al., 2015, Gaynor et al., 1993]. For instance,
if a breast-cancer patient dies from a different cause,
it is impossible to determine when they would have
succumbed to cancer, regardless of the duration of the
observation period. The caregiver may also want to
adapt the treatment if it is predicted that the patient
will die of a competing event, such as a heart attack,
sooner than from cancer. As the risks of the various
events are seldom independent–for example, cancer and
cardiovascular disease share inflammation or age risk
factors [Koene et al., 2016]–competing risks cannot
be solved by running a survival model for each event
[Wolbers et al., 2009]. The estimated risk of an event
of interest will be biased if the competing risks are
not included. Hence, adequate models for these risks
are critical for decision-making [Ramspek et al., 2022,
Koller et al., 2012, van Walraven and McAlister, 2016].

Survival models have traditionally been developed with
ad hoc adjustments for censoring. The most common
approach is to design a likelihood using the probability
of censoring per unit time–i.e. the time-derivative of
the risk–which either comes with strong parametric
assumptions [Cox, 1972] or ad hoc corrections [Wang
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and Sun, 2022]. Given that the risk, which is the
probability of the outcome at a specific time, is crucial
for various applications, it is preferable to use proper
scoring rules, that directly control probabilities, as
developed by Graf et al. [1999], Rindt et al. [2022].
However, no metric (or loss) has been shown to control
probabilities in the competing risks setting.

In application domains typical of survival analysis and
competing risks –health, predictive maintenance, in-
surance, marketing– the data are mostly tabular with
categorical variables, where tree-based models shine
[Grinsztajn et al., 2022]. Existing survival and compet-
ing risks models do not fit well with these requirements.
In particular, the proper scoring rule in Rindt et al.
[2022] requires a time derivative of the risk, typically
via an auto-diff operator in a neural architecture. This
approach is challenging to adapt to tree-based algo-
rithms. In addition, the ever-growing volume of data
calls for computationally efficient algorithms.

Contributions Here, we provide a general theoreti-
cal framework for learning a competing risks algorithm
using a strictly proper scoring rule. This scoring rule
yields a loss function easy to plug into any multiclass
estimator to create a competing risks algorithm, pro-
viding the individual risk of each event at any given
horizon. An interesting property of this new loss is
that it can be optimized on a subset of the training
data. Hence, it allows stochastic optimization, enabling
computationally efficient learning.
With that, we propose an algorithm called Survival-
Boost, based on Stochastic Gradient Boosting Trees.
We benchmark our algorithm on a synthetic dataset
and 4 real-world datasets - both in the competing risks
and the survival analysis setting - with several ranking
and calibration metrics and show that it outperforms
12 state-of-the-art (SOTA) baselines in both settings.

2 RELATED WORK

Survival settings Various survival models have been
developed, ranging from approaches like the Kaplan
and Meier [1958] estimator, which estimates the gen-
eral survival curve for an entire population, to models
that account for covariates. The Cox [1972] Propor-
tional Hazards Model, a linear model of the hazards,
which represents the instantaneous probability of an
event, i.e., the logarithmic derivative of outcome prob-
abilities over time. More complex models have been
adapted to the survival setting: Support Vector Ma-
chines [Van Belle et al., 2011], survival games [Han
et al., 2021] and Neural networks with DeepSurv [Katz-
man et al., 2018] or PCHazard [Kvamme and Borgan,
2019b]. While these models do not control risks, more
recent neural networks employ appropriate loss func-

tions: DQS [Yanagisawa, 2023, though relying on a
piecewise constant hazard], SumoNet [Rindt et al.,
2022] which requires differentiable models.

Competing risks Competing risks, involving multi-
ple possible outcomes, require new methods that can
naturally adapt to the simpler survival analysis setting.
Derived from the Kaplan and Meier [1958] estimator,
the Nelson [1972]-Aalen et al. [2008] estimator is an
unbiased marginal model for competing risks.
The linear Fine and Gray [1999] estimator, inspired
by the Cox [1972] estimator in survival analysis, is the
most popular model in clinical research. Recently, ma-
chine learning models have been adapted to competing
risks settings, including tree-based approaches such as
the Random Survival Forests [Ishwaran et al., 2008,
Kretowska, 2018, Bellot and Schaar, 2018], boosting
approaches [Bellot and van der Schaar, 2018], and neu-
ral networks approaches such as DeepHit and Gaussian
mixtures approaches [Lee et al., 2018, Aala and van der
Schaar, 2017, Danks and Yau, 2022, Nagpal et al., 2021].
Tranformer-based approaches with SurvTRACE [Wang
and Sun, 2022] using a loss corrected to predict rare
competing events, independently forecasts all events
but do not ensure that probabilities sum to one.
For a comprehensive review of competing risks models,
refer to Monterrubio-Gómez et al. [2022].

Evaluation for such models Prediction evaluation
in survival or competing risks settings requires adapted
metrics to account for right-censored data points [Har-
rell et al., 1982], such as the C-index, which is an
adaptation of the Area Under the ROC Curve (AUC)
used in classification tasks. However, the C-index only
evaluates the ranking of samples, i.e. which samples
are likely to experience the event of interest first. It is
also dependent on the censoring distribution, which can
introduce bias in the evaluation [Blanche et al., 2019].
In fact, the score may be inflated for distributions
that differ from the oracle-censoring distributionRindt
et al. [2022]. Alternative methods have been proposed,
such as the time-dependent C-index, Cζ [Antolini et al.,
2005], which is the same metric but computed at a
specific time horizon ζ. The C-index ranking metric
has also been extended to competing risks [Uno et al.,
2011], but, as in the survival setting, it only evaluates
relative risks between pairs of individuals and does not
assess the absolute risk for a given individual. Other
time-dependent adaptations of the ROC curve have
been developed, though these also measure discrimina-
tive power rather than the actual risks or probabilities
[Blanche et al., 2013]. Yet, controlling risk is crucial for
decision making [Van Calster et al., 2019]. Proper scor-
ing rules offer an alternative to overcome the limitations
of existing metrics, as they capture more aspects of the
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problem. Additionally, they can be used for both the
training and evaluating probabilistic predictive models.

Proper Scoring Rules (PSR) Scoring rules are
cost functions of observations and a candidate proba-
bility distribution. When proper, they target the oracle
probability distribution (Definition 3.2). Crucially, they
give machine-learning losses that recover probabilities
of outcomes. For classification, where discrete events
are observed rather than probabilities, the Brier score
and the log loss give proper scoring rules, with relative
merits [Benedetti, 2010, Merkle and Steyvers, 2013].

Graf et al. [1999] adapt the Brier score to survival
analysis, with a strong assumption of independence
of the covariates in the censoring distribution. Yet,
this assumption is often violated [Kvamme and Bor-
gan, 2019a], leading to bias [Rindt et al., 2022]. Rindt
et al. [2022] show that the likelihood of the survival
function yields a proper scoring rule, but requires both
the density function and the survival function, which
is a time-wise derivative of outcome probabilities (Defi-
nition 3.2). For quantile regression, Yanagisawa [2023]
adapt the Pinball loss to a proper scoring rule for sur-
vival analysis, but requiring an oracle parameter. Han
et al. [2021] introduce a double optimization problem,
where the stationary point corresponds to the oracle
distributions.

For competing risks, Schoop et al. [2011] extend the
Brier score to a proper scoring rule. However, the Brier
score does not capture the uncertainty as effectively as
the log loss [Benedetti, 2010].

3 PROBLEM FORMULATION

Notations We write oracle quantities as a∗ and es-
timates as â, vectors in bold, a, random variables in
upper case, A, observations in lower cases a, and dis-
tributions in calligraphic style A.

3.1 Problem Setting

We consider K ∈ N∗ competing events. For k ∈ J1,KK,
we denote T ∗

k ∈ R+ the event time of the event k,
depending on the covariates X ∼ X . We also de-
note T ∗ ∈ R+, the first event of interest that oc-
curs, T ∗ = min

k∈J1,KK
(T ∗

k ). We observe (X, T,∆) ∼ D,

with T = min(T ∗, C) where C ∈ R+ is the censoring
time, which can depend on X, and ∆ ∈ J0,KK,∆ =
argmin
k∈J0,KK

(T ∗
k ), where 0 denotes a censored observation.

However, we are primarily interested in the distribution
of the uncensored data, (X, T ∗,∆) ∼ D∗, particularly
the joint distribution of T ∗,∆|X = x.
Given a data set of n individuals, we denote each indi-

vidual i by its associated covariates xi. The outcome
is represented by (ti, δi), where ti is the observed time,
and δi ∈ J0,KK is the event indicator. δi = k in-
dicates that the event of interest k was observed at
time ti, while δi = 0 indicates that the observation was
censored at time ti. This paper aims to predict an unbi-
ased estimate of all cause-specific Cumulative Incidence
functions (CIFs) at any time horizon ζ (Definition 3.1).

Definition 3.1 (Quantities of interest).
Survival Function to any event:

S∗(ζ|x) = P(T ∗ > ζ|X = x)

CIF (Cumulative Incidence Function):

F ∗(ζ|x) = P(T ∗ ≤ ζ|X = x) = 1− S∗(ζ|X = x)

CIF of the kth event:
F ∗
k (ζ|x) = P(T ∗ ≤ ζ ∩∆ = k|X = x)

Censoring Function:
G∗(ζ|x) = P(C > ζ|X = x)

Assumption 3.1 (Non-informative censoring). We
make the classic assumption in survival analysis that
censoring is non-informative with respect to covariates:

T ∗ ⊥⊥ C |X

Assumption 3.1 is essential for most theoretical results
in survival analysis [Rindt et al., 2022, Yanagisawa,
2023, Han et al., 2021]. It shows that single-event
survival analysis becomes invalid in the presence of
competing risks: if some observations are censored due
to other events that share unobserved risk factors with
the event of interest, this assumption is violated.

3.2 CIF Scoring Rule

Proper Scoring Rule A scoring rule ℓ evaluates
a distribution P on an observation Y , producing a
corresponding score ℓ(P, Y ). The higher the score, the
better the model fits the observation. For a proper
scoring rule, the score reflects the model’s ability to
predict the oracle distribution [for more on scoring
rules, see Gneiting and Raftery, 2007, Ovcharov, 2018,
Merkle and Steyvers, 2013].

Definition 3.2 (Proper Scoring Rule). A scoring rule
ℓ is considered proper if

∀P,Q,distributions EY∼Q[ℓ(P, Y )] ≤ EY∼Q[ℓ(Q, Y )].

If the equality holds if and only if P = Q, in which
case the scoring rule is strictly proper.

Proper scoring rule for the Global CIF We
denote Lζ a scoring rule for the global CIF at time ζ.

Definition 3.3 (PSR for competing risks settings). In
competing risks settings, where censoring is present, a



Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks

scoring rule Lζ for the CIF at time ζ for an observation
(X, T,∆) is proper if and only if:
∀ζ, (X, T,∆) ∼ D,∀(F̂1, ..., F̂K , Ŝ),

ET∗,C,∆|X=x[Lζ( (F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)) , (T,∆))]

≤

ET∗,C,∆|X=x[Lζ( (F
∗
1 (ζ|x), ..., F ∗

K(ζ|x), S∗(ζ|x)) , (T,∆))]

Estimated distributions

Oracle distributions (1)
When equality is achieved only for the oracle distribu-
tions, the scoring rule is strictly proper.

4 A STRICTLY PROPER SCORING
RULE FOR COMPETING RISKS

We prove that the negative log-likelihood, re-weighted
by the censoring distribution (IPCW: Inverse Proba-
bilities of Censoring Weights), is strictly proper.
Definition 4.1 (Competitive Weights Negative
LogLoss). We introduce the multiclass negative log-
likelihood, re-weighted with the censoring distribution.
The different classes represent the loss for all the cu-
mulative incidence functions and the survival function.

∀ζ, (x, t, δ) ∼ D,

Lζ((F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (t, δ)) def
=

1

n

n∑
i=1

 K∑
k=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)


+

1ti>ζ log
(
Ŝ(ζ|xi)

)
G∗(ζ|xi)

(2)
Probability of remaining
censor-free at ti

Probability of remaining
censor-free at ζ (1 - probability of censoring)

Eq.2 is a standard log-loss (also known as cross-
entropy), reweighted by appropriate sample weights
—the inverse probabilities, or IPCW. Therefore, it can
easily be added to most multiclass estimators.

Lemma 4.1. Accounting for the time horizon ζ, the
expectation of the above scoring rule can be written as:
∀ζ, (X, T,∆) ∼ D,

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x)

(3)

Proof sketch. The weights allow us to transition from
the observed distribution T to the uncensored distribu-
tion T ∗, which is crucial for demonstrating properness.
The full proof can be found in Appendix B.

Theorem 1 (Properness of the scoring rule). Under the
assumption that the weights are appropriately chosen,
Lζ : RK+1×D → R is a strictly proper scoring rule for
the global CIF on a fixed time horizon ζ ∈ R+.

Proof sketch. Using the previous result, the properties
of the negative log-likelihood, and Definition 3.3, we
conclude that the loss is strictly proper. Full proof in
Appendix B.

And with this result, we can extend it to a global
strictly proper scoring rule.
Lemma 4.2. We define

L
(
(F̂1(.|x), ..., F̂K(.|x), Ŝ(.|x)), (T,∆)

)
=∫ tmax

0

Lζ((F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆))dζ
(4)

Assuming that ∀ζ,Lζ is a strictly proper scoring rule,
L : RK+1 × D −→ R is a strictly proper scoring rule
for all CIF and the survival function.

Proof Sketch. It is straightforward with the positivity
of the integral. Full proof in Appendix B.

5 SurvivalBoost: GRADIENT
BOOSTING COMPETING RISKS

While eq.2 can be used as a loss in any multiclass ma-
chine learning algorithm, we choose Gradient Boosting
Trees due to their strong performance on tabular data
[Grinsztajn et al., 2022] and their compatibility with
stochastic optimization. Gradient boosting methods
approximate complex functions by combining weak
learners (or base learners). At each iteration m, the
algorithm focuses on the residuals of the loss function
and builds a base learner hm that minimizes these
residuals. For gradient boosting trees, the estimator
typically takes the form Hm(x) = Hm−1(x) + νhm(x)
where ν represents a chosen learning rate. For more on
gradient boosting, refer to Friedman [1999].

Most survival or competing risk loss functions cannot
be used with tree-based models, as they require time
derivates and thus smoothness. To address this, we
introduce an algorithm called SurvivalBoost, which
predicts all CIFs for each competing event as well
as the global survival function. By predicting these
jointly, we ensure that the stability of the probabil-
ities is maintained, as the outputs of the classifica-
tion models naturally sum to one. This ensures that
P(T ∗ ≤ ζ|X = x) + P(T ∗ > ζ|X = x) = 1, meaning
the model’s outputs are consistent and sum to one:

K∑
k=1

P(T ∗ ≤ ζ ∩∆∗ = k|X = x)︸ ︷︷ ︸
kthCIF

+ P(T ∗ > ζ|X = x)︸ ︷︷ ︸
Survival Probability

= 1
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Figure 1: SurvivalBoost Algorithm with its Feedback Loop. After providing input to the algorithm,
a random time is assigned, and the corresponding weights and target are computed. After each iteration, the
feedback loop updates the censoring probability, G⋆ as defined in eq.2.

Algorithm 1 SurvivalBoost Algorithm - mth Itera-
tion

Input: x, δ, t
for i = 1 to nsamples do
ζi ∼ U(0, tmax)

end for
ζ ← (ζi)1≤i≤nsamples

▷Sample a time horizon
x̃← (x, ζ) ▷Stacking the time to the features
y, w ← ipcwComputer(x, δ, t, Ĝ) ▷See Alg 2
L← 1

n

∑n
i=1

∑K
k=1

(
1yi=k yi wi log

(
F̂k(ζi|xi)

))
+1yi=0 yi wi log

(
Ŝ(ζi|xi)

)
hm(x̃)← Train one iteration of Gradient Boost with
L as the loss ▷hm is the mth weak learner
Hm(x̃)← νhm(x̃) +Hm−1(x̃) ▷Hm is the estimator
at the mth iteration, ν the learning rate
(Ŝ(ζ|X = x), (F̂k(ζ|X = x)1≤k≤K)← Hm(x̃)

Ĝ← Train one iteration of the Censoring-Feedback-
Loop with Ŝ(ζ|X = x) ▷See Alg 3

Using the loss in eq.3, we can directly predict the CIF
instead of predicting the hazard function (the derivative
of the CIF), as is often done —for example, in DeepHit
[Lee et al., 2018] or SurvTRACE [Wang and Sun, 2022].
This approach allows us to drop the constant-hazard
assumption present in [Yanagisawa, 2023, Kvamme and
Borgan, 2019b, Wang and Sun, 2022, Rindt et al., 2022].

Our algorithm utilizes two classifiers (here, gradient-
boosted trees), one for censoring, trained on binary
censored/non-censored labels (i.e., for time ζ, P(C >
ζ|X = x)), and one for multiple events. Both the
censoring and event models are adjusted using IPCW
weights. To compute these IPCW weights, we iterate
the training using a feedback loop similar to boosting.
First, we compute a survival censoring model. Then,

using these probabilities, we initialize our Survival-
Boost algorithm. After several iterations, we apply a
feedback loop to retrain the censoring model.
To capture complex temporal dependencies, we sam-
ple a time point for each observation from a uniform
distribution between 0 and tmax and include it as an
additional feature. Multiple time points can be sam-
pled from the previous distribution per iteration for
each observation, generating a richer dataset where
the targets vary based on the specific times sampled,
thus providing a broader range of temporal information.
This is enabled by our separable loss function. An ad-
ditional benefit is that we can predict the CIF at any
time, unlike models optimized for a limited number of
time points that require interpolation for other times.
Figure 1 illustrates an iteration: we compute the
weights wi and targets yi based on the sampled times
for each individual (eq. 2). Specifically, for censored
samples, the corresponding weight is set to 0. A target
yi ∈ J1,KK indicates that the event of interest occurred
before ζ and when yi = 0, the individual has survived
without experiencing any event. Algorithm 1 gives
pseudocode.

6 COMPETING RISKS
EXPERIMENTS

6.1 Evaluation Metrics For Competing Risks

The evaluation is mainly performed on two metrics1.

Evaluating the predicted probability We extend
the method proposed by Graf et al. [1999] and Schoop
et al. [2011]. The formula and a formal proof of the
properness of the loss can be found in Appendix C. To

1We do not focus on the C-index over time, as this metric
is biased [Blanche et al., 2019, Rindt et al., 2022]
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avoid potential circularity with the loss function that
we optimized, we apply this evaluation metric to the
Brier Score rather than the log-loss. To evaluate the
model across all time points, we sum the Brier Score
over time, resulting in the Integrated Brier Score (IBS).

Prediction accuracy in time In many applications,
such as predictive maintenance or medicine, it is cru-
cial to determine the first event a subject is likely to
encounter. We use a validation metric to check, for
each sample, whether the observed event is predicted
as the most likely at given times, selected as before
using quantiles. For example, for an individual who en-
counters event 2 at time t, the probability of surviving
until t should be the highest compared to the proba-
bilities of encountering any other event. Additionally,
the probability of encountering event 2 after t should
be the highest. To measure this, we adapt Multi-Class
accuracy to different time points:

Definition 6.1 (Prediction accuracy at time ζ). For
a fixed time horizon ζ, and denoting survival to any
event as index 0, define ŷ = argmax

k∈[0,K]

F̂k(ζ|X = x), the

most probable event at ζ, and yζ = 1t≤ζδ. We remove
censored individuals, and nnc represents the number
of uncensored individuals at ζ.

Acc(ζ) =
1

nnc

n∑
i=1

1ŷi=yi,ζ
1δi=0,ti≤ζ (5)

6.2 Experimental Settings

Synthetic Dataset We design a synthetic dataset
with linear relations between features and targets, as
well as dependencies between the censoring distribution
and the features (Appendix S4). To create the synthetic
dataset, for each sample, we draw 2nevents parameters
from a normal distribution. We then generate the
event durations from a Weibull distribution based on
those parameters. The observation is determined by
the minimum duration and its associated event. The
censoring event is computed using the same method.

SEER Dataset This dataset tracks 470,000 breast
cancer patients for up to ten years, with mortality due
to various diseases as the outcomes. The censoring
rate is approximately 63%, and Figure S3 shows the
distribution of events. Unlike Lee et al. [2018] (Deep-
Hit) and Wang and Sun [2022] (SurvTRACE), which
focus on the two most prevalent events and censor the
others (undermining the competing risk framework),
we consider three competing events, aggregating the
remaining events into a third class. We also remove
some features following Wang and Sun [2022].
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SurvTRACE (GPU)
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Aalen Johansen (CPU)

Figure 2: Prediction performance / training time
trade-off for competing risk on the synthetic
dataset. Average IBS compared the fitting time for
each model on 20k training data points, with a cen-
soring rate of approximately 50% and a dependant
censoring across 6 features.

Baselines We compare our approach with 7 other
competing risks models from simpler models with Aalen
et al. [2008]’s global estimator and the Fine and Gray
[1999] linear model to more complex methods.
We benchmark against tree-based approach - Random
Survival Forests (RSF) [Ishwaran et al., 2008] -, often
criticized for its memory limitations. In our compari-
son, we also include several neural network-based mod-
els. This includes DeepHit [Lee et al., 2018] which is
trained with a ranking loss that combines the C-index
with a negative log-likelihood, Deep Survival Machines
(DSM) [Nagpal et al., 2021] which employ a graphi-
cal method for feature encoding and DeSurv [Danks
and Yau, 2022] solves Ordinal Differential Equations
for continuous time predictions. Finally, we include a
transformer-based model, SurvTRACE [Wang and Sun,
2022] which is trained at three-time horizons (based on
quantiles of observed event times) and at time 0.
To compute the Integrated Brier Score over time, other
methods require linear interpolation of their trained
times. For times beyond their trained intervals, we as-
sume the incidence remains constant. In contrast, our
method is trained on uniformly sampled time horizons,
allowing for predictions at any time.
For fair model comparison, we use the same hyperpa-
rameter-tuning time budget (grid in Appendix S11).

6.3 Results: Competing Risks

Synthetic dataset Figure 2 illustrates the trade-off
between statistical performance and training time for
each model. Using the synthetic dataset, we are able
to compute an oracle IBS. SurvivalBoost performs
best in terms of IBS and is the fastest to train.

Results on SEER Dataset On the real-life dataset,
we keep 30% of the data for testing the models. Figure 3
compares the models using the Integrated Brier Score
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Figure 3: Prediction performance / training time
trade-off for competing risks on SEER dataset.
Average IBS versus fitting time for each model, with
a maximum of 330k training points, except for Fine
& Gray (50k) and RSF (100k). Table S2 provides the
IBS values for each event.
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Figure 4: Prediction accuracy at time ζ Accuracy
of the Argmax of the Cumulative Incidence Functions
across different time quantiles on the SEER dataset.

(with Kaplan-Meier weights from Graf et al. [1999] due
to the absence of an oracle). SurvivalBoost achieves
both the best score and the shortest training time.
Random Survival Forest struggles with larger sample
sizes (100k) and requires more than 50GB of RAM.
SurvivalBoost also maintains a significant lead with
less training samples (Appendix G.3).

Event and time-specific C-indexes are presented in Ta-
ble S3, but they do not capture the models’ ability to
predict which event is more likely to occur at a given
time horizon. This capability is measured by the accu-
racy in time, shown in Figure 4, where SurvivalBoost
demonstrates the best performance. The advantage
increases as time progresses, indicating that Survival-
Boost interpolates more effectively over time.

Scalability To capture the scalability of the compet-
ing risks models, we performed this experiment while
varying the number of training points from 10k to 300k.
We recorded the fitting time and the Integrated Brier
Score for the different baselines, and present the results
in Appendix G.3. SurvivalBoost obtains the best

IBS for all experiments while being one of the fastest
to train. This also highlights that Random Survival
Forests do not scale with more data.

7 USAGE IN SURVIVAL ANALYSIS

7.1 Survival Experiments

Real-life Datasets As our model can also handle
survival analysis, we conducted experiments on three
real-life survival datasets.

METABRIC [Curtis et al., 2012] The Molecular Tax-
onomy of Breast Cancer International Consortium
dataset contains gene expression data with approx-
imately 2,000 data points.

SUPPORT [Knaus et al., 1995] Study to Understand
Prognoses Preferences Outcomes and Risks of
Treatment dataset includes survival times for hos-
pital patients, with more than 8,000 data points.

KKBOX The Churn Prediction Challenge 2017
hosted on Kaggle, which features administrative
censoring and 2.5M data points. We trained the
models over 100k, 1M, and 2M data points to
assess scalability (see Appendix, Fig. S1).

Evaluation We use various metrics to evaluate mod-
els: the Integrated Brier Score (detailed in Appendix
C) and another metric from Yanagisawa [2023], called
SCen−log−simple

def
= SC−l−s (detailed in Appendix E).

Although this metric approximates the proper scoring
metric from Rindt et al. [2022], it is not exactly proper
(see Appendix E). It can be applied to any model as it
does not require the density of the CIFs.

Baselines We benchmark our method against the
most performant competing risks and SOTA survival
models. This includes neural networks such as DeepHit
[Lee et al., 2018] and PCHazard [Kvamme and Borgan,
2019b], as well as those trained with proper survival
analysis scoring rules, such as SumoNet [Rindt et al.,
2022], and DQS [Yanagisawa, 2023]. We also evaluate
transformer methods with SurvTRACE [Wang and
Sun, 2022], survival games [Han et al., 2021], and tree-
based methods with Random Survival Forests (RSF)
[Ishwaran et al., 2008] and Gradient Boosting Survival
Analysis (GBS) - from Scikit-survival [Pölsterl, 2020].

7.2 Results: Survival Analysis

Figure 5 shows the trade-off between training time and
performance in terms of IBS, where SurvivalBoost
excels, being the top model in statistical performance
and one of the fastest on the datasets with enough data
(SUPPORT and KKBOX) while being one of the best
models for smaller datasets (METABRIC). Appendix

 https://www.kaggle.com/c/kkbox-churn-prediction-challenge
https://scikit-survival.readthedocs.io/en/v0.23.0/api/generated/sksurv.ensemble.GradientBoostingSurvivalAnalysis.html
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Table 1: Survival datasets: Integrated Brier Score and SC−l−s (Lower is Better) depending on the size of each
dataset. The ✗ indicates models that could not handle the data volume due to memory limitations.

Dataset METABRIC (1k) SUPPORT (8k) KKBOX (1M)
Model IBS SC−l−s IBS SC−l−s IBS SC−l−s

Kaplan-Meier .185±.010 2.039±.218 .208±.004 1.617±.268 .213±.001 1.723±.002
DeepHit .171±.009 2.039±.001 .207±.004 1.771±.000 .147±.001 1.609±.002
PCHazard .169±.011 1.980±.086 .187±.004 1.673±.004 .107±.002 1.286±.002
Han et al. .196±.004 2.665±.036 .253±.002 3.223±.005 ✗ ✗
DQS8 .172±.018 2.200±.000 .202±.004 2.764±.12 .119±.001 3.791±.027
SuMo net .170±.010 2.197±.000 .194±.006 1.818±.000 ✗ ✗
SurvTRACE .172±.006 1.987±.088 .188±.004 1.606±.003 .111±.002 1.270±.008
RSF .165±.025 1.937±.227 .182±.004 1.942±.023 ✗ ✗
GBS .169±.011 1.974±.404 .187±.004 1.575±.001 .157±.001 1.511±.001
SurvivalBoost .168±.019 2.027±.159 .181±.005 1.569±0.341 .105±.001 1.183±.029

G.2 provides a similar figure for the SCen−log−simple

metric, where SurvivalBoost achieves an excel-
lent trade-off rivaled only by SumoNet, which has
comparable performance on the SCen−log−simple loss.
Varying the sample size from 100k to 2M on the
KKBOX dataset confirms that SurvivalBoost and
DQS are faster (taking less than 1 minute on 100k
data points), while Han et al., SumoNet, and RSF are
slower for larger sample size. They exhibit super-linear
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Figure 5: Prediction performance / training time
trade-off in survival analysis IBS (Integrated Brier
score) function of fit time for each model on real-life
datasets. For the big datasets, some algorithms ex-
ceeded computing resources.

time complexity, making them impractical for large
datasets; for more than 100k data points they exceed
memory limitations (See Appendix I.1).
Table 1 report evaluation metrics, including
SCen−log−simple which is not what SurvivalBoost
directly optimizes. Across datasets, SurvivalBoost
achieves the best results in terms of IBS and is tied
with SumoNet for SCen−log−simple (also for C-index,
Appendix H.1). It is worth noting that SumoNet
uses SCen−log−simple as its training loss. However,
this metric is not guaranteed to be a proper scoring
rule, meaning it does not necessarily ensure accurate
recovery of the true risks. For KKBOX, we only show
the results for 1M data points.

Beyond proper scores, we investigate calibration, MAE,
MSE, and the AUC adapted for survival analysis (Ap-
pendix S5, S7, S8). We assess the calibration using four
tests, including distribution calibration (Dc) [Haider
et al., 2018] and One-time calibration (onec) [Hosmer
et al., 1997]. Kaplan-Meier, SurvivalBoost, and RSF
are the most calibrated models (Appendix S9).

DISCUSSION AND CONCLUSION

Combination of tree-based architecture and loss
function makes the difference Our work shares
similarities with the equations in Han et al. [2021],
which also uses IPCW [introduced by Robins et al.,
1994], though for survival and not competing risks.
Their learning strategy targets an equilibrium, showing
that it recovers the oracle distribution in survival analy-
sis settings. Meanwhile, our optimization uses a loss on
all classes to compute the censoring distribution, while
the other part optimizes only for the survival distribu-
tion. This last part departs from the schema in Han
et al. [2021]. Despite similarities, the two approaches
behave markedly different our empirical study.
Building upon trees-based model is probably important
to this difference and to the success of SurvivalBoost.
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Yet, comparing to GBS and RSF show that trees in
themselves do not suffice. Our loss is crucial for scala-
bility (as it is separable) and to facilitate fitting trees,
as it avoids the need for time derivatives. It avoids
issues that plague many competing risks methods. The
excellent empirical results, superior performance with
less computational resources, come from combining the
loss function with the tree-based approach results in
a very stable algorithm. This double gain is especially
valuable as health datasets continue to grow in size.

Limitations and further work Further work
should consider removing the assumption of non-
informative censoring 3.1. This assumption is very
common in the literature, though some recent work
has relaxed it in survival settings [Foomani et al., 2023,
Zhang et al., 2023].

Code reproducibility and data The code is avail-
able on GitHub as a Python library called hazardous
with the different metrics used in this paper, illustrated
in different examples. The API used in our code is
similar as the one in scikit-learn [Pedregosa et al., 2011].

Conclusion For competing risks, which generalizes
survival analysis to classify the type of outcome, we
first propose and prove a strictly proper scoring rule.
This reweighted log loss can easily be used in machine
learning models: it is separable by observation, making
it suitable for stochastic solvers, it does not require time
derivatives (unlike most survival models) and it can be
applied to non-differentiable models. We integrate it
into gradient-boosting trees, resulting in an algorithm
called SurvivalBoost. By using time as a feature
and incorporating a feedback loop to better estimate
censoring probabilities, SurvivalBoost outperforms
state-of-the-art methods on both synthetic and real-
life datasets, for both competing risks (classification
on time-censored data) and standard survival analysis
(time-to-event regression with right censoring). It also
trains faster on large datasets. As a loss function, it
allows survival analysis or competing risks modeling to
be easily extended to a wide range of models— from
scalable linear models to deep learning architectures,
including fine-tuning foundation models— replacing
clinical standards like Fine and Gray that do not scale.
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A Definitions

A.1 Notations

Below, we detail the notations used throughout the main manuscript, as well as in the proofs and derivations.

The following conventions apply to all symbols:

• .∗: Oracle

• .̂: Estimation

The different variables that we use are:

Maths Symbol Domain Description

ζ R+ Time horizon

K N∗ number of competing events (events of interest)
X X random variable representing an individual
T ∗
k R+ random variable of the time-to-event for event k
C R+ random variable of the time-to-censoring
T ∗ R+ min(T ∗

1 , T
∗
2 , ..., T

∗
K)

T R+ min(T,C)
∆∗ [1,K] argmin

k∈[1,K]

(T ∗
k )

∆ [0,K] argmin(C, T ∗
1 , T

∗
2 , ..., T

∗
K)

S S Survival function
F F Cumulative Incidence Function
G G Censor function

n N∗ number of individuals in our observation
i [1, n] one observation

xi Xn individuals observed
ti Rn

+ time-to-event/censoring observed
δi [0,K] event observed, 0 indicates censoring

Table S1: Notations used

A.2 Reporting conventions

In the tables, the best results are highlighted in bold, and the second-best results are underlined.

B Theory on our proper scoring rule: proofs and derivations

In this appendix, we give the proofs and derivations concerning the proper scoring rule that we have introduced.

Lemma 4.1. Accounting for the time horizon ζ, the expectation of the above scoring rule can be written as:
∀ζ, (X, T,∆) ∼ D,

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x)

(3)
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Proof the of Lemma 4.1 on the expectation of the Reweighted NLL.

∀ζ,∀k ∈ J1,KK, (x, t, δ) ∼ D,

Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (t, δ)

)
def
=

1

n

n∑
i=1


K∑

k=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Ψk,ζ(F̂k(ζ|x),(t,δ))

+
1ti>ζ log

(
Ŝ(ζ|xi)

)
G∗(ζ|xi)︸ ︷︷ ︸

def
= Λk,ζ(Ŝ(ζ|x),(t,δ))

(6)

For the next computations, we recall the definition of the different variables.

Computation of the expectation: First:

ET∗,C,∆|X=x

[
Ψk,ζ(F̂k(ζ|x), (T,∆))

]
= ET∗,C,∆|X=x

1T≤ζ1∆=k

log
(
F̂k(ζ|x)

)
G∗(T |x)

 (7)

= log
(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
1min(T∗,C)≤ζ1∆=k

G∗(T |x)

]
(8)

= log
(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
(1T∗≤ζ1T∗≤C + 1C≤ζ1C≤T∗)1∆=k

G∗(T |x)

]
(9)

= log
(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)
+

1C≤ζ1C≤T∗1∆=k

G∗(T |x)︸ ︷︷ ︸
=0 because k ̸= 0


(10)

= log
(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
(11)

= log
(
F̂k(ζ|x)

)
P(T ∗ ≤ ζ,∆ = k|X = x) (12)

The last equality can be expanded as follows:

ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
=

∫ ∞

0

∫ ∞

0

(1min(t,c)=t + 1min(t,c)=c︸ ︷︷ ︸
=0 because k ̸= 0

)
1t≤ζ1t≤c

G∗(t|x)
fT∗,C,∆(t, c, k|x)dt dc (13)

T is a composition of T ∗ and C

=

∫ ∞

0

∫ ∞

0

1t≤ζ1t≤c

G∗(t|x)
fT∗,C,∆(t, c, k|x)dt dc (14)

=

∫ ∞

0

∫ ∞

0

1t≤ζ1t≤c

G∗(t|x)
fT∗,∆(t, k|x)fC(c|x)dt dc (15)

Because T ∗ ⊥⊥ C|X

=

∫ ∞

0

1t≤ζ

G∗(t|x)
fT∗,∆(t, k|x)

(∫ ∞

0

1t≤cfC(c|x)dc
)
dt (16)

=

∫ ∞

0

1t≤ζ

G∗(t|x)
fT∗,∆(t, k|x) (G∗(t|x)) dt (17)

with the definition of G∗

=

∫ ∞

0

1t≤ζfT∗,∆(t, k|x)dt (18)

= P(T ∗ ≤ ζ,∆ = k|X = x) (19)
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And:

ET,∆|X=x

[
Λk,ζ(Ŝ(ζ|X = x), (T,∆))|X = x

]
= ET,∆|X=x

1T>ζ

log
(
Ŝ(ζ|X = x)

)
G∗(ζ|x)

 (20)

= log
(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1min(T∗,C)>ζ

G∗(ζ|x)

]
(21)

= log
(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1T∗>ζ1C>ζ

G∗(ζ|x)

]
(22)

= log
(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1C>ζ

G∗(ζ|x)

]
ET,∆|X=x [1T∗>ζ ] (23)

Because T ∗ ⊥⊥ C|X

= log
(
Ŝ(ζ|X = x)

) ET,∆|X=x [1C>ζ ]

G∗(ζ|x)
ET,∆|X=x [1T∗>ζ ] (24)

Because G∗(ζ|x) does not depend of T and ∆

= log
(
Ŝ(ζ|X = x)

)
P(T ∗ > ζ|X = x) (25)

(26)

By summing all of the terms, we obtain:

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
P(T ∗ ≤ ζ,∆ = k|X = x)

+ log
(
Ŝ(ζ|X = x)

)
P(T ∗ > ζ|X = x) (27)

=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x) (28)

Finally:

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x) (29)

Proof of the Theorem 1.

Theorem 1 (Properness of the scoring rule). Under the assumption that the weights are appropriately chosen,
Lζ : RK+1 ×D → R is a strictly proper scoring rule for the global CIF on a fixed time horizon ζ ∈ R+.

To be more explicit, we can define a new random variable Y :

Definition B.1.
∀ζ, Yk,ζ

def
= T ∗ ≤ ζ ∩∆ = k

And:
∀ζ, Y0,ζ

def
= T ∗ > ζ
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Thus, the previously mentioned quantities of interest can be rewritten as functions of these variables:

F ∗
k (ζ|x) = P(T ∗ ≤ ζ,∆ = k|X = x) = P(Yk,ζ = 1|X = x) (30)

S∗(ζ|x) = P(T ∗ > ζ|X = x) = P(Y0,ζ = 1|X = x) (31)

F̂k(ζ|x) represents the estimated probability that Yk,ζ = 1, so we rewrite it as p̂k,ζ
def
= F̂k(ζ|x).

Therefore:

ET∗,C,∆|X=x

[
Lk,ζ(F̂k(ζ|x), (T,∆))

]
= ET,∆|X=x[Lζ(p̂ζ , (T,∆))] (32)

=

K∑
k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x) (33)

Using Lemma 4.1

Thus, we obtain the following optimization problem:

max
p̂

K∑
k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x)

s.t.
K∑

k=0

p̂k = 1

p̂k ≥ 0

(34)

The problem can be reformulated as a convex optimization problem due to the concavity of the logarithm:

min
p̂

−
K∑

k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x)

s.t.
K∑

k=0

p̂k = 1

p̂k ≥ 0

(35)

We apply the Karush-Kuhn-Tucker conditions since the constraints are qualified (as they are linear). These
conditions imply that if p is a local minimum of the problem, there exits λ ∈ R and µ ∈ RK+1

+ such that:

∇

(
−

K∑
k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x)

)
− µ⊤1K + λ = 0 (36)

∀k, µkp̂k,ζ = 0 (37)

If ∃k, p̂k,ζ = 0 =⇒ −
∑K

k=0 log (p̂k,ζ)P(Yk,ζ = 1|X = x) = +∞.
Hence, equation (36) implies that ∀k, µk = 0.
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Now,

∀k,
∂
(
−
∑K

k=0 log (p̂k,ζ)P(Yk,ζ = 1|X = x)
)

∂p̂k,ζ
= −P(Yk,ζ = 1|X = x)

p̂k,ζ
(38)

(37) can be rewritten as:

∀k, −P(Yk,ζ = 1|X = x)

p̂k,ζ
+ λ = 0 (39)

=⇒ ∀k,−P(Yk,ζ = 1|X = x) + λp̂k,ζ = 0 (40)
By summing over k,

=⇒ −
K∑

k=0

P(Yk,ζ = 1|X = x)︸ ︷︷ ︸
=1

+λ

K∑
k=0

p̂k,ζ︸ ︷︷ ︸
=1

= 0 (41)

=⇒ λ = 1 (42)
=⇒ ∀k, p̂ζ,k = P(Yk,ζ = 1|X = x) (43)

Any local minimum must satisfy the KKT conditions. Therefore, if p is a local minimum, it is a solution to
equations (34) and (42). Consequently, as shown above, the only possible solution must be equal to the oracle
distribution. Indeed, the loss is strictly proper.

Proof of the Lemma 4.2.

Lemma 4.2. We define

L
(
(F̂1(.|x), ..., F̂K(.|x), Ŝ(.|x)), (T,∆)

)
=∫ tmax

0

Lζ((F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆))dζ
(4)

Assuming that ∀ζ,Lζ is a strictly proper scoring rule, L : RK+1 ×D −→ R is a strictly proper scoring rule for all
CIF and the survival function.

Because Lζ is strictly proper, we have:

∀ζ, Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)
≤ Lζ ((F

∗
1 (ζ|x), ..., F ∗

K(ζ|x), S∗(ζ|x)), (T,∆)) (44)

and with the positivity of the integral we obtain that:∫ tmax

0

Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)
dζ ≤

∫ tmax

0

Lζ ((F
∗
1 (ζ|x), ..., F ∗

K(ζ|x), S∗(ζ|x)), (T,∆)) dζ

(45)
Because Lζ is strictly proper, the equality is only reached for the oracle distributions. Thus, L is also a strictly
proper scoring rule.

In our setting, we assume that the weights are well chosen, which implies that Lζ is strictly proper. Thus, we
obtain that L is also a strictly proper scoring rule.

C Study of the proper scoring rule used for evaluation

As mentioned earlier, the most commonly used metric in the competing risks setting, the C-index over time,
is known to be biased [Blanche et al., 2019, Rindt et al., 2022]. To address this significant issue in evaluation
strategies, we propose two alternative evaluation metrics: one based on a reweighted proper scoring rule, which
can be applied to any proper binary scoring rule, and another based on accuracy over time, which measures the
observed event against the most likely predicted event.
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C.1 PSR for evaluation

The PSR introduced in the main paper as the loss function of our algorithm serves as a global loss across all
predictions. The following loss is adapted to focus on a specific event k, allowing us to evaluate our estimates for
that event. In the paper, we focus on the IBS, though one could alternatively use a logarithmic loss because of its
properness.

Proper scoring rule for the kth competing event In our setting, we denote Lk,ζ as a scoring rule for the
kth CIF at a time horizon ζ.

Definition C.1 (PSR for the kth cause-specific event). The scoring rule Lk,ζ for the kth CIF at time ζ for an
observation (X, T,∆) is proper if and only if:

∀ζ, (X, T,∆) ∼ D, ET∗,C,∆|X=x[Lk,ζ(F̂k(ζ|x), (T,∆))] ≤ ET∗,C,∆|X=x[Lk,ζ(F
∗
k (ζ|x), (T,∆))] (46)

C.1.1 A proper scoring rule for competing risks

To evaluate our model, we used the following proper scoring rule, which is appropriate for each event. This proper
scoring rule allows us to assess the error for each specific event and the global error across all CIFs.

In the following, we prove that any given (strictly) proper scoring rule that can be used in the multiclass setting
(e.g. the Brier score or negative log-likelihood) leads to a (strictly) proper scoring in competing risks settings by
re-weighting the observations.
Indeed, for any (strictly) proper scoring rule ℓ : R× {0, 1} → R, we can construct a cause-specific scoring rule
function Lk,ζ : R×D → R, which is also a (strictly) proper scoring rule for the kth cause-specific event at the
fixed time horizon ζ ∈ R+. It follows that Lζ is (strictly) proper.

Definition C.2 (PSR with re-weighting). We define Lk,ζ , considering the observations (x, t, δ) for an event k, as
the following scoring rule for the kth CIF:

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (x, t, δ) ∼ D

Lk,ζ(F̂k(ζ|x), (t, δ))
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k ℓ
(
F̂k(ζ|xi), 1

)
G∗(ti|xi)

+
1ti>ζ ℓ

(
F̂k(ζ|xi), 0

)
G∗(ζ|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k ℓ

(
F̂k(ζ|xi), 0

)
G∗(ti|xi)

(47)
Probability of remaining at ti

Probability of remaining
at ζ
(1 - probability of censor-
ing)

The weights correspond to the Inverse Probability of Censoring Weighting (IPCW), which is used to re-calibrate
the observed population to align with the uncensored oracle population Robins et al. [1994]. This PSR is an
extension of Graf et al. [1999] and Schoop et al. [2011] when ℓ is the Brier Score.

Lemma C.1. Considering a proper scoring rule ℓ : R× {0, 1}, at time horizon ζ and for any cause-specific risk
k, the expectation of the scoring rule can be expressed as:

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (X, T,∆) ∼ D,

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
F ∗
k (ζ|x) + ℓ

(
F̂k(ζ|x), 0

)
(1− F ∗

k (ζ|x)) (48)
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Proof. The computations are essentially the same as in the previous section.

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (x, t, δ) ∼ D

Lk,ζ(F̂k(ζ|x), (t, δ))
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k ℓ
(
F̂k(ζ|xi), 1

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Ψk,ζ(F̂k(ζ|x),(t,δ))

+
1ti>ζ ℓ

(
F̂k(ζ|xi), 0

)
G∗(ζ|xi)︸ ︷︷ ︸

def
= Λk,ζ(F̂k(ζ|x),(t,δ))

+
1ti≤ζ,δi ̸=0,δi ̸=k ℓ

(
F̂k(ζ|xi), 0

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Φk,ζ(F̂k(ζ|x),(t,δ))

(49)

ET∗,C,∆|X=x

[
Ψk,ζ(F̂k(ζ|x), (T,∆))|X = x

]
= ET∗,C,∆|X=x

1T≤ζ1∆=k

ℓ
(
F̂k(ζ|x), 1

)
G∗(T |x)

 (50)

= ℓ
(
F̂k(ζ|x), 1

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
(51)

= ℓ
(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k|X = x) (52)

(53)

ET∗,C,∆|X=x

[
Φk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ET∗,C,∆|X=x

1T≤ζ,∆ ̸=0,∆ ̸=k

ℓ
(
F̂k(ζ|x), 0

)
G∗(T |x)

 (54)

= ℓ
(
F̂k(ζ|x), 0

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆ ̸=k

G∗(T |x)

]
(55)

= ℓ
(
F̂k(ζ|x), 0

)
P(T ∗ ≤ ζ,∆ ̸= k|X = x) (56)

(57)

ET∗,C,∆|X=x

[
Λk,ζ(F̂k(ζ,x), (T,∆))|X = x

]
= ET∗,C,∆|X=x

1T>ζ

ℓ
(
1− F̂k(ζ|x), 0

)
G∗(ζ|x)

 (58)

= ℓ
(
F̂k(ζ|x), 0

)
ET∗,C,∆|X=x

[
]
1T∗>ζ1C>ζ

P(C > ζ|x)

]
(59)

= ℓ
(
F̂k(ζ|x), 0

)
P(T ∗ > ζ|X = x) (60)

(61)

By summing all of the terms, we obtain:

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k)

+ ℓ
(
F̂k(ζ|x), 0

)
(P(T ∗ ≤ ζ,∆ ̸= k|X = x) + P(T ∗ > ζ|X = x))

(62)
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Meanwhile,

P(T ∗ ≤ ζ ∩∆ = k) = P(T ∗ > ζ ∪∆ ̸= k) (63)
= P(T ∗ > ζ) + P(∆ ̸= k)− P(T ∗ > ζ ∩∆ ̸= k) (64)
= P(T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ ≤ ζ)− P(T ∗ > ζ ∩∆ ̸= k) (65)
= P(T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ ≤ ζ) (66)

Therefore, we obtain:

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
F ∗
k (ζ|x) + ℓ

(
F̂k(ζ|x), 0

)
(1− F ∗

k (ζ|x)) (67)

Proposition C.1. If ℓ : R× {0, 1} → R is a chosen (strictly) proper scoring rule, then Lk,ζ : R×D → R is also
a (strictly) proper scoring rule for the kth cause-specific event at the fixed time horizon ζ ∈ R+.

Proof.

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k|X = x)

+ ℓ
(
F̂k(ζ|x), 0

)
(P(T ∗ ≤ ζ,∆ ̸= k|X = x) + P(T ∗ > ζ|X = x))

(68)

To be more explicit, we define a new random variable Y :

Definition C.3.
∀ζ, Yk,ζ

def
= T ∗ ≤ ζ ∩∆ = k

F ∗
k (ζ|x) = P(T ∗ ≤ ζ,∆ = k|X = x) = P(Yk,ζ = 1|X = x) (69)

F̂k(ζ|x) represents the estimated probability that Yk,ζ = 1, allowing us to rewrite it as: p̂k,ζ
def
= F̂k(ζ|x) ≈ P(Yk,ζ =

1|X = x) Therefore:

ET∗,C,∆|X=x

[
Lk,ζ(F̂k(ζ|x), (T ∗, C,∆))

]
= ET,∆|X=x[Lk,ζ(p̂k,ζ , (T,∆))] (70)

= ℓ (p̂k,ζ , 0)P(Yk,ζ = 0|X = x) + ℓ (p̂k,ζ , 1)P(Yk,ζ = 1|X = x) (71)
= EYk,ζ

[ℓ(p̂k,ζ , Yk,ζ)|X = x] (72)
≤ EYk,ζ

[ℓ(pk,ζ , Yk,ζ)|X = x] (73)
≤ ET∗,C,∆|X=x[Lk,ζ(P(Yk,ζ = 1), (T,∆))] (74)
≤ E[Lk,ζ(F

∗
k (ζ|x), (T,∆))] (75)

The last inequality holds because l is a proper scoring rule. Similarly, the same computation leads to a strictly
proper scoring rule if l is strictly proper.

Thus, we conclude that ∀ζ,∀k ∈ J1,KK, Lk,ζ(F̂k(ζ|x), (T,∆)) is a proper scoring rule of F ∗
k (ζ|x).

Theorem 2. If ℓ : R× {0, 1} → R, a chosen (strictly) proper scoring rule, then Lζ : R×D → R is a (strictly)
proper scoring rule for the global CIF at a fixed time horizon ζ ∈ R+.

Proof. This follows straightforwardly from the proposition and the lemma above.
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Corollary: Proper global scoring rule to compare competing risk models The defined scoring rule∑K
k=1 Lk,ζ is proper on any arbitrarily chosen time horizon ζ. To compare different models, a global measure is

necessary, such as summing over time, as introduced by Graf et al. [1999]. Here, we extend the Integrated Brier
Score to other (strictly) proper scoring rules l and prove that the Integrated Loss (IL) is also a (strictly) proper
scoring rule.
By considering:

Z ∼ U(0, tmax)

with tmax being the maximum time horizon for prediction.

Definition C.4 (Integrated global PSR). With ℓ : R×{0, 1} → R, a chosen scoring rule, the cause-specific scoring
rule function Lk,ζ : R×D → R defined as above, we define the IL as

IL(F̂1(.|x), ..., F̂K(.|x), (T,∆))
def
= EZ

[
K∑

k=1

Lk,Z(F̂k(Z|x), (T,∆))|X = x

]
(76)

=

K∑
k=1

EZ

[
Lk,Z(F̂k(Z|x), (T,∆))|X = x

]
︸ ︷︷ ︸

def
= ILk(F̂k(.|x),(T,∆))

(77)

Corollary C.1. With ℓ : R× {0, 1} → R, a chosen (strictly) proper scoring rule, the cause-specific loss function
Lk,ζ : R×D → R defined above IL is a (strictly) proper scoring rule.

Proof. We have already proven that Lk,ζ : R×D → R is a (strictly) proper scoring rule. Given the monotonicity
and positivity of the expectation, the result follows immediately.

ET∗,C,∆|X=x,Z=ζ

[
ILk(F̂k(ζ|x)), (T,∆)

]
= ET∗,C,∆|X=x,Z=ζ

[
Lk(F̂k(ζ|x), (T,∆))

]
(78)

≤ ET∗,C,∆|X=x,Z=ζ [Lk(F
∗
k (ζ|x), (T,∆))] (79)

≤ ET∗,C,∆|X=x,Z=ζ [ILk(F
∗
k (ζ|x), (T,∆))] (80)

And since the expectation is non-decreasing, we have:

ET∗,C,∆

[
ILk(F̂k(Z|x), (T,∆))|X = x

]
≤ ET∗,C,∆ [ILk(F

∗
k (Z|x), (T,∆))|X = x] (81)

This allows us to consider the Integrated Loss (IL) as a global proper scoring rule for comparing different
competing risks models.

D Examples

D.1 Brier Score

When we define l(y, ŷ)
def
= (y − ŷ)2, we obtain the censoring-adjusted Brier score for the kth competing event, as

defined in equation 14 of Kretowska [2018]:

Definition D.1.

∀ζ,∀k ∈ [1,K],

BSk(F̂k(ζ,x), δ, t, ζ,x)
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k

(
1− F̂k(ζ|xi)

)2
G∗(ti|xi)

+
1ti>ζ

(
F̂k(ζ|xi)

)2
G∗(ζ|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k

(
F̂k(ζ|xi)

)2
G∗(ti|xi)

(82)
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D.2 Binary cross entropy loss

As explained by Benedetti [2010], the log loss captures uncertainty better than the mean squared error. Therefore,
one could also evaluate survival analysis and competing risks models using the following loss.

∀k ∈ [1,K],

lk(F̂k(ζ,x), δ, t, ζ)
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k log

(
1− F̂k(ζ|xi)

)
G∗(ti|xi)

+
1ti>ζ log

(
1− F̂k(ζ|xi)

)
G∗(ζ|xi)

(83)

E The Yanagisawa [2023] scoring rule for survival

Yanagisawa [2023] introduce a metric called SCen−log−simple, which is an approximation of the proper scoring
metric in Rindt et al. [2022]. The metric in Rindt et al. [2022] requires the hazard function, which is the time
derivative of the cumulative incidence function. This derivative can only be computed by differentiable models,
implying an implicit assumption on almost-everywhere smooth time dependence. To avoid the need for the hazard
function, Yanagisawa [2023] approximate it as piecewise affine. They demonstrate that under the assumption
that the “node time points” —the edges of the affine segments— match an actual piecewise-affine breakdown of
the CIF, the resulting approximation is proper. They argue that with enough node time points, this metric serves
as a good approximation of a proper scoring rule.

SCen−log−simple is defined as:

SCen−log−simple(F̂ , (t, δ); {ζi}Bi=0)
def
=

− δ

B−1∑
i=0

1ζi<t≤ζi+1 log(F̂ (ζi+1)− F̂ (ζi))

− (1− δ)

B−1∑
i=0

1ζi<t≤ζi+1 log(1− F̂ (ζi+1)) (84)

where B is the number of node time points2, and {ζi}Bi=0 are the node times points, evenly spaced between 0 and
tmax, dividing the time space into B equal intervals.

F Pseudo-code

Algorithm 2 IPCW Computer

Input: x, δ, t, Ĝ
y ← δ 1t≤ζ ▷Computing the target
if t > ζ then ▷The observation is not censored
w ← 1

Ĝ(ζ|x)
else if t ≤ ζ and δ ̸= 0 then
w ← 1

Ĝ(t|x)
else
w ← 0

end if
return y, w

2We use B = 32, as in the experiments in Yanagisawa [2023]
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Algorithm 3 Censoring Feedback Loop - One Iteration

Input: x, δ, t, Ŝ
for i = 1 to nsamples do
ζi ∼ U(0, tmax)

end for
ζ ← (ζi)1≤i≤nsamples

x̃← (x, ζ)
δ ← 1y=0 ▷Changing the target (focusing on the censoring distribution)
y, w ← ipcwcomputer(x, δ, t, Ŝ) ▷See Alg 2
L← 1

n

∑n
i=1

(
yi wi log

(
1− Ĝk(ζi|xi)

))
+ (1− yi) wi log

(
Ĝ(ζi|xi)

)
h̃m(x̃)← Train one iteration of Gradient Boost with L as the loss ▷h̃m is the mth weak learner
H̃m(ζ|x)← h̃m(ζ|x) + νH̃m−1(ζ|x) ▷H̃m is the mth estimator
((1− Ĝ)(ζ|X = x), Ĝ(ζ|X = x))← H̃m(x̃)
return Ĝ(ζ|X = x)

G Additional results for competing risk experiments

G.1 Results in the survival analysis setting

G.1.1 KKBOX

Here, we present the results of the experiments conducted on the KKBOX dataset (Figures S1 and 5). We
highlight the trade-offs observed to assess the scalability of the models. Specifically, the models were trained on
KKBOX using subsamples of 100k, 1M, and 2M training data points. However, due to computational constraints,
it was not possible to run some experiments with 1M or 2M data points.
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Figure S1: Trade-off between SC−l−s and fitting time for different sample sizes on the KKBOX
dataset

G.2 Trade-off between training time and performances

Here, we provide the results of our analysis of training time with the performances on the SCen−log−simple of the
different models for the survival analysis.
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Figure S2: Trade-off between performance and the training time for the SCen−log−simple metric for the survival
model on METABRIC and SUPPORT datasets.

G.3 Results for the SEER Dataset

SEER (10k) SEER (100k) SEER
IBS Fit Time IBS Fit Time IBS Fit Time

Model Name (seconds)

Aalen Johansen .078±.001 0.11±0.01 .078±.001 0.13±0.03 .078±.001 0.09±0.00
Fine & Gray .074±.001 30.08±0.34 .074±.001 35.22±3.53 .074±.001 4000.00 ± 0.32
DeepHit .072±.001 40.558±13.872 .068±.001 1153.084±388.596 .068±.000 2840.18±0.00
DeSurv .075±.004 656.58±736.76 .072±.004 2663.59±697.06 .071±.002 5607.32 ±4517.35
RSF .067±.002 13.33±2.20 .067±.001 144.19±4.92 .067±.001 2556.00±2.90
SurvTRACE .087±.010 94.19 ±14.31 .075±.021 213.32±85.16 .070±.001 2184.02 ±1128.98
SurvivalBoost .064±.001 12.99±2.57 .063±.001 172.34±57.87 .062±.001 558.15±497.52

Learning curves We conducted experiments while varying the number of training points, measuring the KM-adjusted
Integrated Brier Score (IBS) for each event. Additionally, we averaged the scores to obtain a global metric. The IBS was
computed for each event while training on the full dataset, except for Random Survival Forests, which was trained on
100k data points, and Fine and Gray, which was on 10k data points due to computational limitations. In Table S2, we
compare our method with other models, showing that SurvivalBoost outperforms the alternatives. Furthermore, figure 3
illustrates that the models with the best average IBS are also the fastest to train.

Table S2: Integrated Brier Score for each cause-specific risk on the SEER Dataset (Lower is better).
Event 1 2 3

Aalen-Johansen 0.1209 0.2832 0.0834
Fine & Gray 0.1055 0.0281 0.0822
Random Survival Forests 0.0825 0.0295 0.0803
DeepHit 0.0931 0.0330 0.0831
DSM 0.0875 0.0310 0.0869
DeSurv 0.0975 0.0327 0.0869
SurvTRACE 0.0871 0.0287 0.0800
SurvivalBoost 0.0832 0.0273 0.0757

Cζ-index The C-index measures whether the ranking of the risk for different samples aligns with the order of the times
when the event of interest occurs[Harrell et al., 1982]. While it was originally developed as a metric for survival analysis, it
is often adapted to competing risks settings, where it is applied independently to each event [Uno et al., 2011]. However,
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in such settings, the C-index is biased and does not account for the probabilities of the events. Nonetheless, due to its
popularity, we have included it in our experiments.

The tables below present the Cζ-index over time for the three events S3. At a fixed time horizon ζ, we compute the
Cζ-index for each class, which corresponds to the ROC-AUC, accounting for censored observations. The time horizons ζ
are selected based on the any-event distribution, representing quantiles. For instance, at the time corresponding to 0.25,
25% of the events have already occurred. These results differ from those in the SurvTRACE paper [Wang and Sun, 2022]
for two main reasons: 1) The available code online only implements one of their loss functions, 2) they treated the SEER
dataset with two competing risks, classifying any other event as censored, whereas we categorized other events as a third
competing risk.

Table S3: C-index for competing risks on the SEER Dataset (Higher is better)

Time-horizon 0.25 0.50 0.75
quantile

Event 1 2 3 1 2 3 1 2 3

Aalen Johansen .5±.0 .5.±.0 .5.±.0 .5.±.0 .5.±.0 .5.±.0 .5.±.0 .5.±.0 .5.±.0
Fine & Gray .79.±.01 .67.±.01 .67.±.02 .76.±.01 .66.±.02 .67.±.01 .74.±.01 .66.±.01 .69.±.01
DeepHit .86.±.01 .72.±.02 .73.±.01 .83.±.0 .70.±.02 .70.±.01 .81.±.01 .68.±.02 .69.±.02
DSM .87.±.01 .76.±.01 .74.±.01 .84.±.01 .73.±.01 .72.±.01 .82.±.01 .72.±.01 .72.±.01
DeSurv .82.±.01 .70.±.03 .70.±.01 .80.±.01 .69.±.0 .70± .01 .79.±.01 .68.±.01 .71.±.01
SurvTRACE .88.±.01 .76.±.01 .76.±.01 .85.±.01 .73.±.01 .73.±.01 .83.±.01 .71.±.01 .72.±.01
SurvivalBoost .87.±.01 .75.±.01 .74.±.01 .84.±.01 .72.±.01 .72.±.01 .80.±.01 .64.±.01 .62.±.01

H Additional results for survival experiments

H.1 Metrics for the survival analysis

Table S4: METABRIC: SCen−log−simple and C-index
Model Name SC−l−s (↓) C-index 0.25 (↑) C-index 0.5 (↑) C-index 0.75 (↑)

Kaplan-Meier 2.0393 ± 0.2184 0.5000 ± 0.0000 0.5000 ± 0.0000 0.5000 ± 0.0000
DeepHit 2.0391 ± 0.0005 0.6559 ± 0.0123 0.5918 ± 0.0236 0.6036 ± 0.0226
PCHazard 1.9796 ± 0.0855 0.6633 ± 0.0145 0.6356 ± 0.0112 0.6342 ± 0.0034
Han et al. 2.6648 ± 0.0356 0.6770 ± 0.0341 0.6537 ± 0.0318 0.6407 ± 0.0074
DQS 2.2002 ± 0.0000 0.6554 ± 0.0126 0.6215 ± 0.0091 0.6275 ± 0.0018
SumoNet 2.1973 ± 0.0000 0.6872 ± 0.0230 0.6428 ± 0.0107 0.6292 ± 0.0084
SurvTRACE 1.9871 ± 0.0876 0.6598 ± 0.0094 0.6377 ± 0.0079 0.6357 ± 0.0108
RSF 1.9371 ± 0.2265 0.6736 ± 0.0135 0.6398 ± 0.0101 0.6335 ± 0.0097
GBS 1.9742 ± 0.4043 0.6402 ± 0.0131 0.6399 ± 0.0122 0.6388 ± 0.0101
SurvivalBoost 2.0269 ± 0.1592 0.6685 ± 0.0099 0.6374 ± 0.0106 0.6159 ± 0.0082

Table S5: METABRIC: metrics.
Model Name IBS (↓) MSE (↓) MAE (↓) AUC (↑)

Kaplan-Meier 0.1854 ± 0.0103 16007.1 ± 2100.4 102.3 ± 2.5 0.5000 ± 0.0000
DeepHit 0.1707 ± 0.0086 16229.1 ± 1645.0 98.5 ± 2.3 0.6737 ± 0.0256
PCHazard 0.1685 ± 0.011 15374.2 ± 2134.5 93.3 ± 3.2 0.6871 ± 0.0173
Han et al. 0.1959 ± 0.0036 13714.0 ± 1349.0 95.5 ± 2.4 0.6752 ± 0.0113
DQS 0.1717 ± 0.018 16833.8 ± 1777.9 97.3 ± 2.5 0.6792 ± 0.0164
SumoNet 0.1698 ± 0.0098 40239.2 ± 1936.9 179.8 ± 3.2 0.5000 ± 0.0000
SurvTRACE 0.1723 ± 0.0064 22733.4 ± 1382.3 109.7 ± 4.7 0.6962 ± 0.0102
RSF 0.1651 ± 0.0084 15154.4 ± 1445.0 94.3 ± 1.2 0.7023 ± 0.0129
GBS 0.1686 ± 0.0107 14265.3 ± 2025.0 91.6 ± 3.4 0.6896 ± 0.0123
SurvivalBoost 0.1679 ± 0.0116 14208.1 ± 1762.8 91.5 ± 2.7 0.6993 ± 0.0170
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Table S6: SUPPORT: SCen−log−simple and C-index
Model Name SC−l−s (↓) C-index 0.25 (↑) C-index 0.5 (↑) C-index 0.75 (↑)

Kaplan-Meier 1.6169 ± 0.2680 0.5000 ± 0.0000 0.5000 ± 0.0000 0.5000 ± 0.0000
DeepHit 2.249±.009 0.5546 ± 0.0158 0.5575 ± 0.0163 0.5600 ± 0.0196
PCHazard 1.6730 ± 0.0040 0.6121 ± 0.0052 0.6077 ± 0.0047 0.6054 ± 0.0044
Han et al. 3.2227 ± 0.0054 0.5920 ± 0.0235 0.5740 ± 0.0187 0.5713 ± 0.0143
DQS 2.7641 ± 0.1281 0.5741 ± 0.0043 0.5682 ± 0.0033 0.5645 ± 0.0038
SumoNet 1.8175 ± 0.0000 0.5948 ± 0.0050 0.5952 ± 0.0052 0.5970 ± 0.0050
SurvTRACE 1.6061 ± 0.0026 0.6101 ± 0.0052 0.6099 ± 0.0038 0.6073 ± 0.0030
RSF 1.9421 ± 0.0229 0.6174 ± 0.0058 0.6137 ± 0.0045 0.6104 ± 0.0047
GBS 1.5750 ± 0.0002 0.6136 ± 0.0108 0.6140 ± 0.0100 0.6143 ± 0.0099
SurvivalBoost 1.5692 ± 0.3413 0.6165 ± 0.0052 0.6159 ± 0.0044 0.6138 ± 0.0044

Table S7: SUPPORT: metrics.
Model Name IBS (↓) MSE (↓) MAE (↓) AUC (↑)

Kaplan-Meier 0.2077 ± 0.004 1503075.2 ± 34398.0 904.4 ± 7.3 0.5000 ± 0.0000
DeepHit 0.2061 ± 0.0058 1416882.2 ± 33011.4 898.4 ± 14.0 0.6061 ± 0.0321
PCHazard 0.1867 ± 0.0036 1317674.8 ± 27353.9 843.0 ± 8.8 0.6578 ± 0.0074
Han et al. 0.2539 ± 0.0015 1417630.2 ± 40832.6 881.5 ± 23.0 0.5906 ± 0.0139
DQS 0.2025 ± 0.004 1499067.0 ± 44660.7 876.3 ± 11.1 0.5979 ± 0.0029
SumoNet 0.1942 ± 0.0056 1857007.8 ± 36240.4 967.4 ± 8.1 0.5000 ± 0.0000
SurvTRACE 0.1876 ± 0.0037 1294800.3 ± 14983.6 849.8 ± 12.5 0.6555 ± 0.0070
RSF 0.1815 ± 0.0041 1347923.5 ± 53819.8 842.9 ± 15.2 0.6750 ± 0.0094
GBS 0.187 ± 0.0041 1292740.7 ± 26527.7 847.8 ± 10.0 0.6617 ± 0.0128
SurvivalBoost 0.1814 ± 0.0049 1216995.5 ± 34370.6 827.2 ± 12.2 0.6704 ± 0.0086

Table S8: KKBOX (100k data points): metrics.
Model Name IBS (↓) MSE (↓) MAE (↓) AUC (↑)

Kaplan-Meier 0.2131 ± 0.0007 177438.3 ± 2250.0 345.3 ± 1.2 0.5000 ± 0.0000
DeepHit 0.1523 ± 0.0007 113033.6 ± 593.1 245.7 ± 0.5 0.9397 ± 0.0052
PCHazard 0.1095 ± 0.0001 100153.0 ± 1925.2 213.5 ± 3.2 0.9431 ± 0.0046
Han et al. (NLL) 0.1715 ± 0.0036 111820.2 ± 0.0 245.6 ± 0.0 0.8881 ± 0.0086
DQS 0.1301 ± 0.0013 93820.2 ± 4140.5 204.9 ± 2.2 0.9228 ± 0.0071
SumoNet 0.1078 ± 0.0 224981.4 ± 0.0 360.3 ± 0.0 0.5000 ± 0.0000
SurvTRACE 0.1107 ± 0.0006 133400.5 ± 1353.9 250.0 ± 3.0 0.9379 ± 0.0004
RSF 0.1068 ± 0.0 911586.7 ± 0.0 423.6 ± 0.0 0.9449 ± 0.0000
GBS 0.1567 ± 0.0 123348.9 ± 0.0 254.5 ± 0.0 0.8958 ± 0.0000
SurvivalBoost 0.1052 ± 0.0006 101103.9 ± 9688.4 207.2 ± 4.3 0.9322 ± 0.0006

I Implementation Details

I.1 Computing Infrastructure

To conduct our experiments, we used an iternal cluster.
The neural network were trained onto a 4x NVIDIA Tesla V100 32GB GPU with 40 CPUs and 252Gb RAM.
The others methods that do not need GPUs were trained onto a cluster with 48CPUs and 504Gb RAM. We chose to allow
only 50Gb RAM for each model.

I.2 Reference of used implementations for baselines

We compare SurvivalBoost with several baselines, outlining their main characteristics and the implementation used in
Table S10
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Table S9: Survival Calibration Metrics. results are marked with ✓ if the model is
calibrated and - otherwise, with the significance level fixed at pvalue = 0.05.

Dataset METABRIC SUPPORT KKBOX Total
KMc Xc Dc onec KMc Xc Dc onec KMc Xc Dc onec tests

Model succesfull

Kaplan-Meier ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - ✓ 10
DeepHit ✓ ✓ - - ✓ - - - ✓ ✓ - - 5
PCHazard ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ - - 8
Han et al. [2021] ✓ ✓ - ✓ ✓ ✓ - - ✓ - - - 6
DQS ✓ ✓ - - ✓ - ✓ - ✓ - - - 5
SumoNet - - - - - - - - - - - - 0
SurvTRACE - ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ - - 7
RSF ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - - 9
GBS ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ - - 8
SurvivalBoost ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - - 9

Table S10: Characteristics of used baselines.

Name Competing
risks

Proper
loss Implementation Reference

SurvTRACE ✓ ours Wang and Sun
[2022]

DeepHit ✓ github.com/havakv/pycox Lee et al. [2018]

DSM ✓ autonlab.github.io/DeepSur
vivalMachines

Nagpal et al. [2021]

DeSurv ✓ github.com/djdanks/DeSurv Danks and Yau
[2022]

Random Survival
Forests ✓ scikit-survival.readthedoc

s.io/ for survival, and www.rand
omforestsrc.org/ for compet-
ing risks

Ishwaran et al.
[2008, 2014]

Fine & Gray ✓ cran.r-project.org/package
=cmprsk

Fine and Gray
[1999]

Aalen-Johansen ✓ ours Aalen et al. [2008]

Han et al. github.com/rajesh-lab/Inver
se-Weighted-Survival-Games

Han et al. [2021]

PCHazard github.com/havakv/pycox Kvamme and Bor-
gan [2019b]

SumoNet ✓ github.com/MrHuff/Sumo-Net Rindt et al. [2022]

DQS ✓ ibm.github.io/dqs/ Yanagisawa [2023]

I.3 GridSearch Parameters

We performed a Randomized Search for these parameters with a budget of 30 iterations. There are no parameters to tune
for the Aalen-Johansen and Fine & Gray models.

http://github.com/havakv/pycox
http://autonlab.github.io/DeepSurvivalMachines
http://autonlab.github.io/DeepSurvivalMachines
http://github.com/djdanks/DeSurv
http://scikit-survival.readthedocs.io/
http://scikit-survival.readthedocs.io/
http://www.randomforestsrc.org/
http://www.randomforestsrc.org/
http://cran.r-project.org/package=cmprsk
http://cran.r-project.org/package=cmprsk
http://github.com/rajesh-lab/Inverse-Weighted-Survival-Games
http://github.com/rajesh-lab/Inverse-Weighted-Survival-Games
http://github.com/havakv/pycox
http://github.com/MrHuff/Sumo-Net
http://ibm.github.io/dqs/
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Table S11: Randomized Search Parameters
Estimator Parameter Range

SurvivalBoost Learning Rate loguniform(0.01, 0.5)
Nb of iterations J20, 200K
Maximum Depth J2, 10K
Nb of times J1, 5K

SurvTRACE Learning Rate loguniform(10−5, 10−3)
Batch Size {256, 512, 1024}
Hidden parameter {2, 3}

J Distribution of the competing risks datasets

J.1 SEER Distribution of events

Here, we present the distributions for both competing risks datasets: the SEER Dataset S3 and the synthetic dataset
S4. Notably, the censoring distribution is non-uniform over time. Figure S4 illustrates the event distribution used in our
benchmark. This was made with 20,000 samples, with three competing events, and a censoring scale of 1.5 (resulting in
approximately 69% of censoring events). We also used a dependency between the censoring distribution and the features.
Nevertheless, all of these hyperparameters can be chosen and changed to test other scenarios. The parameters were selected
to represent three distinct behaviors.
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Figure S3: SEER Dataset Distributions The censor-
ing rate is approximately 63%. The prevalence of events
is 18% for breast cancer, 4.5% for cardiovascular events,
and 10% for other events. The shift in the censoring
distribution after the 48th month may be challenging
for some methods to learn.
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