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Abstract

When data are right-censored, i.e. some outcomes are missing due to a limited1

period of observation, survival analysis can compute the “time to event”. Multiple2

classes of outcomes lead to a classification variant: predicting the most likely3

event, known as competing risks, which has been less studied. To build a loss that4

estimates outcome probabilities for such settings, we introduce a strictly proper5

censoring-adjusted separable scoring rule that can be optimized on a subpart of6

the data because the evaluation is made independently of observations. It enables7

stochastic optimization for competing risks which we use to train gradient boosting8

trees. Compared to 11 state-of-the-art models, this model, MultiIncidence, performs9

best in estimating the probability of outcomes in survival and competing risks. It10

can predict at any time horizon and is much faster than existing alternatives.11

1 Introduction12

We all die at some point; some applications call for predicting not whether an event of interest will13

happen or not, but when it is likely to occur: time-to-event regression. In such a setting, samples often14

have unobserved outcomes, e.g. individuals that have not been followed long enough for the event15

of interest to occur. Limiting the analysis to fully observed samples creates a censoring bias; valid16

models use dedicated corrections for censorship: survival analysis models. These have long been17

central to health (Zhu et al., 2016; Chaddad et al., 2016; Gaynor et al., 1993). Nowadays, survival18

analysis is also used in diverse fields, such as predictive maintenance (Rith et al., 2018; Susto et al.,19

2015), or user-engagement studies (Maystre & Russo). Survival analysis has led to many dedicated20

models, such as the Kaplan & Meier (1958) estimator or the Cox (1972) proportional hazard model.21

Competing risks analysis generalizes survival analysis to account for multiple events, determining22

which will happen first (Susto et al., 2015; Gaynor et al., 1993). For instance, if a person with23

breast cancer dies from a different cause, it is impossible to determine when they would have24

succumbed to cancer, regardless of the length of the observation period. (National Cancer Institute,25

2023). The caregiver may also want to adapt the treatment if the patient is predicted to die of a26

competing event such as a heart attack sooner than from cancer. As the risks of the various events27

are seldom independent–for instance, cancer and cardiovascular disease share inflammation or age28

risk factors (Koene et al., 2016)–competing risks cannot be solved by running a survival model for29

each event (Wolbers et al., 2009). The estimated risk of a single event of interest will be biased if30
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the competing risks are not included. Hence adequate models for those risks are critical for decision31

making (Ramspek et al., 2022; Koller et al., 2012; van Walraven & McAlister, 2016).32

Survival models have traditionally been developed with ad hoc adjustments for censoring. The most33

common approach is to design a likelihood using the probability of censoring per unit time–i.e. the34

time-derivative of the risk–which either comes with strong parametric assumptions (Cox, 1972) or ad35

hoc corrections (Wang & Sun, 2022). Given that the risk, which is the probability of the outcome at a36

specific time, is crucial for various applications, it can be preferable to use losses that directly control37

probabilities (proper scoring rules), as developed by Graf et al. (1999); Rindt et al. (2022). However,38

no metric (or loss) has been shown to control probabilities in the competing risks setting.39

In application domains typical of survival analysis and competing risks –health, predictive mainte-40

nance, insurance, marketing– the data are typically tabular with categorical variables, where tree-based41

models shine (Grinsztajn et al., 2022). Existing survival and competing risks models do not fit well42

with these requirements. In particular, the proper scoring rule introduced by Rindt et al. (2022)43

requires a time derivative of the risk, typically via an auto-diff operator in a neural architecture. This44

approach is challenging to adapt to tree-based algorithms. In addition, the ever-growing volume of45

data calls for computationally efficient algorithms.46

Contributions Here, we provide a general theoretical framework to learn a competing risks model47

with a proper scoring rule. This scoring rule gives a loss easy to plug into any multiclass estimator to48

create a competing risks model: giving the individual risk of each event at any horizon. We also sum49

over time for model evaluation, as the resulting Integrated Scoring Rule is also proper.50

An interesting property of this new loss is that it can be optimized on a subset of the training51

data because the evaluation is made independently of observations. Hence, it allows stochastic52

optimization, enabling computationally efficient learning. With that, we propose an algorithm called53

MultiIncidence, based on Stochastic Gradient Boosting Trees. We benchmark our algorithm on a54

synthetic dataset with varying censoring rates, number of features, and number of training samples55

to show that our method outperforms state-of-the-art methods while exhibiting faster training times.56

Finally, applying our model to real-life datasets demonstrates that it outperforms other models in both57

the competing risks context and basic survival analysis.58

2 Related work59

Survival settings Various survival models have been developed, ranging from approaches like the60

Kaplan & Meier (1958) estimator, estimating the general survival curve of a whole population, to61

models that account for covariates. One of them is the Cox (1972) Proportional-Hazards Model,62

a linear model of hazard: the instantaneous probability of an event, i.e. the logarithmic derivative63

of outcome probabilities in time. More complex models have been adapted to the survival setting:64

Support Vector Machines (Van Belle et al., 2011), survival games (Han et al., 2021) and Neural65

networks with DeepSurv (Katzman et al., 2018) or PCHazard (Kvamme & Borgan, 2019b). While66

the above do not control risks, more recent neural networks use adequate losses (see below): DQS67

(Yanagisawa, 2023, though relying on a piecewise constant hazard), SumoNet (Rindt et al., 2022,68

which requires differentiable models).69

Competing risks Competing risks, with multiple outcomes, require new methods (which can70

naturally adapt to the simpler survival setting). Derived from the Kaplan & Meier (1958) estimator,71

the Nelson (1972)-Aalen et al. (2008) estimator is an unbiased marginal model for competing risks.72

The linear Fine & Gray (1999) estimator is inspired by the Cox (1972) estimator in survival analysis73

and is the most used model in clinical research. Machine-learning models have recently been adapted74

to the competing risks setting, including tree-based approaches such as the Random Survival Forests75

(Ishwaran et al., 2008; Kretowska, 2018; Bellot & Schaar, 2018), boosting approaches (Bellot &76

van der Schaar, 2018), neural networks approaches e.g. DeepHit and Gaussian mixtures approaches77

(Lee et al., 2018; Aala & van der Schaar, 2017; Danks & Yau, 2022a; Nagpal et al., 2021) and78

transformers approaches with SurvTRACE (Wang & Sun, 2022) using a loss corrected to predict rare79

competing events but independently forecasts all events without ensuring probabilities sum to one.80

For a review of the competing setting, the reader can refer to Monterrubio-Gómez et al. (2022).81
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Evaluation for such models Prediction evaluation in survival or competing risks settings calls for82

adapted metrics to account for right-censored points (Harrell et al., 1982), like the C-index which83

adapts the Area Under the ROC curve in classification. However, the C-index only evaluates the84

ranking of samples, i.e. which samples will undergo the event of interest first, and is dependent on85

the censoring distribution which may bias the evaluation (Blanche et al., 2019; Rindt et al., 2022). In86

fact, the score may be higher for distributions other than oracle-censoring distributions. Alternative87

methods have been proposed such as the time-dependent C-index, Cζ (Antolini et al., 2005), which88

is the same metric but computed at a given time horizon ζ. The C-index ranking metric has been89

extended to competing risks (Uno et al., 2011) but, as in the survival setting, the C-index only90

evaluates relative risks for pairs of individuals and not the absolute value of the risk for a given91

individual. Other time-dependent adaptations of the ROC curve have been developed, also assessing92

a discriminative power rather than risks or probabilities (Blanche et al., 2013). And yet control of the93

risk is crucial to decision making (Van Calster et al., 2019). Proper scoring rules are alternatives to94

overcome the limitations of existing metrics because they capture more aspects of the problem. In95

addition, they can be used for both the training and evaluation of probabilistic predictive models.96

Proper Scoring Rules (PSR) Scoring rules are functions of observations and a candidate proba-97

bility distribution; when proper they control for the oracle probability distribution (definition 3.2).98

This is important in machine learning to create losses that recover probabilities of outcomes. For99

classification, where discrete events are observed rather than the probability, the Brier score and the100

log loss give proper scoring rules, with relative merits (Benedetti, 2010; Merkle & Steyvers, 2013).101

Graf et al. (1999) adapt the Brier score to survival analysis, with a strong independence assumption102

on the censoring distribution. However, the assumption can easily be violated (Kvamme & Borgan,103

2019a) which leads to bias (Rindt et al., 2022). Rindt et al. (2022) show that the likelihood of104

the survival function leads to a proper scoring rule but requires obtaining the density function and105

the survival function, a time-wise derivative of outcome probabilities (definition 3.1). For quantile106

regression, Yanagisawa (2023) shows that the Pinball loss may lead to a proper scoring rule for107

survival analysis but requires an oracle parameter. Han et al. (2021) introduces a double optimization108

problem for which the stationary point is located at the true distributions.109

For competing risks, Schoop et al. (2011) extend the Brier score to a proper scoring rule. However,110

the Brier score does not measure the uncertainty as well as the log loss (Benedetti, 2010).111

3 Problem Formulation112

Notations We write oracle quantities as a∗ and estimates as â, vectors in bold, a, random variables113

in upper case, A, observations in lower cases a, and distributions in calligraphy style A.114

3.1 Problem setting115

We consider K competing events and for k ∈ J1,KK, we denote T ∗
k ∈ R+ the event time of the116

event k, depending on the covariate X ∈ X . We also denote T ∗ ∈ R+, T
∗ = min

k∈J1,KK
(T ∗

k ) and117

∆∗ ∈ J1,KK,∆∗ = argmin
k∈J1,KK

(T ∗
k ). We observe (X, T,∆) ∼ D, with T = min(T ∗, C) where118

C ∈ R+ is the censoring time, which may depend on X and ∆ ∈ J0,KK,∆ = argmin
k∈J0,KK

(T ∗
k ) where119

0 denotes a censored observation. However, we are interested in the distribution of the uncensored120

data (X, T ∗,∆∗) ∼ D∗ especially in the joint distribution of T ∗,∆∗|X = x and the marginal121

distribution of T ∗|X = x.122

This paper aims to predict an unbiased estimate of all of the cause-specific Cumulative Incidence123

functions (CIF) at any time horizon ζ chosen based on the observations (x, t, δ):124

Definition 3.1 (Quantities of interest).

Survival to any event: S∗(ζ|x) = P(T ∗ > ζ|X = x)

CIF (cumulative incidence function) of any event: F ∗(ζ|x) = P(T ∗ ≤ ζ|X = x) = 1− S∗(ζ|X = x)

CIF of the kth event: F ∗
k (ζ|x) = P(T ∗ ≤ ζ ∩∆∗ = k|X = x)

Censoring: G∗(ζ|x) = P(C > ζ|X = x)
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Assumption 3.1 (Non informative censoring). We make the classic assumption of survival analysis
that the censoring is noninformative according to the covariates:

∀k,∈ J1,KK, T ∗
k ⊥⊥ C|X

Assumption 3.1 needed for most theoretical results in survival (Rindt et al., 2022; Yanagisawa,125

2023; Han et al., 2021). It is key to understanding why single-event survival analysis is invalid126

in the presence of competing risks: if some observations are censored due to other events sharing127

unobserved risk factors with the event of interest, this assumption is violated.128

3.2 CIF scoring rule129

Proper Scoring Rule A scoring rule ℓ evaluates a distribution P on an observation Y and gives a130

corresponding score ℓ(P, Y ). The higher the score, the better the model fits the observation. For a131

proper scoring rule, it corresponds to the degree to which the model can predict the oracle distribution132

(more on scoring rules in Gneiting & Raftery, 2007; Ovcharov, 2018; Merkle & Steyvers, 2013).133

Definition 3.2 (Proper Scoring Rule). A scoring rule ℓ is proper if

∀P,Q, distributions EY∼Q[ℓ(P, Y )] ≤ EY∼Q[ℓ(Q, Y )]

When equality is reached if and only if P = Q, the scoring rule is called strictly proper.134

Proper scoring rule for the Global CIF We will denote Lζ , a scoring rule for the global CIF at a135

time horizon ζ.136

Definition 3.3 (PSR for competing risks settings). In competing events settings, as we face censoring,137

a scoring rule Lζ for the CIF at time ζ for an observation (X, T,∆) is proper if and only if:138

∀ζ, (X, T,∆) ∼ D,

ET∗,C,∆|X=x[Lζ( (F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)) , (T,∆))] ≤

ET∗,C,∆|X=x[Lζ( (F
∗
1 (ζ|x), ..., F ∗

K(ζ|x), S∗(ζ|x)) , (T,∆))] (1)

Estimated distributions

Oracle distributions139

4 A Proper Scoring Rule for Competing Risks140

We prove that the negative log-likelihood re-weighted by the censoring distribution (IPCW) is proper.141

Definition 4.1 (Competitive Weights Negative LogLoss). We introduce the multiclass negative142

log-likelihood re-weighted with the censoring distribution. The different classes represent the loss of143

all the cumulative incidence functions as well as the survival function.144

∀ζ, (x, t, δ) ∼ D, Lζ((F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (t, δ)) def
=

1

n

n∑
i=1

K∑
k=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)

+
1ti>ζ log

(
Ŝ(ζ|xi)

)
G∗(ζ|xi)

(2)

Probability of remaining at ti
Probability of remaining at ζ
(1 - probability of censoring)

145

Eqn.2 can be seen as a standard log-loss (a.k.a cross-entropy), reweighted by appropriate sample146

weights, the inverse probabilities, IPCW (inverse probabilities of censoring weights). It can thus be147

easily added to most multiclass estimators.148

Lemma 4.1. Accounting for the time horizon ζ, the expectation of the above scoring rule can be149

written as: ∀ζ, (X, T,∆) ∼ D,150

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x)

+ log
(
Ŝ(ζ|x)

)
S∗(ζ|x) (3)
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Proof sketch. The weights enable moving from the observation distribution T to the distribution of151

T ∗, a key ingredient to show properness. The whole proof can be found in Appendix B.152

Theorem 1 (Properness of the scoring rule). Under the assumption that the weights are well chosen,153

Lζ : RK+1 × D → R is a strictly proper scoring rule for the global CIF on a fixed time horizon154

ζ ∈ R+.155

Proof sketch. With the previous result, the properties of the negative log-likelihood, and the Definition156

3.3, we obtain that the loss is strictly proper. The whole proof can be found in Appendix B.157

5 MultiIncidence Model: Gradient boosting for competing risks158

While eq.2 can be used as a loss in any multiclass machine learning algorithm, we chose Gradient159

Boosting trees because of their performance on tabular data (Grinsztajn et al., 2022) and their ability160

to be fit via stochastic optimization. Gradient boosting methods are designed to approximate complex161

functions through a combination of weak learners (or base learners). At each iteration, the algorithm162

focuses on the residuals of the loss and constructs a base learner hm that minimizes the residuals. For163

gradient boosting trees, the final estimator typically takes the form Hm(x) = Hm−1(x) + νhm(x)164

where ν represents a chosen learning rate. More explanations on gradient boosting methods are165

provided in Friedman (1999).166

Most survival or competing risk loss cannot be used with such tree-based models as the require167

time-derivates and thus smoothness. So, we introduce a model, MultiIncidence, that predicts all168

CIFs for each competing event, as well as the global survival function. Predicting these jointly169

easily maintains the stability of the probabilities as outputs of classifications model sum to one and170

P(T ∗ ≤ ζ|X = x) + P(T ∗ > ζ|X = x) = 1 or171

K∑
k=1

P(T ∗ ≤ ζ ∩∆∗ = k|X = x)︸ ︷︷ ︸
kthCIF

+P(T ∗ > ζ|X = x)︸ ︷︷ ︸
Survival Probability

= 1 (outputs sum to one)

With loss presented in Eq.3 we can directly predict the CIF instead of predicting the hazards function172

(the derivative of the CIF) as often done –e.g. DeepHit (Lee et al., 2018) or SurvTRACE (Wang &173

Sun, 2022). This allows us to drop the constant-hazard hypothesis (Yanagisawa, 2023; Kvamme &174

Borgan, 2019b; Wang & Sun, 2022; Rindt et al., 2022).175

Our algorithm uses two classifiers (here gradient-boosted trees), one for the censoring trained on176

binary censored/non-censored labels (i.e. for time ζ, P(C > ζ|X = x)), and one for the multiple177

events. Both of the censoring and event models are corrected with IPCW weights. To compute these178

IPCW we iterate the training using a feedback loop (in the like of boosting). We first compute a179

survival censoring model. Then, with these probabilities, we initiate our MultiIncidence model. After180

several iterations, we apply a feedback loop to retrain our censoring model.181

182

Figure 1: MultiIncidence Model with its Feedback Loop. After giving the input to the model,
a random time is given and the weights and the target can be computed. After one iteration, the
feedback loop trains the censoring probability – G⋆ in eq.2.
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Algorithm 1 MultiIncidence Algorithm - mth Iteration
Input: x, δ, t
for i = 1 to nsamples do
ζi ∼ U(0, tmax)

end for
ζ ← (ζi)1≤i≤nsamples

▷Sample a random time horizon
x̃← (x, ζ) ▷Stacking the time to the features
y, w ← ipcwComputer(x, δ, t, Ĝ) ▷Pseudo-code is written in Algo 2
L← 1

n

∑n
i=1

∑K
k=1

(
1yi=k yi wi log

(
F̂k(ζi|xi)

))
+ 1yi=0 yi wi log

(
Ŝ(ζi|xi)

)
hm(x̃)← Train one iteration of Gradient Boost with L as the loss ▷hm is the mth weak learner
Hm(ζ|x)← hm(ζ|x) + νHm−1(ζ|x) ▷Hm is the mth estimator
(Ŝ(ζ|X = x), (F̂k(ζ|X = x)1≤k≤K)← Ĥm(x̃)

Ĝ← Train one iteration the Censoring Feedback Loop with Ŝ(ζ|X = x)▷Pseudo-code is written
in Algo 3

To incorporate more complex temporal dependencies into the model, we uniformly sample a time183

point for each observation and include it as an additional feature. Multiple time points can be184

sampled per iteration for each observation. This approach generates a richer dataset, where the185

targets may vary based on the specific times sampled, thus providing the model with a broader186

range of temporal information. This approach is made possible by our loss which is separable. An187

additional benefit is that we can predict the CIF at any time, unlike models that are optimized for a188

limited number of times and need to be interpolated to other times.189

190

As Figure 1 shows an iteration: we compute the weights wi and targets yi according to the sampled191

times for each individual. Specifically, for censored samples, the corresponding weight is set to 0, as192

determined by the indicator function in eq.2. A target yi ∈ J1,KK indicates that the event of interest193

has occurred before ζ. However, when yi = 0, the individual has survived any event. We give a194

pseudocode of the Algorithm 1.195

6 Experimental study: Competing risks196

6.1 Evaluation metrics for competing risks models197

To evaluate the risks of the different events, we use two metrics1.198

Evaluating the predicted probability We extend the method proposed by Graf et al. (1999) and199

Schoop et al. (2011). The detailed formula and a formal proof of the properness of the loss can be200

found in Appendix ??. To avoid potential circularity with the loss function that our model optimizes,201

we apply this evaluation metric to the Brier Score rather than the log-loss. To evaluate the model at202

all times, we sum it over time, giving the Integrated Brier Score (IBS).203

Prediction accuracy in time For many applications, as in predictive maintenance or medicine, a204

crucial information is: which is the first event that a subject may encounter. We use a validation metric205

to check for each sample whether observed events are predicted as the most likely, at given times,206

chosen as before with quantiles. E.g. for an individual that encounters event 2 at t, the probability of207

surviving before t should be the highest compared to the probabilities of encountering each event.208

We also want the probability of encountering event 2 after t to be the highest one. To do so, we adapt209

Multi-Class accuracy to different times:210

Definition 6.1 (Prediction accuracy at time ζ). For a fixed time horizon ζ and denoting the survival211

to any event as the index 0, define ŷ = argmax
k∈[0,K]

F̂k(ζ|X = x), the most probable event in ζ and212

yζ = 1t≤ζδ. We remove the censored individuals and nnc represents the number of individuals213

1We do not focus on the C-index in time, as this metric is biased (Blanche et al., 2019; Rindt et al., 2022)
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uncensored at ζ.214

Acc(ζ) =
1

nnc

n∑
i=1

1ŷi=yi,ζ
1δi=0,ti≤ζ (4)

6.2 Experimental settings215

Synthetic Dataset We designed a synthetic dataset with linear relations between features and216

targets, as well as relations with the censoring distribution of the features (details in Appendix I.2).217

To create the synthetic dataset, for each sample, we draw 2nevents parameters from a normal law.218

Then, we draw the durations from a Weibull distribution for each event from those parameters. To219

determine the observation, we return the minimum duration with its associated event. Then, the220

censoring event is computed with the same method.221

SEER Dataset This dataset follows more than 470k breast cancer patients for up to ten years222

with mortality due to various diseases as outcomes. The censoring is around 63% and Figure S9223

shows the distribution of the events. Instead of Lee et al. (2018) (DeepHit) or Wang & Sun (2022)224

(SurvTRACE), which consider only the two most prevalent events and censor the rest, defeating the225

purpose of competing risks, we consider the SEER data set with 3 competing events, aggregating the226

other events in a third class. We remove some features following Wang & Sun (2022).227

Baselines We compared our approach to 7 other models. Aalen-Johansen’s estimator (Aalen et al.,228

2008), Fine & Gray’s linear model (Fine & Gray, 1999), a tree-based approach with the Random229

Survival Forests (RSF, Ishwaran et al., 2008), and neural networks: DeepHit (Lee et al., 2018), Deep230

Survival Machines (DSM, Nagpal et al., 2021), DeSurv (Danks & Yau, 2022b) and a transformer231

model with SurvTRACE (Wang & Sun, 2022). DeepHit is trained with a ranking loss: the C-index232

summed with a negative log-likelihood, DSM uses a graphical method for feature encodings while233

DeSurv solves Ordinal Differential Equations for continuous predictions in time. SurvTRACE is234

trained for three-time horizons (based on quantiles of observed event times) and at time 0, while235

Aalen-Johansen and Fine & Gray are trained for all observed event times. In contrast, our method236

is trained on uniformly sampled time horizons, allowing predictions at any time. To compute the237

Integrated Brier Score over time, other methods require linear interpolation of their trained times.238

For times exceeding their trained times, we assume the incidence remains constant. To be fair across239

models, we use the same time budget for hyper-parameter tuning (grid in Appendix S7).240

6.3 Results, competing risks241

Synthetic dataset Figure 2 shows the trade-off between statistical performance (IBS) and train-242

ing time for each model compared. With the synthetic dataset, we can compute an oracle IBS.243

MultiIncidence outperforms the other models over the IBS while being the fastest to train.244

We also conduct different experiments on the synthetic dataset varying the number of training points245

(Figure S1), the censoring rate (Figure S3), and the number of features (Figure S2). More experiments246

on the synthetic data set can be found in the appendix F.1.247

Figure 2: Trade-off pre-
diction/training time for
competing risk on the
synthetic dataset Aver-
age IBS compared to
the fitting time for each
model on 20k training
data points, censoring rate
around 50%, and a depen-
dant censoring for 6 fea-
tures.

Better speed/
performance

tradeoff
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Figure 3: Trade-off pre-
diction/training time for
competing risk on the
SEER dataset Average
IBS compared to the fit-
ting time for each model
on the maximum training
points (330k) except for
Fine & Gray (50k) and
RSF (100k). Table S2
gives IBS values for each
event.

Better speed/
performance

tradeoff

Figure 4: Prediction ac-
curacy at time ζ Ac-
curacy of the Argmax
of the Cumulative Inci-
dence Functions on differ-
ent quantiles in time on
the SEER Dataset (Higher
is Better).

H
ig

he
r 

is
 b

et
te

r

Results on SEER Dataset On the real-life dataset, we keep 30% of the data set to test the models.248

Figure 3 compares models with the Integrated Brier score (with Kaplan-Meier weights of Graf et al.249

(1999) due to lack of oracle). MultiIncidence achieves the best score and the shortest fit time. Random250

Survival Forest is not made to be used with that many samples (100k) and uses more than 50 Gb of251

RAM. MultiIncidence maintains its marked lead with much fewer training samples (Appendix F.2).252

Event and time-specific C-indexes are presented in table S3, but do not capture the models’ ability to253

predict which event is more likely to occur at a given time horizon. This is measured by accuracy in254

time in Figure 4, and MultiIncidence has the best performance. The benefit grows as time increases,255

meaning that it better interpolates in times.256

7 Usage in Survival Analysis257

7.1 Survival experiments258

Real-life Datasets As our model can also handle survival analysis, we perform survival analysis on259

two real-life survival datasets: SUPPORT and METABRIC, both available in the Pycox library.260

METABRIC The Molecular Taxonomy of Breast Cancer International Consortium is a dataset on261

gene expression with around 2k data points262

SUPPORT Study to Understand Prognoses Preferences Outcomes and Risks of Treatment is a263

dataset on the survival time of hospital patients with more than 8k datapoints.264

Evaluation We use different metrics to evaluate our models. As above we use the Integrated Brier265

Score (detailed in Appendix C), but we also add another metric from Yanagisawa (2023), called266

SCen−log−simple (detailed in Appendix D). This last metric approximates the proper scoring metric267
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Table 1: Survival dataset: Integrated Brier Score and SCen−log−simple (Lower is Better)

DATASET SUPPORT METABRIC
MODEL IBS SCen−log−simple IBS SCen−log−simple

RANDOM SURVIVAL FOREST 0.225±0.004 1.942±0.023 0.197±0.025 2.442±0.044
DEEPHIT 0.217±0.004 2.249±0.009 0.180±0.014 2.271±0.019
HAN ET AL. (2021) 0.260±0.012 3.483±0.307 0.191±0.003 2.420±0.150
PCHAZARD 0.210±0.007 2.192±0.024 0.176±0.014 2.246±0.046
DQS 0.202±0.007 1.987±0.069 0.180±0.034 2.205±0.044
SUMO NET 0.194±0.010 1.721±0.016 0.169±0.009 2.302±0.059
SURVTRACE 0.194±0.005 1.870±0.018 0.168±0.011 2.270±0.034
MULTIINCIDENCE 0.191±0.006 1.740±0.020 0.168±0.019 2.169±0.056

Figure 5: Trade-off pre-
diction/training time in
survival usage Perfor-
mances (measured by IBS,
integrated Brier score)
function of fitting time for
each model.

Better speed/performances

tradeoff

in Rindt et al. (2022) –and is not exactly proper, see Appendix D. It is useful because it can be used268

on any model as it does not require the density of the Cumulative Incidence Function.269

Baselines We compare our model with SOTA competing risks models, including SurvTRACE270

(Wang & Sun, 2022), DeepHit (Lee et al., 2018) and Random Survival Forests (Ishwaran et al., 2008).271

We also benchmark some SOTA survival ones: neural networks e.g. (PCHazard Kvamme & Borgan,272

2019b), survival game (Han et al., 2021) and neural networks trained with a proper survival-analysis273

scoring rule, e.g. SumoNet (Rindt et al., 2022), and DQS (Yanagisawa, 2023).274

7.2 Results in survival usage275

Prediction performance For both datasets, MultiIncidence achieves the best results on IBS and276

tied with Sumo Net for SCen−log−simple (Table 1 and Appendix G.1 for the C-index). Sumo Net uses277

SCen−log−simple as a training loss; note however that this metric is not guaranteed to be a proper278

scoring rule thus it does not ensure recovering the actual risks.279

Computational time Figure 5 shows the trade-off between training time and performance in280

IBS, a trade-off that MultiIncidence excels at, being the best model for statistical performance and281

also one of the fastest. Appendix G.2 gives the same figure for the SCen−log−simple metric, and282

MultiIncidence reaches a great trade-off rivaled only by SumoNet, which has competing performance283

on the SCen−log−simple loss. Varying sample size from 1k to 100k on a synthetic dataset confirms284

that MultiIncidence and DQS are faster (less than 1min on 100k data points), Han et al., SumoNet,285

and Random Survival Forests slower for large sample size, with a super-linear time complexity for286

SumoNet and Random Survival Forests that makes them untractable for large data (Appendix F.1).287

Discussion and Conclusion288

Code reproducibility and data The code is available on GitHub as a library called hazardous.289

Acknowledgement JA, JA, and GV acknowledge funding from the ERC grand INTERCEPT-T2D.290

Social impact Our contribution is not directly applied and has no immediate social impact, but we291

hope that it will improve medical applications where survival analysis is central.292

9



Limitations and further work Further work should consider removing the assumption of non-293

informative censoring. This assumption is very common in the literature, though some recent work294

has relaxed it in survival settings (Foomani et al., 2023; Zhang et al., 2023).295

Conclusion For competing risks, which is a generalization of survival analysis to classify the type296

of outcome, we first propose and prove a (strictly) proper scoring rule. It is a reweighted log loss that297

can easily be used as a loss for machine learning: it is separable in the observations and thus suited298

to stochastic solvers; it does not require time-wise derivative (unlike most survival models) and can299

be used in non-differentiable models. We plug it into gradient-boosting trees, in an algorithm called300

MultiIncidence. Thanks to time used as a feature and its feedback loop to better estimate censoring301

probabilities, MultiIncidence outperforms state-of-the-art methods on a synthetic dataset as well as302

real-life datasets both for competing risk (classification on time-censored data) and standard survival303

(time-to-event regression with right censoring). It is also faster to train over many samples. As a loss,304

it easily brings survival or competing risks to many models: scalable linear models to replace clinical305

standard Fine & Gray that do not scale, or deep learning, including fine-tuning foundation models.306
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A Definitions484

A.1 Notations485

Here we detail the notations used in the main manuscript as well as in the proofs and derivations486

below.487

For all symbols, we use the following conventions:488

• .∗: Oracle489

• .̂: Estimation490

The different variables that we use are:

Maths Symbol Domain Description

ζ R+ Time horizon

K N∗ number of competing events (events of interest)
X X random variable representing an individual
T ∗
k R+ random variable of the time-to-event for event k
C R+ random variable of the time-to-censoring
T ∗ R+ min(T ∗

1 , T
∗
2 , ..., T

∗
K)

T R+ min(T,C)
∆∗ [1,K] argmin

k∈[1,K]

(T ∗
k )

∆ [0,K] argmin(C, T ∗
1 , T

∗
2 , ..., T

∗
K)

S S Survival function
F F Cumulative Incidence Function
G G Censor function

n N∗ number of individuals in our observation
i [1, n] one observation

xi Xn individuals observed
ti Rn

+ time-to-event/censoring observed
δi [0,K] event observed, 0 indicates censoring

Table S1: Notations used

491

A.2 Reporting conventions492

In tables, the best results are reported in bold characters, and the second best is underlined.493

B Theory on our proper scoring rule: proofs and derivations494

In this appendix, we give the proofs and derivations concerning the proper scoring rule that we have495

introduced.496

Lemma 4.1. Accounting for the time horizon ζ, the expectation of the above scoring rule can be497

written as: ∀ζ, (X, T,∆) ∼ D,498

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x)

+ log
(
Ŝ(ζ|x)

)
S∗(ζ|x) (3)
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Proof the of Lemma 4.1 on the expectation of the Reweighted NLL.

∀ζ,∀k ∈ J1,KK, (x, t, δ) ∼ D,

Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (t, δ)

)
def
=

1

n

n∑
i=1


K∑

k=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Ψk,ζ(F̂k(ζ|x),(t,δ))

+
1ti>ζ log

(
Ŝ(ζ|xi)

)
G∗(ζ|xi)︸ ︷︷ ︸

def
=Λk,ζ(Ŝ(ζ|x),(t,δ))

(5)

For the next computations, we recall the definition of the different variables.499

Computation of the expectation: First:500

ET∗,C,∆|X=x

[
Ψk,ζ(F̂k(ζ|x), (T,∆))

]
= ET∗,C,∆|X=x

1T≤ζ1∆=k

log
(
F̂k(ζ|x)

)
G∗(T |x)


= log

(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
1min(T∗,C)≤ζ1∆=k

G∗(T |x)

]
= log

(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
(1T∗≤ζ1T∗≤C + 1C≤ζ1C≤T∗)1∆=k

G∗(T |x)

]

= log
(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)
+

1C≤ζ1C≤T∗1∆=k

G∗(T |x)︸ ︷︷ ︸
=0 because k ̸= 0


= log

(
F̂k(ζ|x)

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
= log

(
F̂k(ζ|x)

)
P(T ∗ ≤ ζ,∆ = k|X = x)

The last equality can be detailed as in:501

ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
=

∫ ∞

0

∫ ∞

0

(1min(t,c)=t + 1min(t,c)=c︸ ︷︷ ︸
=0because k ̸= 0

)
1t≤ζ1t≤c

G∗(t|x)
fT∗,C,∆(t, c, k|x)dtdc

(6)
T is a composition of T ∗ and C (7)

=

∫ ∞

0

∫ ∞

0

1t≤ζ1t≤c

G∗(t|x)
fT∗,C,∆(t, c, k|x)dtdc (8)

=

∫ ∞

0

∫ ∞

0

1t≤ζ1t≤c

G∗(t|x)
fT∗,∆(t, k|x)fC(c|x)dtdc (9)

Because T ∗ ⊥⊥ C|X (10)

=

∫ ∞

0

1t≤ζ

G∗(t|x)
fT∗,∆(t, k|x)

(∫ ∞

0

1t≤cfC(c|x)dc
)
dt

(11)

=

∫ ∞

0

1t≤ζ

G∗(t|x)
fT∗,∆(t, k|x) (G∗(t|x)) dt (12)

with the definition of G∗ (13)

=

∫ ∞

0

1t≤ζfT∗,∆(t, k|x)dt (14)

= P(T ∗ ≤ ζ,∆ = k|X = x) (15)
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And:502

ET,∆|X=x

[
Λk,ζ(Ŝ(ζ|X = x), (T,∆))|X = x

]
= ET,∆|X=x

1T>ζ

log
(
Ŝ(ζ|X = x)

)
G∗(ζ|x)


= log

(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1min(T∗,C)>ζ

G∗(ζ|x)

]
= log

(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1T∗>ζ1C>ζ

G∗(ζ|x)

]
= log

(
Ŝ(ζ|X = x)

)
ET,∆|X=x

[
1C>ζ

G∗(ζ|x)

]
ET,∆|X=x [1T∗>ζ ]

Because T ∗ ⊥⊥ C|X

= log
(
Ŝ(ζ|X = x)

) ET,∆|X=x [1C>ζ ]

G∗(ζ|x)
ET,∆|X=x [1T∗>ζ ]

Because G∗(ζ|x) does not depend of T and ∆

= log
(
Ŝ(ζ|X = x)

)
P(T ∗ > ζ|X = x)

By summing all of the terms, we obtain:503

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k|X = x)

+ log
(
Ŝ(ζ|X = x)

)
P(T ∗ > ζ|X = x) (16)

504

=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x) (17)

Finally:505

ET∗,C,∆|X=x

[
Lζ

(
(F̂1(ζ|x), ..., F̂K(ζ|x), Ŝ(ζ|x)), (T,∆)

)]
=

K∑
k=1

log
(
F̂k(ζ|x)

)
F ∗
k (ζ|x) + log

(
Ŝ(ζ|x)

)
S∗(ζ|x) (18)

506

Proof of the Theorem 1.507

Theorem 1 (Properness of the scoring rule). Under the assumption that the weights are well chosen,508

Lζ : RK+1 × D → R is a strictly proper scoring rule for the global CIF on a fixed time horizon509

ζ ∈ R+.510

To be more explicit, we can define a new random variable Y :511

Definition B.1.
∀ζ, Yk,ζ

def
= T ∗ ≤ ζ ∩∆ = k

And:
∀ζ, Y0,ζ

def
= T ∗ > ζ

16



So the previous quantities of interest can be rewritten as functions of those variables:512

F ∗
k (ζ|x) = P(T ∗ ≤ ζ,∆ = k|X = x) = P(Yk,ζ = 1|X = x) (19)

513

S∗(ζ|x) = P(T ∗ > ζ|X = x) = P(Y0,ζ = 1|X = x) (20)

F̂k(ζ|x) represents the estimated probability for Yk,ζ = 1, so we rewrite: p̂k,ζ
def
= F̂k(ζ|x).514

Therefore:515

ET∗,C,∆|X=x

[
Lk,ζ(F̂k(ζ|x), (T,∆))

]
= ET,∆|X=x[Lζ(p̂ζ , (T,∆))] (21)

=

K∑
k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x) (22)

Thus, we obtain the following optimization problem:516

max
p̂

K∑
k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x)

s.t.
K∑

k=0

p̂k = 1

p̂k ≥ 0

(23)

The problem can be rewritten as a convex optimization problem because of the concavity of the517

logarithm:518

min
p̂

−
K∑

k=0

log (p̂k,ζ)P(Yk,ζ = 1|X = x)

s.t.
K∑

k=0

p̂k = 1

p̂k ≥ 0

(24)

We apply the Karush-Kuhn-Tucker conditions because the constraints are qualified (because they are519

linear). These imply that if p is a local minima of the problem, there exits λ ∈ R and µ ∈ RK+1
+ such520

that:521

∇

(
−

K∑
k=1

log (p̂k,ζ)P(Yk,ζ = 1|X = x)− log (p̂0,ζ)P(Y0,ζ = 1|X = x)

)
+ λ− µ1 = 0 (25)

∀k, µkpk = 0 (26)

If ∃k, pk = 0, −
∑K

k=1 log (p̂k,ζ)P(Yk,ζ = 1|X = x)− log (p̂0,ζ)P(Y0,ζ = 1|X = x) =∞.522

Hence, (24) implies that ∀k, µk = 0.523

524
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Now,525

∀k,
∂
(
−
∑K

k=0 log (p̂k,ζ)P(Yk,ζ = 1|X = x)
)

∂p̂k,ζ
= −P(Yk,ζ = 1|X = x)

p̂k,ζ

(27)
(24) can be rewritten as: (28)

∀k,−P(Yk,ζ = 1|X = x)

p̂k,ζ
+ λ = 0 (29)

=⇒ ∀k,−P(Yk,ζ = 1|X = x) + λp̂k,ζ = 0 (30)
By summing over k, (31)

=⇒ −
K∑

k=0

P(Yk,ζ = 1|X = x)︸ ︷︷ ︸
=1

+λ

K∑
k=0

p̂k,ζ︸ ︷︷ ︸
=1

= 0 (32)

=⇒ λ = 1 (33)
=⇒ ∀k, p̂ζ,k = P(Yk,ζ = 1|X = x) (34)

Any local minima must fulfill the KKT theorem. Thus if p is a local minima, then the local minima526

is a solution to (24) and (25). Consequently the above applies, we do obtain that the only possible527

solution must be equal to the oracle distribution. Indeed, the loss is strictly proper.528

529

C Study of the proper scoring rule used for evaluation530

As mentioned above, the metric most used in the competing risks setting, the C-index in time, is531

biased (Blanche et al., 2019; Rindt et al., 2022). To overcome this issue, which is major for any532

evaluation strategy, we propose here two evaluation metrics: one re-weighting proper scoring rule,533

that can be effective with any proper binary scoring rule. The second is the accuracy in time that534

measures the observed event versus the most likely predicted event.535

C.1 PSR for evaluation536

The PSR introduced in the main paper to be the loss of our model is a global loss over all of our537

predictions. The following loss is adapted to focus on a special event k to evaluate our estimations538

on a specific event. In the paper, we chose to focus on the IBS, but one could use a logarithmic loss539

because of its properness.540

Proper scoring rule for the kth competing event In our setting, we will denote Lk,ζ , a scoring541

rule for the kth CIF at a time horizon ζ.542

Definition C.1 (PSR for the kth cause-specific event). The scoring rule Lk,ζ for the kth CIF at time543

ζ for an observation (X, T,∆) is proper if and only if:544

∀ζ, (X, T,∆) ∼ D, ET∗,C,∆|X=x[Lk,ζ(F̂k(ζ|x), (T,∆))] ≤ ET,∆|X=x[Lk,ζ(F
∗
k (ζ|x), (T,∆))]

(35)

C.1.1 A Proper Scoring Rule for Competing Risks545

To evaluate our model, we used the following proper scoring rule is adequate for each event. Thanks546

to this proper scoring rule, we can understand the error for each event and the global error of all of547

the CIF.548

In the following, we prove that any given (strictly) proper scoring rule that can be used in the549

multiclass setting (e.g. the Brier score, the negative log-likelihood) leads to a (strictly) proper scoring550
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in competing risks settings thanks to the re-weighting of the observations.551

Indeed, for any (strictly) proper scoring rule ℓ : R×{0, 1} → R, one can build a cause-specific scoring552

rule function Lk,ζ : R × D → R that is also a (strictly) proper scoring rule for the cause-specific553

event kth in the fixed time horizon ζ ∈ R+. It follows that Lζ is (strictly) proper.554

Definition C.2 (PSR with re-weighting). We define Lk,ζ , considering the observations (x, t, δ) and555

for an event k, the following scoring rule of the kth CIF:556

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (x, t, δ) ∼ D

Lk,ζ(F̂k(ζ|x), (t, δ))
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k ℓ
(
F̂k(ζ|xi), 1

)
G∗(ti|xi)

+
1ti>ζ ℓ

(
F̂k(ζ|xi), 0

)
G∗(ζ|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k ℓ

(
F̂k(ζ|xi), 0

)
G∗(ti|xi)

(36)
Probability of remaining at ti

Probability of remaining at ζ
(1 - probability of censoring)

The weights correspond to the Inverse Probability of Censoring Weighting (IPCW) used to re-557

calibrate the observed population to align with the uncensored oracle population Robins et al. (1994).558

This PSR is an extension of Graf et al. (1999) and Schoop et al. (2011) when ℓ is the Brier Score.559

Lemma C.1. Considering a proper scoring rule ℓ : R × {0, 1}, at time horizon ζ and for any560

cause-specific risk k, the expectation of the former scoring rule can be written as:561

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (X, T,∆) ∼ D,

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
F ∗
k (ζ|x)+ℓ

(
F̂k(ζ|x), 0

)
(1− F ∗

k (ζ|x))
(37)

Proof.

∀ζ,∀k ∈ J1,KK, ℓ : R× {0, 1} → R, (x, t, δ) ∼ D

Lk,ζ(F̂k(ζ|x), (t, δ))
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k ℓ
(
F̂k(ζ|xi), 1

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Ψk,ζ(F̂k(ζ|x),(t,δ))

+
1ti>ζ ℓ

(
F̂k(ζ|xi), 0

)
G∗(ζ|xi)︸ ︷︷ ︸

def
=Λk,ζ(F̂k(ζ|x),(t,δ))

+
1ti≤ζ,δi ̸=0,δi ̸=k ℓ

(
F̂k(ζ|xi), 0

)
G∗(ti|xi)︸ ︷︷ ︸

def
=Φk,ζ(F̂k(ζ|x),(t,δ))

(38)

562

ET∗,C,∆|X=x

[
Ψk,ζ(F̂k(ζ|x), (T,∆))|X = x

]
= ET∗,C,∆|X=x

1T≤ζ1∆=k

ℓ
(
F̂k(ζ|x), 1

)
G∗(T |x)


= ℓ

(
F̂k(ζ|x), 1

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆=k

G∗(T |x)

]
= ℓ

(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k|X = x)
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ET∗,C,∆|X=x

[
Φk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ET∗,C,∆|X=x

1T≤ζ,∆ ̸=0,∆ ̸=k

ℓ
(
F̂k(ζ|x), 0

)
G∗(T |x)


= ℓ

(
F̂k(ζ|x), 0

)
ET∗,C,∆|X=x

[
1T∗≤ζ1T∗≤C1∆ ̸=k

G∗(T |x)

]
= ℓ

(
F̂k(ζ|x), 0

)
P(T ∗ ≤ ζ,∆ ̸= k|X = x)

ET∗,C,∆|X=x

[
Λk,ζ(F̂k(ζ,x), (T,∆))|X = x

]
= ET∗,C,∆|X=x

1T>ζ

ℓ
(
1− F̂k(ζ|x), 0

)
G∗(ζ|x)


= ℓ

(
F̂k(ζ|x), 0

)
ET∗,C,∆|X=x

[
]
1T∗>ζ1C>ζ

P(C > ζ|x)

]
= ℓ

(
F̂k(ζ|x), 0

)
P(T ∗ > ζ|X = x)

By summing all of the terms, we obtain:563

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k)

+ ℓ
(
F̂k(ζ|x), 0

)
(P(T ∗ ≤ ζ,∆ ̸= k|X = x) + P(T ∗ > ζ|X = x))

(39)

Meanwhile,564

P(T ∗ ≤ ζ ∩∆ = k) = P(T ∗ > ζ ∪∆ ̸= k) (40)
= P(T ∗ > ζ) + P(∆ ̸= k)− P(T ∗ > ζ ∩∆ ̸= k) (41)
= P(T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ ≤ ζ)− P(T ∗ > ζ ∩∆ ̸= k)

(42)
= P(T ∗ > ζ) + P(∆ ̸= k ∩ T ∗ ≤ ζ) (43)

So, we obtain:565

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
F ∗
k (ζ|x)+ℓ

(
F̂k(ζ|x), 0

)
(1− F ∗

k (ζ|x))
(44)

566

Proposition C.1. If ℓ : R×{0, 1} → R, a chosen (strictly) proper scoring rule, then Lk,ζ : R×D → R567

is a (strictly) proper scoring rule for the cause-specific event kth in the fixed time horizon ζ ∈ R+.568

Proof.

ET∗,C,∆|X=x

[
Lk,ζ

(
F̂k(ζ|x), (T,∆)

)]
= ℓ

(
F̂k(ζ|x), 1

)
P(T ∗ ≤ ζ,∆ = k|X = x)

+ ℓ
(
F̂k(ζ|x), 0

)
(P(T ∗ ≤ ζ,∆ ̸= k|X = x) + P(T ∗ > ζ|X = x))

(45)

To be more explicit, we can define a new random variable Y :569

Definition C.3.
∀ζ, Yk,ζ

def
= T ∗ ≤ ζ ∩∆ = k
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F ∗
k (ζ|x) = P(T ∗ ≤ ζ,∆ = k|X = x) = P(Yk,ζ = 1|X = x) (46)

F̂k(ζ|x) represents the estimated probability for Yk,ζ = 1, so we can rewrite: p̂k,ζ
def
= F̂k(ζ|x) ≈570

P(Yk,ζ = 1|X = x) Therefore:571

ET∗,C,∆|X=x

[
Lk,ζ(F̂k(ζ|x), (T ∗, C,∆))

]
= ET,∆|X=x[Lk,ζ(p̂k,ζ , (T,∆))] (47)

= ℓ (p̂k,ζ , 0)P(Yk,ζ = 0|X = x) + ℓ (p̂k,ζ , 1)P(Yk,ζ = 1|X = x)
(48)

= EYk,ζ
[ℓ(p̂k,ζ , Yk,ζ)|X = x] (49)

≤ EYk,ζ
[ℓ(pk,ζ , Yk,ζ)|X = x] (50)

≤ ET∗,C,∆|X=x[Lk,ζ(P(Yk,ζ = 1), (T,∆))] (51)

≤ E[Lk,ζ(F
∗
k (ζ|x), (T,∆))] (52)

The last inequality is valid because l is a proper scoring rule. The same computation leads to a strictly572

proper scoring rule if l is a strictly proper scoring rule.573

574

So, we obtain that ∀ζ,∀k ∈ J1,KK, Lk,ζ(F̂k(ζ|x), (T,∆)) is a proper scoring rule of F ∗
k (ζ|x).575

576

Theorem 2. If ℓ : R× {0, 1} → R, a chosen (strictly) proper scoring rule, thus Lζ : R×D → R is577

a (strictly) proper scoring rule for the global CIF at a fixed time horizon ζ ∈ R+.578

Proof. Straight forward thanks to the proposition and the lemma above.579

Corollary: Proper global scoring rule to compare competing risk models The defined scoring
rule

∑K
k=1 Lk,ζ is proper on the time horizon ζ chosen arbitrarily. To be able to compare different

models, a global measure is necessary, eg by summing over time, as introduced in Graf et al. (1999).
Here, we extend the Integrated Brier Score to other (strictly) proper scoring rules l and we prove that
the Integrated Loss (IL) is also a (strictly) proper scoring rule.
By considering:

Z ∼ U(0, tmax)

with tmax the maximum time horizon for prediction.580

Definition C.4 (Integrated global PSR). With ℓ : R × {0, 1} → R, a chosen scoring rule, the581

cause-specific scoring rule function Lk,ζ : R×D → R defined as above, we define the IL as582

IL(F̂1(.|x), ..., F̂K(.|x), (T,∆))
def
= EZ

[
K∑

k=1

Lk,Z(F̂k(Z|x), (T,∆))|X = x

]
(53)

=

K∑
k=1

EZ

[
Lk,Z(F̂k(Z|x), (T,∆))|X = x

]
︸ ︷︷ ︸

def
=ILk(F̂k(.|x),(T,∆))

(54)

Corollary C.1. With ℓ : R× {0, 1} → R, a chosen (strictly) proper scoring rule, the cause-specific583

loss function Lk,ζ : R×D → R defined above IL is a (strictly) proper scoring rule.584

Proof. We have already proven that Lk,ζ : R×D → R is a (strictly) proper scoring rule. Using the585

monotonicity /positivity of the expectation, the result is immediate.586

ET∗,C,∆|X=x,Z=ζ

[
ILk(F̂k(ζ|x)), (T,∆)

]
= ET∗,C,∆|X=x,Z=ζ

[
Lk(F̂k(ζ|x), (T,∆))

]
(55)

≤ ET∗,C,∆|X=x,Z=ζ [Lk(F
∗
k (ζ|x), (T,∆))] (56)

≤ ET∗,C,∆|X=x,Z=ζ [ILk(F
∗
k (ζ|x), (T,∆))] (57)

21



And because the expectation is non-decreasing, we have:587

ET∗,C,∆

[
ILk(F̂k(Z|x), (T,∆))|X = x

]
≤ ET∗,C,∆ [ILk(F

∗
k (Z|x), (T,∆))|X = x] (58)

This allows us to consider the IL as a global proper scoring rule to compare different competing risks588

models.589

D The Yanagisawa (2023) scoring rule for survival590

Yanagisawa (2023) introduce a metric, called SCen−log−simple, is an approximation of the proper591

scoring metric in Rindt et al. (2022). Indeed, the metric in Rindt et al. (2022) requires the hazard func-592

tion, the time derivative of the cumulative incidence function, which is exposed only by differentiable593

models –and hence with an implicit assumption on almost-everywhere smooth time dependence. To594

avoid requesting this hazard function, Yanagisawa (2023) approximate it as piecewise affine. They595

show that under the assumption that the “node time points”, edges of the affine, parts match an actual596

piecewise-affine breakdown of the CIF, the resulting approximation is proper. They argue that with597

enough node time points, the metric is a good approximation of a proper scoring rule.598

SCen−log−simple is defined as:599

SCen−log−simple(F̂ , (t, δ); {ζi}Bi=0)
def
=

− δ

B−1∑
i=0

1ζi<t≤ζi+1
log(F̂ (ζi+1)− F̂ (ζi))

− (1− δ)

B−1∑
i=0

1ζi<t≤ζi+1
log(1− F̂ (ζi+1)) (59)

where B is the number of node time points2, and the {ζi}Bi=0 are the node times points, spaced600

between 0 and tmax to divide the space into B equal intervals.601

E Pseudo-code602

Algorithm 2 IPCW Computer

Input: x, δ, t, Ĝ
y ← δ 1t≤ζ ▷Computing the target
w ← 0
if t > ζ then ▷The observation is not censored
w ← 1

Ĝ(ζ|x)
else if t ≤ ζ and δ ̸= 0 then
w ← 1

Ĝ(t|x)
end if
return yi, wi

F Additional results for competing risk experiments603

F.1 Results on synthetic dataset604

Varying the number of training points shows a slow improvement of SurvTrace, but at n = 5 · 104605

MultiIncidence still has the best IBS (Figure S1). MultiIncidence also maintains its benefit with an606

increased censoring rate (Figure S3). In terms of computation time, MultiIncidence is the fastest,607

but the dependence on the number of features is similar across MultiIncidence, Fine & Gray, and608

SurvTRACE (Figure S2).609

2We use B = 32, as in the experiments in Yanagisawa (2023)
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Algorithm 3 Censoring Feedback Loop - One Iteration

Input: x, δ, t, Ŝ
for i = 1 to nsamples do
ζi ∼ U(0, tmax)

end for
ζ ← (ζi)1≤i≤nsamples

x̃← (x, ζ)
δ ← 1− 1y ̸=0 ▷Changing the target (focusing on the censoring distribution)
y, w ← ipcwcomputer(x, δ, t, Ŝ) ▷
ζ ← (ζi)1≤i≤nsamples

L← 1
n

∑n
i=1

(
yi wi log

(
ˆ1−Gk(ζi|xi)

))
+ (1− yi) wi log

(
Ĝ(ζi|xi)

)
h̃m(x̃)← Train one iteration of Gradient Boost with L as the loss ▷h̃m is the mth weak learner
H̃m(ζ|x)← h̃m(ζ|x) + νH̃m−1(ζ|x) ▷H̃m is the mth estimator
(( ˆ1−G)(ζ|X = x, Ĝ(ζ|X = x))← H̃m(x̃)

Figure S1: Integrated
Brier Score (IBS) vs
Training Samples on
Synthetic Dataset Inte-
grated Brier Score for the
synthetic dataset with lin-
ear relation over the fea-
tures when we vary the
number of samples. The
test set was made into
five different seeds.
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Integrated Brier Score with a varying number of points By varying the number of training610

points in our synthetic dataset, while the Oracle Integrated Brier Score is decreasing, we see in Figure611

S1 that our method obtains better results than the transformer (SurvTRACE) in particular for a smaller612

number of training points. The number of training points may be a huge bottleneck for medical613

studies, as the number of patients may be low. We also see that, as the number of training points614

increases, SurvTRACE improves. With too many points, here 20,000, the Fine & Gray model was too615

long to run. We also see that the Fine & Gray model achieves approximately the same performance616

as our model, as expected because we model linear relations between the targets and the features.617

Computational cost vs performances To emphasize this phenomenon, we measured the time to fit618

each model, while varying the number of samples and the number of features in Figure S5. We show619

that for a limited number of samples, all of the methods take approximately the same amount of time620

to fit while having the worst results for SurvTRACE. With a higher number of samples, our method621

was faster to train than the other ones while achieving the same performance. We did not obtain the622

results for the Fine & Gray model because the time to fit was higher than the given budget.623

We show the dependence of time to fit with the number of features in Figure S2. In this figure, we624

highlight that our method takes less time to fit; the increase in time to fit with the number of features625

is similar among all methods. Another study of the impact of the features and the number of samples626

to fit the models can be found in Appendix S8.627

Censoring Scale We studied the impact of censoring on the different models. To do so, we vary628

the censoring distribution to understand the effect of the learning scheme. In Figure S3, we see that629

our method outperforms SurvTRACE at different censoring rates. As expected, all models get worse630

as the censoring rate increases.631
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Table S2: Integrated Brier Score for each cause-specific risk on the SEER Dataset (Lower is Better).

EVENT 1 2 3

AALEN-JOHANSEN 0.1209 0.2832 0.0834
FINE & GRAY 0.1055 0.0281 0.0822
RANDOM SURVIVAL FORESTS 0.0825 0.0295 0.0803
DEEPHIT 0.0931 0.0330 0.0831
DSM 0.0875 0.0310 0.0869
DESURV 0.0975 0.0327 0.0869
SURVTRACE 0.0871 0.0287 0.0800
MULTIINCIDENCE 0.0832 0.0273 0.0757

Brier Score in time We compared the Brier Score over time for each model, as shown in Figure632

S4. The Brier Score increases over time for all models, which is expected due to the smaller number633

of individuals toward the end. Additionally, the associated weights contribute significantly to errors634

at later times. In this context, MultiIncidence consistently outperforms every other model for each635

event.636

Impact of the number of features and the training samples on fit time of competing risks637

F.2 Results for the SEER Dataset638

Learning curves We ran the experiments while varying the number of training points. In doing so,639

we measured the KM-adjusted Integrated Brier Score for each event. We also average it to have one640

global metric. We see in Figure S7 that our model of the global evaluation metric is quite stable and641

lower than the average Integrated Brier Score on SurvTRACE for any number of training points. We642

expanded the Integrated Brier Score for each event while training on the whole dataset except for the643

Random Survival Forests we trained with 100k data points and Fine and Gray with 10k data points644

because the last two methods could not handle such an amount of data. In Table S2, we compare our645

method with the other models. We see that our model MultiIncidence outperforms the other methods.646

Furthermore, figure 3 shows that the models with the best average IBS are also the fastest to train.647

Cζ-index The C-index measures whether the ranking of the risk of the different samples is in648

agreement with the order of the times in which the event of interest happens(Harrell et al., 1982). It649

is originally a metric for survival settings but is often adapted to competing risks settings where it650

is applied independently to each event (Uno et al., 2011). In such settings, it is biased and does not651

control for the probabilities of the events. However, as it is a popular metric, we have included it in652

our experiments.653

We give tables below for the Cζ-index toward time for the three events S3. At a fixed time horizon ζ,654

we compute the Cζ-index for each class (corresponding to the ROC-AUC where we handled censored655

observations). The time horizons ζ are selected based on the any-event distribution, representing656

quantiles, indicating that at the time corresponding to 0.25, 25% of events have already occurred.657

These results differ from those in the SurvTRACE paper (Wang & Sun, 2022) for two reasons: 1)658

The available code online only implements one of their losses, 2) they treated the SEER dataset with659

Figure S2: Fitting time
vs number of features
Time to fit 10,000 sam-
ples depending on the
number of features.
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Figure S3: Integrated
Brier Score vs Censor-
ing Rate Integrated Brier
Score for the synthetic
dataset with 10,000
training points when we
vary the censoring rate.
Shaded areas represent
the standard deviation
across the different seeds.
We used the Oracle
censoring distribution to
compute the weights
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Figure S4: Brier Score
in time Evolution of the
Brier Score for the syn-
thetic dataset I.2 with
20,000 training points
with 50% of censoring.
The weights are com-
puted with the Oracle
censoring distribution.
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Figure S5: Fit time for competing risks models. We have measured the time to fit for each of them
depending on the number of training points and the number of features.

two competing risks, and any other event was classified as censored, instead of collapsing them in a660

third competing event.661

G Additional results for survival experiments662

G.1 Metrics for the survival analysis663

G.2 Trade-off between training time and performances664

Here, we provide the results of our analysis of training time with the performances on the665

SCen−log−simple of the different models for the survival analysis.666
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Figure S6: Synthetic Dataset, training time for survival Time to fit each survival method while
varying the number of samples generated.

Table S3: C-index for competing risks on the SEER Dataset (Higher is Better)

TIME-HORIZON QUANTILE 0.25 0.50 0.75

EVENT 1 2 3 1 2 3 1 2 3

AALEN JOHANSEN 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
FINE & GRAY 0.80 0.67 0.67 0.77 0.67 0.69 0.76 0.68 0.71
RANDOM SURVIVAL FORESTS 0.89 0.79 0.79 0.87 0.78 0.77 0.85 0.77 0.77
DEEPHIT 0.83 0.86 0.85 0.75 0.75 0.75 0.73 0.75 0.75
DSM 0.88 0.85 0.84 0.77 0.74 0.75 0.76 0.75 0.75
DESURV 0.83 0.82 0.81 0.72 0.70 0.71 0.74 0.73 0.73
SURVTRACE 0.88 0.78 0.77 0.86 0.76 0.75 0.84 0.76 0.75
MULTIINCIDENCE 0.88 0.79 0.77 0.85 0.72 0.71 0.81 0.66 0.62

H Implementation Details667

H.1 Reference of used implementations for baselines668

We compare MultiIncidence with several baselines and describe their main characteristics and the669

implementation used in Table S6670

Figure S7: Integrated Brier
Score vs Number of Training
Samples: SEER Integrated
Brier Score (Lower is Bet-
ter) on the SEER dataset vary-
ing the number of samples:
50,000 samples, 100,000, and
the full Training Dataset, aside
for the Fine&Gray model,
which was tractable only for
10,000 samples.
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Table S4: METABRIC: Integrated Brier Score, SCen−log−simple and c-index at 50%

MODEL C-INDEX 0.25 C-INDEX. 0.5 C-INDEX 0.75 IBS SCen−log−simple

RANDOM SURVIVAL FORESTS 0.502±0.009 0.483±0.027 0.502±0.021 0.197±0.025 2.442±0.044
DEEPHIT 0.525±0.041 0.639±0.024 0.613±0.016 0.180±0.014 2.271±0.019
PCHAZARD 0.595±0.088 0.639±0.019 0.639±0.014 0.176±0.014 2.246±0.046
HAN 0.626±0.035 0.622±0.007 0.628±0.006 0.191±0.003 2.420±0.150
DQS 0.601±0.019 0.630±0.032 0.633±0.014 0.180±0.034 2.205±0.044
SUMO NET 0.660±0.022 0.634±0.017 0.589±0.015 0.169±0.009 2.302±0.059
SURVTRACE 0.589±0.082 0.627±0.015 0.629±0.007 0.168±0.011 2.270±0.034
MULTIINCIDENCE 0.627±0.016 0.636±0.015 0.635±0.011 0.168±0.019 2.169±0.056

Table S5: SUPPORT: Integrated Brier Score and SCen−log−simple (Lower is Better)

MODEL C-INDEX 0.25 C-INDEX 0.50 C-INDEX 0.75 IBS SCen−log−simple

RANDOM SURVIVAL FORESTS 0.481±0.024 0.527±0.019 0.531±0.020 0.225±0.004 1.942±0.023
DEEPHIT 0.449±0.041 0.609±0.004 0.599±0.003 0.217±0.005 2.251±0.021
PCHAZARD 0.585±0.014 0.584±0.014 0.584±0.016 0.210±0.007 2.192±0.024
HAN 0.576±0.016 0.574±0.007 0.587±0.011 0.260±0.012 3.483±0.307
DQS 0.601±0.019 0.598±0.012 0.592±0.009 0.201±0.007 1.987±0.069
SUMO NET 0.590±0.016 0.589±0.016 0.589±0.015 0.194±0.010 1.721±0.016
SURVTRACE 0.578±0.008 0.609±0.005 0.610±0.006 0.194±0.005 1.870±0.018
MULTIINCIDENCE 0.572±0.019 0.618±0.007 0.615±0.007 0.191±0.006 1.740±0.020

Better speed/
performance

tradeoff

Figure S8: Trade-off between the performances and the training time for the SCen−log−simple for
the survival model over METABRIC and SUPPORT

H.2 GridSearch Parameters671

We ran a Randomized Search for those parameters with a budget of 30. There are no parameters to672

tune for Aalen-Johansen and Fine & Gray.673

I Distribution of the competing risks datasets674

I.1 SEER Distribution of events675

Here, we present the distributions of the event of the SEER Dataset. We can highlight that the676

censoring distribution is non-uniform in time. The change in the censoring distribution from the 48th677

month may be hard to learn for some methods.678
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Table S6: Characteristics of used baselines.

Name Competing
risks

Proper
loss Implementation Reference

SurvTRACE ✓ ours Wang & Sun (2022)

DeepHit ✓ github.com/havakv/pycox Lee et al. (2018)

DSM ✓ autonlab.github.io/DeepSur
vivalMachines

Nagpal et al. (2021)

DeSurv ✓ github.com/djdanks/DeSurv Danks & Yau (2022a)

Random Survival
Forests ✓ scikit-survival.readthedoc

s.io/ for survival, and www.rand
omforestsrc.org/ for competing
risks

Ishwaran et al. (2008,
2014)

Fine & Gray ✓ cran.r-project.org/package
=cmprsk

Fine & Gray (1999)

Aalen-Johansen ✓ ours Aalen et al. (2008)

Han et al. github.com/rajesh-lab/Inver
se-Weighted-Survival-Games

Han et al. (2021)

PCHazard github.com/havakv/pycox Kvamme & Borgan
(2019b)

SumoNet ✓ github.com/MrHuff/Sumo-Net Rindt et al. (2022)

DQS ✓ ibm.github.io/dqs/ Yanagisawa (2023)

Table S7: Randomized Search Parameters

Estimator Parameter Range

MultiIncidence Learning Rate loguniform(0.01, 0.5)
Nb of iterations J20, 200K
Maximum Depth J2, 10K
Nb of times J1, 5K

SurvTRACE Learning Rate loguniform(10−5, 10−3)
Batch Size {256, 512, 1024}
Hidden parameter {2, 3}

I.2 Example of distribution of one synthetic dataset679

Figure S10 shows an example of the distribution of the events with the censoring (dependent on the680

covariates). The parameters are chosen to fit three different behaviors possible. To illustrate this681

distribution, we can think of truck maintenance. Event 1, happening during the whole period duration,682

corresponds to the driver’s driving skills. Event 2 may correspond to a misconception of the truck,683

happening from the beginning. Event 3 will refer to the truck’s wear and tear.684
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Figure S9: SEER Dataset Distributions The censoring rate is around 63%. The prevalence of the
different events is 18% for Breast Cancer, 4.5% for Cardio Vascular events, and 10% for other events.
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Figure S10: Synthetic Dataset Distributions Duration distributions of the synthetic dataset when
censoring is dependent on X, censoring rate 69%. The events are stacked.

J Corollary: Bregman divergence685

Here, we propose another proof with a scoring rule in the form of a Bregman Divergence. A Bregman686

divergence is a form of distance, and because of that, we want to minimize the Bregman divergence.687

Definition J.1. Considering U : Rd → R strictly convex and differentiable,688

Bregman divergence DU (p, q) = U(p)− U(q)− ⟨∇U(q), p− q⟩. ≥ 0 (60)

The specific choice of l as DU does not change any computations of the expectation, so we obtain:689

ET,∆|X=x

(
Lk,ζ

(
F̂k(ζ|x), (T,∆)

))
= DU

(
0, F̂k(ζ|x)

)
(1− F ∗

k (ζ|x)) +DU

(
1, F̂k(ζ|x)

)
F ∗
k (ζ|x)

= (U(0)− U(F̂k(ζ|x)) + ⟨∇U(F̂k(ζ|x)), F̂k(ζ|x)⟩)(1− F ∗
k (ζ|x))

+ (U(1)− U(F̂k(ζ|x))− ⟨∇U(F̂k(ζ|x)), 1− F̂k(ζ|x)⟩)F ∗
k (ζ|x)

= U(1)F ∗
k (ζ|x) + U(0)(1− F ∗

k (ζ|x))− U(F̂k(ζ|x))
+ ⟨∇U(F̂k(ζ|x)), F̂k(ζ|x)− F ∗

k (ζ|x)⟩
Meanwhile, because U is strictly convex and differentiable:690

∀p, p̂, U(p) > U(p̂) + ⟨∇U(p̂), p− p̂⟩ (61)
−U(p̂) + ⟨∇U(p̂), p̂− p⟩ > −U(p) (62)
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This implies:691

ET,∆|X=x

(
Lk,ζ

(
F̂k(ζ|x), (T,∆)

))
= DU

(
0, F̂k(ζ|x)

)
(1− F ∗

k (ζ|x)) +DU

(
1, F̂k(ζ|x)

)
F ∗
k (ζ|x)

> U(1)F ∗
k (ζ|x) + U(0)(1− F ∗

k (ζ|x))− U(F ∗
k (ζ|x))

> DU (0, F ∗
k (ζ|x)) (1− F ∗

k (ζ|x)) +DU (1, F ∗
k (ζ|x))F ∗

k (ζ|x)
> ET,∆|X=x (Lk,ζ (F

∗
k (ζ|x), (T,∆)))

We obtain that, a negative Bregman Divergence leads to a strictly proper scoring rule.692

K Examples693

K.1 Brier Score694

When we define l(y, ŷ) def
= (y−ŷ)2, we obtain the censoring adjusted Brier score for the kth competing695

event as define in Eq. 14 of Kretowska (2018):696

Definition K.1.

∀ζ,∀k ∈ [1,K],

BSk(F̂k(ζ,x), δ, t, ζ,x)
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k

(
1− F̂k(ζ|xi)

)2
G∗(ti|xi)

+
1ti>ζ

(
F̂k(ζ|xi)

)2
G∗(ζ|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k

(
F̂k(ζ|xi)

)2
G∗(ti|xi)

(63)

K.2 Binary cross entropy loss697

As it is explained in Benedetti (2010), the log loss captures better the uncertainty than the mean698

squared error. So, one could also evaluate survival and competing risks models with the following699

loss.700

∀k ∈ [1,K],

lk(F̂k(ζ,x), δ, t, ζ)
def
=

1

n

n∑
i=1

1ti≤ζ,δi=k log
(
F̂k(ζ|xi)

)
G∗(ti|xi)

+
1ti≤ζ,δi ̸=0,δi ̸=k log

(
1− F̂k(ζ|xi)

)
G∗(ti|xi)

+
1ti>ζ log

(
1− F̂k(ζ|xi)

)
G∗(ζ|xi)

(64)
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