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Abstract

When data are right-censored, i.e. some outcomes are missing due to a limited
period of observation, survival analysis can compute the “time to event”. Multiple
classes of outcomes lead to a classification variant: predicting the most likely
event, known as competing risks, which has been less studied. To build a loss that
estimates outcome probabilities for such settings, we introduce a strictly proper
censoring-adjusted separable scoring rule that can be optimized on a subpart of
the data because the evaluation is made independently of observations. It enables
stochastic optimization for competing risks which we use to train gradient boosting
trees. Compared to 11 state-of-the-art models, this model, Multilncidence, performs
best in estimating the probability of outcomes in survival and competing risks. It
can predict at any time horizon and is much faster than existing alternatives.

1 Introduction

We all die at some point; some applications call for predicting not whether an event of interest will
happen or not, but when it is likely to occur: time-to-event regression. In such a setting, samples often
have unobserved outcomes, e.g. individuals that have not been followed long enough for the event
of interest to occur. Limiting the analysis to fully observed samples creates a censoring bias; valid
models use dedicated corrections for censorship: survival analysis models. These have long been
central to health (Zhu et al., 2016; Chaddad et al., 2016; Gaynor et al., 1993). Nowadays, survival
analysis is also used in diverse fields, such as predictive maintenance (Rith et al., 2018; Susto et al.,
2015), or user-engagement studies (Maystre & Russo). Survival analysis has led to many dedicated
models, such as the Kaplan & Meier (1958) estimator or the Cox (1972) proportional hazard model.

Competing risks analysis generalizes survival analysis to account for multiple events, determining
which will happen first (Susto et al., 2015; Gaynor et al., 1993). For instance, if a person with breast
cancer dies from a different cause, it is impossible to determine when they would have succumbed
to cancer, regardless of the duration of the observation period. (National Cancer Institute, 2023).
The caregiver may also want to adapt the treatment if the patient is predicted to die of a competing
event such as a heart attack sooner than from cancer. As the risks of the various events are seldom
independent—for instance, cancer and cardiovascular disease share inflammation or age risk factors
(Koene et al., 2016)—competing risks cannot be solved by running a survival model for each event
(Wolbers et al., 2009). The estimated risk of a single event of interest will be biased if competing risks
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are not included. Hence, adequate models for these risks are critical for decision-making (Ramspek
et al., 2022; Koller et al., 2012; van Walraven & McAlister, 2016).

Survival models have traditionally been developed with ad hoc adjustments for censoring. The most
common approach is to design a likelihood using the probability of censoring per unit time—i.e. the
time-derivative of the risk—which either comes with strong parametric assumptions (Cox, 1972) or ad
hoc corrections (Wang & Sun, 2022). Given that the risk, which is the probability of the outcome at a
specific time, is crucial for various applications, it can be preferable to use losses that directly control
probabilities (proper scoring rules), as developed by Graf et al. (1999); Rindt et al. (2022). However,
no metric (or loss) has been shown to control probabilities in the competing risks setting.

In application domains typical of survival analysis and competing risks —health, predictive mainte-
nance, insurance, marketing— the data are typically tabular with categorical variables, where tree-based
models shine (Grinsztajn et al., 2022). Existing survival and competing risks models do not fit well
with these requirements. In particular, the proper scoring rule introduced by Rindt et al. (2022)
requires a time derivative of the risk, typically via an auto-diff operator in a neural architecture. This
approach is challenging to adapt to tree-based algorithms. In addition, the ever-growing volume of
data calls for computationally efficient algorithms.

Contributions Here, we provide a general theoretical framework to learn a competing risks model
with a proper scoring rule. This scoring rule gives a loss easy to plug into any multiclass estimator to
create a competing risks model: giving the individual risk of each event at any horizon. We also sum
over time for model evaluation, as the resulting Integrated Scoring Rule is also proper.

An interesting property of this new loss is that it can be optimized on a subset of the training
data because the evaluation is made independently of observations. Hence, it allows stochastic
optimization, enabling computationally efficient learning. With that, we propose an algorithm called
Multilncidence, based on Stochastic Gradient Boosting Trees. We benchmark our algorithm on a
synthetic dataset with varying censoring rates, number of features, and number of training samples
to show that our method outperforms state-of-the-art methods while exhibiting faster training times.
Finally, applying our model to real-life datasets demonstrates that it outperforms other models in both
the competing risks context and basic survival analysis.

2 Related work

Survival settings  Various survival models have been developed, ranging from approaches like the
Kaplan & Meier (1958) estimator, estimating the general survival curve of a whole population, to
models that account for covariates. One of them is the Cox (1972) Proportional-Hazards Model,
a linear model of hazard: the instantaneous probability of an event, i.e. the logarithmic derivative
of outcome probabilities in time. More complex models have been adapted to the survival setting:
Support Vector Machines (Van Belle et al., 2011), survival games (Han et al., 2021) and neural
networks with DeepSurv (Katzman et al., 2018) or PCHazard (Kvamme & Borgan, 2019b). Although
the above do not control risks, more recent neural networks use adequate losses (see below): DQS
(Yanagisawa, 2023, though relying on a piecewise constant hazard), SumoNet (Rindt et al., 2022,
which requires differentiable models).

Competing risks Competing risks, with multiple outcomes, require new methods (which can
naturally adapt to the simpler survival setting). Derived from the Kaplan & Meier (1958) estimator,
the Nelson (1972)-Aalen et al. (2008) estimator is an unbiased marginal model for competing risks.
The linear Fine & Gray (1999) estimator is inspired by the Cox (1972) estimator in survival analysis
and is the most used model in clinical research. Machine-learning models have recently been adapted
to the competing risks setting, including tree-based approaches such as the Random Survival Forests
(Ishwaran et al., 2008; Kretowska, 2018; Bellot & Schaar, 2018), boosting approaches (Bellot &
van der Schaar, 2018), neural networks approaches e.g. DeepHit and Gaussian mixtures approaches
(Lee et al., 2018; Aala & van der Schaar, 2017; Danks & Yau, 2022a; Nagpal et al., 2021) and
transformers approaches with SurvTRACE (Wang & Sun, 2022) using a loss corrected to predict rare
competing events but independently forecasts all events without ensuring probabilities sum to one.
For a review of the competing setting, the reader can refer to Monterrubio-Gémez et al. (2022).



Evaluation for such models Prediction evaluation in survival or competing risks settings calls for
adapted metrics to account for right-censored points (Harrell et al., 1982), like the C-index which
adapts the Area Under the ROC curve in classification. However, the C-index only evaluates the
ranking of samples, i.e. which samples will undergo the event of interest first, and is dependent on
the censoring distribution which may bias the evaluation (Blanche et al., 2019; Rindt et al., 2022). In
fact, the score may be higher for distributions other than oracle-censoring distributions. Alternative
methods have been proposed such as the time-dependent C-index, C, (Antolini et al., 2005), which
is the same metric but computed at a given time horizon (. The C-index ranking metric has been
extended to competing risks (Uno et al., 2011) but, as in the survival setting, the C-index only
evaluates relative risks for pairs of individuals and not the absolute value of the risk for a given
individual. Other time-dependent adaptations of the ROC curve have been developed, also assessing
a discriminative power rather than risks or probabilities (Blanche et al., 2013). And yet control of the
risk is crucial to decision making (Van Calster et al., 2019). Proper scoring rules are alternatives to
overcome the limitations of existing metrics because they capture more aspects of the problem. In
addition, they can be used for both the training and evaluation of probabilistic predictive models.

Proper Scoring Rules (PSR) Scoring rules are functions of observations and a candidate proba-
bility distribution; when proper they control for the oracle probability distribution (definition 3.2).
This is important in machine learning to create losses that recover probabilities of outcomes. For
classification, where discrete events are observed rather than the probability, the Brier score and the
log loss give proper scoring rules, with relative merits (Benedetti, 2010; Merkle & Steyvers, 2013).

Graf et al. (1999) adapt the Brier score to survival analysis, with a strong independence assumption
on the censoring distribution. However, the assumption can easily be violated (Kvamme & Borgan,
2019a) which leads to bias (Rindt et al., 2022). Rindt et al. (2022) show that the likelihood of
the survival function leads to a proper scoring rule but requires obtaining the density function and
the survival function, a time-wise derivative of outcome probabilities (definition 3.1). For quantile
regression, Yanagisawa (2023) shows that the Pinball loss may lead to a proper scoring rule for
survival analysis but requires an oracle parameter. Han et al. (2021) introduces a double optimization
problem for which the stationary point is located at the true distributions.

For competing risks, Schoop et al. (2011) extend the Brier score to a proper scoring rule. However,
the Brier score does not measure the uncertainty as well as the log loss (Benedetti, 2010).

3 Problem Formulation

Notations We write oracle quantities as a* and estimates as @, vectors in bold, a, random variables
in upper case, A, observations in lower cases a, and distributions in calligraphy style .A.

3.1 Problem setting

We consider K competing events and for k& € [1, K], we denote T} € R, the event time of the
event k, depending on the covariate X € X. We also denote T* € R, T* = min (7}) and

ke[1,K]
A* € [1,K],A* = argmin(T}). We observe (X,T,A) ~ D, with T' = min(7T*, C) where
ke[1,K]
C € Ry is the censoring time, which may depend on X and A € [0, K], A = arg min(7}') where
ke[0,K]

0 denotes a censored observation. However, we are interested in the distribution of the uncensored
data (X, T*, A*) ~ D* especially in the joint distribution of 7%, A*|X = x and the marginal
distribution of 7*|X = x.

This paper aims to predict an unbiased estimate of all of the cause-specific Cumulative Incidence
functions (CIF) at any time horizon ¢ chosen based on the observations (x, ¢, 4):

Definition 3.1 (Quantities of interest).

CIF (cumulative incidence function): F*(lx) =P(T" < (X =x)
k™" CIF: Fi(¢lx) =P(T* <(NA* =KX =x)

Censoring: G*((|x) =P(C > (X =x)

Survival to any event: S*(¢|x) =P(T* > (|X =x)



Assumption 3.1 (Non informative censoring). We make the classic assumption of survival analysis
that the censoring is noninformative according to the covariates:

Vk, € [1,K], T; L C|X

Assumption 3.1 needed for most theoretical results in survival (Rindt et al., 2022; Yanagisawa,
2023; Han et al., 2021). It is key to understanding why single-event survival analysis is invalid
in the presence of competing risks: if some observations are censored due to other events sharing
unobserved risk factors with the event of interest, this assumption is violated.

3.2 CIF scoring rule

Proper Scoring Rule A scoring rule ¢ evaluates a distribution P on an observation Y and gives a
corresponding score £(P,Y). The better the score, the better the model fits the observation. For a
proper scoring rule, it corresponds to the degree to which the model can predict the oracle distribution
(more on scoring rules in Gneiting & Raftery, 2007; Ovcharov, 2018; Merkle & Steyvers, 2013).

Definition 3.2 (Proper Scoring Rule). A scoring rule ¢ is proper if
VP, Q, distributions Ey~oll(P,Y)] <Ey.ol[l(Q,Y)]

When equality is reached if and only if P = Q, the scoring rule is called strictly proper.

Proper scoring rule for the Global CIF We will denote L, a scoring rule for the global CIF at a
time horizon (.

Definition 3.3 (PSR for competing risks settings). In competing events settings, as we face censoring,
a scoring rule L for the CIF at time ¢ for an observation (X, T', A) is proper if and only if:
VC’ (X'7 T? A) ~ D7
Er ax=x[Le( (FL(¢[%); -, Fr (¢[x), S(¢[x)), (T, A) )] <

B, apx=x[Le( (FT(C[%); - Fie (C]%), S*(C[x)) , (T, A))] - (1)
/

Oracle distributions

4 A Proper Scoring Rule for Competing Risks

We prove that the negative log-likelihood re-weighted by the censoring distribution IPCW) is proper.

Definition 4.1 (Competitive Weights Negative Logl.oss). We introduce the multiclass negative
log-likelihood re-weighted with the censoring distribution. The different classes represent the loss of
all the cumulative incidence functions as well as the survival function.

def

VC7 (Xv tv 5) ~ D7 LC(( Al(qx)v ey FK(dx)a S(C|X)), (tv 5)) =
i 1y, <co=n log (Fk(dxi)) . 15 log (S(C\Xi))
i=1 k=1 G (ti[x:) fG*(QXi)

Probability of remaining at ¢ /
(1 - probability of censoring)

3

@

S|

Eqgn.2 can be seen as a standard log-loss (a.k.a cross-entropy), reweighted by appropriate sample
weights, the inverse probabilities, [IPCW (inverse probabilities of censoring weights). It can thus be
easily added to most multiclass estimators.

Lemma 4.1. Accounting for the time horizon (, the expectation of the above scoring rule can be
written as: V¢, (X, T,A) ~ D,

Erapes [L¢ (Fr(Cx), (T,4)) ] = S log (Fulcho) Fi (¢ +1og ($(¢0)) *(¢lx) 3)

k=1



Proof sketch. The weights enable moving from the observation distribution 7" to the distribution of
T*, a key ingredient to show properness. The whole proof can be found in Appendix B. O

Theorem 1 (Properness of the scoring rule). Under the assumption that the weights are well chosen,
L¢: RE+L x D — Ris a strictly proper scoring rule for the global CIF on a fixed time horizon
¢ €Ry.

Proof sketch. With the previous result, the properties of the negative log-likelihood, and the Definition
3.3, we obtain that the loss is strictly proper. The whole proof can be found in Appendix B. [

S Multilncidence Model: Gradient boosting for competing risks

While eq.2 can be used as a loss in any multiclass machine learning algorithm, we chose Gradient
Boosting trees because of their performance on tabular data (Grinsztajn et al., 2022) and their ability
to be fit via stochastic optimization. Most survival or competing risk loss cannot be used with such
tree-based models as the require time-derivates and thus smoothness.

We introduce a model, Multilncidence, predicting all of the CIF for each competing event as well as
the global survival function. Predicting these jointly easily maintains the stability of the probabilities
as outputs of classifications model sum to one and P(T* < (| X =x)+P(T* > (| X =x)=1lor

K
Z P(T* <(NA*"=kX=x)+PT">(|X=x)=1 (outputs sum to one)
k=1

kthCIF Survival Probability

With loss presented in Eq.3 we can directly predict the CIF instead of predicting the hazards function
(the derivative of the CIF) as often done —e.g. DeepHit (Lee et al., 2018) or SurvTRACE (Wang &
Sun, 2022). This allows us to drop the constant-hazard hypothesis (Yanagisawa, 2023; Kvamme &
Borgan, 2019b; Wang & Sun, 2022; Rindt et al., 2022).

Our algorithm uses two classifiers (here gradient-boosted trees), one for the censoring trained on
binary censored/non-censored labels (i.e. for time ¢, P(C' > (|X = x)), and a classifier for the
multiple events. Both of the censoring and event models are corrected with IPCW weights. To
compute these [IPCW we iterate the training using a feedback loop (in the like of boosting). We first
compute a survival censoring model. Then, with these probabilities, we initiate our Multilncidence
model. After several iterations, we apply a feedback loop to retrain our censoring model.

To model complex time dependence, time is stacked as an additional feature. At each iteration, we
sample different times for each sample and stack the different features as well as the targets to provide
more information to our algorithm. This approach is made possible by our loss which is separable.
An additional benefit is that we can predict the CIF at any time, unlike models that are optimized for
a limited number of times (such as SurvTRACE) and need to be interpolated to other times.

As Figure | shows an iteration: we compute the weights for each sample, as well as the target
according to the sampled time. A censored sample will have a weight equal to O (due to the indicator

Weighting and K4
Targets

Numerical
and

Categorical
Features ﬁ
X

Figure 1: Multilncidence Model with its Feedback Loop. After giving the input to the model,
a random time is given and the weights and the target can be computed. After one iteration, the
feedback loop trains the censoring probability — G* in eq.2.

IPCW ]P<C > C‘X)

~> estimator
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Algorithm 1 Multilncidence Algorithm - Training

Input: x,9,t
Ensure: min(¢) > 0
G < Train ncensoring iterations the censoring algorithm

for m = 1 to n;e, do >Boosting iterations
for i = 1 to ngampies do
Ci ~ U0, tmaz) >Sample a random time horizon
yi < 0; (6 < ) >Computing the target
if t; > (; then >The observation is not censored
G(Gi)
else if ¢; glgi and d; # 0 then
w; < &)
end if
X; + (x4,¢) >Stacking the time to the features
end for
¢+ (Ci)lﬁiinsampzes
H,,(X) + Train one iteration of Gradient Boost with G(¢|X = x) >Hm is the m-th tree

(51X =), (Fu(¢IX = x)1<k<k)  Hn(X)

G« Train one iteration the Censoring Feedback Loop with S(¢|X = x)
end for

functions in eq.2). For strictly positive weights, if the target is in [1, K], this will represent that the
event of interest has happened before (. Finally, a target equal to O will notify that the sample has
survived any event. We give a pseudocode of the algorithm 1.

6 Experimental study: Competing risks

6.1 Evaluation metrics for competing risks models

To evaluate the risks of the different events, we use two metrics'.

Evaluating the predicted probability We use a proper scoring rule (PSR). To avoid a form of
circularity in the evaluation, we do not use the PSR that our model optimizes but rather we extend
that used by Graf et al. (1999) and Schoop et al. (2011): we apply it to the Brier Score rather than the
log-loss (Appendix C details the formula and the formal proof that it is indeed proper). To evaluate
the model at all times, we sum it over time, giving the integrated Brier score (IBS).

Prediction accuracy in time For many applications, as in predictive maintenance or medicine, a
crucial information is: which is the first event that a subject may encounter. We use a validation metric
to check for each sample whether observed events are predicted as the most likely, at given times,
chosen as before with quantiles. E.g. for an individual that encounters event 2 at ¢, the probability of
surviving before ¢ should be the highest compared to the probabilities of encountering each event.
We also want the probability of encountering event 2 after ¢ to be the highest one. To do so, we adapt
Multi-Class accuracy to different times:

Definition 6.1 (Prediction accuracy at time (). For a fixed time horizon ¢ and denoting the survival

to any event as the index 0, define §j = argmax Fk(C |X = x), the most probable event in ¢ and
ke[0,K]

y¢ = li<¢d. We remove the censored individuals and n,,. represents the number of individuals

uncensored at (.

1

nnc

> Lo Yrmon=c @

i=1

Ace(¢) =

'We do not focus on the C-index in time, as this metric is biased (Blanche et al., 2019; Rindt et al., 2022)



6.2 Experimental settings

Synthetic Dataset We designed a synthetic dataset with linear relations between features and
targets, as well as relations with the censoring distribution of the features (details in Appendix H.2).
To create the synthetic dataset, for each sample, we draw 2n¢,¢,:s parameters from a normal law.
Then, we draw the durations from a Weibull distribution for each event from those parameters. To
determine the observation, we return the minimum duration with its associated event. Then, the
censoring event is computed with the same method.

SEER Dataset This dataset follows more than 470k breast cancer patients for up to ten years
with mortality due to various diseases as outcomes. The censoring is around 63% and Figure S9
shows the distribution of the events. Instead of Lee et al. (2018) (DeepHit) or Wang & Sun (2022)
(SurvTRACE), which consider only the two most prevalent events and censor the rest, defeating the
purpose of competing risks, we consider the SEER data set with 3 competing events, aggregating the
other events in a third class. We remove some features following Wang & Sun (2022).

Baselines We compared our approach to 7 other models. Aalen-Johansen’s estimator (Aalen et al.,
2008), Fine & Gray’s linear model (Fine & Gray, 1999), a tree-based approach with the Random
Survival Forests (RSF, Ishwaran et al., 2008), and neural networks: DeepHit (Lee et al., 2018), Deep
Survival Machines (DSM, Nagpal et al., 2021), DeSurv (Danks & Yau, 2022b) and a transformer
model with SurvTRACE (Wang & Sun, 2022). DeepHit is trained with a ranking loss: the C-index
summed with a negative log-likelihood, DSM uses a graphical method for feature encodings while
DeSurv solves Ordinal Differential Equations for continuous predictions in time. SurvTRACE is
trained for three-time horizons (based on quantiles of observed event times) and at time 0, while
Aalen-Johansen and Fine & Gray are trained for all observed event times. In contrast, our method
is trained on uniformly sampled time horizons, allowing predictions at any time. To compute the
Integrated Brier Score over time, other methods require linear interpolation of their trained times.
For times exceeding their trained times, we assume the incidence remains constant. To be fair across
models, we use the same time budget for hyper-parameter tuning (grid in Appendix S7).

6.3 Results, competing risks

Synthetic dataset Figure 2 shows the trade-off between statistical performance (IBS) and train-
ing time for each model compared. With the synthetic dataset, we can compute an oracle IBS.
MultiIncidence outperforms the other models over the IBS while being the fastest to train.

We also conduct different experiments on the synthetic dataset varying the number of training points
(Figure S1), the censoring rate (Figure S3), and the number of features (Figure S2). More experiments
on the synthetic data set can be found in the appendix E.1.

Results on SEER Dataset On the real-life dataset, we keep 30% of the data set to test the models.
Figure 3 compares models with the Integrated Brier score (with Kaplan-Meier weights of Graf et al.
(1999) due to lack of oracle). Multilncidence achieves the best score and the shortest fit time. Random
Survival Forest is not made to be used with that many samples (100k) and uses more than 50 Gb of
RAM. Multilncidence maintains its marked lead with much fewer training samples (Appendix E.2).
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Event and time-specific C-indexes are presented in table S3, but do not capture the models’ ability to
predict which event is more likely to occur at a given time horizon. This is measured by accuracy in
time in Figure 4, and Multilncidence has the best performance. The benefit grows as time increases,
meaning that it better interpolates in times.

7 Usage in Survival Analysis

7.1 Survival experiments

Real-life Datasets As our model can also handle survival analysis, we perform survival analysis on
two real-life survival datasets: SUPPORT and METABRIC, both available in the Pycox library.

METABRIC The Molecular Taxonomy of Breast Cancer International Consortium is a dataset on
gene expression with around 2k data points

SUPPORT Study to Understand Prognoses Preferences Outcomes and Risks of Treatment is a
dataset on the survival time of hospital patients with more than 8k datapoints.

Evaluation We use different metrics to evaluate our models. As above we use the Integrated Brier
Score (detailed in Appendix C), but we also add another metric from Yanagisawa (2023), called
ScCen—tog—simple (detailed in Appendix D). This last metric approximates the proper scoring metric
in Rindt et al. (2022) —and is not exactly proper, see Appendix D. It is useful because it can be used
on any model as it does not require the density of the Cumulative Incidence Function.

Baselines We compare our model with SOTA competing risks models, including SurvTRACE
(Wang & Sun, 2022), DeepHit (Lee et al., 2018) and Random Survival Forests (Ishwaran et al., 2008).
We also benchmark some SOTA survival ones: neural networks e.g. (PCHazard Kvamme & Borgan,
2019b), survival game (Han et al., 2021) and neural networks trained with a proper survival-analysis
scoring rule, e.g. SumoNet (Rindt et al., 2022), and DQS (Yanagisawa, 2023).



Table 1: Survival dataset: Integrated Brier Score and Scen—10g—simpte (Lower is Better)

DATASET ‘ SUPPORT ‘ METABRIC
MODEL ‘ IBS SCenflogfsianle ‘ IBS SCenflogfsianle
RANDOM SURVIVAL FOREST | 0.225+0.004 1.942+0.023 | 0.197+0.025 2.442+0.044
DEEPHIT 0.217+0.004 2.249+0.009 | 0.180+£0.014 2.271+0.019
HAN ET AL. (2021) 0.260+0.012 3.483+0.307 | 0.191+0.003 2.420+0.150
PCHAZARD 0.210+0.007 2.19240.024 | 0.176%0.014 2.246+0.046
HAN 0.260+0.012 3.483+0.307 | 0.191+0.003 2.42040.150
DQS 0.202+0.007 1.987+£0.069 | 0.180+0.034 2.205+0.044
SUMO NET 0.194+0.010 1.721+0.016 | 0.169+0.009 2.302+0.059
SURVTRACE 0.194+0.005 1.870+0.018 | 0.168+0.011 2.270+£0.034
MULTIINCIDENCE 0.191+0.006 1.74040.020 | 0.168+0.019 2.169+0.056
0.26 [} Model
@ Multiincidence
Figure 5: Trade-off pre- %24 § Srmee
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mances (measured by IBS, 0.20 ® Y ) tradeoff Random Survival Forests
integrated Brier score) g pehazard
function of fitting time for %% : Support
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7.2 Results in survival usage

Prediction performance For both datasets, Multilncidence achieves the best results on IBS and
tied with Sumo Net for Scen—i0g—simpie (Table 1 and Appendix F.1 for the C-index). Sumo Net uses
SCen—tog—simple as a training loss; note however that this metric is not guaranteed to be a proper
scoring rule thus it does not ensure recovering the actual risks.

Computational time Figure 5 shows the trade-off between training time and performance in
IBS, a trade-off that Multilncidence excels at, being the best model for statistical performance and
also one of the fastest. Appendix F.2 gives the same figure for the Scen—i0g—simple metric, and
Multilncidence reaches a great trade-off rivaled only by SumoNet, which has competing performance
on the Scen—1og—simple 10ss. Varying sample size from 1k to 100k on a synthetic dataset confirms
that Multilncidence and DQS are faster (less than 1min on 100k data points), Han et al., SumoNet,
and Random Survival Forests slower for large sample size, with a super-linear time complexity for
SumoNet and Random Survival Forests that makes them untractable for large data (Appendix E.1).

Discussion and Conclusion
Code reproducibility and data The code is available on GitHub as a library called hazardous.

Social impact Our contribution is not directly applied and has no immediate social impact, but we
hope that it will improve medical applications where survival analysis is central.

Limitations and further work Further work should consider removing the assumption of nonin-
formative censoring. This assumption is very common in the literature, though some recent works
have relaxed it in survival settings (Foomani et al., 2023; Zhang et al., 2023).

Conclusion For competing risks, which is a generalization of survival analysis to classify the type
of outcome, we first propose and prove a (strictly) proper scoring rule. It is a reweighted log loss that
can easily be used as a loss for machine learning: it is separable in the observations and thus suited
to stochastic solvers; it does not require time-wise derivative (unlike most survival models) and can
be used in non-differentiable models. We plug it into gradient-boosting trees, in an algorithm called



Multilncidence. Thanks to time used as a feature and its feedback loop to better estimate censoring
probabilities, Multilncidence outperforms state-of-the-art methods on a synthetic dataset as well as
real-life datasets both for competing risk (classification on time-censored data) and standard survival
(time-to-event regression with right censoring). It is also faster to train over many samples. As a loss,
it easily brings survival or competing risks to many models: scalable linear models to replace clinical
standard Fine & Gray that do not scale, or deep learning, including fine-tuning foundation models.
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A Definitions

A.1 Notations

Here we detail the notations used in the main manuscript as well as in the proofs and derivations
below.

For all symbols, we use the following conventions:

e *: Oracle

e 7. Estimation

The different variables that we use are:

Maths Symbol Domain Description

¢ Ry Time horizon

K N*  number of competing events (events of interest)

X X  random variable representing an individual
T R, random variable when the event k& will occur

C R4 random variable when the censoring will occur
T* Ry min(Ty,T5,...,T%)

T Ry min(7,C)
A* [1,K] argmin(T})

i€[1,K]

[0,K] argmin(C,T5,T5,....,TF%)

A
S S Survival function

F JF  Cumulative Incidence Function
G G Censor function

n

)

N*  number of individuals in our observation
[1,n] one observation

X; X™ individuals observed
t; R’ time-to-event/censoring observed
i [0, K] event observed, O means censoring

Table S1: Notations used

A.2 Reporting conventions
In tables, the best results are reported in bold characters, and the second best is underlined.

B Theory on our proper scoring rule: proofs and derivations

In this appendix, we give the proofs and derivations concerning the proper scoring rule that we have
introduced.

Proof the of Lemma 4.1 on the expectation of the Reweighted NLL.

Lemma 4.1. Accounting for the time horizon (, the expectation of the above scoring rule can be
written as: V¢, (X, T,A) ~ D,

Erapes [L¢ (Fr(Cx), (T,4)) ] = S log (Fulcho) Fi (¢ +1og ($(¢0)) *(¢lx) 3)

k=1
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V¢,V € [1,K], (x,t,6) ~ D

( K 14,<c.5,=k log (Fk(dxi))) . 1,5¢ log (S(C\Xi)) )

Le(P(Cho), (1,6) 2~ 3

i=1

Z G*(¢x:)

k=1 G*(ti|x:)

Derivation of the expectation

log (£i(c))

ET,A|X:x \Ijk,((ﬁk(dx)a (T7 A))|X = X] = ET,A\X:X [1T§<1A—k G+ (T|X)

) ) 1p<clr-<c-la=k
= log (Fk(C|X)) Erax=x { G*(Tx) }

= log (F(¢lx)) P(T" < (A = kX =)

And:

i log (S(¢/X = x))]
Exr,axo [Arc(S(CIX = %), (T, )X = x| = Er.aix=

1rs¢ G*((|x)

- . B 1T*>§1C*>C
= log (S(C|X = X)> B aix=x [P(C*>C|X)]
— log (g(qx = x)) P(T* > (X =x)

By summing all of the terms, we obtain:

Erapxex |Lc (F(C), (T.4))] = 3 log (F(ch), 1) PT™ < ¢, A = k) +log (S(¢X = %)) (P(T™ > ¢|X = x)
k=1
(6)

3 log (Fulcho) B (¢lx) +1og (S(ch)) S*(¢h) (D)
k=1

Finally:
K

Erapxos [Le (B¢, (7,)) | = Y tog (Fil¢lx)) F(¢lx) +log (S(¢lx) ) 8*(Clx) - ®)

k=1

O

Proof of the Theorem 1.

Theorem 1 (Properness of the scoring rule). Under the assumption that the weights are well chosen,
L : RE+L x D — R is a strictly proper scoring rule for the global CIF on a fixed time horizon
¢ e Ry

To be more explicit, we can define a new random variable Y':

Definition B.1. w

V¢, Ve =T <(NA=Ek
And:

def

VG, Yo =T > ¢
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Fi¢lx)=PIT" <(,A=kX=x)=P{Yic=1X=x) ©)

S*(¢lx) =P(T* > (X =x) =Py =1X =x) (10)

F(¢|x) represents the estimated probability for Yj, ¢ = 1, so we can rewrite: py. ¢ ER(Cx) ~
P(Yx,c = 1|X = x) Therefore:

Er,axex |Lrc(F(Cx), (T, 8))| = Eraxex[Le(ic, (7,A))] (an

K
= log (pr.¢) P(Yic = 1|X = x) + log (o,c) P(Yo,c = 0]X = x)
k=1

(12)
Thus:
K
min > 10g (pr.¢) P(Yie = 1|X = x) + log (po.c) P(Yoc = 1|X = x)
k=1
K (13)
s.t. Zﬁk =1
k=0
Pr >0
is obtained for p = p*.
L =0
Pk
K
> b =1
k=0
K
3 Pk _y
k=0 M
p=-1
= Pk = ak
O

C Study of the proper scoring rule used for evaluation

As mentioned above, the metric most used in the competing risks setting, the C-index in time, is
biased (Blanche et al., 2019; Rindt et al., 2022). To overcome this issue, which is major for any
evaluation strategy, we propose here two evaluation metrics: one re-weighting proper scoring rule,
that can be effective with any proper binary scoring rule. The second is the accuracy in time that
measures the observed event versus the most likely predicted event.

C.1 PSR for evaluation

The PSR introduced in the main paper to be the loss of our model is a global loss over all of our
predictions. The following loss is adapted to focus on a special event k to evaluate our estimations
on a specific event. In the paper, we chose to focus on the IBS, but one could use a logarithmic loss
because of its properness.
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Proper scoring rule for the k' competing event In our setting, we will denote Ly ¢, ascoring
rule for the k*" CIF at a time horizon (.

Definition C.1 (PSR for the k' cause-specific event). The scoring rule Ly, ¢ for the k" CIF at time
¢ for an observation (X, T, A) is proper if and only if:

V¢, (X, T,A) ~ D, Erapxex|Lic(Fr(C[x), (T, A))] < Egapxcex|Lic (Ff (C[x), (T, A))]
(14)

C.1.1 A Proper Scoring Rule for Competing Risks

To evaluate our model, we used the following proper scoring rule is adequate for each event. Thanks
to this proper scoring rule, we can understand the error for each event and the global error of all of
the CIF.

In the following, we prove that any given (strictly) proper scoring rule that can be used in the
multiclass setting (e.g. the Brier score, the negative log-likelihood) leads to a (strictly) proper scoring
in competing risks settings thanks to the re-weighting of the observations.

Indeed, for any (strictly) proper scoring rule ¢ : Rx {0, 1} — R, one can build a cause-specific scoring
rule function Ly ¢ : R x D — R that is also a (strictly) proper scoring rule for the cause-specific
event k'" in the fixed time horizon ¢ € R. It follows that L is (strictly) proper.

Definition C.2 (PSR with re-weighting). We define L, ¢, considering the observations (x, t,§) and
for an event k, the following scoring rule of the k*"* CIF:

V¢, Vk € [1, K], 0: Rx {0,1} > R, (x,t,8) ~ D

) wr 1 Le<esi=k K(ﬁ‘k(ﬂxi),l)
Li e (BL(Cx), (1,6) & =
k¢ (Fi(C[x), (¢,6)) n; o i)
., lisc € (Fk(dxi),o)
G (X))

Probability of remaining at ¢ _
(1 - probability of censoring)

1i<co200#k € (Fk((:\xi),O)
G*(tilx:)

(15)

The weights correspond to the Inverse Probability of Censoring Weighting (IPCW) used to re-
calibrate the observed population to align with the uncensored oracle population Robins et al. (1994).
This PSR is an extension of Graf et al. (1999) and Schoop et al. (2011) when / is the Brier Score.

Lemma C.1. Considering a proper scoring rule £ : R x {0,1}, at time horizon ¢ and for any

cause-specific risk k, the expectation of the former scoring rule can be written as:

V¢, Vk € [1,K],0: Rx {0,1} > R, (X,T,A) ~ D,

Erapxox |Lic (Fu(C), (7.2)) | = £ (Fu(¢), 1) F (¢ho+¢ (Fr(¢l),0) (1 = Fi ()
(16)
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Proof.
V¢, VE e [1,K],¢: R x{0,1} = R,(x,t,6) ~ D
) w10 Lei<caimr £(Fr(Clxi)s 1
Lic(Bilcho, (o) 2 L 50 =0 (tgm) )

i=1

Cyy  (Fi(¢lx),(6,8))

1ti>C 14 (Fk(<|xz>7 0)
G*(Clxs)
CN ke (Fr(¢1x),(,5))

1i<c5,20,6,#k £ (Fk(C\Xi% 0)
G*(tilx;)

+

7)

L, o (Fi(Clx),(t,5))

MRKMJW

Er ax=x [\Ifk,q(ﬁk(C\X)a (T,A))|X = X] =Erax=x [1T<<1Ak G (T1%)

_ r 1T* SClT*SC* 1A:k
=/ (Fk(dx)v 1) Er.ajx=x [ G (T) ]

— (Fk(g\x), 1) P(T* < ¢,A = k|X = x)

‘ (Fk«x),O)]

Erajx=x [@M (Fk(C|x)a (T7A)):| = Erajx=x |:1T§(,A;£0,A;£kG*<TX)

_ - 1T*§C1T*§C* 1A75k
=/ (Fk(qx)v O) ET,A\X:X |: G*(TlX) :|

— £ (Fu(¢x),0) P(T" < ¢, A # kX = x)

¢ (1 ~ Bu(¢lx), 0)]

ET,A|X:x Ak,C(Fk(Ca X>7 (T, A))|X = X] = ET,AIXZX [1T>C G*(C|x)

. lpesclos
= 0 (Fu(6he1.0) Erapxes Izt ]

— (Fk((\x), o) P(T* > (|X = x)

By summing all of the terms, we obtain:

Er.axex [Ling (Fr(C), (T, )] = £ (B¢, 1) P(T" < ¢, A = k)

. (18)
+ £ (Fr(¢1%),0) (P(T* < ¢, A # kX = %) + P(T* > (X = x))
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Meanwhile,

P(T*<(NA=k)=P(T">CUA#k) (19)
=P(T*>()+PA#Ek) —P(T*>CNA#E) (20)
=P(T* > +PA#kNT* > +PA#kNT <) —P(T*>(NA+#k)

2D
=P(T*>)+PA#ENT* <) (22)

So, we obtain:

Er,apxox | L (Fr(C), (7.2)) | = £ (Bu(¢0), 1) F (6o + ¢ (Fr(¢l),0) (1 = F ()
(23)
O

Proposition C.1. If¢ : Rx{0,1} — R, a chosen (strictly) proper scoring rule, then Ly, ¢ : RxD — R
is a (strictly) proper scoring rule for the cause-specific event k'" in the fixed time horizon { € R.

Proof.
Eraxex e (Ful(Cx). (T.2)) | = ¢ (B¢, 1) P(T* < ¢, A = kX = x)
A 24)
+ £ (Fe(¢x),0) (P(T* < (A # kX = x) + P(T" > (|X = x))
To be more explicit, we can define a new random variable Y':
Definition C.3.
Ve, Ve BT <¢NA=k
Fi¢lx) =PIT" <(,A=kX=x)=P{Yic=1X=x) (25)

F(C|x) represents the estimated probability for Yi.¢c = 1, so we can rewrite: Py ¢ o Fp(¢lx) ~
P(Y%,c = 1|X = x) Therefore:

Erajx=x [Lk,c(ﬁk(dx)v (T,A))| = Ep,apx=x|L,¢(Pr,¢, (T, A))] (26)
=L (Prc; 0)P(Ya e = 01X = x) + £ (Pr.c, 1) P(Y o = 1|)((27=) x)
= By [0(Pr,¢, Yi, o) [ X = X] (28)
< By, [(Pr,¢, Yi,o) | X = X] (29)
< Erax=xLkc(P(Yc =1),(T,A))] (30)
< E[Lk,¢ (Fy (C]x), (T, A))] (31

The last inequality is valid because [ is a proper scoring rule. The same computation leads to a strictly
proper scoring rule if [ is a strictly proper scoring rule.

So, we obtain that V¢, Vk € [1, K], Lg.c(Fi(C|x), (T, A)) is a proper scoring rule of Fy*(¢|x).

Theorem 2. If¢: R x {0,1} — R, a chosen (strictly) proper scoring rule, thus L : R x D — Ris
a (strictly) proper scoring rule for the global CIF at a fixed time horizon ( € R.

Proof. Straight forward thanks to the proposition and the lemma above. O
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Corollary: Proper global scoring rule to compare competing risk models The defined scoring
rule Zszl Ly, ¢ is proper on the time horizon ¢ chosen arbitrarily. To be able to compare different
models, a global measure is necessary, eg by summing over time, as introduced in Graf et al. (1999).
Here, we extend the Integrated Brier Score to other (strictly) proper scoring rules / and we prove that
the Integrated Loss (IL) is also a (strictly) proper scoring rule.
By considering:

Z ~ U0, tmaz)
with ¢,,,4, the maximum time horizon for prediction.

Definition C.4 (Integrated global PSR). With ¢ : R x {0,1} — R, a chosen scoring rule, the
cause-specific scoring rule function Ly, ¢ : R x D — R defined as above, we define the IL as

K
IL(Fl('|X)» ) FK(|X)7 (T’ A)) = Ez lz Lk,Z(Fk(Z|X)7 (Tv A)>|X = X‘| (32)
k=1
K
=Y Bz [Lus(B(ZR. (T A) X =x] (3
k=1

L (Fi(1%),(T,A))

Corollary C.1. With ¢ : R x {0,1} — R, a chosen (strictly) proper scoring rule, the cause-specific
loss function Ly, ¢ : R X D — R defined above 1L is a (strictly) proper scoring rule.

Proof. We have already proven that Ly, ¢ : R X D — R is a (strictly) proper scoring rule. Using the
monotonicity /positivity of the expectation, the result is immediate.

/\

Er,aixex 7=¢ |ILa(F(C)), (T, A)] = Ep ajxos z=¢ [La(Fu(Clx), (T, A)] G4
< Epapx=x,z=¢ [Lx(F; (¢x), (T, A))] (35)
< Ep ax=x,z=¢ 1L (F} (C[x), (T, A))] (36)

And because the expectation is non-decreasing, we have:
Eiar) [IL(FulZ1%), (T, )X = x| < E(am) [ILa(F (Z]%), (T, A) X =x]  (37)

This allows us to consider the IL as a global proper scoring rule to compare different competing risks
models. O

D The Yanagisawa (2023) scoring rule for survival

Yanagisawa (2023) introduce a metric, called Scen—iog—simple, 1S an approximation of the proper
scoring metric in Rindt et al. (2022). Indeed, the metric in Rindt et al. (2022) requires the hazard func-
tion, the time derivative of the cumulative incidence function, which is exposed only by differentiable
models —and hence with an implicit assumption on almost-everywhere smooth time dependence. To
avoid requesting this hazard function, Yanagisawa (2023) approximate it as piecewise affine. They
show that under the assumption that the “node time points”, edges of the affine, parts match an actual
piecewise-affine breakdown of the CIF, the resulting approximation is proper. They argue that with
enough node time points, the metric is a good approximation of a proper scoring rule.

Scen—1og—simple 1 defined as:

Scen—tog—simpie (F', (t,8); {Gi} o) =

B-1
-0 Z lCi<tSCz‘+1 1Og(ﬁ(<i+1) - F(Cz))
=0
B—-1 .
—(1=6) > Lecrcc,, log(l — F(Giyr))  (38)
1=0
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where B is the number of node time points®, and the {¢; f’;o are the node times points, spaced
between 0 and t,,,4, to divide the space into B equal intervals.

E Additional results for competing risk experiments

E.1 Results on synthetic dataset

Varying the number of training points shows a slow improvement of SurvTrace, but at n = 5 - 10*
Multilncidence still has the best IBS (Figure S1). Multilncidence also maintains its benefit with an
increased censoring rate (Figure S3). In terms of computation time, Multilncidence is the fastest,
but the dependence on the number of features is similar across Multilncidence, Fine & Gray, and
SurvTRACE (Figure S2).

Integrated Brier Score with a varying number of points By varying the number of training
points in our synthetic dataset, while the Oracle Integrated Brier Score is decreasing, we see in Figure
S1 that our method obtains better results than the transformer (SurvTRACE) in particular for a smaller
number of training points. The number of training points may be a huge bottleneck for medical
studies, as the number of patients may be low. We also see that, as the number of training points
increases, SurvTRACE improves. With too many points, here 20,000, the Fine & Gray model was too
long to run. We also see that the Fine & Gray model achieves approximately the same performance
as our model, as expected because we model linear relations between the targets and the features.

Computational cost vs performances To emphasize this phenomenon, we measured the time to fit
each model, while varying the number of samples and the number of features in Figure S5. We show
that for a limited number of samples, all of the methods take approximately the same amount of time
to fit while having the worst results for SurvTRACE. With a higher number of samples, our method
was faster to train than the other ones while achieving the same performance. We did not obtain the
results for the Fine & Gray model because the time to fit was higher than the given budget.

>We use B = 32, as in the experiments in Yanagisawa (2023)

20 min f-mmmmmm e oo
Fine & Gray

— SurvTRACE

Figure S2: Fitting time qg’ 2 min —— Multilncidence
vs number of features i~ ° 4
Time to fit 10,000 sam- 20s F--N ez P @ =TT L
ples depending on the o—¢
number of features.
10 20 30 40
# Features
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We show the dependence of time to fit with the number of features in Figure S2. In this figure, we
highlight that our method takes less time to fit; the increase in time to fit with the number of features
is similar among all methods. Another study of the impact of the features and the number of samples
to fit the models can be found in Appendix S8.

Censoring Scale We studied the impact of censoring on the different models. To do so, we vary
the censoring distribution to understand the effect of the learning scheme. In Figure S3, we see that
our method outperforms SurvTRACE at different censoring rates. As expected, all models get worse
as the censoring rate increases.

Brier Score in time We compared the Brier Score over time for each model, as shown in Figure
S4. The Brier Score increases over time for all models, which is expected due to the smaller number
of individuals toward the end. Additionally, the associated weights contribute significantly to errors
at later times. In this context, Multilncidence consistently outperforms every other model for each
event.

Impact of the number of features and the training samples on fit time of competing risks

E.2 Results for the SEER Dataset

Learning curves We ran the experiments while varying the number of training points. In doing so,
we measured the KM-adjusted Integrated Brier Score for each event. We also average it to have one
global metric. We see in Figure S7 that our model of the global evaluation metric is quite stable and
lower than the average Integrated Brier Score on SurvTRACE for any number of training points. We
expanded the Integrated Brier Score for each event while training on the whole dataset except for the
Random Survival Forests we trained with 100k data points and Fine and Gray with 10k data points
because the last two methods could not handle such an amount of data. In Table S2, we compare our
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Figure S5: Fit time for competing risks models. We have measured the time to fit for each of them
depending on the number of training points and the number of features.
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Figure S6: Synthetic Dataset, training time for survival Time to fit each survival method while
varying the number of samples generated.

method with the other models. We see that our model Multilncidence outperforms the other methods.
Furthermore, figure 3 shows that the models with the best average IBS are also the fastest to train.

C¢-index The C-index measures whether the ranking of the risk of the different samples is in
agreement with the order of the times in which the event of interest happens(Harrell et al., 1982). It
is originally a metric for survival settings but is often adapted to competing risks settings where it
is applied independently to each event (Uno et al., 2011). In such settings, it is biased and does not

— )
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Table S2: Integrated Brier Score for each cause-specific risk on the SEER Dataset (Lower is Better).

EVENT | 1 2 3
AALEN-JOHANSEN 0.1209 0.2832 0.0834
FINE & GRAY 0.1055 0.0281 0.0822
RANDOM SURVIVAL FORESTS | 0.0825 0.0295 0.0803
DEEPHIT 0.0931 0.0330 0.0831
DSM 0.0875 0.0310 0.0869
DESURV 0.0975 0.0327 0.0869
SURVTRACE 0.0871 0.0287 0.0800
MULTIINCIDENCE 0.0832 0.0273 0.0757

control for the probabilities of the events. However, as it is a popular metric, we have included it in
our experiments.

We give tables below for the C¢-index toward time for the three events S3. At a fixed time horizon ¢,
we compute the C¢-index for each class (corresponding to the ROC-AUC where we handled censored
observations). The time horizons ( are selected based on the any-event distribution, representing
quantiles, indicating that at the time corresponding to 0.25, 25% of events have already occurred.
These results differ from those in the SurvTRACE paper (Wang & Sun, 2022) for two reasons: /)
The available code online only implements one of their losses, 2) they treated the SEER dataset with
two competing risks, and any other event was classified as censored, instead of collapsing them in a
third competing event.

Table S3: C-index for competing risks on the SEER Dataset (Higher is Better)

TIME-HORIZON QUANTILE [ 0.25 [ 0.50 I 0.75
EVENT || 1 2 3 1 2 3] 1 2 3
AALEN JOHANSEN 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
FINE & GRAY 0.80 0.67 0.67 0.77 0.67 0.69 0.76 0.68 0.71
RANDOM SURVIVAL FORESTS 0.89 0.79 0.79 0.87 0.78 0.77 0.85 0.77 0.77
DEEPHIT 0.83 0.86 0.85 0.75 0.75 0.75 0.73 0.75 0.75
DSM 0.88 0.85 0.84 0.77 0.74 0.75 0.76 0.75 0.75
DESURV 0.83 0.82 0.81 0.72 0.70 0.71 0.74 0.73 0.73
SURVTRACE 0.88 0.78 0.77 0.86 0.76 0.75 0.84 0.76 0.75
MULTIINCIDENCE .88 0.79 0.77 0.85 0.72 0.71 0.81 0.66 0.62
F Additional results for survival experiments
F.1 Metrics for the survival analysis

Table S4: METABRIC: Integrated Brier Score, Scen—iog—simpie and c-index at 50%
MODEL \C-INDEXO.ZS C-INDEX. 0.5 C-INDEX 0.75 IBS  Scen—iog—simple
RANDOM SURVIVAL FORESTS 0.502+0.009 0.483+0.027 0.502+0.021 0.197x0.025 2.442+0.044
DEEPHIT 0.525+0.041 0.639+0.024 0.613+£0.016 0.180+0.014 2.271+0.019
PCHAZARD 0.595+0.088 0.639+0.019 0.639+0.014 0.176+0.014 2.246+0.046
HAN 0.626+0.035 0.622+0.007 0.628+0.006 0.191+0.003 2.420+0.150
DQS 0.601+0.019 0.630+0.032 0.633+0.014 0.180+0.034 2.205+0.044
SUMO NET 0.660+0.022 0.634+0.017 0.589+0.015 0.169+0.009 2.302+0.059
SURVTRACE 0.589+0.082 0.627+0.015 0.629+0.007 0.168+0.011 2.270+0.034
MULTIINCIDENCE 0.627+0.016 0.636+0.015 0.635+0.011 0.168+0.019 2.169+0.056
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Table S5: SUPPORT: Integrated Brier Score and Scen—iog—simple (Lower is Better)

MODEL | C-INDEX 0.25 C-INDEX 0.50  C-INDEX 0.75 IBS  Scen—tog—simple
RANDOM SURVIVAL FORESTS 0.481+0.024  0.527+0.019  0.531+0.020 0.225+0.004 1.942+0.023
DEEPHIT 0.449+0.041 0.609+0.004  0.599+0.003  0.217+0.005 2.251+0.021
PCHAZARD 0.585+0.014  0.584+0.014  0.584+0.016 0.210+0.007 2.192+0.024
HAN 0.576£0.016  0.574+0.007  0.587+0.011 0.260+0.012 3.483+0.307
DQS 0.601+0.019  0.598+0.012  0.592+0.009 0.201%0.007 1.987+0.069
SUMO NET 0.590+0.016 ~ 0.589+0.016  0.589+0.015 0.194+0.010 1.721+£0.016
SURVTRACE 0.578+0.008  0.609+0.005  0.610+0.006 0.194+0.005 1.870+0.018
MULTIINCIDENCE 0.572+0.019 0.618+0.007 0.615+0.007 0.191+0.006 1.740+0.020

F.2 Trade-off between training time and performances

Here, we provide the results of our analysis of training time with the performances on the

Scen—1og—simple Of the different models for the survival analysis.

3.50 o Model
3.25 @® Multiincidence
% @® SunTRACE
g 3.00 Better speed/ DeepHit
@ performance
1 2.75 tradeoff @® SumoNet
S DQs
T 2.50 @ Hanetal
§ 2.25 | 8% Random Survival Forests
uk)) X PCHazard
2.00 () Dataset
@ Support
17 e o ®  Metabric
10s 1min  2min 5min
Fit time

Figure S8: Trade-off between the performances and the training time for the Scen—iog—simpie for
the survival model over METABRIC and SUPPORT

G Implementation Details

G.1 Reference of used implementations for baselines

We compare Multilncidence with several baselines and describe their main characteristics and the
implementation used in Table S6

G.2 GridSearch Parameters

We ran a Randomized Search for those parameters with a budget of 30. There are no parameters to
tune for Aalen-Johansen and Fine & Gray.

H Distribution of the competing risks datasets

H.1 SEER Distribution of events
Here, we present the distributions of the event of the SEER Dataset. We can highlight that the

censoring distribution is non-uniform in time. The change in the censoring distribution from the 48"
month may be difficult to learn for some methods.
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Table S6: Characteristics of used baselines.

Name ‘ Cor;ilsgmg ‘ P{(())é)ser Implementation Reference
| SurvTRACE \ v \ | ours | Wang & Sun (2022) |
| DeepHit \ v \ | github.com/havakv/pycox | Lee et al. (2018) \
DSM v autonlab.github.io/DeepSur | Nagpal et al. (2021)
vivalMachines
| DeSurv \ \ | github.com/djdanks/DeSurv | Danks & Yau (2022a) |
Randgcr)riessltlsrvwal v scikit-survival.readthedoc | Ishwaran et al. (2008,
s.io/ for survival, and www.rand | 2014)
omforestsrc.org/ for competing
risks
Fine & Gray v cran.r-project.org/package | Fine & Gray (1999)
=cmprsk
| Aalen-Johansen | v \ | ours | Aalenetal. (2008) |

Han et al. github.com/rajesh-lab/Inver | Han etal. (2021)
se-Weighted-Survival-Games
PCHazard github.com/havakv/pycox Kvamme & Borgan
(2019b)
| SumoNet ‘ | v | github.com/MrHuff/Sumo-Net | Rindtetal.(2022) |
| DQS ‘ | v | ibm.github.io/dgs/ | Yanagisawa (2023) |

Table S7: Randomized Search Parameters

| Estimator | Parameter I Range
Multilncidence | Learning Rate loguni form(0.01,0.5)
Nb of iterations [20,200]
Maximum Depth [2,10]
Nb of times [1,5]
SurvTRACE Learning Rate loguni form(1075,1073)
Batch Size {256,512,1024}
Hidden parameter {2,3}

H.2 Example of distribution of one synthetic dataset

Figure S10 shows an example of the distribution of the events with the censoring (dependent on the
covariates). The parameters are chosen to fit three different behaviors possible. To illustrate this
distribution, we can think of truck maintenance. Event 1, happening during the whole period duration,
corresponds to the driver’s driving skills. Event 2 may correspond to a misconception of the truck,
happening from the beginning. Event 3 will refer to the truck’s wear and tear.
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Figure S9: SEER Dataset Distributions The censoring rate is around 63%. The prevalence of the
different events is 18% for Breast Cancer, 4.5% for Cardio Vascular events, and 10% for other events.
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Figure S10: Synthetic Dataset Distributions Duration distributions of the synthetic dataset when
censoring is dependent on X, censoring rate 69%. The events are stacked.

I Corollary: Bregman divergence

Here, we propose another proof with a scoring rule in the form of a Bregman Divergence. A Bregman
divergence is a form of distance, and because of that, we want to minimize the Bregman divergence.

Definition I.1. Considering U : R? — R strictly convex and differentiable,
Bregman divergence Dy(p,q) =U(p) —U(q) —(VU(q),p—q). >0 (39)

The specific choice of | as Dy does not change any computations of the expectation, so we obtain:
Er,aix—x (Lic (Fr(Cx). (T, A)) ) = Dy (0, F(¢lx)) (1 = F (<) + Do (1, Ful¢lx) ) Fi (¢)
= (U(0) - (Fk(CIX)) + (VU (F3(Cx)), Fr(C)) (1 = Fi (¢]x))
+(U(1) = U(E(Cx)) = (VU (ER(¢]x)), 1= F(C))) F (¢f)
= U()E; (¢x) + U(0)(1 = F (¢]x)) = U(Fx(¢]x))
+ (VU (E(¢]x), Fu(Clx) = F (¢[x))

Meanwhile, because U is strictly convex and differentiable:
=U(p) +(VU(®),p—p) > -U(p) (41
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This implies:

Er,aix=x (L (Fr(Cx). (T 4) ) ) = Do (0. F1(¢)) (1 = F (¢) + Do (1, F(¢l) ) Fi (¢)
> U)F (Clx) + U(0)(1 = F (¢x)) = U(F; (¢l))
> Dy (0, F; (¢x) (1 = F(Cx)) + Du (1, F (¢x)) F (¢[x)
> Erax=x (Li¢ (F (¢x), (T, A)))

We obtain that, a negative Bregman Divergence leads to a strictly proper scoring rule.

J Examples

J.1 Brier Score

When we define Iy, §) £ (y—7)2, we obtain the censoring adjusted Brier score for the k" competing
event as define in Eq. 14 of Kretowska (2018):

Definition J.1.
V¢, Vk € [1, K],
BS.(F ot wr 1 o= T<Cai=r (1 - pk(dxi)f s (ﬁk(dxi))z
k( k((vx)a ) agvx) - ﬁz G*(tz‘xl) + G*(C|Xz)

i=1

N 2
14 <¢.5,#0,6:#k (Fk(<|xi))

* G (t:]x,)

(42)

J.2 Binary cross entropy loss

As it is explained in Benedetti (2010), the log loss captures better the uncertainty than the mean
squared error. So, one could also evaluate survival and competing risks models with the following
loss.

Wk € [1, K],
n 1y <c6.—k log [ F1(C|x; 1. <c 520521 log (1 — Fy(Clx;
A w 1 t<C0i=k g( g 1)) £<C,5:5£0,6: %k g( k(| z))
1k(Fk(Cax)757ta<) - ﬁ ; G*(ti‘Xi) + G*(ti|Xi)
1;,5¢log (1 - Fk(dxi))
43)
G*(Clxi)
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