
HAL Id: hal-04617647
https://hal.science/hal-04617647

Preprint submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highly efficient interaction of a tubular-lattice
hollow-core fiber and flexural acoustic waves: design,

characterization and analysis
Ricardo E da Silva, Jonas H Osório, Gabriel L Rodrigues, David J Webb,
Frédéric Gérôme, Fetah Benabid, Cristiano M B Cordeiro, Marcos A. R.

Franco

To cite this version:
Ricardo E da Silva, Jonas H Osório, Gabriel L Rodrigues, David J Webb, Frédéric Gérôme, et al..
Highly efficient interaction of a tubular-lattice hollow-core fiber and flexural acoustic waves: design,
characterization and analysis. 2024. �hal-04617647�

https://hal.science/hal-04617647
https://hal.archives-ouvertes.fr


  1 

 

 

Highly efficient interaction of a tubular-lattice 

hollow-core fiber and flexural acoustic waves: 

design, characterization and analysis 
 

Ricardo E. da Silva, Jonas H. Osório, Gabriel L. Rodrigues, David J. Webb, Frédéric Gérôme, Fetah Benabid, 

Cristiano M. B. Cordeiro and Marcos A. R. Franco 

 The modulation efficiency of a tubular-lattice hollow-core fiber 

(HCF) by means of flexural acoustic waves is investigated in 

detail for the first time. The main acousto-optic properties of the 

HCF are evaluated employing 2D and 3D models based on the 

finite element method. The induced coupling of the fundamental 

and first higher-order modes is simulated in the wavelength 

range from 743 to 1355 nm. Significant acoustic (amplitude, 

period, strain, energy) and optical parameters (effective index, 

beat length, birefringence, coupling coefficient) are analyzed. The 

simulations are compared to experimental results, indicating 

higher modulation performance in HCFs compared to standard 

optical fibers. In addition, useful insights into the design and 

fabrication of all-fiber acousto-optic devices based on HCFs are 

provided, enabling potential application in tunable spectral 

filters and mode-locked fiber lasers. 

 
Keywords— Acousto-optic devices, flexural acoustic waves, 

tubular-lattice hollow-core fiber, 2D/3D finite element method.  

I. INTRODUCTION 

ACOUSTO-OPTIC modulation of optical fibers has attracted 

considerable attention in the last years, enabling remarkable 

applications in tunable spectral filters, fiber sensors, Q-

switched and mode-locked fiber lasers [1], [2], [3], [4], [5].  

The all-fiber acousto-optic modulators (AOMs) usually 

provide electrical tuning and easy integration with the current 

fiber optic components and devices. Additionally, AOMs can 

be fabricated employing a few components, such as a 

piezoelectric transducer (PZT), an acoustic horn, and a 

segment of optical fiber. In general, the fiber’s spectral and 

power properties are tuned by the frequency and amplitude of 

the electrical signal applied to the PZT. Thus, flexural acoustic 

waves have been extensively investigated to couple the power 

of propagating optical modes in several kinds of optical fibers, 

such as single-mode and few-mode fibers [2], [3], fibers to 

 
This work was supported by the grants 2022/10584-9, São Paulo Research 

Foundation (FAPESP), 310650/2020-8, 309989/2021-3 and 305024/2023-0, 

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), 

and RED-00046-23, Minas Gerais Research Foundation (FAPEMIG). 
R. E. da Silva and M. A.R. Franco are with Institute for Advanced Studies 

(IEAv), São José dos Campos, 12228-001, Brazil.  

J. H. Osório, G. L. Rodrigues and C. M. B. Cordeiro are with the Institute 
of Physics Gleb Wataghin, University of Campinas (UNICAMP), Campinas, 

13083-859, Brazil. J. H. Osório is also with the Department of Physics, 

Federal University of Lavras (UFLA), Lavras, 37200-900, Brazil.  
D. J. Webb is with the Aston Institute of Photonic Technologies (AIPT), 

Aston University, Birmingham, B4 7ET, UK. R. E. da Silva is also a visiting 

fellow at AIPT, Aston University ( r.da-silva@aston.ac.uk). 
F. Gérôme and F. Benabid are with the GPPMM Group, XLIM Institute, 

UMR CNRS 7252, University of Limoges, Limoges, 87060, France.  

compensate dispersion [6], [7], [8],  photonic crystal fibers [9],  
and hollow-core fibers [1], [10], [11]. The resulting spectral 

filters usually provide significant broad wavelength tuning 

ranges (18 – 1000 nm) and bandwidths (1 – 20 nm) [1], [3], 
[7], [9], [11], employing devices with relatively short 

switching times (200 µs). 

In this context, standing acoustic waves are suitable for 

mode-locked pulsed fiber lasers [4], [12]. The acoustic waves 

modulate the amplitude of the transmitted optical power with a 

repetition rate of twice the acoustic frequency. Besides, the 

modulated bandwidth defines the number of locked axial 

modes to generate the optical pulses. Consequently, devices 

modulating broad spectral bands might effectively use the gain 

bands of the active media commonly employed in fiber lasers, 

generating short pulse widths with high peak powers. The use 

of short fiber lengths in AOMs is therefore suitable to increase 

the modulated bandwidth, contributing to shortening the laser 

pulse width [12].  

In standard optical fibers, the acoustic energy is mostly 

distributed over the fiber cladding reducing the overlap with 

the optical modes in the fiber core. AOMs using fibers with 

reduced diameters, long fiber lengths, and high voltages have 

therefore been employed to enhance the acousto-optic 

interaction [2], [3], [4], [5], [6], [7], [8], [13], [14]. In 

particular, cladding reduction using etching or tapering 

techniques increases the acoustic amplitude and field overlap 

between the coupled modes in the fiber cross-section [13], 

[14]. However, relevant reduced diameters might change the 

fiber’s original modal properties and transmission spectrum. 

For example, standard single-mode fibers (SMFs) can become 

effectively multimode when tapered to selected diameter 

values [14], which might expose the guided cladding modes to 

external contaminants on the fiber surface. Furthermore, the 

etched or tapered fiber becomes fragile and susceptible to 

unsuitable deformations, macro-bends, mechanical instability, 

or fracture. Overall, the use of high voltages and long fiber 

lengths might increase the consumed energy and switching 

time response of the devices. 

We have recently experimentally demonstrated a highly 

efficient acousto-optic spectral filter based on a tubular-lattice 

hollow-core fiber (TL-HCF) [1]. These HCFs provide a large 

protective silica jacket for the guided optical modes, 

minimizing the effect of the undesired perturbations from the 

environment. Moreover, HCFs usually offer low losses over 

the wavelength range of important active media, such as 

erbium and ytterbium, providing low nonlinearity and high 
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damage threshold for applications in high-power fiber 

amplifiers and lasers [15]. 

Here, we study in detail how the HCF’s geometry improves 

the modulation efficiency and performance compared to 

SMFs. Additionally, we demonstrate a step-by-step guideline 

to design and characterize the coupling strength and spectral 

tuning response of practical devices based on the 2D/3D finite 

element method (FEM). This study is organized as follows: 

Section II introduces the analytical formulation employed to 

calculate selected acoustic and optical parameters of the HCF. 

Section III-A describes the modeling of a real HCF of 200 µm 

diameter (HCF-200) based on FEM. An ideal 125 µm HCF 

(HCF-125) and an SMF are also simulated for comparison. 

The results show the effect of the HCF’s tubes and air core on 

the acoustic amplitude, strain, and energy. Section III-B 

evaluates the influence of the HCF’s structure on the optical 

modal overlap and modulation strength in the HCF-125 and 

SMF. A study about the acoustically induced birefringence in 

the HCF-200 is demonstrated in Section III-C, by comparing 

the simulations with experimental evidence. Overall, the 

HCF’s acousto-optic modulation performance and efficiency 

are discussed, and the main properties significant for practical 

fiber-based devices are analyzed.  

II.  THEORETICAL BACKGROUND 

Flexural acoustic waves induce a longitudinal strain along an 

optical fiber, changing the refractive index over the fiber 

cross-section. This index variation is based on two 

mechanisms of opposite contributions: first, the induced strain 

alters the refractive index by the elasto-optic effect; second, 

the fiber’s geometric deformation changes the optical path 

length of the guided modes [13], [16]. Fig. 1(a) illustrates the 

longitudinal strain in a TL-HCF induced by a flexural acoustic 

wave of amplitude A, period Λ, and frequency f. The positive 

strain (in red) reduces the material refractive index while 

increasing the optical path length. The geometric effect 

effectively dominates, causing a net change in the refractive 

index according to [16], 

 Δ𝑛(𝑥, 𝑦, 𝑧, 𝑡) = 𝑛0(1 + 𝜒)𝑆𝑧(𝑥, 𝑦, 𝑧, 𝑡), (1) 

which can also be written as, 

 Δ𝑛(𝑥, 𝑦, 𝑧, 𝑡) = Δ𝑛(𝑥, 𝑦)𝑐𝑜𝑠(𝜔𝑡 − Ω𝑧), (2) 

where, 

 Δ𝑛(𝑥, 𝑦) = 𝑛0(1 + 𝜒)Ω2𝐴𝑦, (3) 

Sz is the longitudinal strain along the fiber, n0 is the refractive 

index of the unbent fiber, χ = -0.22 is the elasto-optic 

coefficient of silica, ω = 2πf is the angular frequency, and 

Ω = 2π/Λ is the acoustic wavenumber. For an acoustic wave 

vibrating in the yz plane, the modulated refractive index over 

the fiber cross-section caused by the induced bend is 

approximated as [17], 

 𝑛(𝑥, 𝑦) = (𝑛0
2 + 𝐴(1 + 𝜒) (

2𝜋

Λ
)

2

2𝑦)

1
2

. (4) 

The modulation of the refractive index effectively couples 

power between the fundamental mode LP01 and a higher-order 

mode LP1m at the resonant wavelength λC, when the optical 

beat length [3], [6], [10],  

 𝐿B =
𝜆C

𝑛01 − 𝑛1m

, (5) 

matches with the acoustic period [16], 

 Λ = (
𝜋𝑟𝑐𝑒𝑥𝑡

𝑓
)

1
2

,  (6) 

where, r is the fiber radius and, cext = 5740 m/s is the silica’s 

extensional acoustic velocity [18]. The phase-matching 

condition derived from (5) and (6) as, LB = Λ, enables the 

acoustically induced tuning of λC as, 

 𝜆C = (𝑛01 − 𝑛1m)Λ, (7) 

where, n01 and n1m are respectively the effective refractive 

indices of the modes LP01 and LP1m. The modulation depth of 

the resonance centered at λC depends on the coupling 

coefficient as [16], 

 𝑘C =
𝜋

𝜆
∫ 𝜓01(𝑥, 𝑦)

𝐴𝑟𝑒𝑎

𝛥𝑛(𝑥, 𝑦)𝜓1𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (8) 

where, ψ01 and ψ1m, are the normalized electric field 

distribution of the modes LP01 and LP1m over the fiber cross-

section. Thus, the modulation depth and resonant wavelength 

λC are properly tuned by changing the acoustic amplitude A in 

(3) and frequency f in (6).  

 In certain cases, flexural acoustic waves may cause 

birefringence in the guided optical modes [2], [7]. Fig. 1(b) 

illustrates the acoustically induced refractive index change, 

Δn(x,y), over an HCF’s cross section of radius r (Δn shares the 

same color scale of Sz). Note that the radial variation of Δn(y) 

in the y-direction differs than Δn(x) in the x-direction. The 

resulting modal birefringence, B = n11
Odd - n11

Even, splits the 

effective index of LP11 in the modes LP11
Odd and LP11

Even, as 

illustrated in Fig. 1. Previous studies in other fibers have 

shown that this modal birefringence follows a complex 

function of the acoustic amplitude A, which might be tuned to 

modulate only one or both even and odd LP11modes [2]. 

The integrated time-averaged kinetic energy density over the 

fiber cross-section depends on the displacement components u 

along the fiber [19], 

Fig. 1.  (a) Illustration of a tubular lattice hollow-core optical fiber (TL-HCF) 

modulated by a flexural acoustic wave of period Λ and amplitude A. The 

periodic bends induce a longitudinal strain Sz along the fiber, coupling power 

between the fundamental mode LP01 and the higher-order mode LP11 (the 

power distribution of the modes is shown in the fiber core). (b) The induced 

non-uniform variation of the refractive index Δn(x,y) over the HCF cross 

section causes modal birefringence splitting LP11 in the odd and even modes.   
 

A

Λ
LP01

strain Sz

flexural acoustic wave

TL-HCF

max. (+)min. (-)

LP11
Even

LP11
Odd

(a)

(b)

Δn(x,y)

y

x
r

B = n11
Odd - n11

Even

birefrigence

refractive index change



  3 

 

 

    
𝐸𝑘  = 2𝜋2𝜌𝑐𝑡 (

𝑓𝐷

𝑐𝑡

)
2

∫ ∫ (|𝑢𝑟|2 + |𝑢𝜑|
2

1

0

2𝜋

0

+ |𝑢𝑧|2) 𝑟𝑛𝑑 𝜑𝑑𝑟𝑛 , 

(9) 

where, D is the fiber diameter, ct = 3764 m/s is the transversal 

acoustic velocity and, ρ is the silica density. rn = r/D and φ, 

indicate, respectively, the energy variation along the radial r 

and azimuthal φ coordinates in the fiber cross-section.  

The acoustic and optical parameters described in (1)-(9) 

provide a useful tool to characterize the spectral tuning 

response and modulation efficiency of an optical fiber. A 

selection of these parameters has been numerically computed 

for the HCFs and SMF evaluated in this study. The modeling 

method, results and discussion are described in the next 

sections. 

III.  RESULTS AND DISCUSSION 

A. Influence of the HCF’s Geometry on the Acoustic 

Performance and Efficiency  

We have modeled the cross-section of the actual HCF-200 as 

shown in Fig. 2(a). The fiber is composed of 8 tubes of 

10.7 µm diameter and 300 nm thickness, forming a 30 µm 

diameter air core [1]. The HCF is modeled employing the 

package COMSOL Multiphysics based on the FEM. The fiber 

cross-section is designed in the xy plane, as illustrated in 

Fig. 2(b). The resulting 2D component is extruded, generating 

a 7.7 cm long 3D geometry (Fig. 2(c)). The fiber’s material 

parameters are namely the silica density ρ = 2200 kg/m3, 

Young’s modulus Y = 72.5 GPa, and Poisson’s ratio υ = 0.17 

[18]. A sinusoidal force with constant amplitude of 

F = 1.11×10-1 N is transversally applied at the fiber end (y-

direction) from f = 190 to 580 kHz (10 kHz step). F induces an 

acoustic amplitude of about A = 5 µm as estimated for the 

experimental resonance at f = 196.7 kHz [1]. The other fiber 

end is fixed. This setup mimics the transversal excitation by 

the acoustic horn employed in the experiments [1]. 

Additionally, the HCF-125 and the SMF are modeled by using 

the same methods and parameters to compare the effect of the 

HCF’s geometry on the acousto-optic modulation efficiency 

and performance (considering, for the SMF, an 8.2 µm core 

diameter, 0.36% core-cladding index contrast). The 

displacements, longitudinal strain and kinetic energy are 

computed along the fibers for the considered frequency range.  

Fig. 2(d) shows an arbitrary flexural acoustic wave in the 

HCF-200 indicating the maxima and minima (nodes) 

displacements. Note that the displacements are uniform over 

the fiber cross-section at every position along the fiber length. 

The acoustic peak amplitude A and period Λ are estimated 

from the displacement component in the y-direction. In turn, 

Fig. 2(e) shows the longitudinal strain Sz in the fiber cross-

section and along the length due to the bending induced by the 

acoustic modulation (red – positive strain, blue – negative 

strain). In addition, the kinetic energy is integrated along the 

whole 3D fiber and in the tubes to estimate the effective 

energy fraction consumed by the optical modulation. The Sz 

modulus is further averaged along the HCF tubes at each 

frequency step. The HCF’s acoustic resonances change the 

strain Sz with frequency, consequently changing the refractive 

index. Indeed, the silica tubes are the only region of the HCF 

microstructure that effectively modulates the optical modes in 

the air core.  

Fig. 3 shows plots of the 3D flexural acoustic waves relevant 

parameters corresponding to the HCF-200 (in green), HCF-

125 (in red), and the SMF (in blue) from f = 190 to 580 kHz. 

Fig. 3(a) shows that the HCF-200 resonances have lower 

acoustic amplitudes compared to the other fibers due to the 

lager fiber diameter (which might work as a filter at certain 

frequencies reducing the resonances’ number). The SMF has a 

high amplitude resonance nearly f = 460 kHz. The HCF-125 

shows similar resonances due to the same fiber diameter but 

with acoustic amplitudes up to 38x higher than that of the 

SMF. This is due to the HCF’s air regions that reduce the 

silica content in the fiber cross-section. The amplitude A 

averaged over the considered frequency range is shown for 

both fibers in Table I. 

Fig. 2. Modeling the acousto-optic properties of the HCF with the finite 

element method (FEM): (a) The HCF cross-section is modeled as a (b) 2D 

geometry setting the silica and air regions. The inset in (b) shows the perfectly 
matched layer (PML) used to reduce the silica domain to compute the optical 

properties only. (c) The whole 2D geometry is further extruded to generate a 

3D fiber model. (d) 3D FEM simulation of a flexural acoustic wave in the 
HCF indicating the maxima and minima displacements, and (e) the 

longitudinal strain distribution in the fiber cross-section and along the length.  
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Fig. 3(b) shows the spatially averaged longitudinal strain 

induced in the HCFs’ tubes and SMF’s core. Table I shows the 

corresponding values averaged over the considered frequency 

range. The strain in HCF-125 tubes is about 9x higher than 

that in HCF-200 and 2.5x larger than in the SMF core. Table I 

also displays the strain over the full fiber cross-section (total) 

and the fraction of the total strain in the HCFs’ tubes and in 

the SMF core. We note that the strain fraction in the HCFs’ 

tubes is up to 6.5x larger than in the SMF’s core. This is 

because the strain increases from zero at the cross-section 

center to a maximum at the fiber surface – see Fig. 2(e). 

Consequently, the tubes forming the large HCF core located 

far from the center are under larger strains compared to the 

corresponding value in the small SMF core. It contributes to 

an increased modulation of the refractive index in the HCFs 

with respect to the SMF. 

The total kinetic energy integrated along the fibers is shown 

in Fig. 3(c). We note that the HCF-200 carries lower average 

acoustic energy compared to the other fibers due to the smaller 

displacements along the fiber (Fig. 3(a)). Additionally, the 

kinetic energy values corresponding to the HCF-125 are 

significantly 74x lower than those related to the SMF, due to 

the absence of silica in the air regions. The energy fraction in 

the HCF-125 tubes is 185x larger than in the SMF core, 

suggesting that the reduced HCF’s diameter contributes to 

concentrating the input energy in the tubes, the effective silica 

region for optical modulation. 

 

B. Influence of the HCF’s Geometry on the Optical Modal 

Overlap and Acousto-Optic Modulation Strength 

The effect of the HCF-125 structure on the modal properties is 

evaluated and compared to the SMF (HCF-200 is not 

considered to neglect the influence of the fiber diameter). The 

2D geometry employed to compute the optical properties of 

LP01 and LP11 modes is similar as previously seen in Fig. 2(b). 

The refractive index of the air-filled regions is set to n0 = 1 

and that of silica is calculated by the Sellmeier equation. The 

modes’ effective refractive indices, n01 and n11, and electric 

field distributions, ψ01 and ψ11, are computed (the fields ψ are 

polarized in the y-direction and the total energy density Eψ is 

integrated over the fibers cross-sections). The fields ψ are then 

normalized to have the same energy of ETψ = 1 µJ, as, 

ψN1 = ψ(ETψ/Eψ)½,  and additionally normalized to the norm, 

ψN2  = ψN1/(ʃψN1.ψN1
*)½, as described in [17]. The acoustically 

modulated index change Δn(x,y) in (3) is computed considering 

the acoustic amplitude A = 1 µm and period Λ = 2.4 mm for 

both fibers. The coupling coefficient kC is further computed 

using (8). The spectral-frequency response of the resonances is 

calculated using the computed effective indices, beatlengths and 

acoustic periods in (5), (6) and (7).   

Fig. 4 evaluates the modal overlap, coupling coefficient kC and 

spectral tuning of the HCF-125 and SMF at λC = 850, 1060, 

1310, and 1550 nm. Note that kC in (8) depends on the field 

overlap between the coupled optical modes and the acoustically 

modulated change of the refractive index Δn(x,y). Fig. 4(a) 

shows the modulus of the electric fields |ψ| of the modes LP01 

and LP11 calculated along the SMF radius r in the positive y-

direction. The modal fields and Δn(r) are normalized to their 

maxima values. Δn(r) is modulated by the same acoustic wave 

for both SMF and HCF. Note in Fig. 4(a) that the SMF’s modal 

fields highly overlap in the fiber core, decaying abruptly with r 

in the cladding (LP01 field decays nearly to zero nulling the 

overlap). In contrast, the modulated index Δn(r) is highly 

concentrated in the fiber cladding achieving a maximum at the 

outer surface. Although it is not shown here, the SMS supports 

also other higher-order modes at wavelengths lower than 

1260 nm [20], which can also be evaluated employing the 

proposed numeric method. LP11 becomes a cladding mode with 

increasing λC significantly reducing the modal overlap and the 

coupling coefficient kC at λC = 1550 nm, as shown in Fig. 4(c). 

Alternatively, the HCF provides higher modes’ confinement in 

the fiber core, keeping a stronger field overlap for the 

Fig. 3. 3D FEM simulation on the acoustic parameters for the HCF-200, HCF-125 and SMF for the frequency range from f = 190 to 580 kHz: (a) acoustic wave 

peak amplitude A, (b) average axial strain along the HCFs’ tubes and in the SMF’s core and, (c) integrated total kinetic energy Ek along the HCFs and SMF. 
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TABLE I 

3D FEM SIMULATED ACOUSTIC PARAMETERS  

Acoustic parameters HCF-200 HCF-125 SMF 

 total tubes total tubes total core 

Amplitude A (µm) 1.34  7.3 4.8 

Axial strain Sz (µ) 263 70 1440 604 3850 250 

Sz fraction (%)  -  27  - 42 -  6.5 

Kinetic energy Ek (µJ) 8.4  0.02 108 0.8 7960 34 

Ek fraction (%)  - 0.24  - 0.74 -  0.004 

   The parameter values were averaged over the considered acoustic 
frequency range. A is constant over the fiber cross section. Sz is spatially 

averaged along the whole fiber length (total), HCFs tubes and SMF core. 

Ek is spatially integrated along the whole fiber length (total), HCFs tubes 
and SMF core. 
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considered spectral range. In addition, the large air core 

increases the modal overlap with the modulated Δn(r) 

(considering mainly the change of optical path length due to the 

fiber curvature), as shown in Fig. 4(b). Consequently, the HCF 

provides a higher coupling coefficient kC compared to the SMF 

(Fig. 4(c)). The contribution of the modal overlap is analogous 

to the HCF-200 as the reduction of the silica jacket does not 

relevantly change the fields of the core modes, even for 

diameters smaller than 125 µm.  

The spectral tuning of the considered λC range for the HCF-

125 and SMF is shown in Fig. 4(d).  As expected, the frequency 

response of the SMF is not linear for the overall spectrum. This 

is because the SMF supports modes with a non-monotonic 

variation of the modal beatlength in the studied wavelength 

range [9], [13]. Thus, coupling to other higher-order modes is 

also expected [4], [13], [14]. In contrast, the HCF provides an 

almost linear response favoring coupling to the LP11 mode in 

the HCF’s large transmission window (the phase-matching to 

other higher-order modes is not satisfied because of the larger 

difference in their effective refractive indices). In addition, the 

tuning slope of 1700 nm/MHz in the HCF is significantly higher 

than for the SMF (-126 nm/MHz for the descending curve in 

Fig. 4(d)).  

 

C. Study of the Acoustically Induced Birefringence on the 

Spectral-Frequency Tuning of the HCF 

The HCF-200 is modeled by using the 2D geometry, method 

and materials previously described in Section III-B. In 

addition, a perfectly matched layer (PML) of 5 µm in 

thickness is set around the fiber tubes to provide an 

electromagnetic absorbing boundary condition [21], as shown 

in the inset in Fig. 2(b). The PML prevents reflections of the 

modes’ fields at the ending silica interface. It reduces the 

model’s size, decreasing the computing requirements and 

solution time. The modes’ effective refractive indices, n01 and 

n11, are computed in the wavelength range of 743 - 1355 nm. 

The acoustically induced birefringence is further investigated 

by computing the bend-induced changes in the refractive 

index over the HCF cross-section using (4) (the elasto-optic 

contribution is neglected, χ = 0, as the considered optical 

modes propagate mostly in the air). The input parameters for 

the simulations are the measured resonances’ frequencies and 

center wavelengths λC described in [1]. The acoustic amplitude 

of A0 = 5 µm is estimated from the 3D simulations and 

measured resonance at f = 196.7 kHz, which is nearly the 

second strongest PZT’s resonance as described in [18].  

The birefringence in the HCF is investigated in two cases: 

first, the acoustic amplitude is kept constant at A = A0 for the 

considered frequency and wavelength range; second, A decays 

exponentially according to A = A0e-fn (A is maximum at the 

frequency index fn = 0). The spectral-frequency tuning 

response is calculated employing the modes’ effective indices 

and acoustic periods computed respectively from the 2D and 

3D simulations. The numerical curves are further compared to 

the measured results in [1]. 
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Fig. 5.  Measured acoustically modulated spectrum of the HCF-200 indicating an 

example of the spectral tuning of the first resonance (mode LP11
Even) with increasing 

acoustic frequency. The inset shows the two modulated resonances caused by the 

induced birefringence in the fiber cross section. The notches correspond to the even and 

odd LP11 modes. 

Fig. 4.  2D FEM simulation of the radial distribution of the modulus of the electric field 

|ψ| of the fundamental mode LP01 and higher-order mode LP11 and radial distribution of 

refractive index change Δn(r) for the (a) SMF and (b) HCF-125 at λC = 850, 1060, 1310 

and 1550 nm. The modal fields are compared to the acoustically modulated Δn(r) in the 

positive y-direction. (c) Corresponding coupling coefficient kC and (d) spectral tuning 

with frequency for the HCF-125 and SMF. 
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Fig. 5 shows the measured modulated spectrum of the HCF-

200, indicating the spectral tuning of the mode LP11
even with 

increasing frequency. The inset shows two resonances caused 

by the acoustically induced birefringence. The notches 

correspond to the even and odd LP11 modes. Fig. 6(a)-(c) show 

the effective refractive index difference of LP01 and LP11 for 

the following cases: (a) no-birefringence, (b) constant acoustic 

amplitude A0 and, (c) exponentially decaying amplitude 

A = A0e-fn. Fig. 6(d)-(f) show a comparison between the 

simulated and measured spectral tuning responses. Fig. 6(d) 

indicates ideally negligible birefringence, resulting in only one 

resonance in the transmission spectrum. This case was 

employed to estimate the spectral tuning of HCFs [10], [22], 

however, it cannot predict the induced birefringence as 

indicated by the measured values in Fig. 6(d). Overall, this 

case can still be useful to predict one resonance with good 

agreement between the simulated-measured results (96 %).  

 The curves’ differences in Fig. 6(d) might be caused by 

minor variations in the HCF geometry, material, and modeling 

design that could not be predicted in the ideal 2D and 3D 

models. This difference is therefore neglected in the further 

two study cases which are intended to fit both curves at the 

first resonance at f = 196.7 kHz. Thus, only the effects of the 

acoustic amplitude A in the refractive index are evaluated. 

Fig. 6(b) shows the modes’ index variation for A0 = 5 µm, 

which is about the average amplitude of the peaks of HCF-200 

in Fig. 3(a). It simulates the case in which A does not 

considerably change at the acoustic resonances’ peaks. The 

simulated-measured values nearly agree up to 350 kHz, 

deviating their slopes at higher frequencies. Overall, the 

birefringence gradually increases due to the increasing 

refractive index with acoustic frequency (reduced period in 

(4)).  

The PZT’s effect is considered in Fig. 6(c) and 6(f). The 

PZT’s displacement amplitude is usually higher at the first 

resonance, reducing with increasing frequency [18]. This 

approach provides better agreement of simulated and 

measured results mainly at frequencies higher than 350 kHz, 

as seen in Fig. 6(f). Hence, the decreasing birefringence 

reduces the overall tuning range of the LP11
Even resonance. In 

addition, the decreasing A also limits the modulator’s 

maximum tuning range.  

Fig. 7 shows the average of the simulated values in Fig. 6(e) 

and 6(f), indicating that both cases oppositely contribute to an 

almost constant birefringence, which is observed in most 

practical devices [10], [22]. The estimated average 

birefringence is 3.7 x 10-5 inducing a 79 nm resonances’ 

separation. Overall, the study of the acoustic and optical 

properties suggests that the HCF’s geometry contributes to 

improving the acousto-optic modulation performance and 

efficiency. 
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Fig. 6. 2D/3D FEM simulation of the induced birefringence caused by flexural acoustic waves in the HCF-200 for the frequency range from f = 196 to 579 kHz 
for the cases: (a) no-birefringence, (b) constant acoustic amplitude A0 and (c) exponentially decaying amplitude A = A0e

-fn. (d)-(f) show the wavelength λC tuning 

of the resonances with increasing frequency corresponding to the cases in (a)-(c). The simulations are compared with the experimental results in [1] . 
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IV. CONCLUSION 

We have proposed a consistent methodology to numerically 

investigate the main factors that contribute to increasing the 

acousto-optic modulation performance and efficiency in TL- 

HCFs. For the best of our knowledge, this is the first detailed 

study of acousto-optics in TL-HCFs.  

For HCF and SMF with the same diameter (125 µm), the 

HCF’s acoustic amplitudes can achieve values up to 38x 

higher compared to the SMF for the same excitation source. 

Considering the effective silica regions modulating the optical 

modes, the average strain induced in the HCF’s tubes is about 

2.5x larger than in the SMF’s core. The strain fraction in the 

HCF’s tubes is 6.5x higher, employing significantly 74x lower 

total average acoustic energy compared to the SMF. This is 

because the thin cladding tubes induce higher deformation at 

regions far from the fiber axis. In addition, the silica reduction 

in the HCF’s tubes and core reinforces the strain in the tubes. 

Consequently, the deformed tubes significantly change the 

optical path length of the guided optical modes in the air core. 

Moreover, the HCF provides a stronger overlap of the coupled 

optical modes with the acoustic wave over a broad wavelength 

range (λC = 850 - 1550 nm), offering an almost linear spectral 

tuning response. Additionally, the birefringence acoustically 

induced in the HCF is numerically demonstrated. The good 

agreement between the simulated and measured results 

indicates a promising method to characterize also other 

complex nonuniform mechanical perturbations over the fiber 

cross section, which might change the properties of the guided 

optical modes.  

These acoustic and optical contributions indicate higher 

modulation performance and efficiency in TL-HCFs compared 

to the standard solid fibers. Thus, HCFs with reduced 

diameters and large cores are promising to further improve the 

modulation efficiency. In addition, the demonstrated modeling 

methods might be useful to model other specialty optical 

fibers, such as, photonic crystal fibers, microstructure optical 

fibers, or any other fiber with unusual geometries, in which 

analytical solutions are unavailable or difficult to implement. 

Thus, the FEM modeling might be applied to characterize the 

sensitivity and efficiency of several fiber-based devices, such 

as acoustic and strain fiber sensors. Further advance might 

come from investigation of HCFs using other dimensions and 

designs. In this framework, the flexibility to change the HCF 

geometry might be useful to adjust the modulated optical 

spectrum, bandwidth, and modulation depth, hence enabling 

great potential for fast all-fiber tunable filters, pulsed fiber 

lasers and fiber sensors.  
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