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B. Pascariu1,2∗, M. Samà2, P. Pellegrini1, A. D’Ariano2, J. Rodriguez1, D. Pacciarelli2

To cite this paper:
Pascariu, B., Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., & Pacciarelli, D. (2024).
Formulation of train routing selection problem for different real-time traffic management objectives.
Journal of Rail Transport Planning & Management, 31, 100460.

1



Formulation of train routing selection problem for

different real-time traffic management objectives
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Abstract

The train routing selection problem (TRSP) addresses the optimized selection of alterna-
tive routes as a preliminary step for real-time railway traffic management problem (rtRTMP).
In the TRSP, route selection relies on estimating potential delays resulting from scheduling de-
cisions. The selected routes are then exclusively applied in the rtRTMP. While prior research
established the mathematical model and solution algorithms for the TRSP, its practical appli-
cation in real-time rail traffic management remains limited. The existing TRSP model focuses
on a single objective function for the rtRTMP. However, in practice, various stakeholders may
prioritize different objectives, leading to diverse objective functions employed in the rtRTMP.
This paper extends the TRSP model by considering a range of suitable objectives for the
rtRTMP. We formulate the TRSP for each objective function and enhance the cost estimation
model to evaluate the correspondence between the TRSP and rtRTMP objective functions.
We then assess the overall effectiveness of the TRSP for the rtRTMP through an evaluation
that takes into account several configurations of the model and the rtRTMP solution approach
used. Our purpose is to enlarge the applicability of the TRSP and enhance the efficiency of
the rtRTMP for real-world systems. The paper includes an in-depth computational analysis of
two French case studies to investigate the performance of the TRSP across different rtRTMP
configurations.

Keywords: Rail Transportation, Train Routing, Real-time railway traffic management, Per-
formance evaluation

1 Introduction

Railway transport systems play a fundamental role in achieving sustainable mobility. European and
international initiatives (e.g., Shift2Rail, Europe’s Rail) strongly promote the increase of railway
market shares by encouraging railway infrastructure managers to improve service quality in terms
of capacity, reliability, and punctuality. The integration of real-time traffic management systems
with advanced technology solutions is one of the key actions to achieve these objectives.

In railway operations, trains run according to a timetable designed beforehand to meet expected
demand and ensure effective train services. The timetable defines the passing time, the arrival
time and the departure time of trains in stations, the traveling route in the network, and the
passing orders over common railway track sections [6]. To account for potential delays in real-time
operations, the timetable includes buffer times [10, 13]. However, these buffer times are usually
limited to avoid over-consuming the capacity of the network. As a result, delays are not always
fully absorbed, which can lead to longer travel times, conflicts between trains, and a decrease in
the overall efficiency and quality of service of the railway system.

In operations control centers, human dispatchers are in charge of minimizing the conflicts and
the impact of delays, typically using retiming, reordering, and rerouting actions. The problem
is known as the real-time railway traffic management problem (rtRTMP). Several models and
algorithms have been proposed in the literature to solve the rtRTMP and provide support to
dispatchers, helping them take more informed decisions [3]. Nevertheless, how to best solve the
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rtRTMP is still an open question. The rtRTMP has been proved to be NP-hard [18], with the
number of alternative routes available for each train strongly affecting the search space size [16].

Considering alternative routes helps minimize train conflicts and delay impact, ensuring that
the railway system operates as efficiently as possible [19, 35]. However, routing variables expo-
nentially increase the number of solutions to explore [16]. This in turn raises the computational
cost of finding high quality solutions [7, 24] in advanced decision support systems that rely on
mathematical optimization methods.

To reduce the computational burden and preserve the advantages of train rerouting, a strategy
that is gaining track is restricting the number of alternative routes considered in the rtRTMP. Samà
et al. [28] shows the benefit of systematically studying which subsets of routes to select for each
train, introducing in the literature a specific problem, known as the train routing selection problem
(TRSP). The TRSP represents a new research area in the railway traffic management field. Samà
et al. [28] model the TRSP, propose a procedure to estimate the cost of choosing a route in the
rtRTMP based on the impacts of the related scheduling decisions and solve the problem using a
customized Ant Colony Optimization (ACO) algorithm [11, 31], which is often able to converge
to global optimal solutions [21]. However, the algorithm struggles to find high-quality solutions
in real-time when the size of the instances increases. Pascariu et al. [22] overcome this issue by
developing a parallel ACO-TRSP algorithm to speed up and diversify the search space exploration
in the available computation time. They also improve the cost estimation procedure by including
the impact of rolling stock constraints and potential delay propagation.

This recent research on the TRSP sets up the main points for its mathematical model and the
algorithms used for its solution process, but there are still some open issues. These studies have
primarily focused on minimizing the total delay of trains at their destination as objective function
for the rtRTMP, limiting to the applicability and proven effectiveness of the TRSP. Railway traffic
management is marked by a multitude of stakeholders, including train operators, network man-
agers, and passengers, each with their distinct priorities and interests. Moreover, railway systems
exhibit substantial operational diversity. As a result, there is a wide range of objective functions
used for the rtRTMP both in the existing literature [27] and in practice. Thus, it is necessary to
evaluate if the TRSP can maintain its effectiveness when the rtRTMP addresses a broad spectrum
of objectives. Furthermore, how should the TRSP model be adjusted to the different objectives?
A study is therefore needed to harmonize the TRSP with the different priorities and operational
realities encountered in railway systems, which translates in different objectives optimized in the
rtRTMP.

Furthermore, previous studies have only tested the effectiveness of solving the TRSP to feed
one specific rtRTMP solver, RECIFE-MILP [24], which uses a mixed-integer linear programming
(MILP) formulation [23] and a truncated exact algorithm. It is important to investigate the effec-
tiveness of the TRSP application when using different rtRTMP solvers and optimization techniques,
such as heuristic-based approaches, metaheuristics, or other optimization methods, to determine
the potential of the TRSP for practical implementation in real-world railway traffic management
systems, regardless of how the rtRTMP is solved.

In this paper, we aim to generalize the use of the TRSP, regardless of which objective function
is optimized in the rtRTMP and how the problem is modeled or solved. More in-depth:

• we study how to best achieve a correspondence between the TRSP and rtRTMP from a
modeling point of view, given how varied the rtRTMP literature is in terms of objective
functions related to delay minimization. These objectives include not only minimizing the
total delay of trains at their destination, as already done, but also minimizing the total delay
both at the entry and exit points of the network, the total train travel time, the number of
delayed trains, the maximum delay at the destination, and the maximum completion time;

• we aim to broaden the applicability of the TRSP and evaluate its general effectiveness on the
rtRTMP regardless of how alternative routes are accounted for in the rtRTMP and how the
problem itself is solved. By TRSP effectiveness we mean the ability to select routes that help
an rtRTMP solver finding better quality solutions more quickly than when used on its own.
Indeed, in the literature, some approaches consider routing variables simultaneously with
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rescheduling ones [19, 34], while others define a sequential order between them, decomposing
the overall problem [7, 36].

Considering the first point, we propose TRSP formulations that reflect the different rtRTMP
objective functions taken into account in the literature and extend the cost estimation model
of Pascariu et al. [22] accordingly. This allows us to evaluate how to best achieve a correspon-
dence between the TRSP and rtRTMP objective functions in order to identify the routes that lead
to the best rtRTMP solutions. We solve the TRSP model, as formulated, through the parallel
pACO-TRSP algorithm introduced by Pascariu et al. [22]. It is important to note that each TRSP
objective function corresponds to a distinct problem formulation. To address these differences
effectively, we customize part of the algorithm to dynamically adjust its search strategy according
to the specific objective function in use. Regarding the second point, besides the model from Pel-
legrini et al. [23] solved with RECIFE-MILP [24], previously used in the considered stream of
research, we look at the decision support tools AGLIBRARY. AGLIBRARY models the problem
as an alternative graph [18], and solves the rerouting problem iteratively, using a meta-heuristic
framework where, at each step, a new promising route assignment is selected to improve the current
solution. We chose AGLIBRARY, the optimization core of ROMA [7, 9, 30], and RECIFE-MILP,
since they demonstrated their high potential in the European project ON-TIME [26]. The purpose
is not to compare the two rtRTMP approaches, but each method is used within the proper setting
(objective function) for which it is most appropriate. In particular, RECIFE-MILP is used with
cumulative objective functions, while AGLIBRARY is used with minimization of maximum values.

We conduct a comprehensive set of experiments on realistic instances of two French test cases:
the railway line around the city of Rouen and the station area of Lille Flandres. Overall, our
experiments will provide a comprehensive evaluation of the applicability and robustness of the
TRSP model in real-time railway traffic management.

The rest of the paper is structured as follows. Section 2 reviews the relevant literature on TRSP.
Section 3 provides a general description of the problem, focusing on the objective functions taken
into account for the rtRTMP and on the related problem characteristics that need to be reflected
in the TRSP. Section 4 presents the formulation of the TRSP search space, while Section 5 reports
the required extensions to take into account the different objective functions proposed. Section 6
describes the solution approach from Pascariu et al. [21] used for the TRSP, with the customization
needed for the different objective functions. Section 7 shows the computational results and their
analysis, and Section 8 summarizes the conclusions and suggests where to focus future research.

2 Literature review

The rtRTMP is a topic that has received significant research attention [3] since it belongs to the
class of NP-hard problems [18]. Its combinatorial complexity arises from the large number of
possible train routes and the interactions between trains. Specifically, as the number of available
routes grows, the number of scheduling combinations increases exponentially, enlarging the problem
size and its computational complexity.

The TRSP directly addresses this computational complexity: it selects a limited set of alter-
native routes for each train, which are then used in the rtRTMP as the only possible available
alternatives. The TRSP was only recently formalized by Samà et al. [28] by a construction graph,
together with an integer linear program and a model to estimate the costs due to route choices
in the rtRTMP, in terms of conflict occurrence and scheduling decision impacts. Moreover, they
developed an ACO algorithm [11, 31] to solve the problem. This algorithm has been shown to con-
verge to globally optimal solutions in Pascariu et al. [21]. However, it struggles to find high-quality
solutions in real-time when the size of the instances increases. Recently, the research on TRSP [22]
focused on improving the model and algorithm of Samà et al. [28] for large instances with rolling
stock re-utilization constraints. In these first studies [22, 28], the TRSP was modeled to select
routes minimizing the objective function of a state-of-the-art MILP-based solution approach [24],
i.e., the total train delay at the exit from the infrastructure.

The rigorous study of the impact and potential criteria related to limiting routing numbers, as
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conducted in the TRSP, is not frequent in the existing literature. Whereas, it is worth noting that
the rtRTMP is addressed by different methodologies in the literature. This diversity is reflected
in the plurality of models and the absence of a universally accepted objective function for the
problem [27]. To provide a comprehensive overview, Table 1 compares recent studies on the
rtRTMP based on key aspects such as type of model used, recovery measures considered, alternative
route processing, objective function, and solution algorithms. We observe from the table that only
the two mentioned studies [22, 28] apply optimized processing of alternative routes via the TRSP.
Other methods either address the computational complexity within the rtRTMP solution process
itself or limit the number of alternative routes available in the rtRTMP in a non-optimized form.

A possibility to handle rerouting variables in the rtRTMP is to consider them simultaneously
with retiming and reordering (rescheduling) variables and use an enhanced solution algorithm that
can cope with the large number of variables. Pertaining to this research branch, Pellegrini et al.
[23] uses a MILP model to minimize train exit delays, with a heuristic algorithm, specifically a real-
time boosted truncated exact algorithm [24]. The algorithm first addresses the train rescheduling
problem using timetable routes and then refines it by exploring retiming, reordering, and rerouting
variables. Meng & Zhou [19] proposes a cumulative flow variable-based model for the simultaneous
train rerouting and rescheduling problem. The model is formulated as an integer program (IP)
minimizing the total completion time of trains and is solved via a Lagrangian relaxation solu-
tion framework. Toletti et al. [34] use a resource conflict graph-based decomposition [4] and a
coordination framework to minimize the total train delays. In particular, the network is split in
sub-networks represented microscopically, and traffic in all sub-networks is coordinated consider-
ing a macroscopic infrastructure representation. The authors utilize a MILP commercial solver for
the macroscopic level and an ad-hoc column generation method for the microscopic one including
train routing variables. Lu et al. [17] use a MILP formulation to minimize the total train delay
and platform assignments. Yuan et al. [38] use a MIP formulation to improve the punctuality and
regularity in train operations, reduce the passenger waiting time, and alleviate the passenger flow
burden of platforms, where the dynamic coupling interactions among network-wide passengers,
trains, and stations are systematically considered. Zhang et al. [37] define a ILP model, based on
a space–time network, to minimize the number of abandoned passengers and the total passenger
delay when a large disruption occurs. They include the option of rerouting only the trains directly
affected by the disruption and opting for alternative routes to avoid it. To reduce the computa-
tional complexity, both Lu et al. [17], Zhang et al. [37] and Yuan et al. [38] reduce the number of
variables by decomposing the problem into smaller time horizons in which rerouting measures are
simultaneously tackled with the rescheduling ones, including fewer trains.

Other approaches handle rerouting variables by sequentially determining train routes and sched-
ules. We highlight in Table 1 the order in which the decisions are taken using the logic symbol →.
Corman et al. [7] and Samà et al. [29] use the alternative graph [18, 9] to minimize the maximum
exit train delay, and iteratively solve the train rescheduling and rerouting problems separately.
Given the rescheduling solution obtained by a truncated branch-and-bound [9], only specific trains
are selected to be rerouted by a tabu search [7] or a variable neighborhood [29] schemes, picking the
routes randomly one at a time. Based on a hybrid model mixing disjunctive and alternative graphs,
Gholami & Törnquist [14] minimize the total exit train delay via a heuristic algorithm that first
applies rerouting and then rescheduling. Similarly, in Van Thielen et al. [36], whenever a conflict is
located in a station area, first rerouting is applied based on a flexible job shop scheduling problem.
If this rerouting fails to find a zero-delay solution or if conflicts occur outside station areas, they
pursue rescheduling, focusing on variables associated with trains affected by the original timetable
perturbation not attributable to delay propagation. Caimi et al. [5] propose a model predictive
control-based solution approach for dispatching trains in complex railway stations by assigning
predetermined blocking stairways to trains as in Caimi et al. [4]. They limit the number of routes
in an offline step to the rtRTMP solution, selecting the fastest ones based on the experience of
infrastructure experts. Bettinelli et al. [2] propose an algorithm based on the repeated execution
of a greedy approach that schedules trains on a time-spaced network, considering a limited set
of predefined alternative routes for each train. In the objective function, they minimize the total
penalty given by the cost of delays or longer travel time routes. All these rtRTMP solution ap-
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Table 1: Summary of rtRTMP solution approaches. Models: mixed-integer linear programming
(MILP), mixed-integer programming (MIP), integer linear programming (ILP), integer program-
ming (IP), alternative graph (AG). Recovery measures: retiming (T), reordering (O) and rerouting
(R), simultaneous processing (+), sequential processing (→).

Paper Model
Recovery
measures

Alt. routes
processing

Objective function
(minimized)

Solution Algorithm

Pellegrini et
al. [23, 24]

MILP T+O+R No
Total exit train
delay

Commercial solver,
heuristic [24]

Samà et al.
[28], Pascariu
et al. [22]

MILP [23] T+O+R TRSP
Total exit train
delay

Commercial solver,
heuristic [24]

Meng & Zhou
[19]

IP T+O+R No
Total train
completion time

Lagrangian heuristic,
commercial solver

Toletti et al.
[34]

ILP T+O+R No Total train delay
Commercial solver,
column generation

Lu et al. [17] MILP T+O+R No
Total train delay
and platform
assignment

Commercial solver,
heuristic

Fischetti &
Monaci [12]

MILP T+O+R
Random
subset

Average train
delay

Commercial solver,
heuristic

Zhang et al.
[37]

Space-
time
network,
ILP

R+T+O No

Total passenger
delay and
abandoned
passengers

Lagrangian heuristic

Corman et al.
[7]

AG T+O → R No
Maximum exit
train delay

Branch and bound,
tabu search

Samà et al.
[29]

AG T+O → R No
Maximum exit
train delay

Branch and bound,
variable
neighborhood

Gholami &
Törnquist
[14]

AG R → T+O No
Total exit train
delay

Heuristic

Van Thielen
et al. [36]

ILP R → T+O No Total train delay Heuristic

Caimi et al.
[5]

ILP R → T+O
Experience-
based subset

Passenger
dissatisfaction
caused by delays

Commercial solver

Bettinelli et
al. [2]

Time-
space
graph,
MIP

R → T+O
Predefined
set

Total penalty
(train travel time
and delay)

Heuristic

proaches [2, 5, 20] are based on the assumption that a partial routing flexibility is to be preferred
to a complete routing flexibility in the rtRTMP.

Overall, the mentioned literature shows that routing variables are critical, whatever solution
approach is used. When retiming, reordering, and rerouting are tackled simultaneously (T+O+R),
the number of routing variables strongly affects the problem size and the required computation
time. Instead, when rerouting and rescheduling variables are sequentially optimized (R→T+O or
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T+O→R), the routes are selected randomly between all the alternative ones. In principle, the
TRSP can be applied in combination with both the simultaneous and sequential ways of handling
routing variables. In the first one, limiting the number of routing variables can help to improve
the exploration of scheduling solutions. In the second one, an accurate pre-selection and initial
evaluation of routes can orient the search in solving the rtRTMP. However, as mentioned at the
beginning of this section, a systemic study on the improvement that the TRSP may bring to the
runtime or objective value of the rtRTMP solution, in general, has yet to be done: so far, the
state-of-the-art TRSP preprocessing has been applied only to a single rtRTMP solver, in which
rerouting and rescheduling decisions are taken simultaneously to minimize total delay. Its effec-
tiveness when applied in combination with different methods for solving the rtRTMP is unknown.
Furthermore, the state-of-the-art TRSP model has been developed for a specific objective function
of the rtRTMP, while it is worth noting that the rtRTMP is addressed by a plurality of models
and objective functions [27], as also demonstrated in the analysis of the literature provided in this
section. The general usefulness of the TRSP in this sense is still unexplored.

3 Problem description

Typically the railway network is divided in control areas, consisting of the railway infrastructure,
the signaling and the safety systems within a limited geographical area. Under the fixed block
signaling system, the infrastructure is divided by electrical track circuits, which identify the min-
imum sections necessary to detect the presence of a train. The set of track circuits between two
consecutive signals is referred to as block-section, which typically defines the space a train needs
to brake and stop. This holds in particular in three-aspect signaling systems, which are the most
commonly deployed.

The operations of each train in a control area follow a timetable, which specifies: the route to
be used by the train, the locations where the train must stop (stopping points), and the arrival,
departure, and dwell times at the stopping points. The train route defines the set of track circuits
the train traverses from its entry point in the control area to its exit point (or destination). These
points correspond, respectively, to the first and the last track circuit the train traverses. The
dwell time is the time interval that each train is scheduled to stop at a stopping point. The
train travel time, relative to a specific route, corresponds to the time span starting from the
physical occupation of its first track circuit up to the end of its last track circuit occupation. The
infrastructure utilization is the time during which a track circuit is assigned solely to a particular
train and is inaccessible to other trains. The utilization of a track circuit by a specific train is
reserved before its physical occupation to ensure that the track circuit cannot be entered by other
trains for the time the current train is scheduled to traverse it. We consider a route lock-sectional
release interlocking system, which involves the simultaneous reservation of all track circuits within
a block-section. These track circuits are subsequently released one by one, based on train transit
and track-free detection.

The signaling system ensures safe train operations by establishing a minimum duration between
two trains to prevent any overlap in infrastructure utilization, i.e., the minimum headway time [15].
To guarantee the train minimum headway times and to prevent unexpected brakings, the three-
aspect signaling system provides the simultaneous reservation of the two block-sections following
a free-way signal. Thus, the utilization time of a track circuit is usually larger than its physical
occupation, because it includes reservation and release times.

3.1 The real-time railway traffic management problem

In real-time operations, the scheduled train infrastructure utilization is susceptible to perturbations
due to unexpected events such as mechanical malfunctions, infrastructure issues, adverse weather,
or passenger boarding times that are longer than expected. These perturbations (that generate
primary delays) can generate conflicts with other trains in the control area. A conflict occurs when
two trains traveling at their scheduled speed are expected to use the same track circuits for an
overlapping time period.
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The rtRTMP formalizes the problem faced by dispatchers of detecting potential train conflicts
and minimizing their impact by means of train retiming, reordering, and rerouting decisions. Thus,
the rtRTMP solution aims to provide a recovery plan that avoids any deadlocks and ensures that
each track circuit is utilized by only one train at any given time, meeting the minimum headway
time required by the safety systems. In the rtRTMP, ordering decisions consist of defining train
passing orders for each common track section, while routing decisions consist of selecting train
routes traversing the network among all the train alternative routes. The alternative routes share
the same stopping points and the same initial and final track circuit with the timetable route
while passing through different sequences of track circuits. Available alternative routes may also
depend on further compatibility issues (e.g., platforms long enough for a specific rolling stock or
with specific configurations for specific passenger flows) and the infrastructure manager defines
them. The timing decisions allowed during the rtRTMP solution involve: stopping a train at a
signal along the line or postponing the time (of arrival/departure) at the stopping points or at the
entry or exit points from the control area. If these actions lead a train to arrive at the relevant
points later than the planned arrival time, then the train is considered late. In this case, the
train delay is called secondary delay since it is a consequence of the actions taken to solve the
conflict caused by the initial perturbation. Furthermore, we distinguish between exit delay and
entry delay. The former is the positive deviation compared to the planned exit time, while the
latter is the positive deviation from its scheduled entry time. Secondary delays easily propagate
across the network between trains, thus optimization methods are applied to solve the rtRTMP to
minimize the effects of initial timetable perturbations, in terms of various objective functions.

3.1.1 Objective functions

In practice, the choice of objective functions and their relative importance may vary depending on
the specific railway system, regulatory requirements, and operator preferences. In this paper, we
focus on the objective functions oriented to train operations. We describe below some of the most
widely used in the related literature.

• Total Exit Delay - TED: the minimization of the sum of all train delays at their exit points
from the control area. This objective is relevant because it minimizes the delay at the train
destination or the next control area will have to deal with it;

• Total Delay - TD: the minimization of the sum of all train delays, both at the entry and
exit points from the control area. Compared to TED minimization, this objective function
includes entry delays because, by delaying the moment in which a train is taken in charge,
one may add a burden to the previous control area traversed by the train itself. Hence, in
ideal traffic management, both entry and exit delays should be minimized;

• Total Travel Time - TTT: the minimization of the aggregated travel time of all trains in
the control area. In railway practice, this objective function is useful mostly when dealing
with freight traffic, for which it may be preferable to depart and arrive later than breaking,
stopping, and re-accelerating along the route. Indeed, these actions would require great
energy and time consumption;

• Number of Delayed Trains - NDT: the minimization of the total number of trains that exit late
the control area. This objective aims to limit the number of trains experiencing delays, which
can help maintain a smoother and more predictable service for passengers and operators;

• Maximum Delay - MD: the minimization of the maximum train delay at the exit point from
the control area. This objective function aims to limit delay propagation and ensure fairness
among trains, by preventing a single train from experiencing excessively long delays, even if
it means some trains have slightly increased ones;

• Maximum Completion - MC: the minimization of the time at which the last train ends its
journey. This objective function aims to optimize the use of the infrastructure to accommo-
date as soon as possible future trains.
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3.2 Train Routing Selection Problem

The TRSP addresses the problem of choosing the alternative train routes that help an rtRTMP
solver in finding better quality solutions more quickly then when used on its own: the TRSP
represents a preprocessing and has to be solved before starting the solution of the rtRTMP, where
only the routes selected will actually be considered. Since the rtRTMP is solved in real-time and
the efficacy of route choice depends on the given traffic situation, the TRSP has been shown to be
of maximum benefit when considered as a real-time problem [30].

A solution for the TRSP has to be feasible for the rtRTMP. Indeed, from a routing point of view,
infeasibility in the rtRTMP may stem from assigning routes to trains that do not satisfy rolling
stock re-utilization operations. The feasibility of a train route combination is verified when the
chosen train routes are coherent with the rolling stock turnaround, joining, or splitting operations.
Specifically, the routes of trains involved in rolling stock re-utilization operations are coherent
if they occur on the same infrastructure section. To provide a proper counterbalance between
computational efficiency and high quality solutions, the TRSP considers a simplified model to
assess route impact on the rtRTMP. Train timing and ordering are assessed in the TRSP only to
estimate the effect of the selected train routes. Timing and ordering variables are not explicitly
considered in the TRSP, but still need to be evaluated to understand the potential effect of a specific
route choice. This is obtained through the use of cost estimations on the potential delays that
would occur if the selected routes were used in the rtRTMP solution. These costs associated with
train routes are determined based on their impacts on schedules and how they interact, aiming to
make the best local scheduling decisions. The cumulative effects of the different route choices need
then to be evaluated based on the actual objective function optimized during the rtRTMP solution
process. To best achieve this, specific aspects related to different functions may be included in the
TRSP model. In Section 4, we present the general TRSP model and, in Section 5, how we extend
it in order to improve its correspondence to the objective function considered in the rtRTMP.

4 TRSP model

We model the TRSP through a k-partite construction graph G = (V,E) [28]. A vertex v ∈ V
represents an alternative train route. The vertices are grouped into k partitions, with k the total
number of trains. For each train t ∈ T requiring to traverse the considered railway infrastructure
in a certain time window all its alternative route assignments belong to a partition, i.e., the
independent set Vt ⊂ V , with ∪t∈TVt = V and ∩t∈TVt = ∅. Two vertices vi, vj ∈ V are connected
by an edge eij ∈ E if they represent coherent routes and are assigned to different trains. A feasible
combination of train routes for the rtRTMP is represented by a k-vertex clique c in the TRSP.
Let us remind that a clique in G is an induced complete subgraph of G. The clique c can be
represented using the following ILP:

c =

 x ∈ {0, 1}|V |
:

∑
vi∈Vt

xi = 1 ∀Vt ⊂ V (1.a)

y ∈ {0, 1}|E|
∑

vi∈Vt
yji = (t− 1)xi ∀vj ∈ Vs : s = {1, . . . , t− 1} (1.b)∑

vi∈Vt
yij = (k − t)xi ∀vj ∈ Vs : s = {t+ 1, . . . , k} (1.c)

 (1)

We use the binary decision variables xi and yij to select, respectively, vertices vi ∈ V and
edges eij ∈ E: xi = 1 if vi ∈ c (0 otherwise) and yij = 1 if eij ∈ c (0 otherwise). The edges in G are
not-oriented, i.e., eij = eji both corresponding to the edge connecting vi and vj . Constraints (1.a)
ensure that exactly one route is assigned to each train. Constraints (1.b) and (1.c) ensure that
only the edges connected to the selected nodes are chosen. Constraints (1.b) and (1.c) refer to the
edges connecting vertex vi in the partitions Vt ⊂ V , respectively, with those in the preceding and
following partitions. Here, the subsets Vt are sorted based on the order in which trains enter the
infrastructure.

Consider the set of all cliques on G consisting of k vertices, denoted by Γ. Vertex and edge
costs are used in the TRSP to select the subset Sp ⊂ Γ of the p minimum cost cliques following
the objective function in Eq. (2), where f(c) is the clique cost.
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min
∑
c∈Sp

f(c) (2)

The clique cost needs to be linked to how solutions are evaluated in the rtRTMP. In Section 5, we
elaborate on how the correspondence between the TRSP and the rtRTMP objective function can
be achieved. This cost, of course, needs also to reflect the quality of the solution it relates to. To
this purpose, we associate to each vertex vi and edge eij in G a cost, respectively, ui : V → N and
wij : E → N. These costs are determined according to the model proposed by Pascariu et al. [22].
The cost ui assigned to each vertex vi inG accounts for the potential train delay due to the increased
travel time required for the selected route vi ∈ Vt compared to the default vd ∈ Vt, typically the
one assigned in the timetable. This potential delay corresponds to the difference between the train
unperturbed running time along vi and the one along vd, when it is non-negative.

The edge cost wij , instead, represents the additional running time and thus the potential delay
due to the train scheduling decision when vi and vj , linked by eij , are simultaneously considered.
Scheduling decisions are required when different trains have common route sections on which they
can potentially have a conflict. Each common section is formed by a set of track circuits. The
cost wij includes two components: (i) a fixed component, assigned to each edge of G, which
represents the potential delay caused by the overlap of two train routes at a time (i.e., when the
corresponding trains are considered as the only ones in the control area); (ii) a clique-dependent
component, added to the fixed component after each clique has been built, which estimates the
potential delay propagation due to the interaction of all train routes in the clique.

The overall cost wij for each pair of train routes vi, vj in G, linked by eij , is computed as
follows:

1. The set of all common sections between the considered pair of routes is examined. If this
set is empty, no conflict can arise between the concerned train routes, and wij is set to zero.
Otherwise (if the set of common sections is not empty), for each train t in the pair, the
utilization time overlap is determined on each common section in case t passes second. This
time corresponds to the difference between the end of the utilization of the first train and
the start of the utilization of the second one. A positive utilization overlap is the time that t
should wait before entering each common section in order to avoid a conflict on it. A negative
value instead indicates no overlap: if running on a free network, the two trains traverse the
common section at different times;

2. For each train in the given pair, the maximum utilization overlap is selected among all the
common sections; this corresponds to the most penalizing section for that train. Then,
to determine the fixed component of wij for the considered pair of train routes, we select
the smaller value from the previously calculated maximum utilization overlaps on these two
routes. This decision represents the optimized scheduling decision minimizing the potential
delay for the trains on these routes. We refer to the second-passing train on the most
penalizing selected section as the potential waiting train. The fixed component is used as
edge cost when vertices are selected to form a clique. The costs wij of the train routes with
common resources but no utilization overlap (fixed component with negative value) is set
to one. This is meant to reward pairs of routes where no common sections exist during the
clique construction process;

3. After a clique c has been selected, the negative value of the fixed component is used for the
clique-dependent cost computation. During this computation, each cost wij > 0 assigned
to eij ∈ c, connecting vi, vj ∈ c, is propagated as follows. Let us consider vi as the route
related to the potential waiting train, wij is propagated to the edges connecting vi with
any other vertex vh ∈ c which has common sections with it. This generates the additional
clique-dependent cost component on edge eih ∈ I(vi), where I(vi) is the set of incident edges
in vi. When edge eih ∈ c has a fixed component wih > 0, the clique-dependent component
corresponds to the non-negative difference between the propagated and the current potential
delay, which is added to wih, so wih = max(wih, wij). Otherwise, when wih < 0, the
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propagated cost wij is added to wih. That is, the estimated time difference between the
two involved trains is reduced, possibly causing a utilization overlap on the most penalizing
common section chosen. In the potential delay propagation, the edges are evaluated in the
sequence corresponding to the order of train entry in the control area. Once the delay
propagation is completed, we still set to one the cost wij of the edges connecting two train
routes that share common sections but do not have any potential delay.

Example
We present a small example to illustrate how to build the TRSP model and compute the costs
associated with its vertices and edges. Let us consider four trains (A, B, C and D) traveling in a
network, each with a given set of available alternative routes, as presented in Figure 1a. Trains A
and B traverse the network from left to right, while C and D travel in the opposite direction. The
routes planned in the timetable are {a3, b1, c3, d2}, and are considered as default. Moreover, we
assume that the rolling stock of train B is reutilized for train D, performing a turnaround in the
terminal station of B. Thus, the routes used by B and D must be such that the former terminates
where the latter starts. The correspondent construction graph is shown in Figure 1b. A partition
in the graph is the set of all feasible alternative train routes, where each vertex is represented
by a dot and corresponds to one of the alternative routes. The graph is incomplete. In the
case of rolling stock re-utilization, only the vertices corresponding to coherent train routes can be
connected. Recall that coherency implies that the train routes share the same track section where
the re-utilization operation is carried out. In our example, this involves the last track section of B
and the first track section of D. In particular, the last track section of b1 and b3 differs from the
first track section of d3 and d4. Consequently, train routes b1 and b3 cannot be used in combination
with d3 and d4 and thus are not connected to them. The same applies to the combination of train
routes b2 and b4 with d1 and d2.

(a) Alternative routes of trains A, B, C, D (b) Construction graph

Figure 1: Illustrative example TRSP model

Once the graph is constructed, we calculate the vertex cost and the fixed component of the
edge cost for all vertices and edges in the graph. For the sake of brevity, we select four train
routes and describe the cost computation for them only. In particular, we consider the train routes
{a1, b2, c2, d3} in Figure 2a forming a four-vertex clique c: each train route belongs to a different
partition and is connected to the others. Furthermore, for the sake of clarity we assume the
following simplifications. The infrastructure is divided into ten sections, labeled from s1 to s10,
each corresponding to a single block-section and usable in both directions. All reservation and
release times are null and a two-aspect signaling system is deployed. Thus, the utilization of each
section starts when a train enters it and ends immediately when the train leaves it. Thus, when a
train finishes occupying one section, the following train can immediately enter it.

We assume a perturbed traffic situation in which train A has an entry delay of 8 time units
and train C has an entry delay of 2 time units. Because of these primary delays, potential conflicts
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appear. Figure 2b shows the utilization time of all trains on each section when considering each
train traveling independently from the others, on a free network. Each line corresponds to one
section, and colored rectangles show when each of them is utilized by each train. The potential
conflicts are indicated in the picture as rectangles filled with diagonal lines of the colors corre-
sponding to the involved trains. Remark that the turnaround between train B and D requires 3
time units as processing time on s10 (indicated by the white rectangle with red dots). Also, due
to this turnaround, between the end of utilization of B and the beginning of utilization of D, s10
cannot be occupied by another train.

We next illustrate the computation of the cost of vertices. Assuming the minimum travel time
from the utilization diagrams in Figure 2b, Table 2 shows, for each train, the minimum travel
time r required to traverse the chosen routes, the minimum travel time rd required for the default
(timetable) routes, and the resulting vertex cost u. The minimum travel time is the time it would
take the train to traverse the route, without conflicts, defined as the difference between the end
of utilization of the last section and the beginning of utilization of the first section. Train routes
a1 and d3 are shorter than the corresponding timetable route, respectively, by 2 (|21− 23|) and 4
(|16−20|) time units, thus leading to no potential delay ua1 = ud3 = 0. On the contrary, b2 and c2
are longer than the corresponding timetable route, respectively, by 1 (20−19) and 3 (24−21) time
units, thus choosing these alternative routes leads to the potential delays ub2 = 1 and uc2 = 3.

Table 2: Train travel time and vertex costs

A B C D

r 21 20 24 16
rd 23 19 21 20
u 0 1 3 0

We next determine the costs w associated with each edge connecting the selected train routes.
This cost represents the potential delay due to the scheduling decisions taken to solve the conflicts
in Figure 2b. As detailed in Section 4, the edge cost consists of two components. The first is a
fixed component, which is calculated for pairs of train routes. The second component, known as
the clique-dependent component, is added to the fixed component after each clique has been built.
This component accounts for the potential delay propagation resulting from the interaction of all
train routes within the clique. Hereafter we refer to the fixed component as wf and to the final
edge cost within the clique as w.

Let us consider the edge a1b2, to illustrate the computation of the fixed component. As shown
in Figure 2b, the train routes connected by these edges share sections s1, s3, s5 and s7. If train A
passes before B on each of these sections, the time that train B potentially has to wait is given by
the utilization overlap calculated as the difference between the end of the utilization of each section
by train A and the beginning of its utilization by B. The value obtained for each shared section is,
respectively: 3 (12− 9), 3 (16− 13), 6 (23− 17), and 2 (26− 24). Instead, when B passes first, the
time that train A potentially has to wait is, respectively: 5 (13− 8), 5 (17− 12), 8 (24− 16), and
3 (26 − 23). Thus, for each of the two possible train orderings, the maximum utilization overlap
is 6 (A before B) and 8 (B before A). In Figure 2c we illustrate the utilization diagram of the two
potential scheduling decisions. The minimum between the maximum utilization overlap in the two
configurations gives the fixed component of the potential delay wf

a1b2
= 6. In this case, train B is

the potential waiting train.
Looking at the train routes a1 and c2, they only share section s7, which is traversed in opposite

directions by the two trains. Figure 2d (left) shows that when train A is first on this section, the
utilization overlap is -1 since train A ends utilizing it at 26 and C starts the utilization at 27. The
negative value indicates that C would not be potentially delayed, but rather that some time elapses
between the end of the utilization of A and the beginning of C. On the contrary, when train C is
first (Figure 2d right), the utilization overlap is 9 (33 − 24). Since min(−1, 9) = −1 but the pair
of routes has a common section, we still set the fixed component of the potential delay wf

a1c2 = 1,
with train C being the potential second one. Train routes a1 and d3 have no common section, thus
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(a) Selected altrain routes

(b) Trains utilization diagram

(c) Trains ordering A-B (left) B-A (right)

(d) Trains ordering A-C (left) C-A (right)

Figure 2: Illustrative example
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wf
a1d3

= 0. For the other edges linking the considered train routes, we report in Appendix A the
detailed computation of these costs. However, for the sake of illustrating the computation of the
clique-dependent component, we report here the results obtained for these edges (in brackets the

second passing train): wf
b2c2

= 9 (B), wf
b2d3

= 0 (D), wf
c2d3

= 1 (D).
Let us consider the selected routes form a clique. For the computation of the clique-dependent

component, we then assume a knock-on propagation of potential delays, according to the order in
which trains enter the infrastructure. Thus, we consider the first potential delay to be propagated
being wa1b2 = 6, suffered by train B. It impacts the edges connecting b2 with c2 and d3. The edge
cost wb2c2 = 9 remains unchanged since max (9, 6) = 9, while wb2d3 = max (0, 6) = 6. In the same
way, wb2c2 = 9 suffered by train B is propagated to the edge connecting b2 with d3, resulting in
wb2d3

= 9. Table 3 presents the final potential delays obtained for each edge of the considered
clique, indicating in brackets the potential waiting train.

Table 3: Edge costs, in brackets the potential waiting train

a1b2 a1c2 a1d3 b2c2 b2d3 c2d3
wf 6 (B) -1 (C) 0 (-) 9 (B) 0 (D) 1 (D)
w 6 (B) 1 (C) 0 (-) 9 (B) 9 (D) 1 (D)

5 Extended TRSP model for different objective functions

As mentioned in the previous section, in the TRSP, the objective function is defined in terms of
costs assigned to vertices and edges of the selected cliques. Since the train routes that belong
to the selected cliques are used in the rtRTMP solution, we study whether, and to which extent,
customization of the TRSP cost computation is necessary when changing the objective function
used in the rtRTMP. In particular, we evaluate the correspondence between the TRSP and rtRTMP
objective functions to identify the routes that lead to the best rtRTMP solutions. Therefore, in this
section, we propose for each rtRTMP objective function presented in Section 3.1.1 its formalization
in the TRSP.

To approximate as closely as possible the rtRTMP objective functions, we also extend the cost
estimation model. Specifically, we introduce new edge costs to account for delays at different points
in the control area, i.e., entry and exit points. Remark that the edge cost wij proposed by Pascariu
et al. [22] (described in Section 4) estimates the overall additional running time along the potential
waiting train’s route when vi and vj , linked by eij , are simultaneously considered. In this paper,
we make a further step to assess the potential deviation from the timetable entry and exit time
due to conflicts between train route pairs. To do so, we define the potential entry delay win

ij and
the potential exit delay wout

ij . They are edge costs that can be considered either separately or
concurrently. These edge costs are derived from the estimation of wij in Section 4 as follows.

The potential entry delay win
ij is defined in Eq. (3) as the minimum between the utilization

overlaps computed for the two train routes vi, vj on the common section(s) res in which include
their entry point (if any). This cost is computed during the fixed-component calculation. That is
when the utilization overlap on the common section(s) is estimated as the difference between the
end of the utilization by the first passing train eUvi[j] and the start of the utilization by the second
one sUvj[i] .

win
ij = min(eUvi − sUvj , eUvj − sUvi) ∀vi, vj ∈ V : ∃res in (3)

For the computation of the potential exit delay wout
ij , let us consider the general cost wij (given

by train routes vi, vj) and the train t, using route vi, as the potential waiting train. We compute
wout

ij based on the fixed component for clique constructions as in Eq. (4). We assume that, if vi
has running time (ri) equal to or longer than the timetable route vd (rd) in a free network, the
additional running time due to the interaction of both train routes represented by wij directly
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translates into exit delay. Instead, if vi is shorter, t can absorb additional potential delay wij . We
thus estimate that the potential exit delay wout

ij will be smaller than wij by rd − ri.

wout
ij =

{
wij if ri ≥ rd,
wij − (rd − ri) otherwise.

(4)

The values of potential entry and exit delays are related in the case of timetable routes: wout
ij

can only be greater or equal to win
ij . Instead, when considering alternative train routes, the different

minimum running times and the procedure we apply to compute wij can lead to a range of possible
relations between win

ij and wout
ij . For example, a large wij can be recovered if the potential waiting

train uses a much faster route than the timetable one, resulting in a small or null wout
ij . In this

case, the potential entry delay win
ij can possibly be larger than wout

ij if the vi and vj have a common
section with a positive overlap at their beginning.

In the following, we propose customized formulations of the TRSP, driven by the choice of
objective functions in the rtRTMP. We recall that part of the constraints for the problem have
already been declared in Section 4, and presented in Constraints (1).

The Total Potential Exit Delay (PTED) (5) minimizes the aggregate potential delay that all
trains might experience at the exit points of the control area. According to this formulation, the
clique cost is computed as the sum of all vertex costs ui and edge costs wout

ij in clique c.

min
∑
vi∈V

ui xi +
∑

eij∈E

wout
ij yij

s.t.

Constraints (1)

(5)

The Total Potential Delay (PTD) (6) is a variant of PTED , which also includes the minimization
of potential entry train delays. The clique cost is defined in PTD as the sum of its vertex costs ui,
and both wout

ij and win
ij edge costs.

min
∑
vi∈V

ui xi +
∑

eij∈E

(wout
ij + win

ij ) yij

s.t.

Constraints (1)

(6)

The Total Potential Travel Time (PTTT ) (7) is the minimization of the travel time potentially
spent by all trains in the control area. We estimate the total potential travel time as the sum of the
minimum running time ri of train route vi and the general potential delay wij due to scheduling
decisions along the train routes in clique c. From this value, we subtract the potential entry delay
wi

ij , since for its duration the train has not yet entered the control area. We remark that this
objective function has by definition much higher values than PTED and PTD because it considers
the running times typically expressed in seconds.

min
∑
vi∈V

ri xi +
∑

eij∈E

(wij − win
ij ) yij

s.t.

Constraints (1)

(7)

The Potential Number of Delayed Trains (PNDT ) (8) estimates the number of trains which are
delayed at the exit from the control area. Let I (vi) be the set of edges incident in vi for which
the train using route vi is the potential waiting train. A train using a specific route is considered
delayed if the corresponding vertex vi ∈ c has either a cost ui > 0 or an incident edge eij ∈ I(vi)
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with potential delay wout
ij > 0. To quantify the potential number of delayed trains, we introduce

the binary variable zt, with t = 0, .., k, and a big M constant. We use it in Eqs. (8) to state
whether a train is potentially delayed (zt = 1) or not (zt = 0) when using route vi. The clique cost
minimized is thus formulated as the sum of zi for all vi ∈ c. PNDT has by definition a very low
value, whose maximum is the total number of trains. This formulation disregards the information
about potential delay values, so it may lead to select cliques with few strongly delayed trains.

min
∑
t∈T

zt

s.t.

ui xi +
∑

eij∈I(vi)

wout
ij yij > zt − 1 ∀t ∈ T, vi ∈ Vt

ui xi +
∑

eij∈I(vi)

wout
ij yij ≤ Mzt ∀t ∈ T, vi ∈ Vt

zt ∈ {0, 1}
Constraints (1)

(8)

The Maximum Potential Delay (PMD) (9) is the one suffered by the train exiting the control
area with the maximum potential delay. We assume the most potentially delayed train is the one
that maximizes the sum of the potential delay given by the route additional travel time ui and the
potential exit delays wout

ij ∈ I (vi) assigned to it. In Eqs. (9), the clique cost variable fd represents
the maximum potential exit train delay, which is minimized by the objective function.

min fd

s.t.

fd ≥ ui xi +
∑
I (vi )

wout
ij yij ∀vi ∈ V

Constraints (1)

(9)

The Maximum Potential Completion (PMC ) (10) estimates the potential completion time of
a train route vi ∈ c as the sum of its timetable entry time in the control area si, the minimum
running time ri of train route vi and the additional running time due to conflicts with other trains
wij ∈ I (vi) assigned to it. As in PMD , we compute the overall additional running time of a specific
train route assignment vi ∈ c as the sum of all incident edges’ cost for which the train using
vi is the potential waiting one. The clique cost fc is thus given in Eqs. (10) by the train route
assignment vi ∈ c which maximizes the potential completion time. Similarly to PTTT , the PMC

objective value is in general high due to the train running time and entry time. The latter typically
implies a significantly larger magnitude. For example, for a train entering the control area at 3
pm si and spending there one hour, if we measure time in seconds we will have si = 54000 and
ri + wij = 3600.

min fc

s.t.

fc ≥ (si + ri) xi +
∑
I(vi)

wij yij ∀vi ∈ V

Constraints (1)

(10)

Example
Based on the example in Section 4, we illustrate here the extensions to the cost estimation model
introduced for the different objective functions.
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The potential entry delay win is obtained as follows. We consider routes a1 and b2 that share
their first section s1. The potential entry delay corresponds to the minimum utilization overlap
on s1, i.e., w

in
a1b2

= min(3, 5) = 3. The pairs of routes a1c2 and a1d3 do not share any of the
initial sections. Regarding b2 and d3, due to the rolling stock re-utilization between trains B and
D, these routes share necessarily the first section of train D. However, since the given process
time for the re-utilization operation can be respected (see Appendix A) no potential entry delay is
recorded. Instead, train routes b2 and c2 only share c2’s first section s10. In this case, a potential
entry delay is recorded only if C is the potential waiting train. When train B passes first on this
section, the utilization overlap is 17 (see Appendix A), while when C is first it is 9. Considering
that the minimum value results when train C passes first and it does not have to wait to enter the
infrastructure, its potential entry delay is null win

b2c2
= 0. The potential entry delays of b2d3 and

c2d3 in Table 4 are obtained by the same procedures as for a1b2 and b2c2.

Table 4: Edge costs, in brackets the potential waiting train

a1b2 a1c2 a1d3 b2c2 b2d3 c2d3
win 3 (B) 0 (-) 0 (-) 0 (-) 0 (-) 1 (D)
wout 6 (B) 1 (C) 0 (-) 9 (B) 5 (D) 1 (D)

The potential exit delay instead is directly derived from w. As discussed in Section 5, when
the train suffering the potential delay w travels on a faster route than the timetable one, the train
may be able to catch up some of its delay. Thus, w is reduced by this corresponding amount. For
example, the potential delay wb2d3 = 9 is suffered by train D, and the current route d3 is faster than
the timetable route by 4-time units. Thus, the potential exit delay results from wout

b2d3
= 9− 4 = 5.

Table 4 shows that wout = w for the other pairs of train routes. The reason is that the route of
the potential waiting train is not faster than the timetable one, and so it does not allow for the
partial recovery of w.

Based on vertex and edge cost, we now compute the clique cost according to the different
objective functions:

PTED = (0 + 1 + 3 + 0) + (6 + 1 + 0 + 9 + 5 + 1) = 26 (11)

PTD = (0 + 1 + 3 + 0) + (3 + 0 + 0 + 0 + 0 + 1) + (6 + 1 + 0 + 9 + 5 + 1) = 30 (12)

PTTT = (21 + 20 + 24 + 16) + (3 + 0 + 0 + 9 + 9 + 0) = 102 (13)

PNDT = 0 (zA) + 1 (zB) + 1 (zC) + 1 (zD) = 3 (14)

PMD = max{(0 + 0)a1 , (1 + 6 + 9)b2 , (3 + 1)c2 , (0 + 5 + 1)d3} = 16 (B) (15)

PMC = max{(8 + 21 + 0)a1 , (9 + 20 + 6 + 9)b2 , (20 + 24 + 1)c2 , (29 + 16 + 9 + 1)d3} = 55 (D)
(16)

6 pACO-TRSP algorithm

In this paper, we use Pascariu et al. [22]’s parallel pACO-TRSP algorithm to solve the TRSP. While
a brief overview of this algorithm is given in this section, for a more comprehensive description
we refer to the mentioned reference paper. ACO is a well-known metaheuristic inspired by the
ant foraging behavior to solve hard combinatorial problems [11]. The algorithm uses a virtual ant
colony to explore the solution space while laying numerical pheromones on the best solutions to
drive the search toward high-quality regions of the feasible space.

pACO-TRSP iteratively produces solutions until a stopping criteria is reached, i.e., either all
the available computational time limit has been used or a zero-value objective function has been
found. At each iteration, each ant of the colony incrementally builds a clique c ∈ Γ on the
construction graph G selecting one vertex at a time via the random proportional rule, which is
based on the pheromone trail and heuristic information. When all ants of the colony have built a
clique, a parallel local search is performed for a given number of cliques with the best clique costs.
For each of them, the local search aims to find a lower cost clique. After the local search, the best
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clique in the current iteration is used to update the pheromone according to the MAX-MIN Ant
System [32]. The best clique of each iteration is stored and, at the end of the computation, the
overall best cliques are used to extract n alternative routes for each train.

pACO-TRSP can be used with all objective functions described in Section 5, without the need of
major algorithmic changes. The objective function definition, however, requires the customization
of the local search and the selection of the cliques used for depositing pheromones. This customiza-
tion involves selecting the worst-cost vertex according to each objective function in Section 5. This
implies that different local search moves will be performed when considering different objective
functions, and pheromones will drive the research space exploration in different directions. As
shown in Section 5, each objective function corresponds to a unique problem formulation, and our
approach ensures that the algorithm dynamically adjusts its search strategy to accommodate these
differences.

Algorithm 1: Local search

Data: Construction graph G, clique c
Result: Clique c of lower cost

1 begin
2 vworst = {v0}
3 f(vworst) = bigInteger
4 forall vi ∈ c do
5 f(vi) = f(c)− f(c \ vi)
6 if f(vi) > f(vworst) then
7 vworst = {vi}

8 cnew = c
9 forall vi ∈ V : vworst , vi ∈ Vt,∃eij ∈ G ∀vj ̸= vworst ∈ c do

10 c′ = c \ {vworst} ∪ {vi}
11 if f(c′) < f(cnew ) then
12 cnew = c′

13 return cnew

For a detailed understanding of the customized local search, we present the local search in
Algorithm 1. Within the local search, a critical component is the identification of the worst-cost
vertex given a clique c on the construction graph G. This worst-cost vertex, denoted as vworst , is
the one that maximizes the difference between the cost of the clique and that of the clique without
the given vertex (lines 2-9, Algorithm 1). The clique cost is defined by the objective function in
use, according to its formulation in Section 5. Subsequently, the local search strives to replace the
identified worst-cost vertex, vworst , with another vertex selected from the same partition of the
construction graph G, i.e., vi, vworst ∈ Vt, such that vi forms a new feasible clique of lower cost, if
any (lines 8-13, Algorithm 1).

7 Computational experiments

We perform extensive computational analysis on two French railway infrastructures with timetable
perturbations to evaluate the effectiveness of the TRSP when the rtRTMP is solved by different
objective functions and solution approaches. Moreover, the experiments serve to evaluate how
the TRSP is effective on the rtRTMP as long as the objective functions considered in the second
problem are reflected in the first, as proposed in Section 5.

In Section 7.1, we provide an in-depth description of the specific characteristics of these case
studies and discuss the various challenges that arise when dealing with real-time rail traffic man-
agement. Moving to Section 7.2, we outline the experimental setup used to evaluate the potential
of the TRSP as a preprocessing step for the rtRTMP and provide a brief overview on how the
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Figure 3: Rouen infrastructure

TRSP and the rtRTMP are solved using state-of-the-art solvers. Section 7.3 discusses the results
and the impact of the TRSP on the rtRTMP solution, when varying the types of rtRTMP solver
and the rtRTMP objective functions. Finally, Section 7.4 focuses on the relationship between
the TRSP model and the objective function of the rtRTMP, evaluating the significance of their
correspondence by the Wilcoxon signed rank test.

7.1 Case studies

The case studies used in the computational experiments represent two French control areas that
have different characteristics: a line with intermediate stops and mixed traffic, and a passenger
terminal station with high density traffic. We chose these two case studies to take into account
several aspects that could influence the suitability of the TRSP application in the context of real-
time rail traffic management. Specifically, these case studies offer different perspectives as they
vary in the size of the railway network, encompassing different numbers and types of trains and
routes. This enables us to evaluate the ability of the TRSP to effectively handle different network
scales, as well as different types of railway traffic and networks. In the following, we provide a more
in-depth description of the particular attributes of these case studies, and we discuss the distinct
challenges that emerge when dealing with real-time railway traffic management. Table 5 details an
overview of the case study characteristics. Columns 1-2 identify the test case and report its length,
columns 3-6 present respectively the number of block sections, track circuits, available routes and
trains per hour running in the network, column 7 the average [min,max] number of alternative
routes per train, while columns 8-9 the average number of vertexes and edges in the TRSP model.

Table 5: Case studies characteristics

.

Case Length Block Track
Routes

Trains Routes TRSP
study (km) sections circuits /hour /train |V | |E|
Rouen 27 176 190 1744 12 42[1,192] 463 91298
Lille 12 829 299 2409 41 163[1,458] 6623 21879902

Figure 3 shows the first test case (referred to as Rouen): a 27-km railway line, connecting
Paris Saint Lazare, Serqueux and Le Havre through the Rouen junction. A three-aspect signaling
system is deployed on this line. The infrastructure in this control area is mainly a double-track
line including six stations and only a few possibilities for changing tracks between stations. The
presence of the rather large stations at Oissel, St. Etienne du Rouvray, Sotteville and Rouen-
Rive-Droite, leads some trains to have up to 192 alternative routes, which can make the rerouting
problem challenging. Additionally, the mixed traffic, including freight, local, and high-speed trains,
poses another challenge due to the significant variations in running times between different types
of trains.

Figure 4 shows the second test case (referred to as Lille) including the Lille-Flandres terminal
station area. Lille is a major terminal station with a topology articulated in 17 platforms that
branch in national and international lines used by local, intercity, and high speed trains. The area
implements a three-aspect signaling system. Despite its relatively short length of 12 kilometers,
this control area presents an interesting challenge due to the intricate and overlapping nature
of train routes. Most of the trains have the possibility of traversing a significant part of the
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infrastructure by changing their route. As shown in Figure 4, the infrastructure layout allows trains
to independently access nearly any of the 17 platforms, irrespective of their origin or destination
lines. Often, multiple options are available for connecting a platform to a line track. As a result,
a very large number of alternative routes are available for each train, with up to 458 alternative
routes per train. These alternative routes may appear almost identical in the early half of their
part connecting to the open line. However, they have significant variations as they approach
the platforms. Being a terminal station, trains frequently encounter other trains traveling in the
opposite direction. Furthermore, all trains must turnaround at platforms, so there are constraints
on rolling stock re-utilization between pairs of trains. This adds complexity to traffic management,
since decisions affecting several trains may be mutually related, even if there are no direct conflicts
between these trains.

For each case study, we consider 50 perturbed scenarios of one-hour traffic. These perturbed
scenarios are generated as follows.

We consider an actual one-day timetable. We perturb this initial timetable with a train delay
between 5 and 15 minutes affecting the entry time of 20% of trains, randomly selected [23, 25]. We
thus generate a total of 5 perturbed one-day timetables. For each perturbed timetable, we draw
ten 60-minute time windows, randomly selected during the 7:30-9:00 and 18:30-20:00 peak hours.

In the case of Rouen, 186 trains run on the one-day timetable. Whereas, in the 50 perturbed
scenarios, an average of 12 trains are running per hour. Instead, the Lille station area is traversed
by 509 trains in the one-day timetable and there are on average 41 trains running per hour.

The resulting TRSP construction graph G has an average number of vertices |V | = 463 and
edges |E| = 91 298 for Rouen, and |V | = 6 623 and |E| = 21 879 902 for Lille.

7.2 Experimental settings

We assess the potential of the TRSP as a preprocessing step when the rtRTMP is solved with
different objective functions and by different solvers, each having a specific model and solution ap-
proach. Specifically, we solve the TRSP model formulated in Sections 4 and 5 with a computational
time limit of 30 seconds. Subsequently, we tackle the rtRTMP using the alternative train routes
belonging to the TRSP solution, with a computational time limit of 150 seconds. For the rtRTMP
solution, we consider two state-of-the-art solvers: RECIFE-MILP [24] and AGLIBRARY [29].

To assess the performance of our TRSP-rtRTMP approach, we compare it with the state-of-the-
art for these solvers. In this comparison, we consider the default timetable route for each train and
all available alternative routes. We set a computational time limit of 180 seconds for the rtRTMP
solution process. We call this reference approach no-TRSP. We chose a computational time of 180
seconds aligning with recommendations from infrastructure managers, as detailed in Quaglietta
et al. [26]. Typically, the rtRTMP solution is part of a larger and context-aware decision support
framework for dispatchers, such as closedloop systems [1, 8]. Since rail traffic varies rapidly in
real time, the rtRTMP must respond quickly to disturbances in order to propose appropriate
solutions. For this purpose, the problem can be solved periodically or triggered by the detection of
a disturbance [33]. In this context, the rtRTMP proactively manages potential deviations from the
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timetable to maintain constant operational efficiency. Considering such a bigger framework, the
computational time of 180 seconds is compatible if train traffic is managed proactively, considering
a delay propagation forecast.

In the following, we provide a brief overview of the rtRTMP solvers used. For a comprehensive
description, we refer the readers to the original papers that introduced these methods.

RECIFE-MILP [24]. RECIFE-MILP models the rtRTMP as described in [24], considering
simultaneously the variables of timing, ordering and train routing related to the decisions that
dispatchers can make by monitoring a specific control area. The time variables are continuous
and represent the beginning and ending times of track circuit utilization, delay, and physical
occupancy. Train ordering and routing variables are binary variables. Big-M constraints
are used to manage train scheduling variables in RECIFE-MILP. These constraints enforce
the capacity of the network and model the route-lock sectional-release interlocking system,
in which a track circuit can only be used by one train at a time, except when the train
is engaged in a rolling stock re-utilization operation on the track circuit. RECIFE-MILP
solves the MILP formulation via a commercial MILP solver, which implements performance-
boosting methods for real-time applications with a limited computational time [24]. As
such, it can optimize virtually any linear objective function. Among the objective functions
described in Subsection 3.1.1, we consider the minimization of: TED, TD, TTT, and NDT.

AGLIBRARY [29]. AGLIBRARY models the rtRTMP as a Flexible Job Shop Scheduling
Problem using the alternative graph formulation of Mascis & Pacciarelli [18]. The model
considers a train as a job and a track circuit as a resource, enabling the definition of an
operation o as the process of a train traveling along a track circuit (i.e., the use of a re-
source by a job) when using one of its available routes. AGLIBRARY solves the problem
iteratively: at first, in a rescheduling module, an initial scheduling problem with default
routes is solved by the branch and bound algorithm of [9]; then, in a rerouting module,
the incumbent solution is evaluated to select, among the available ones, new routes for the
more critical trains, using a variable neighborhood search metaheuristic. The new routes are
then passed again to the rescheduling module to obtain an improved solution. The process
goes on until either the available computation time has elapsed or a zero delay solution is
obtained [29]. AGLIBRARY minimizes makespan-related objective functions exploiting the
alternative graph model. Thus, among the objective functions described in Subsection 3.1.1,
we consider the minimization of: MC and MD.

We carry out a full factorial computational analysis, which addresses all possible combinations of
TRSP and rtRTMP objective functions. We perform a total of 2100 experiments for each case
study: for each of the six rtRTMP objective functions in Section 3.1.1, we solve the problem for the
50 perturbed scenarios with no TRSP and with the TRSP approach using each of the six objective
functions in Section 5. We refer to the objective functions used in the TRSP after the acronyms
in Section 5: PTED , PTD , PTTT , PNDT , PMD and PMC .

Following previous studies and preliminary computational analysis, we consider a different
cardinality of TRSP solutions (i.e., the number of train route alternatives to select and provide in
input to the rtRTMP) for the two case studies: 30 route alternatives for the Rouen case study [28],
and 10 for the Lille case study [22]. This difference is due to the size of the instances and the
ability of the rtRTMP to have good performance using either more or fewer routes.

The experiments are performed in a laboratory environment. RECIFE-MILP is run on a work-
station Intel Xeon 16 core 3.5 GHz processor with 128 GB RAM, under Linux Ubuntu distribution,
using CPLEX 12.6 as MILP solver. AGLIBRARY is run on a workstation Intel Xeon 22 core 2.2
GHz processor with 1.5 TB RAM, under Windows distribution. The pACO-TRSP algorithm is
implemented in C++ and it is run on the respective system of the rtRTMP approach using 16
threads.

In Section 7.3, we assess the impact of the TRSP on the rtRTMP solution when varying the
types of rtRTMP solver (model and solution process) and the rtRTMP objective functions. Then
in Section 7.4, we evaluate how much the performance is impacted by whether or not the TRSP
matches the rtRTMP objective function.

21



Table 6: Results of rtRTMP performance for Rouen instances. Objective functions minimized in the rtRTMP: total exit delay (TED), total delay
(TD), total travel time (TTT), number of delayed trains (NDT), maximum delay (MD), maximum completion (MC). The computational time and
objective value are expressed in seconds, except for the NDT objective value.

RECIFE-MILP AGLIBRARY

TRSP TED TD TTT NDT MD MC

Approach obj gap time obj gap time obj gap time obj gap time obj gap time obj gap time
no-TRSP 893 63 129 1047 65 131 11617 0.00 50 1.68 48 115 102 63 156 54383 0.07 180
PTED 245 58 95 284 60 94 11623 0.05 45 1.02 47 70 61 49 124 54376 0.05 180
PTD 245 60 98 281 59 94 11624 0.06 44 1.06 51 70 61 49 131 54378 0.05 180
PTTT 252 63 96 288 63 94 11622 0.08 44 1.08 50 68 72 51 180 54379 0.07 180
PNDT 250 59 105 286 58 95 11624 0.05 45 1.00 46 86 77 52 125 54377 0.05 180
PMD 271 61 93 345 61 98 11624 0.06 44 1.10 50 79 61 49 124 54376 0.05 180
PMC 311 60 112 356 61 107 11621 0.03 45 1.14 48 98 95 56 139 54375 0.05 180

Table 7: Results of rtRTMP performance for Lille instances. Objective functions minimized in the rtRTMP: total exit delay (TED), total delay (TD),
total travel time (TTT), number of delayed trains (NDT), maximum delay (MD), maximum completion (MC). The computational time and objective
value are expressed in seconds, except for the NDT objective value.

RECIFE-MILP AGLIBRARY

TRSP TED TD TTT NDT MD MC

Approach obj gap time obj gap time obj gap time obj gap time obj gap time obj gap time
no-TRSP 1390 100 180 2019 100 180 13748 12.09 180 6.00 100 180 393 91 177 53647 1.64 180
PTED 378 88 160 681 96 159 12481 1.75 51 4.88 98 164 357 85 168 53644 1.63 180
PTD 380 90 160 568 92 155 12474 1.70 51 5.14 94 163 371 89 175 53646 1.64 180
PTTT 430 90 162 708 96 160 12473 1.70 52 5.62 92 165 370 87 175 53643 1.63 180
PNDT 589 88 154 739 92 156 12491 1.84 50 4.00 92 165 378 82 166 53652 1.65 180
PMD 511 92 169 736 94 166 12494 1.86 53 6.68 98 162 355 81 163 53647 1.64 180
PMC 627 96 173 1174 96 170 12495 1.87 52 6.44 98 169 415 91 180 53638 1.62 180
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7.3 Analysis of TRSP-rtRTMP results

Tables 6 and 7 show the computational results for all TRSP-rtRTMP combinations considered
in our assessment, respectively, for Rouen and Lille instances. Column 1 specifies the TRSP
approach: either no-TRSP or pACO-TRSP. For pACO-TRSP, the used objective function is spec-
ified. The remaining columns show the results for each rtRTMP objective function, in terms
of average objective value (obj ), optimality gap (gap) and computation time (time). When a
TRSP approach is considered, the reported time also includes the computational time consumed
by the pACO-TRSP algorithm. The computational time and objective value are expressed in
seconds, except for the NDT objective value. The percentage optimality gap is computed as
(best integer− lower bound)/(best integer). We consider the lower bound obtained with no-TRSP,
respectively, by CPLEX when using RECIFE-MILP, and calculated according to D’Ariano et al.
[9] when using AGLIBRARY. When the optimality gap is zero, the best lower bound has been
reached. In contrast, when the optimality gap is 100%, the lower bound is equal to zero and is
different from the best integer. In general, a lower optimality gap is better, as it indicates that
the current solution is closer to the optimal solution. Higher optimality gaps suggest that there is
still significant room for improvement in the solution quality. In Tables 6 and 7, the best result
for each rtRTMP objective function is highlighted in bold.

The results in Table 6 indicate that in situations where the number of routes does not pose a
significant challenge for the standalone rtRTMP solver, i.e, when the solvers are able to achieve
optimality or near-optimality with all routes, the TRSP may not be necessary. In these cases, the
TRSP may exclude some optimal rtRTMP solutions by limiting the number of routes, but it is
still able to select routes that lead to near-optimal rtRTMP solutions. For example, the use of the
TRSP does not help in certain instances of the TTT in the Rouen case study, as RECIFE-MILP is
able to find optimal solutions using all routes in a short computational time. However, in instances
of MC, where AGLIBRARY achieves near-optimal solutions with no-TRSP (with an optimality
gap below 1%), pACO-TRSP is effective in finding even higher quality solutions and reducing the
optimality gap further. Overall, these results indicate that the application of TRSP does not have
a significant negative impact on performance when it is not needed.

Instead, when the number of possible train routes hinders the standalone solvers (i.e., no-
TRSP) from finding the optimal solution, the TRSP always improves the rtRTMP solution. The
improvement is remarkable irrespective of the rtRTMP model, the solution approach, and the
optimized objective function. That is, for all objective functions in Tables 6 and 7 except those
discussed above. This is particularly true for difficult instances such as the Lille ones, where dealing
with a large number of routing possibilities can be computationally intensive for both RECIFE-
MILP and AGLIBRARY. As highlighted in Section 7.1, in Lille, routes are very articulated and
often overlapping, which necessitates their decomposition into a substantial number of track circuits
and block sections, with multiple options available for connecting platforms to line tracks. In the
case of RECIFE-MILP, the large number of routing possibilities translates into a huge number
of binary variables and thus a highly computationally consuming exploration of the branch and
bound tree by the exact algorithm. As an example, in the Lille instances, no-TRSP needs to
deal with 24760 binary variables on average. In the case of AGLIBRARY, the metaheuristic
algorithm faces the risk of getting stuck in low-quality local minima: finding good train route
combinations to escape local minima becomes more difficult when all routes are considered. For
both rtRTMP solvers, the accurate selection of a limited number of train routes leads to more
successful exploration of the solution space, with higher quality results.

RECIFE-MILP often shows weak lower bounds close to zero for TED and TD. For Rouen,
the lower bound for TED and TD is null in 42 and 45 instances, respectively. Similarly, in the
Lille case study, the lower bounds for TED and TD remain consistently at zero, resulting in a
100% optimality gap when using no-TRSP. When the lower bound remains zero, either the solver
is able to drive the problem to an optimal solution of value zero, or the optimality gap remains
fixed to 100% for whatever value of the objective function. The former case occurs when the best
solution found does not involve any secondary delay, while the latter occurs when the objective
function has a value greater than zero. These weak lower bounds have an interesting impact on the
results in Tables 6 and 7. For example, for TED, no-TRSP reaches the optimum for 16 instances
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in a computational time shorter than 180 seconds. This lowers the average computational time.
However, for the remaining 34 instances where the optimum is not reached, the optimality gap
remains high, often equal to 100%. Furthermore, when comparing different TRSP approaches for
the same rtRTMP objective function, those having more solutions with zero delay can show a
smaller gap in optimality. At the same time, they can end up with a higher average objective value
because the rest of the solutions have delays much greater than zero. An example is the result of
PNDT for TD in Rouen case: PNDT displays a worse average objective value compared to PTD ,
yet its optimality gap is smaller due to having two more zero-delay solutions compared to PTD .

The objective values in Tables 6 and 7 reveal variations in performance between the two case
studies. This variation highlights the importance of considering the specific characteristics of the
case study when determining the most appropriate objective function by the stakeholders. In
Rouen, the results in Table 6 show a small variation between TED and TD objective values, with
an average of 50 seconds, for all TRSP approaches. This indicates that train entry delays account
for a small part of the total delay. In this case study, the small number of trains entering the
control area per hour implies that an average of 2 out of 12 trains have a primary delay at the
entry in the control area, in the experimental setup we consider. Thus, potential conflicts and
secondary delays at the entry points are rather sparse. Moreover, the infrastructure layout, which
consists of open lines and intermediate stops with planned buffer times, allows the separation of
railway traffic flows. This implies that the propagation of train delays can be more easily contained,
resulting in reduced NDT values. No-TRSP provides an average of about two delayed trains, and
the TRSP is able to lead to an average of about one train late. Given the low number of delayed
trains, in 10 cases out of 50, RECIFE-MILP no-TRSP is able to find optimal solutions for all
objective functions. This brings the average computational times in Table 6 below 180 seconds.
However, for the non-optimal solutions, the objective values found by no-TRSP are significantly
worse than when solving the TRSP. The small number of delayed trains in Rouen enhances also the
AGLIBRARY performance for MD. The train with the maximum delay has little interference with
other trains, leading to objective values that are generally low even with no-TRSP. The TRSP
leads to better performance, and with PMD the maximum train delay is reduced by 40% in half of
the computational time.

In the Lille case study, the number of trains entering the control area, as well as those affected
by primary delays at the entry, is four times bigger than in Rouen. Thus secondary train delays
are more likely to occur at the entry in the control area, as evident by the remarkable increase
of TD objective values over the TED ones in Table 7. In addition, the infrastructure layout
also makes it more difficult to contain the propagation of delays, resulting in a higher number of
delayed trains. No-TRSP records an average of 6 delayed trains, and only PNDT achieves the
best average result of 4 delayed trains. The intricate and busy network of Lille does not allow
the separation of the traffic flow, thus a train is subject to a long delay because of conflicts with
several trains simultaneously, affecting also MD objective values. Limiting the number of routes
by PMD helps improve the performance of no-TRSP most of all, reducing average objective value
by 10%. The minor improvement compared to Rouen is due to the greater difficulty in finding
good train route combinations also by the pACO-TRSP algorithm. Specifically, the correspondent
objective function PMD proves to be the best objective function for approximating MD solutions,
but further customization of the TRSP model and solution structure may be needed to better
assess the potential worst train.

7.4 Impact of different TRSP objective functions on rtRTMP perfor-
mance

In this section, we analyze the relationship between the TRSP model and the objective function
of the rtRTMP. In the previous section, Tables 6 and 7 show that aligning the TRSP with the
rtRTMP objective function leads consistently to the best rtRTMP performance.

However, the magnitude of this difference may vary depending on the specific objective func-
tion and case study. To determine the statistical significance of these differences, we employ the
Wilcoxon signed rank test to compare the differences in the rtRTMP solution values obtained
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by each TRSP objective function and the corresponding objective function, as presented in Ta-
bles 8 and 9. In particular, from the third column onwards in the tables, each cell compares
two different objective functions used in the TRSP. The value in each cell compares the rtRTMP
values obtained using the objective function listed in the column (corresponding to the rtRTMP)
with those obtained using the objective function listed in the row. For the Wilcoxon signed rank
test, we assume a confidence level of 0.99. The null hypothesis of the test assumes no difference
between the objective functions, i.e., the pseudo-median µ of the difference is equal to zero. Pos-
itive values of µ and of the lower and upper bounds of the confidence interval (CI) mean that
the difference is significant and the correspondent objective function performs significantly better.
Vice-versa, negative values of µ and the lower and upper bounds indicate that the solutions of the
non-corresponding objective function are significantly better. When the lower and upper bounds
have opposite signs, the observed difference between the two objective functions is not significant.
The p-value is an additional indicator of the test related to the significance level of the sample. It
indicates how likely the observed data would be obtained if the null hypothesis were true. A p-value
smaller than 1 − confidence level means stronger evidence in favor of the alternative hypothesis.
In Tables 8 and 9, we highlight in grey when the difference between the objective functions is
statistically significant with a confidence level of 0.99.

Table 8: Wilcoxon sign-rank test of the difference between TRSP objective functions for rtRTMP
solution, in Rouen instances , with a confidence level of 0.99.

rtRTMP

TRSP statistics TED TD TTT NDT MD MC
µ 17 2 1 3 7

PTED CI - {-50;71} {-17;18} {-2;3} {-27;37} {7;7}
p-value 0.27 0.71 0.59 1.00 0.10

µ 1 5 0 9 22
PTD CI {-41;49} - {-15;19} {-1;2} {-25;43} {-2;79}

p-value 0.98 0.57 0.82 0.71 0.02

µ 5 9 0 41 19
PTTT CI {-55;83} {-38;55} - {0;1} {5;69} {-22;75}

p-value 0.57 0.42 0.48 0.005 0.03

µ 0 2 4 43 1
PNDT CI {-63;125} {-43;67} {-8;18} - {18;61} {-14;63}

p-value 0.43 0.80 0.40 0.0004 0.93

µ 25 23 4 0 9
PMD CI {-13;199} {-2;280} {-17;23} {-1;2} - {-1;12}

p-value 0.24 0.12 0.60 0.61 0.40

µ 55 45 5 0 86
PMC CI {0;220} {3;139} {-11;27} {-1;2} {42;137} -

p-value 0.06 0.02 0.20 0.32 0.0001

In the Rouen case study, Table 8 shows that the pseudo-median is consistently positive, with
only five occurrences of null values. This trend suggests a preference for the corresponding ob-
jective function. However, the confidence intervals often display opposing signs, indicating that
the differences between the corresponding objective function and other alternatives lack statistical
significance at a confidence level of 0.99. This indicates that while using the corresponding objec-
tive function is generally advantageous, it may not be strictly necessary. Additionally, the higher
p-values compared to those in Table 9 for Lille confirm that the difference between objective values
is generally small. It is worth noting that if we decrease the level of confidence, some differences in
objective functions may become statistically significant. For example, PMC is not directly tied to
train delays as it aims to minimize the last potential train arrival, and thus results in significantly
different performance from the other objective functions at a lower level.

Looking at the columns TTT, NDT and MC in Table 8 no significant difference occurs between
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Table 9: Wilcoxon sign-rank test of the difference between TRSP objective functions for rtRTMP
solution, in Lille instances , with a confidence level of 0.99.

rtRTMP

TRSP statistics TED TD TTT NDT MD MC
µ 47 9 1 8 5

PTED CI - {-74;276} {-7;27} {0;2} {1;13} {4;8}
p-value 0.25 0.02 0.02 0.002 0.000000051

µ 0 6 0 10 5
PTD CI {-69;80} - {-2;16} {0;3} {4;20} {4;8}

p-value 0.10 0.11 0.56 0.000026 0.000000023

µ 16 112 2 10 4
PTTT CI {-7;103} {5;265} - {1;3} {2;26} {2;7}

p-value 0.22 0.006 0.0003 0.003 0.00000005

µ 95 183 18 11 8
PNDT CI {-3;173} {18;340} {2;37} - {4;25} {5;18}

p-value 0.004 0.002 0.0001 0.0001 0.000000003

µ 101 132 20 2 9
PMD CI {19;210} {39;265} {2;42} {2;4} - {5;15}

p-value 0.002 0.001 0.00006 0.000001 0.0000001

µ 208 442 25 2 41
PMC CI {83;420} {242;793} {9;39} {1;4} {21;98} -

p-value 0.0002 0.0000002 0.0000002 0.00005 0.00000005

any TRSP objective functions. Given the ease of finding good solutions in these cases, the train
routes selected by any TRSP approach performs well.

Regarding the other rtRTMP objectives in Table 8, we observe that PNDT leads to good
performance (small pseudo-medians) as it allows for a balanced combination of train routes from
different cliques. Recall that for Rouen we select 30 alternative routes for each train when the
TRSP is applied. Each route being part of a different clique. The overall selected cliques have
an average of one potential train route affected by high potential delays. Thus many train routes
without potential delays can be combined across the whole set of cliques, rather than using the
ones from the first clique. When PNDT cliques are used for TED, the 40% of routes selected in the
rtRTMP solutions are on average from the first clique selected by the TRSP and the remaining 60%
of routes are from the next 29 cliques. Instead, when using PTD , PTED or PTTT , TED solutions
have almost 65% of routes from the first clique. The same result applies to TD, TTT, and MC,
while for MD the solver gets stuck in local minima and does not reach a high quality solution with
PNDT .

In the Lille case study (Table 9), it is clear that aligning the TRSP model with the objective
function of the rtRTMP leads to the best results. The increased complexity of the system, with
more routes, trains, and secondary delays, results in a greater diversity of good solutions for
different objective functions. As a result, TRSP approaches that deviate from the corresponding
objective function tend to be significantly worse. Specifically, when objective functions of the
type total (TD, TED, TTT and NDT) are optimized using TRSP objective functions of the type
maximum (PMD and PMC), a significant difference is observed at a confidence level of 0.99. This
difference arises because maximum-type objective functions prioritize minimizing the worst train
performance while disregarding the performance of other trains within the control area, even if they
match that of the worst-performing train. Symmetrically, when optimizing maximum objectives
(MD, MC) using TRSP objective values of type total (PTED, PTD, PTTT , PNDT ) the significant
difference arises due to their preference of (often) strongly penalizing one or few trains with respect
to the others.

Focusing on total-type objective functions, it becomes apparent that TED is influenced by entry
delays, total travel time, and the number of delayed trains. Consequently, the p-value for TED
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indicates a significant difference compared to other total-type objective functions at a significance
level below 0.99. On the other hand, for TD, the inclusion of both entry and exit delays results in
substantial differences compared to PTTT and PNDT at a confidence level of 0.99.

Based on this analysis, we can conclude that although it is always preferable to align TRSP
and rtRTMP, the strengths of doing so increase with the complexity of the rtRTMP problem to
be addressed.

8 Conclusions and further research

This paper investigates the potential of the TRSP for its general application to the rtRTMP.
Train rerouting decisions bring one of the biggest benefits to the rtRTMP solution. At the same
time, they pose a major challenge: human dispatchers hardly predict the effect of simultaneous
train rerouting decisions, while in advanced technology systems routing variables exponentially
increase the number of solutions (combinations of scheduling and routing decisions) to explore.
The TRSP addresses this challenge by selecting a limited number of routes that can work best for
the rtRTMP. In this paper, we extended the applicability of the TRSP and evaluated its general
effectiveness for the rtRTMP. We extend the TRSP model to consider a range of objectives often
used for the rtRTMP: we propose the TRSP formulation for six objective functions and extend the
cost estimation model to evaluate the correspondence between the TRSP and rtRTMP objective
functions. Furthermore, we broadened the applicability by considering two different solvers, whose
models and solutions approaches differ. An extended analysis has been carried out on two French
networks to investigate the contribution of the TRSP in each configuration of the rtRTMP.

The results provide the following insights on the TRSP and the practical implications of its
application in decision support systems for the real-time railway traffic management:

• When the number of train routes becomes a computational bottleneck, the TRSP proves to
be a valuable tool in optimizing rail traffic management. Instead, when the number of avail-
able train routes does not significantly challenge the standalone rtRTMP solver (e.g., when
no-TRSP can achieve optimality or near-optimality) and the inclusion of the TRSP may not
be necessary, still, it consistently selects routes that lead to near-optimal rtRTMP solutions.
Thus, infrastructure managers should consider implementing the TRSP as a strategic pre-
processing in their decision support systems for addressing computational complexity and
improving rail traffic management efficiency. Indeed, the results show that the TRSP is a
reliable resource for improving operational outcomes in a variety of rail network settings;

• The accurate selection of a limited number of train routes by the TRSP leads to a more
successful exploration of the rtRTMP solution space for both solvers: the TRSP improves
RECIFE-MILP performance up to 73% when the objective function concerns the performance
of all trains in the control area, and it improves the ones of AGILIBRARY of up to 40% when
minimizing the worst train performance. Thus, infrastructure managers can benefit from the
versatility of the TRSP and apply it to different decision support systems. Regardless of the
specific rtRTMP solver used, the characteristics of the rtRTMP model, its solution approach,
or the chosen objective function, the TRSP consistently leads to improved rtRTMP solutions;

• The analysis of the relationship between the TRSP model and the objective function of the
rtRTMP underlines the need to adapt TRSP formulations to the different objectives of the
rtRTMP. While utilizing the corresponding objective function consistently proves advanta-
geous, its strict necessity varies depending on the type of objectives and characteristics of the
infrastructure. When primary delays cause a small negative impact on train operations, as in
the Rouen case study, train-oriented objective functions are more correlated with each other,
i.e., the difference between the correspondent objective function and other objective functions
is not always significant. In contrast, a large number of routes, trains, and secondary delays,
as in the case of Lille, causes more diversification among the good solutions for different ob-
jective functions. In this case, aligning TRSP and rtRTMP objective functions always leads
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to significantly better solutions. Therefore, to obtain the best results, regardless of the case
study, it is recommended to correlate the TRSP model with the rtRTMP objective function.

To further improve the performance of the TRSP when changing the rtRTMP objective func-
tion, further customization of the TRSP model and algorithm might be considered. Indeed, our
results suggest that the objective functions of type maximum (i.e., those seeking the worst train
performance among all trains in the control area), compared to the ones of type total, change how
the TRSP solution space is and should be explored. Future research will be dedicated to developing
a more effective TRSP solution process for these different cases. Moreover, according to the actual
TRSP model, the route choice is based on the given traffic situation and is highly dependent on
the precision with which the cost estimations can model it. Future research may study a more
robust train route selection model to identify good routes independently from the timetable.

Furthermore, we aim to explore the integration of train-specific weights in the objectives, al-
lowing us to capture diverse characteristics and priorities inherent to individual trains, thereby
enhancing the model’s precision in reflecting the rtRTMP. Additionally, we plan to advance the
TRSP concurrently with rtRTMP models to incorporate additional passenger-satisfying objectives.

Regarding the rtRTMP, future research could deepen the investigation of how different ob-
jectives interact in railway traffic management, identifying conflicts or synergies that could refine
objectives and streamline decision-making. Moreover, exploring the practicality of multi-objective
approaches in real-time railway traffic management could provide valuable insights for implemen-
tation.
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[28] Samà, M., Pellegrini, P., D’Ariano, A., Rodriguez, J., Pacciarelli, D., 2016. Ant colony opti-
mization for the real-time train routing selection problem. Transportation Research Part B,
85 (1), 89–108.
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Appendix A

In this section, we report complementary information to the example in Section 4. Specifically, we
describe the computation of the costs wf

b2c2
= 9 (B), wf

b2d3
= 0 (D), wf

c2d3
= 1 (D) corresponding

to the pair of alternative routes considered in the example (Figure A.1).
For each selected train route, we report the list of sections crossed and the time values at which

each train starts utilizing each section and exits (out) the control area in the perturbed scenario,
disregarding the conflicts:

• a1 (pink line): s1=8, s3=12, s5=16, s7=23, s9=28, out=29;

• b2 (blue line): s1=9, s3=13, s5=17, s7=23, s10=26, out=29;

• c2 (green line): s10=20, s7=27, s6=33, s4=41, s2=43, out=44;

• d3 (red line): s10=32, s8=37, s6=40, s4=45, s2=46, out=48.

Remark that the time at which each train starts the utilization of its first section corresponds to
the train entry time. We recall that due to the turnaround between train B and D, s10 cannot
be occupied by another train between the end of utilization of B and the beginning of utilization
of D. Moreover, the minimum processing time of 3 time units has to be respected between the end
of utilization of B and the beginning of utilization of D.

Train routes b2 and c2 share sections s7 and s10. Since the two trains B and C are traveling in
opposite directions, the utilization overlap is jointly computed on s7 and s10 (to avoid a deadlock
situation). When train C passes before B on these sections, the utilization overlap is, respectively:
9 (33 - 24). Instead, when train B passes before C no utilization overlap is recorded on s7 since B
finishes using it at 26 and C should start using it at 27. Regarding s7, the cost calculation takes
into account the turnaround with D according to Pascariu et al. [22]: s10 cannot be occupied by C
before D finishes using it. Therefore, the time that C potentially has to wait if B passes first is
given by the difference between the end of utilization of s10 by D (37) and the beginning of use by C
(20), which results to be 17. For each of the two possible train orderings, the maximum utilization
overlap is 9 (C before B) and 17 (B before C). In Figure A.1a we illustrate the utilization diagram
of the two potential decisions. The minimum between these two values gives the fixed component
of the potential delay wf

b2c2
= 9. In this case, train B is the potential waiting train.

Regarding train routes b2 and d3, these are the routes of the trains involved in the turnaround
on section s10. The second train in the rolling stock re-utilization, D, can only start using this
section after B has finished plus the processing time (3 time units). Since this process time is
respected, no utilization overlap is recorded: train D starts utilizing s10 at 32, while B ends using
s10 at 29. As a result, wf

b2d3
= 0 and train D passes necessarily after B.
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(a) Trains ordering B-C (left) C-B (right)

(b) Trains ordering D-C (left) C-D (right)

Figure A.1: Illustrative example

Finally, considering the train routes c2 and d3, their cost is calculated in a mirror way with
respect to b2 and c2. Train routes b2 and d3 share the sections s10, s6, s4 and s2. When train D
passes before C on these sections, the utilization overlap is, respectively: 17 (37 - 20), 12 (45 -
33), 5 (46 - 41) and 5 (48-43). Instead, when we consider the C train passing first, we take into
account the rolling stock re-utilization connection on s10. That is, in this section, C must pass
before B, the first train in the rolling stock connection. So for the utilization overlap, we consider
the difference between the end of utilization of C and the beginning of utilization of B, since D
would be delayed consequently. As a result, when train C passes before D on s10, s6, s4 and s2,
the utilization overlap is, respectively: 1 (27 - 26), 1 (41 - 40), -2 (43 - 45) and -2 (44 - 46). For
each of the two possible train orderings, the maximum utilization overlap is 17 (D before C) and 1
(C before D). In Figure A.1b we illustrate the utilization diagram of these two potential decisions.

The minimum between these two values gives the fixed component of the potential delay wf
c2d3

= 1.
In this case, train D is the potential waiting train.
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