
HAL Id: hal-04617632
https://hal.science/hal-04617632

Submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FLoCoRA: FEDERATED LEARNING
COMPRESSION WITH LOW-RANK ADAPTATION

Lucas Grativol Ribeiro, Mathieu Leonardon, Guillaume Muller, Virginie
Fresse, Matthieu Arzel

To cite this version:
Lucas Grativol Ribeiro, Mathieu Leonardon, Guillaume Muller, Virginie Fresse, Matthieu Arzel. FLo-
CoRA: FEDERATED LEARNING COMPRESSION WITH LOW-RANK ADAPTATION. 32nd Eu-
ropean Signal Processing Conference EUSIPCO, Aug 2024, Lyon, France. �hal-04617632�

https://hal.science/hal-04617632
https://hal.archives-ouvertes.fr

FLoCoRA: FEDERATED LEARNING
COMPRESSION WITH LOW-RANK

ADAPTATION
Lucas Grativol∗, Mathieu Léonardon∗, Guillaume Muller‡, Virginie Fresse† and Matthieu Arzel∗

∗IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France
†Hubert Curien Laboratory, Saint-Etienne, France

‡Mines Saint-Etienne, Institut Henri Fayol, Saint-Etienne, France

Abstract—Low-Rank Adaptation (LoRA) methods have gained
popularity in efficient parameter fine-tuning of models containing
hundreds of billions of parameters. In this work, instead, we
demonstrate the application of LoRA methods to train small-
vision models in Federated Learning (FL) from scratch. We
first propose an aggregation-agnostic method to integrate LoRA
within FL, named FLoCoRA, showing that the method is capable
of reducing communication costs by 4.8 times, while having less
than 1% accuracy degradation, for a CIFAR-10 classification
task with a ResNet-8. Next, we show that the same method
can be extended with an affine quantization scheme, dividing
the communication cost by 18.6 times, while comparing it with
the standard method, with still less than 1% of accuracy loss,
tested with on a ResNet-18 model. Our formulation represents a
strong baseline for message size reduction, even when compared
to conventional model compression works, while also reducing the
training memory requirements due to the low-rank adaptation.

Index Terms—Low-Rank Adaptation, Federated Learning,
Compression

I. INTRODUCTION

The preservation of data privacy has long been a goal in the
development of approaches to train machine learning models.
In traditional machine learning, raw data from embedded
systems are sent over a network to a powerful server for model
training, raising concerns about confidentiality [1]. Federated
Learning (FL) has emerged as a promising mitigation of these
problems [2]. In FL, each participating client keeps its data
locally, only sharing the results of its local training. These
results, often in the form of model parameters or gradients,
are fused in a central orchestration server. As the training
process shifts from a server to a third-party device, there
is a trade-off between increased privacy and computational
and communication overhead. The challenge of convergence
in FL [3] further supports this idea, as the diverse data
distribution among devices leads to conflicting update models,
which affects the convergence time.

To overcome the computation and communication problem
in FL, previous works have focused on model compression
techniques such as pruning [4], quantization [5] and more
recently the application of low-rank adaptation (LoRA)
with [6]–[8], following the original work on LoRA [9].

This work is supported by the Futur et Ruptures program funded by IMT
and Institut Carnot TSN, and by the GdR IASIS.

Unlike previous works, that focused on large models, we
demonstrate the application of LoRA for training small-vision
models from scratch. Going further, we demonstrate how
quantization can be applied to LoRA and FL, dividing the
cost of communication by 18.6, compared to the standard
method, while keeping the accuracy degradation within 1%.

We can summarize our contributions as :
• We demonstrate how LoRA adapters can be integrated to

the FL framework, while still being implementable in any
FL optimization method, proposing FLoCoRA. Repre-
senting a strong baseline for communication and memory
reduction in FL. Our code is publicly accessible 1.

• We study the impact of LoRA hyperparameters for a
classification task with small vision models, which allows
these models to be trained from scratch, contributing to
reduce message sizes in FL up to 4.8 times, with 1% loss
of accuracy for a ResNet-8.

• We introduce an affine quantization scheme with FLo-
CoRA, allowing further compression rates of 18.6 to 37.3
times with up to 1% loss of accuracy for a ResNet-18.

II. BACKGROUND

A. Federated Learning

As the most used aggregation method in FL, we use FedAvg
(Federated Averaging) [2] as the showcase for a typical FL
framework, while also presenting the baseline used in this
work. It operates by sampling a subset K, of a pool of
clients C, in each round to train a model with parameters
w for a specified number of local epochs. Each client has its
own dataset of size ni, and the total size of the datasets of
the participating clients in a round is denoted n. Each client
k ∈ K, seeks to find the parameters w that minimize its local
loss fk(w) = E[l(X, y,w)], for a set of examples X and labels
y, and the loss function l(.). The general objective of FedAvg
is then to find a global w that minimizes Equation 1, where
Fk(w) = E[fk]. When this process is iterating for a certain
number of rounds R, the final result is expected to increase the
individual performance of each client [10], without the need
for data sharing.

1https://anonymous.4open.science/r/FLoCoRA eusipco24-A6F1/

https://anonymous.4open.science/r/FLoCoRA_eusipco24-A6F1/

min
w

f(w) =

K∑
k=1

ni

n
Fk(w) (1)

During training, model parameters are downloaded from
server to client and uploaded from client to server. Equation 2
represents the total communication cost (TCC) for a certain
number of rounds R. Here, we consider Qp as the number
of bits of each element in w and |w| as the total number of
elements/parameters. To decrease the size of a message, one
can reduce the number of parameters or reduce the value of
Qp. Equation 2 can be utilized to calculate the communication
cost for a single client in FL. Therefore, we employ this
equation throughout this work to determine the TCC.

TCC(R) = 2RQp|w| (2)

B. Model Compression

This is the point where traditional model compression tech-
niques help the FL framework. Model compression is a widely
adopted solution [11] to reduce computational and memory
requirements in centralised machine learning. As such, the
ideas of pruning [12] and quantization [5], two widely adopted
techniques in model compression, have been studied in the FL
scenario [3].

Within the FL framework, pruning can be applied to induce
more sparsity in a model, leading to more compressible
parameters [4], or to eliminate certain architectural elements,
such as kernel or filters, to transmit fewer parameters [13].
By introducing sparsity or removing certain parts of a model,
pruning can also reduce the computation needs of a model
during training [14].

Another method, sometimes complementary to prun-
ing [15], is quantization, where the objective is to reduce the
binary representation of the parameters. As usually models are
represented using 32- or 16-bits floating point (FP) numbers,
the idea is to reduce it to 8- or sub-8-bit FP, or even change
the data to fixed-point or integer formats [16].

Pruning has been used successfully in FL, either post-
training to introduce sparsity and reduce message size, or
during training to reduce computations and message size [12].
However, such methods require additional steps to induce
sparsity, resulting in overhead.

C. Low-Rank Adaptation

In the domain of transfer learning, low-rank adaptation
methods have gained popularity for task adaptation of model
containing hundreds of billions of parameters [9], [17]. LoRA
comes from the need to adapt a large-scale already trained
model to a new task, in order to save computation time and
reduce the memory footprint. For example, the parameters ,
Wl ∈ Rd1×d2 , of pretrained linear layer, l, are reformulated
with a new adapter, a parallel layer, obtaining W ∗

l = Wl +
α
rBA, where A ∈ Rd1×r and B ∈ Rr×d2 are two matrices
of maximum rank r. The term α

r is a scaling factor, based
on a hyperparameter α and rank r. The idea is to keep Wl

frozen and to train BA to represent a lower-rank update of
Wl. An advantage of this approach is that the matrix BA
can be incorporated back into the original pretrained weights,
W ∗

l , without any additional latency. LoRA has shown that for
r << min(d1, d2), Wl can be adapted to a new task, largely
reducing the need to fine-tune the entire model.

When LoRA is applied to FL, the original model is kept
frozen and we only need to train the adapters, B and A.
The adapters have fewer parameters than the original model,
resulting in a lighter model for training because they require
less memory for the gradients. Since the original model
remains frozen, it is not necessary to communicate it between
the server and client in every round, thus the communication
is also lighter.

Previous studies like SLoRA [7] have investigated the
potential impact of LoRA techniques on FL. They suggested
merging standard FL training with matrix decomposition to
achieve favorable initialization for both the original model
and matrices A and B. HLoRA [8] allowed clients to select
different LoRA ranks, according to their individual constraints,
to adapt a pretrained base model. FedPara [6], redefined the
LoRA adapter as W ∗

l = Wl + (X1.Y
T
1) ⊙ (X2.Y

T
2), where

⊙ is the Hadamard product, in order to obtain an update of
higher rank than conventional LoRA.

However, SLoRA and HLoRA have not investigated the
application of LoRA methods for the training of small CNNs
from scratch, having focused on how LoRA was applied to
bigger models like large-language models (LLM) and foun-
dation models. Closer to our work, FedPara [6] has tested
on small CNNs, but its low-rank method and quantization is
limited to FP-16 and the adaptation of FedPaq [5] on a rather
simple test scenario.

III. OUR METHOD - FLOCORA

In this work, we propose never to update the parameters
of the randomly initialized neural network parameters shared
between clients at the start of training. Only adapters pa-
rameters will be trained, exchanged, and updated. Since the
original parameters remain unchanged, the exchange of LoRA
parameters is sufficient to represent the updates from each
client. The server continues to receive updated parameters
from clients, which means that this method can also be
integrated with other FL techniques, without further changes.

Figure 1 illustrates our approach, Federated Learning
Compression with Low-Rank Adaptation (FLoCoRA), for a
single communication round. All clients start with identical
weights, denoted as Winitial, which remain fixed throughout
the training process. In the first step (1), the server transmits
the global LoRA adapters parameters, ∆̄tL, to the selected
subset K of clients. Subsequently, in step (2), each client
independently trains its LoRA adapter locally and uploads the
result, ∆k

t+1L, to the server in step (3). Finally, in step (4),
the server uses the same weighted averaging mechanism as
FedAvg to obtain the updated global LoRA adapter parameters
for the next round, denoted ∆̄t+1L.

Clientsk

Winitial

Frozen

B

rank

A

(2) ∆k
t+1L← Train(∆̄tL)

Server
(4) ∆̄t+1L← FedAvg(∆k

t+1L), k ∈ [1;K]

(1) Download(∆̄tL)

(3) Upload(∆k
t+1L)

Fig. 1: FLoCoRA training loop.

TABLE I: Number of parameters for different sizes of r. For
each value, we have the total number of parameters to be
trained/sent and the total number of the parameters with the
original model plus the LoRA adapter.

Method Total
Params

Trained
Params

% of Trained
Params

FedAvg 1.23M 1.23M 100
FLoCoRA (r = 8) 1.30M 69.45K 5.35
FLoCoRA (r = 16) 1.36M 131.92K 9.70
FLoCoRA (r = 32) 1.48M 256.84K 17.30
FLoCoRA (r = 64) 1.73M 506.70K 29.22
FLoCoRA (r = 128) 2.23M 1.00 M 45.05

Table I presents the size of the trainable parameters for a
ResNet-8 [18], for different values of r. It should be noted
that we adapt the convolution layers using LoRA, but the
normalization and fully connected (FC) layers of the original
model are trained; more details of this are discussed in
Section IV.

For convolution layers, we follow the decomposition pro-
posed in [19]. Let Pl ∈ RO×I×Kr×Kr be a convolution
layer; then we define its LoRA adapter matrices as B ∈
Rr×I×Kr×Kr and A ∈ RO×r×1×1. Output channels are
denoted as O, the input channels as I , and the kernel size
as Kr.

To verify the impacts of using LoRA with FL, we first
investigate which layers of the original model need to be
trained in a normal way and which can receive the LoRA
adapters. Then, we compare our work with recent literature on
compression methods for FL, showing that LoRA methods are
a strong baseline for future works in the domain. Finally, we
show that quantizing LoRA parameters can lead to additional
message compression, even when dealing with highly diverse
data distributions across clients.

IV. EXPERIMENTS AND DISCUSSION

Our basic setup for FL consists of 100 clients, where at each
round 10 % of clients are sampled. We train for a total of 100
rounds. For simplicity, based on [6], we fix the batch size, the

TABLE II: The effect of training different layers with or
without LoRA adapters.

Method Nb. of Params.
to update Accuracy

FedAvg 1.23 M 76.14 ± 0.74
FLoCoRA Vanilla 0.26 M 22.14 ± 3.99

+ Norm. layers 0.26 M 39.80 ± 12.05
+ Final FC 0.26 M 75.51 ± 1.34

learning rate, the number of local epochs and momentum at 32,
0.01, 5 and 0.9, respectively, for all clients. We use SGD with
momentum as the local optimizer for clients. We use FedAvg
as our aggregation algorithm. We ran all the experiments three
times with different seeds.

Initially, to verify how FLoCoRA training impacts conver-
gence in FL, we trained a ResNet-8 for an image classifi-
cation task with the CIFAR-10 dataset. Following an LDA
distribution with parameter 0.5 [2], we also replace the batch
normalization layer with the group normalization layer as
suggested by [20]. Table II presents an ablation of the layers to
be trained with LoRA hyperparameters r = 32 and α = 512.
We chose to use r = 32 because it was the minimum rank of
which the accuracy had less than 1% of degradation. Starting
with a randomly initialized ResNet-8 model, we freeze the
entire model, introducing LoRA adapters for all convolutions
and to the final FC layer, corresponding to ”FLoCoRA Vanilla”
in Table II. Subsequently, we unfreeze the normalization
layers, ”+ Norm. Layers”, then we remove the LoRA adapter
from the final FC layer and unfreeze it, ”+ Final FC”.

Normalization layers need to be trained to capture running
statistics, as it cannot be adapted with LoRA methods, so we
need to train it. For the FC layer, we hypothesize that the
lower rank is not enough for the last classification layer, as it
is a layer that tends to be highly specialized and sensible [21].
For the remainder of this paper, we keep this configuration for
FLoCoRA experiments.

Expanding on the importance of choosing the appropriate

8 16 32 64 128
68

70

72

74

76

78

(+ 4.44)

(+ 3.71)

Rank r

A
cc
u
ra
cy

(%
)

FLoCoRA α=2r
FLoCoRA α=16r

FedAvg

Fig. 2: The relationship between the r hyperparameter in
FLoCoRA and the scaling factor α, in α

r . Two scenarios are
evaluated, α = 2r and α = 16r, against FedAvg.

layers, we examine the trade-off between rank r and the
scaling parameter α. We compare a FedAvg baseline with two
different setups, where α is set to 2r and 16r, the results are
shown in Figure 2. In LoRA’s original paper [9], α is scaled
to twice the rank for LLMs. However, when training small
CNNs with FL, we found that increasing this factor further
led to improvements in accuracy of up to 4.4%. Increasing
the scaling factor of the LoRA adapters layers is a way to
adjust their learning rate to higher values while keeping more
sensible layers, the normalization and the FC layers, in a lower
learning rate, improving training stability and performance.

Looking at the results in Figure 2, FLoCoRA is able to
achieve an accuracy drop of less than 1%, while sharing only
0.26M parameters, representing a reduction of 4.8× compared
to sharing the entire model. For a rank of 128, the number
of parameters to send is closer to the original model, as
seen in Table I, but we see an improvement in accuracy of
2%. Indeed, for the ResNet-8 design used, the convolution
layers throughout the model have output channel numbers
of 64, 128, or 256. Consequently, opting for a rank of 128
results in an augmentation of rank for certain layers while
maintaining the same rank for others. This modification results
in a greater overall rank update for the shallower convolution
layers compared to the original model, and the low-rank update
is actually applied to the deeper convolution layers. Finally,
the model has slightly less parameters because the larger
convolution layers, with 256 output channels, are adapted
with a lower rank of 128, effectively reducing the number
of parameters.

So far FLoCoRA has reduced the number of trainable
parameters, which reduces the necessary memory to train the
model, and consequently reducing the number of parameters
that must be communicated in each round. Next, we investigate
the effects of applying an affine quantization scheme [22]
for both the client and the server message. We calculate
the scaling factor and zero point values per channel for the
convolution layers and per column for the FC layer. Normal-
ization layers are not quantized. We use 2/4/8-bit formats to
quantify trainable layers. For a model such as ResNet-8 this
translates to reductions of 56.3, 32.6 and 17.7 times in the
TCC, respectively, for 2/4/8-bits. We included the overhead
to transmit the scaling factors and zero points in FP format.
Table III resumes the TTC, as expressed by Equation 2, to
train a model with FLoCoRA and quantization.

We show in Figure 3 the evolution of the accuracy of the
FP FedAvg and FLoCoRA, and also the quantized version of

TABLE III: Total communication cost (TTC) for different
quantization levels with FLoCoRA, for a rank of 32 and alpha
of 512, during 100 rounds of FL.

Method Quantization TCC Accuracy
FedAvg FP 982.07 MB (÷1) 76.14 ± 0.74

FLoCoRA FP 205.47 MB (÷4.8) 75.51 ± 1.34
int8 55.56 MB (÷17.7) 74.21 ± 1.05
int4 30.15 MB (÷32.6) 73.15 ± 0.18
int2 17.44 MB (÷56.3) 55.03 ± 1.90

0 20 40 60 80 100
10

20

30

40

50

60

70

80

Rounds

A
cc
u
ra
cy

(%
)

FedAvg
FLoCoRA

FLoCoRA Q=8
FLoCoRA Q=4
FLoCoRA Q=2

Fig. 3: Convergence behavior between FedAvg, FLoCoRA
with rank of 32 and its quantized versions of 2/4/8-bits.

FLoCoRA. The convergence time for FLoCoRA in FP and its
quantized version with 8-bits is not affected, demonstrating
that it is an effective method for communication savings. As
per Table III the quantized versions suffer further degradation,
with 2% for the 8-bit case. Even with close convergence times,
we see that the quantized versions added more instability to the
training, this could be a further interesting research direction to
improve the quantization scheme with FLoCoRA. We would
expect that revisiting the literature on model compression [23],
[24] and combining it with FLoCoRA would find a better
quantization scheme. Here, we demonstrate that even a simple
technique, based on a round-to-nearest method, is capable of
achieving competitive results.

FedPara [6] method has been applied to a VGG-16 model,
which is compared to FedAvg and a low-rank tensor parame-
terization based on Tucker decomposition, resulting in commu-
nication reductions of 2.8-10.1 times. Base FLoCoRA achieves
comparable compression ratios, showing that combining the
low-rank adapter for convolution proposed in [19] is capable
of training a small CNN model from scratch. The quantized
version of FLoCoRA further reduces communication cost,
resulting in a better trade-off of communication and accuracy.

TABLE IV: Comparing LoRA and quantization to ZeroFL and
Magnitude Pruning methods.

Method Config. Message
Size (MB)

TCC
(GB) Accuracy

FedAvg Full Model 44.7(÷1.0) 62.6 84.43 ± 0.36

ZeroFL [12]
90% SP+
0.2 MR 27.3(÷1.6) 38.2 81.04 ± 0.28

90% SP+
0.0 MR 10.1(÷4.4) 14.1 73.87 ± 0.50

Magnitude
Pruning [4]

40% prune 27.1 (÷1.6) 38.0 85.20 ± 0.20
80% prune 9.8 (÷4.6) 13.7 80.70 ± 0.24

FLoCoRA

r=64 9.2 (÷4.9) 12.9 85.17 ± 0.44
r=32 4.6 (÷9.7) 6.5 83.90 ± 0.20
r=16 2.4 (÷18.6) 3.3 82.33 ± 0.35

r=64, Q=8 2.4 (÷18.6) 3.3 85.24 ± 0.23
r=32, Q=8 1.2 (÷37.3) 1.7 83.95 ± 0.32
r=16, Q=8 0.7 (÷63.9) 1.0 81.89 ± 1.01

Finally, combining FLoCoRA with the suggested quantiza-
tion approach, we compare it with the techniques introduced
in ZeroFL [12] and with Magnitude Pruning [4]. Table IV
illustrates that, although used as a fine-tuning method, LoRA
serves as a strong baseline for communication savings in FL.
For this experiment, we reproduced the setup proposed by [4],
[12], where we have 100 clients, training for 1 local epoch a
ResNet-18 model, with an LDA parameter of 1.0, for 700
communication rounds.

ZeroFL reports their baseline accuracy as 80.62%, in our
work we use the baseline as in Table III. The difference comes
from the batch size used for the clients in the two works. As
the client batch size is not reported by ZeroFL, we used the
values indicated by Magnitude Pruning. FLoCoRA achieves
less accuracy degradation for smaller messages, compared to
conventional methods. The same is observed when FLoCoRA
is combined with quantization, a reduction between 18.6-63.9
times with 4% accuracy loss for a case where we spend 0.7
MB per client to train a model with 44.7 MB. Interestingly,
compared to our previous experience in Table III, the quantized
versions for ResNet-18 show less degradation than before. We
see this to be possible because we have a model that is 9×
larger, being trained 7× longer, with an easy training scenario.
The first results use an LDA of 0.5 and for ResNet-18 an LDA
1.0, where the higher the LDA parameter, the more identical
and close the data distribution between the clients becomes.

V. CONCLUSION

In this work, we showed that Low Rank Adapation (LoRA),
commonly used for fine-tuning, can be used to train small
vision models from scratch in Federated Learning. It allows
to decrease the training complexity of previous methods,
reducing the amount of communication between server and
clients, as well as the training memory requirements and
computational power. Moreover, we showed that our method,
FLoCoRA, can be deployed with quantization, allowing to
further reduce the communication cost, while maintaining
strong accuracies. In our setting, using ResNet18 networks on
the CIFAR10 dataset, we showed that communication cost is
divided by 18.6, with less than 1% accuracy loss. FLoCoRA
paves the way for the deployment of Federated Learning
on edge devices, where communication is a bottleneck, and
computational power is limited. It also raises some questions to
be explored in future work. Indeed, our method is able to train
small models without updating the original one. This opens the
door to the exploration of model architecture heterogeneity
between clients, by using low-rank methods. It would also
be possible to explore quantization and rank heterogeneity to
further reduce the communication cost.

REFERENCES

[1] Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data security and privacy in
cloud computing,” International Journal of Distributed Sensor Networks,
vol. 10, no. 7, p. 190903, 2014.

[2] B. McMahan and et al, “Communication-efficient learning of deep net-
works from decentralized data,” in Artificial intelligence and statistics.
PMLR, 2017, pp. 1273–1282.

[3] P. Kairouz and et al, “Advances and open problems in federated
learning,” Foundations and Trends® in Machine Learning, vol. 14, no.
1–2, pp. 1–210, 2021.

[4] L. Grativol, M. Léonardon, G. Muller, V. Fresse, and M. Arzel, “Feder-
ated learning compression designed for lightweight communications,” in
2023 30th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE, 2023, pp. 1–4.

[5] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.

[6] N. Hyeon-Woo, M. Ye-Bin, and T.-H. Oh, “Fedpara: Low-rank hadamard
product for communication-efficient federated learning,” in International
Conference on Learning Representations, 2021.

[7] S. Babakniya, A. R. Elkordy, Y. H. Ezzeldin, Q. Liu, K.-B. Song, M. El-
Khamy, and S. Avestimehr, “Slora: Federated parameter efficient fine-
tuning of language models,” arXiv preprint arXiv:2308.06522, 2023.

[8] Y. J. Cho, L. Liu, Z. Xu, A. Fahrezi, M. Barnes, and G. Joshi,
“Heterogeneous lora for federated fine-tuning of on-device foundation
models,” in International Workshop on Federated Learning in the Age
of Foundation Models in Conjunction with NeurIPS 2023, 2023.

[9] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen
et al., “Lora: Low-rank adaptation of large language models,” in Inter-
national Conference on Learning Representations, 2021.

[10] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[11] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model com-
pression and acceleration for deep neural networks,” arXiv:1710.09282,
2017.

[12] X. Qiu, J. Fernandez-Marques, P. P. Gusmao, Y. Gao, T. Parcollet, and
N. D. Lane, “Zerofl: Efficient on-device training for federated learning
with local sparsity,” arXiv preprint arXiv:2208.02507, 2022.

[13] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[14] H. Tessier, V. Gripon, M. Léonardon, M. Arzel, T. Hannagan, and
D. Bertrand, “Rethinking weight decay for efficient neural network
pruning,” Journal of Imaging, vol. 8, no. 3, p. 64, 2022.

[15] S. Bai, J. Chen, X. Shen, Y. Qian, and Y. Liu, “Unified data-free com-
pression: Pruning and quantization without fine-tuning,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 5876–5885.

[16] S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers
in deep neural networks,” arXiv preprint arXiv:1802.04680, 2018.

[17] R. Bensaid, V. Gripon, F. Leduc-Primeau, L. Mauch, G. B. Hacene, and
F. Cardinaux, “A novel benchmark for few-shot semantic segmentation
in the era of foundation models,” arXiv preprint arXiv:2401.11311,
2024.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] M. Huh, H. Mobahi, R. Zhang, B. Cheung, P. Agrawal, and P. Isola, “The
low-rank simplicity bias in deep networks,” Transactions on Machine
Learning Research, 2022.

[20] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,”
arXiv:1909.06335, 2019.

[21] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in
transfer learning?” Advances in neural information processing systems,
vol. 33, pp. 512–523, 2020.

[22] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[23] M. Nagel, M. Fournarakis, Y. Bondarenko, and T. Blankevoort, “Over-
coming oscillations in quantization-aware training,” in International
Conference on Machine Learning. PMLR, 2022, pp. 16 318–16 330.

[24] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” in International Conference
on Learning Representations, 2019.

	Introduction
	Background
	Federated Learning
	Model Compression
	Low-Rank Adaptation

	Our method - FLoCoRA
	Experiments and Discussion
	Conclusion
	References

