Favorable and unfavorable many-body interactions for near-field radiative heat transfer in nanoparticle networks
Résumé
Near-field radiative heat transfer (NFRHT) in nanoparticle networks is complicated due to the multiple scattering of thermally excited electromagnetic wave (namely, many-body interaction, MBI). The MBI regime is analyzed using the many-body radiative heat transfer theory at the particle scale for networks of a few nanoparticles. Effect of MBI on radiative heat diffusion in networks of a large number of nanoparticles is analyzed using the normal-diffusion radiative heat transfer theory at the continuum scale. An influencing factor $ψ$ is defined to numerically figure out the border of the different many-body interaction regimes. The whole space near the two nanoparticles can be divided into four zones, non-MBI zone, enhancement zone, inhibition zone and forbidden zone, respectively. Enhancement zone is relatively smaller than the inhibition zone, so many particles can lie in the inhibiting zone that the inhibition effect of many-body interaction on NFRHT in nanoparticle networks is common in literature. Analysis on the radiative thermal energy confirms that multiple scattering caused by the inserted scatter accounts for the enhancement and inhibition of NFRHT. By arranging the nanoparticle network in aspect of structures and optical properties, the MBI can be used to modulate radiative heat diffusion characterized by the radiative effective thermal conductivity ($k_{\rm eff}$) over a wide range, from inhibition (over 55% reduction) to amplification (30 times of magnitude). To achieve a notable MBI, it is necessary to introduce particles that have resonances well-matched with those of the particles of interest, irrespective of their match with the Planckian window. This work may help for the understanding of the thermal radiation in nanoparticle networks.
Origine | Fichiers produits par l'(les) auteur(s) |
---|