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In brief

Chia et al. comprehensively analyzed

genome sequence data from patients

with multiple system atrophy (MSA) and

controls. The study identified four novel

risk loci associated with MSA and

prioritized significantly associated genes

(USP38-DT, KCTD7, and lnc-KCTD7-2)

within these loci. This initiative’s data

constitute a valuable resource for the

research community.
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SUMMARY
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism,
cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments
are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome
sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate
the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly
associated risk loci using a genome-wide association study approach. Transcriptome-wide association an-
alyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these
loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression
quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study high-
lights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from
this study represent a valuable resource for investigating synucleinopathies.
INTRODUCTION

The three main synucleinopathies—neurological conditions

characterized by abnormal a-synuclein protein aggregates—
This is an open access article under the CC BY-NC-ND
are Parkinson’s disease, Lewy body dementia, and multiple sys-

tem atrophy (MSA).1 Considerable progress has been made in

unraveling the genetic architecture of Parkinson’s disease and

Lewy body dementia.2,3 By contrast, the molecular causes of
Neuron 112, 1–15, July 3, 2024 Published by Elsevier Inc. 1
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MSA are poorly understood due to its rarity in the community

(�15,000 patients in the United States), its sporadic nature, the

heterogeneous clinical manifestations, and the possibility of

mimic syndromes.4 Consequently, MSA remains the least under-

stood member within the synucleinopathy triad.

Clinically, MSA is classified as a sporadic, adult-onset neuro-

degenerative disease that presents with variable combinations

of parkinsonism, cerebellar ataxia, pyramidal signs, and dysau-

tonomia.5 The mean age at disease onset is 55 years, and

most patients die within 6–10 years.6 Pathologically, MSA is

defined by widespread neuronal loss and gliosis, with the depo-

sition of fibrillar a-synuclein in oligodendroglial cells that spreads

throughout the brain using prion-like mechanisms.7 As for most

neurodegenerative diseases, no disease-modifying therapies

are available, and treatments are directed toward managing

the patient’s symptoms.

Identifying genetic risk loci is at the heart of efforts to under-

stand the pathogenesis of MSA and inform translational efforts.

Candidate gene studies have implicated risk variants within the

SNCA,GBA1,MAPT, andCOQ2 genes, though replicating these

loci has been challenging.8–16 Here, we attempted to fill this crit-

ical knowledge gap by generating a whole genome sequencing
dataset and analyzing it to discover risk variants driving the

risk of MSA. Our genome-wide association studies (GWASs)

and transcriptomic analyses identified novel risk genes. We

further examined the genetic architecture of MSA by mapping

pathogenic repeat expansions and investigating rare, damaging

variants. Importantly, we provide a valuable resource to stimu-

late and advance research in this understudied, fatal neurode-

generative disease.

RESULTS

Genome sequence data from 888 patients diagnosed with MSA

and 7,128 control subjects were included in the analysis

after quality control (see Figure S1 for a workflow diagram; see

Table 1 for demographic characteristics).

GWAS identifies novel MSA risk loci on chromosomes
4q31.21 and 15q23
We conducted a GWAS of �9.2 million variants with a minor

allele frequency (MAF) of 1% or higher to identify genetic loci

associated with MSA. In Figure 1A, we show the Manhattan

plot for the genome-wide analysis using the additive model,
Neuron 112, 1–15, July 3, 2024 3
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Table 1. Characteristics of study participants

Variable Cases Controls

Neurologically healthy controls TOPMed controls

Number 888 3,018 4,110

Female sex, n (%) 416 (47%) 1,612 (53%) 2,129 (52%)

Mean age (years, range) 64 (38–91)a 77 (16–110) 62 (20–93)

Diagnostic category

Clinically probable MSA, n (%) 420 (47%) – –

Definite MSA, n (%) 468 (53%) – –

Clinical subtype

MSA-P, n (%) 202 (23%) – –

MSA-C, n (%) 127 (14%) – –

Not available, n (%) 559 (63%) – –
aAge information was not available for 116 MSA cases.
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and Table 2 provides details of the most-associated variants.

Under this model, we identified a significantly associated locus

on chromosome 4q31.21 (rs55894236, odds ratio [OR] = 1.37,

95% confidence interval [CI] = 1.23–1.52, p = 1.43 3 10�8). The

index variant was within the first intron of the GAB1 gene (see

Figure S2 for a regional association plot). We discovered a sec-

ond locus on chromosome 15q23 near the RNA gene lnc-

LRRC49-3 (rs142721461, OR = 2.30, 95% CI = 1.71–3.08,

p = 3.40 3 10�8). The quantile-quantile (QQ) plot showed no

notable population stratification (additive model l1,000 =

1.045; Figure S3), and a conditional analysis based on the in-

dex variants of these two loci found no additional signals

(Figure S4).
A recessive GWAS identifies two additional loci at
chromosomes 5q34 and 7q11.21
We also performed a GWAS under a recessive model, as prior

research suggested a recessive inheritance pattern within MSA

families.8,17 This analysis identified a locus on chromosome

5q34 within the TENM2 gene (rs77075949, OR = 7.40, 95%

CI = 3.74–14.67, p = 9.73 3 10�9; Figure 1B; Table 2). A second

associated locus was located on the long arm of chromosome 7,

within RABGEF1 and near the KCTD7 gene, and significantly

associated with MSA (rs11766262, OR = 1.95, 95% CI = 1.55–

2.46, p = 1.65 3 10�8; see Figure 1B for the Manhattan plot;

Table 2). Regional association and QQ plots for the recessive

model (l1,000 = 0.97) are shown in Figures S2 and S3. A condi-

tional analysis based on the index variants found no additional

signals (Figure S4).
Rare variant analyses identify enrichment of missense
mutations in KCTD7

Next, we examined our whole genome sequence data for evi-

dence of damaging mutations in candidate genes that included

GBA1, SNCA, MAPT, COQ2, KCTD7, GAB1, and TENM2. To do

this, we used gene-level sequence kernel association-optimized

(SKAT-O) tests of missense and loss-of-function mutations with

aMAF threshold of%1%and aminor allele countR2.18 Although

genome-wide significance was not achieved due to the relatively
4 Neuron 112, 1–15, July 3, 2024
small cohort size, we found that rare missense mutations in

KCTD7 were nominally associated with the risk of developing

MSA (p = 7.9 3 10�3, Table 3) when the analysis was limited to

the previously implicated genes. The variants identified in canon-

ical and non-canonical transcripts of the KCTD7 gene are listed in

Table S1, and their distribution relative to the gene and protein

structure is shown in Figure S5. No statistically significant associ-

ations were identified in other tested candidate genes or in a

genome-wide gene-based analysis (Figure S6).
Robustness of the GWAS signals
We tested the associations’ robustness by performing leave-

one-out analyses in the overall cohort. These tests showed the

same directions of effect at the four GWAS loci (GAB1, lnc-

LRRC49-3, TENM2, and RABGEF1), demonstrating the strength

of the association signals (Figure S7). We also performed sensi-

tivity analyses by performing GWAS using only the pathologically

confirmed subset of the MSA cases (n = 468 cases versus 7,128

controls). Although none of the loci achieved genome-wide sig-

nificance in this investigation due to the smaller cohort size, the

sensitivity evaluation demonstrated the same directions of effect

and overall robustness of our findings (GAB1: rs55894236:C,

OR = 1.42, 95% CI = 1.23–1.64, p = 1.23 3 10�6; lnc-LRRC49-

3: rs142721461:A, OR = 2.12, 95% CI = 1.44–3.11, p = 1.21 3

10�4; TENM2: rs77075949:T, OR = 7.70, 95% CI = 3.35–17.71,

p = 1.56 3 10�6; RABGEF1: rs11766262:C, OR = 1.89, 95%

CI = 1.39–2.56, p = 4.31 3 10�6).
Transcriptome-wide association analyses implicate
additional RNA transcripts
We performed a transcriptome-wide association study (TWAS)

using bulk RNA sequence data from the Genotype-Tissue

Expression (GTEx) portal (https://www.gtexportal.org). We eval-

uated a broad range of CNS regions (n = 13) due to the multi-

system nature of the disease and the widespread distribution

of neuropathological changes observed in MSA brains at au-

topsy.19 This analysis identified transcripts associated with

MSA (see Figures 1A and 1B, lower). At the 4q31.21 locus,

the TWAS prioritized USP38-DT, a long non-coding RNA

https://www.gtexportal.org


A

B

Figure 1. Genome-wide and transcriptome-wide association study results in MSA

(A and B) (A) Composite figure showing the additive MSA GWAS model (upper) with the corresponding TWAS results (lower) in 888 cases and 7,128 controls

(MAF > 1%). The x axis denotes the chromosomal position in hg38 and the y axis shows the association p values on a negative-log10 scale. Each dot represents a

variant (GWAS) or a transcript (TWAS). The TWAS results were generated using GTEx gene expression data (version 8) for the hippocampus (additive model)

and the caudate (recessive model). Red dots indicate genome-wide significant variants, while orange dots are sub-significant signals. A red dashed line indicates

the Bonferroni threshold for genome-wide significance (5.03 10�8 for the GWAS, 1.383 10�5 for the TWAS in the hippocampus, and 6.773 10�6 for the TWAS in

the caudate). The blue dashed line denotes the threshold for declaring variants to be sub-significant (5.03 10�7). The gene(s) closest to the index variant at each

locus in the GWAS is listed. In the TWAS plot, the dot with a black diamond outline indicates a colocalization posterior prior probability hypothesis H4 > 0.80.

(B) shows the recessive MSA GWAS model with the corresponding TWAS results in the caudate.
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(lncRNA) located 293 kilobases (kb) upstream of GAB1. Lower

expression of USP38-DT was predicted to increase the risk for

MSA (rs300925, p value within hippocampus = 4.38 3 10�6,

Z = �4.59, Table 4). The risk allele of the lead GWAS SNP

(rs55894236-C) in this locus was similarly associated with

decreased expression of USP38-DT in the GTEx bulk brain sam-

ples (Figure 2A).

At the 7q11.21 locus, our TWAS analysis identified an lncRNA

(lnc-KCTD7-2) as being associated withMSA in ten brain regions

(Table 4); decreased expression of lnc-KCTD7-2 was predicted

to increase disease risk, with themost prominent association be-

ing observed in the caudate (rs6958520, p = 5.96 3 10�8, Z =

�5.42). We also found evidence of association for the KCTD7
transcript in three brain regions, including the amygdala, the hip-

pocampus, and the cervical spinal cord. Similar to lnc-KCTD7-2,

decreased expression of KCTD7was predicted to increaseMSA

risk across these regions (for example, rs10215516 in the amyg-

dala, p = 3.23 3 10�6, Z = �4.66; Table 4). The risk allele of the

lead GWAS SNP (rs11766262-C) in this locus was similarly asso-

ciated with decreased expression of KCTD7 in the GTEx bulk

brain samples (Figure 2B).

Colocalization analysis nominates genes in the
pathogenesis of MSA
Next, we determined which genes within each locus might be

driving susceptibility to MSA. To do this, we used cis-expression
Neuron 112, 1–15, July 3, 2024 5



Table 2. Top association signals in the MSA GWAS using additive or recessive models

Chr. Position (SNP ID) Nearest gene EA/OA EAF cases/controls OR 95% CI p value

Additive GWAS model

4 143,370,884 (rs55894236) GAB1 C/T 0.44/0.39 1.37 1.23–1.52 1.43 3 10�8

15 70,380,309 (rs142721461) lnc-LRRC49-3 A/C 0.04/0.02 2.30 1.71–3.08 3.40 3 10�8

Recessive GWAS model

5 168,050,511 (rs77075949) TENM2 T/TC 0.08/0.07 7.40 3.74–14.67 9.73 3 10�9

7 66,699,548 (rs11766262) RABGEF1 C/T 0.63/0.59 1.95 1.55–2.46 1.65 3 10�8

The gene in closest proximity to the index variant at each locus is represented. The chromosomal position is shown according to hg38. The genome-

wide significance was defined as a p < 5.003 10�8. The effect allele was defined as the allele associated with an increased risk of disease (i.e., odds

ratio > 1.0). Chr., chromosome; EA, effect allele; OA, other allele; EAF, effect allele frequency; OR, odds ratio; 95% CI, 95% confidence interval.
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quantitative trait locus (eQTL) data generated using bulk brain

expression data in theGTEx project (version 8).We performed co-

localization tests on the SNPs with a p < 1.003 10�4 within each

GWAS locus toestimate theprobability that agivenvariant is asso-

ciated with both disease risk and gene expression.20 This

approach prioritized USP38-DT as the likely causal gene in the

4q31.21 locus, as it had a high posterior probability in the

hippocampus (rs300925: posterior probability of hypothesis four

[PPH4] = 0.84), a brain region known to be affected in MSA (Fig-

ure 2C). It also prioritized KCTD7 and lnc-KCTD7-2 as the likely

causal genes in the 7q11.21 locus, based on high posterior prob-

ability values acrossmultiple brain regions (Figure 2C; Table 4). No

genes were prioritized by the colocalization analysis in the 5q34

and 15q23 loci. A summary of the GWAS, TWAS, colocalization,

and rare variant analyses is provided for each locus in Figure 2D.

Cell-type-specific expression
Wealsoexplored thecell typeexpressionof thesegenesusingsin-

gle-nucleusRNAsequencing (snRNA-seq) expressiondatagener-

ated fromsortedCNScell types for theReligiousOrdersStudyand

RushMemory andAgingProject (ROS/MAP) brain autopsy collec-
Table 3. Rare variant association analysis

Gene Mutation type

GBA1 loss of functio

missense

SNCA loss of functio

missense

MAPT loss of functio

missense

COQ2 loss of functio

missense

RABGEF1 loss of functio

missense

KCTD7 loss of functio

missense

GAB1 loss of functio

missense

TENM2 loss of functio

missense

SKAT-O test results for rare missense and loss-of-function variants in the ge

R 2). SKAT-O, sequence kernel association-optimized.
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tion (n = 424 healthy subjects).21 In the 4q31.21 locus, the lead

GWAS SNP (rs55894236:C) was associated with decreased

expression of GAB1 in excitatory neurons (b = �0.26, p = 4.7 3

10�28; Figure 3A) and inhibitory neurons (b = �0.079, p = 9.1 3

10�3). Cell-type-specific data were not available for the USP38-

DT lncRNA transcript. However, we noted a transcript within this

locus, INPP4B, that is regulated by USP38-DT. INPP4B, which

has been previously implicated in Alzheimer’s disease.22 We

found that rs55894236:C increases the expression of INPP4B in

astrocytes (b = 0.28, p = 1.03 10�7), oligodendrocytes (b = 0.37,

p = 4.7 3 10�13), and oligodendrocyte precursor cells (b = 0.42,

p=5.9310�13), suggesting that itmayalsoplaya role in increasing

susceptibility for MSA (Figure 3B).

In the 7q11.21 locus, the lead GWAS SNP (rs11766262:C) was

associated with markedly decreased expression of KCTD7 in ol-

igodendrocytes (b = �0.64, p = 4.7 3 10�29) and, to a lesser

extent, in microglia (b = �0.19, p = 1.7 3 10�5). By contrast,

the same SNP was associated with mildly increased expression

of KCTD7 in excitatory neurons (b = 0.1, p = 2.3 3 10�3; Fig-

ure 3C). Cell-type-specific data were not available for the lnc-

KCTD7-2 transcript.
SKAT-O p value

n –

0.69

n –

–

n –

0.91

n –

1.00

n –

–

n –

7.9 3 10�3

n –

0.47

n 0.25

0.68

ne set analysis (MAF < 0.01, minor allele countR 2, minor transcript count



Table 4. Transcriptome-wide association analysis results in MSA

GTEx tissue Gene eQTL ID EA Locus

Z scores

p value PPH4eQTL GWAS TWAS

Hippocampus USP38-DT rs300925 C 4q31.21 �4.20 3.89 �4.59 4.38 3 10�6 0.84

Caudate lnc-KCTD7 rs6958520 C 7q11.21 �10.32 5.42 �5.42 5.96 3 10�8 0.99

Cortex lnc-KCTD7 rs6958520 C 7q11.21 �10.81 5.42 �5.11 3.26 3 10�7 0.99

Cerebellar hemisphere lnc-KCTD7 rs10215516 A 7q11.21 �9.87 5.45 �5.08 3.70 3 10�7 0.99

Hippocampus lnc-KCTD7 rs10215516 A 7q11.21 �10.07 5.45 �5.05 4.44 3 10�7 0.99

Frontal cortex (BA9) lnc-KCTD7 rs10215516 A 7q11.21 �10.17 5.45 �4.99 6.04 3 10�7 0.99

Hippocampus KCTD7 rs10215516 A 7q11.21 �6.31 5.45 �4.95 7.47 3 10�7 0.99

Amygdala lnc-KCTD7 rs17566701 C 7q11.21 �8.79 5.44 �4.93 8.05 3 10�7 0.99

Anterior cingulate lnc-KCTD7 rs6958520 C 7q11.21 �9.72 5.42 �4.90 9.58 3 10�7 0.99

Putamen lnc-KCTD7 rs6958520 C 7q11.21 �9.37 5.42 �4.89 1.01 3 10�6 0.99

Cervical spinal cord KCTD7 rs6958520 C 7q11.21 �8.24 5.42 �4.87 1.11 3 10�6 0.99

Substantia nigra lnc-KCTD7 rs6958520 C 7q11.21 �7.81 5.42 �4.83 1.38 3 10�6 0.99

Amygdala KCTD7 rs10215516 A 7q11.21 �4.97 5.45 �4.66 3.23 3 10�6 0.98

Nucleus accumbens lnc-KCTD7 rs6958520 C 7q11.21 �10.67 5.42 �4.54 5.69 3 10�6 0.99

Significant eQTLs with coloc PPH4 valuesR 0.8 and permutation p < 0.05 are listed. The eQTL ID refers to the best eQTL in a given locus. EA, effect

allele; GTEx, Genotype-Tissue Expression portal (https://gtexportal.org); GWAS, genome-wide association study; PPH4, posterior probability of hy-

pothesis 4; TWAS, transcriptome-wide association study.
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Repeat expansion mapping in MSA identifies rare
pathogenic allele carriers
We used the ExpansionHunter Targeted tool (version 5) to map

repeat elements in ten genes known to carry pathogenic repeat

expansions (AR, ATN1, ATXN1, ATXN2, ATXN3, C9orf72,

DMPK, FMR1, FXN, and HTT). This analysis identified 8 (0.9%)

MSA cases with pathogenic expansions in the genes ATXN1,

ATXN3, HTT, and AR (Table S2). Remarkably, seven of these

cases had pathologically confirmed MSA, arguing against mimic

syndromes as an alternative cause of their neurological syn-

drome. The observation of the repeat expansions in our MSA
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cases may reflect the relatively high prevalence of these alleles

in the general population, an observation corroborated by their

frequent occurrence among our control cohort (n = 20 controls

[0.66%] carried a pathogenic expansion; Table S2).23,24

Previously nominated genetic loci were not associated
with MSA
We investigated our GWAS data for common variation in loci

previously reported to be associated with MSA, including

the COQ2,8 MAPT,13 SNCA,12,25 ZIC1-ZIC4,26 and PLA2G4C

loci.27 None of the tested SNPs in these loci surpassed the
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Figure 2. Bulk RNA sequencing and colocal-

ization analyses of the MSA loci

(A) The effect of the 4q31.21 locus index variant,

rs55894236-C allele, on USP38-DT expression in

brain tissues from the GTEx consortium is shown.

Error bars indicate the standard error.

(B) The effect of the 7q11.21 locus index variant,

rs11766262-C allele, on KCTD7 expression is de-

picted.

(C) Summary of significant colocalization signals

(PPH4 > 0.80) for transcripts at the 4q31.21 and

7q11.21 loci across the GTEx brain tissues.

(D) Schematic summary of the GWAS, TWAS, co-

localization, and SKAT-O results at the four MSA

risk loci. The red squares depict a significant anal-

ysis result for the listed gene. The numbers in the

red squares show the number of tissues that had

a significant colocalization PPH4 signal. GWAS,

genome-wide association study; TWAS, tran-

scriptome-wide association study; coloc, colocali-

zation analysis; PPH4, posterior probability of hy-

pothesis four; SKAT-O, sequence kernel

association-optimized.
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Bonferroni threshold for multiple testing (Figure S8). The most

associated SNP was rs242557, located within the first intron of

the MAPT gene on the long arm of chromosome 17, with a p

value of 0.049, which is far from genome-wide or even regional

Bonferroni-adjusted significance (Table S3). We, therefore, lack

evidence that common genetic variation in these loci plays ama-

jor role in MSA risk in the European/Northern American popula-

tion. We also used the Manta algorithm to examine our whole

genome sequence data for evidence of SNCA duplications or

triplications; none of the cases (n = 888) carried a specific struc-

tural variant of this gene.

Gene set enrichment analysis identifies a pathway
associated with MSA
Pathway enrichment analysis was performed based on the

GWAS summary statistics. We discovered a significant

pathway under the recessive model, namely 30–50 DNA helicase

activity, also known as ATP-dependent DNA helicase activity

(GO:0003678, number of genes = 15, p = 3.05 3 10�5, FDR-

adjusted p = 0.0495). None of the other pathways achieved sig-

nificance under the additive or recessive models after correction

for multiple testing.

DISCUSSION

Our analyses of whole genome sequence data illustrate the

impact of common and rare variants in MSA, a fatal neurodegen-

erative disease. Specifically, our GWAS identified several novel

loci associated with MSA risk, and gene-burden tests implicated

KCTD7 in this synucleinopathy. Functional mapping using

TWAS and colocalization analyses also revealed changes in

the USP38-DT, KCTD7, and lnc-KCTD7-2 transcripts at these

risk loci, connecting their expression to disease risk. Our

pathway analysis implicated 30–50 DNA helicase activity in the

MSA pathogenesis, which has not been previously implicated

in the disease. Our investigations highlight the value of unbiased,

data-driven evaluations, whichmay open new avenues for future

exploration. These analytical approaches were chosen as these

databases already exist, and, indeed, they complemented each

other. Finally, we showed that MSA is characterized, at least in

part, by a primary molecular deficit localized within oligodendro-

cytes, corroborating the converging evidence from preclinical

models and post-mortem studies indicating that MSA is a pri-

mary oligodendrogliopathy.4,28

We identified a new locus on the long arm of chromosome 4

using an additive GWAS model (Figure 1A). Functional mapping

using TWAS and colocalization analysis narrowed the candidate

genes in this region to USP38-DT (Figures 1A and 3). USP38-DT

is a ubiquitously expressed, validated lncRNA, a transcript class

that can upregulate or decrease the expression of genes via cis-

or trans-mechanisms.29 Interestingly, this lncRNA regulates the
Figure 3. Single-nucleus RNA sequence analyses of common variants

(A) Single-nucleus RNA sequence analyses identified cis-eQTLs for rs5589423

threshold < 0.05).

(B) This SNP was also a cis-eQTL for INPP4B in astrocytes, oligodendrocytes, o

(C) Additionally, we identified a cis-eQTL for rs11766262 regulatingKCTD7 expres

endocytes; Exc, excitatory neurons; Inh, inhibitory neurons; Mic, microglia; Oli, o
expression of the nearby INPP4B (https://lncipedia.org), an Alz-

heimer’s disease-related gene involved in lysosomal homeosta-

sis and the autophagic clearance of protein aggregates.30 Addi-

tionally, in cellular studies, overexpression of INPP4B was

necessary for a-synuclein-mediated endocytosis,31 likely due

to its activity in phosphorylating the phosphoinositol membrane

lipids for micropinocytosis.32

Our transcriptome-wide analysis of MSA identified a signifi-

cant association of USP38-DT at the chromosome 4q31.21 lo-

cus in the hippocampus rather than the cerebellum, brainstem,

and basal ganglia, which are the more prominently affected

brain regions in autopsies. Nevertheless, the hippocampus is

known to be affected in MSA, reflecting the widespread neuro-

pathology associated with the disease. Indeed, prominent

pathological hippocampal changes were observed in a large

autopsy series of MSA,33 and cognitive impairment in patients

correlated with this hippocampal involvement.34,35 Further work

will be needed to examine the phenotype correlation of these

transcripts. However, our findings already highlight the power

of genomics to uncover novel results when applied in a broad

empirical manner.

Besides USP38-DT, the location of the GWAS association

signal within the 4q31.21 locus also points to the GAB1 gene

as a potential candidate underlying themolecular pathomechan-

ism. The scaffolding protein encoded by GAB1 regulates oligo-

dendrocyte development,36,37 a cell type that is particularly

affected in MSA.28 Conditional deletions of Gab1 in a murine

model have been shown to impair myelination by affecting oligo-

dendrocyte progenitor cell differentiation.37 Interestingly, pa-

tients with MSA show early myelin dysfunction and relocation

of myelin proteins,38 making GAB1 a plausible risk gene. GAB1

has also been shown to be involved in Parkinson’s disease,39

and a key paralog of this gene, GAB2, is the principal activator

of phosphatidylinositol-3 kinase, which has been implicated in

Alzheimer’s disease.40 Our genomic data prompt us to speculate

how disruption of this locus may increase the risk for disease; a

preliminary model suggests that complex interactions involving

multiple genes within the chromosome 4q31.21 locus may lead

to MSA.41 Despite this complexity, these observations could

have therapeutic implications, as antisense oligonucleotides tar-

geting USP38-DT, INPP4B, or GAB1 in the CNS are worth

exploring as a means to slowing symptom progression in pa-

tients with MSA.

A second GWAS risk locus, located on chromosome 15q23,

was detected under the additive model. This association signal

was located within a distal enhancer-like signature (ENCODE

accession #: EH38E1774799) and downstream of the RNA

gene lnc-LRRC49-3. However, the TWAS analysis found no sig-

nificant expression changes at this locus (Figure 1). Further work

is therefore needed to pinpoint a possible molecular mechanism

associated with this risk locus.
at the 4q31.21 and 7q11.21 loci

6 for GAB1 in excitatory neurons, inhibitory neurons, and microglia (p value

ligodendrocyte precursor cells, and inhibitory cells.

sion in oligodendroglia, microglia, and excitatory neurons. Ast, astrocytes; End,

ligodendroglia; OPC, oligodendroglia precursor cell.
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Under a recessive GWAS model, we detected a significant

MSA risk locus within the TENM2 gene on chromosome 5q34

(Figure 1). TENM2 encodes the teneurin transmembrane protein

2, which is involved in neuronal migration,42 calcium-mediated

signaling,43 cell-cell adhesion,44 and retrograde trans-synaptic

signaling.45 However, no TWAS signal was identified at this lo-

cus, and more work is needed to understand the molecular

mechanism by which genetic variation is associated with sus-

ceptibility for MSA.

We detected a second risk locus under the recessive model,

located on chromosome 7q11.21 within RABGEF1 and down-

stream of KCTD7 (Figure 1). Our TWAS and colocalization ana-

lyses prioritized both KCTD7 and lnc-KCTD7-2 as the genes

within this region most likely contributing to the pathogenesis

of MSA. Gene-burden analysis also found a nominally significant

enrichment of missense mutations in KCTD7 in MSA cases

(Table 3). Although this association was not significant at the

genome-wide level, it does provide additional evidence support-

ing its role in MSA pathogenesis. Like other neurodegenerative

disease loci, such as GBA,2 GRN,46 and LRRK2,47 where com-

mon and rare variants have been implicated, KCTD7 may be

pleomorphic inMSA. It also remains possible that the expression

of other transcripts in this locus is affected and contributes to the

pathogenesis of MSA.

KCTD7 is a member of the potassium channel tetramerization

domain-containing protein family that is highly expressed in the

cerebellum and modulates neuron excitability.34 Mutations in

this gene have already been linked to a severe neurodegenera-

tive disease called progressive myoclonic epilepsy, type 3

(OMIM: 611726); this syndrome manifests with intractable

myoclonic seizures before the age of two, developmental regres-

sion, and truncal ataxia, a clinical feature that is also frequently

observed among patients with MSA.48

Intriguingly, KCTD7 was recently found to regulate calpains, a

group of non-lysosomal cysteine proteases, by inducing ubiqui-

tination.49 Loss of this KCTD7-induced ubiquitination leads to

calpain hyperactivation, aberrant cleavage of downstream tar-

gets, and caspase-3 activation.49 CRISPR-Cas9-mediated

knockout of Kctd7 in mice phenotypically recapitulated human

KCTD7 deficiency and resulted in calpain hyperactivation,

behavioral impairments, and neurodegeneration; these pheno-

types were largely prevented by pharmacological inhibition of

calpains.49 Overall, our genomic data implicate a novel molecu-

lar mechanism in the pathogenesis of MSA. Therapeutic strate-

gies targeting malfunctions of calpains are also under develop-

ment50 and, based on our work, may be appropriate for

therapeutic development in MSA.

We used a recessive inheritance model to identify the associa-

tion ofKCTD7 inMSA; intriguingly, this locuswas not detected un-

der the additivemodel. The importance of evaluating non-additive

inheritancemodels is increasingly recognized for complex traits,51

such as obesity,52 type 2 diabetes,53 and autoimmunediseases.54

Examining the recessive model may be particularly beneficial for

age-related illnesses like MSA, where recessive loci with reduced

penetrancemay contribute.17 Such traits appear to occur sporad-

ically within the population as they rarely recur within families.

Despite this, recessive alleles are easier to map from fewer

affected individuals, provided the appropriate model is de-
10 Neuron 112, 1–15, July 3, 2024
ployed.55 Overall, our data reinforce the relevance of adopting

the recessive model in GWAS studies and highlight the contribu-

tion of recessive variants to late-onset neurological diseases.

We found eight MSA patients with pathogenic repeat expan-

sions in disease-related genes, making up less than 1% of the

cohort. This rate is similar to that in the general population,23,24,56

suggesting that the patients carried the genetic risk variants for

two neurological diseases coincidentally. Alternatively, these

pathogenic repeat expansions may produce phenotypic syn-

dromes indistinguishable from MSA. There is a growing aware-

ness that mutations in one gene can lead to different neuro-psy-

chiatric syndromes.23 Indeed, the eight patients’ diagnoseswere

verified by medical record review, and seven had classical MSA

features on post-mortem evaluation, ruling outmimic syndromes

as an alternative diagnosis. Regardless, screening for these mu-

tations should be considered part of the initial MSA evaluation,

especially because new treatments targeting these loci are

emerging.57–60

Our study had limitations. First, although our cohort consti-

tuted a large genome sequence dataset generated for MSA,

the sample size was relatively small by genomic standards,

limiting our power to detect common genetic variants of small ef-

fect size. Second, our study only included individuals of Euro-

pean ancestry, as this was the population in which large cohorts

of MSA cases and matching control data were readily available;

thus, our findings may not be generalizable to non-European

populations.61 Third, the clinical diagnosis of MSA can be chal-

lenging, and some of the clinically diagnosed cases could have

been mimic syndromes arising from other diseases. To minimize

this possibility, we only included patients who fulfilled consensus

criteria for clinically probable disease5 and prioritized whole

genome sequencing of pathologically confirmed cases.

An additional limitation of our study was the need for a replica-

tion cohort. MSA is rare in the general population, making it chal-

lenging to collect large numbers of cases. This is an implicit

obstacle to identifying the genetic causes of any rare disease.

We hope that future studies involving larger cohorts can help

us further understand MSA’s genetic etiology; indeed, we have

made the summary statistics publicly available with that goal in

mind. In the meantime, researchers in the rare disease space

must rely on orthogonal evidence to confirm the validity of their

findings.62 In our example, we discovered that genes linked to

MSA were expressed in oligodendroglia, and KCTD7 mutations

were already known to cause a juvenile neurodegenerative dis-

order. We also performed leave-one-out analyses and a sensi-

tivity analysis using only pathologically confirmed cases, demon-

strating the robustness of the detected signals.

Conclusions
Our genomic analyses identified four novel risk loci for MSA, a

rare and fatal adult-onset neurodegenerative disease. Our dis-

coveries begin to unravel the missing genetic etiology of this

understudied member of the synucleinopathy triad. We created

a foundational genomic resource that can be systematically

investigated to unravel the architecture of MSA. In this way,

our study advances the understanding of MSA’s pathogenesis

and paves the way for modeling the disease and developing tar-

geted treatments.



ll
OPEN ACCESSArticle

Please cite this article in press as: Chia et al., Genome sequence analyses identify novel risk loci for multiple system atrophy, Neuron (2024), https://
doi.org/10.1016/j.neuron.2024.04.002
STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Study cohorts

B Data generation and preprocessing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Genome-wide association analyses (GWAS)

B Transcriptome-wide association study (TWAS)

B Colocalization analyses and gene prioritization

B Cell type-specific expression analysis

B Gene-based, rare variant association analyses

B Repeat expansion analysis in short-read genomes fromMSA cases

and controls

B Structural variant evaluation in the MSA cohort

B Candidate gene analyses

B Pathway analyses

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2024.04.002.

ACKNOWLEDGMENTS

We thank the contributors who collected the samples and data used in this

study and the patients and their families whose help and participation made

this work possible. We thank the members of the Laboratory of Neurogenetics

and the Neurodegenerative Diseases Research Unit (NIH) for their collegial sup-

port and technical assistance. This study used DNA samples and clinical data

from the NINDS Repository at Coriell (www.coriell.org). We are grateful to the

NIH NeuroBioBank for the provision of tissue samples. The ROS/MAP study

was supported by the National Institute on Aging (RF1 AG057474 and U01

AG061356). The study used tissue samples and data from the Johns Hopkins

Morris K. Udall Center of Excellence for Parkinson’s Disease Research (NIH

P50 NS38377). We thank the Banner Sun Health Research Institute Brain and

Body Donation Program of Sun City, Arizona, for providing human biological

materials. The Brain and Body Donation Program has been supported by the

National Institute of Neurological Disorders and Stroke (U24 NS072026, Na-

tional Brain and Tissue Resource for Parkinson’s Disease and Related Disor-

ders), theNational Institute onAging (P30AG19610 andP30AG072980, Arizona

Alzheimer’s Disease Center), the Arizona Department of Health Services (con-

tract 211002, Arizona Alzheimer’s Center), the Arizona Biomedical Research

Commission (contracts 4001, 0011, 05-901, and 1001 to the Arizona Parkin-

son’s Disease Consortium), and the Michael J. Fox Foundation for Parkinson’s

Research. The Columbia ParkinsonismBrain Bank is funded by the Parkinson’s

Foundation. The GTEx Project was supported by the Common Fund of the Of-

fice of the Director of the National Institutes of Health and by NCI, NHGRI,

NHLBI, NIA, NIMH, andNINDS.Biospecimens used in this article were obtained

from the Northwestern Movement Disorders Center (MDC) Biorepository. As

such, the investigators within the MDC Biorepository contributed to the design

and implementation of the MDC Biorepository and/or provided data and

collected biospecimens but did not participate in the analysis or writing of this

report. MDS Biorepository investigators include Rizwan Akhtar, MD, PhD; Ta-

nya Simuni, MD; Dimitri Krainc, MD, PhD; Puneet Opal, MD, PhD; Steven

Lubbe, PhD; Niccolo Mencacci, MD, PhD; Joanna Blackburn, MD; and Lisa

Kinsley, MS, CGC. For up-to-date information on the study, visit https://www.

feinberg.northwestern.edu/research/cores/units/parkinsons.html. This work

was supported by the NUgene Project at Northwestern University. We thank

the contributors who collected the samples used in this study and the patients
whose help and participation made NUgene and this work possible. Several

authors of this publication are members of the European Reference Network

for Rare Neurological Diseases—project ID no. 739510. We acknowledge

the Oxford Brain Bank, supported by Brains for Dementia Research (BDR)

(Alzheimer Society and Alzheimer Research UK) and the National Institute

for Health Research (NIHR) Oxford Biomedical Research Centre (BRC). V.K.

and A.N. acknowledge funding from the MSA Coalition, the Barbara Bloom

Ranson Fund for MSA Research at Brigham and Women’s Hospital, the

Brigham Research Institute’s Director’s Transformative Award, and NIH

1R01NS109209-01A1. Molecular data for the Trans-Omics in Precision Med-

icine (TOPMed) program was supported by the National Heart, Lung, and

Blood Institute (NHLB). Genome sequencing for NHLBI TOPMed: Lung Tissue

Research Consortium (LTRC) was performed at Broad Genomics and North-

west Genomics Center. Core support, including centralized genomic read

mapping and genotype calling along with variant quality metrics and filtering,

was provided by the TOPMed Informatics Research Center (3R01HL-117626-

02S1, contract HHSN268201800002I). Core support, including phenotype

harmonization, data management, sample identity QC, and general program

coordination, was provided by the TOPMed Data Coordinating Center

(R01HL-120393 and U01HL-120393, contract HHSN268201800001I). We

gratefully acknowledge the studies and participants who provided biological

samples and data for TOPMed. This study utilized data provided by the

LTRC supported by the NHLBI. This research was supported in part by the In-

tramural Research Program of the National Institutes of Health (the National

Institute on Aging and the National Institute of Neurological Disorders and

Stroke, project numbers 1ZIAAG000935 and 1ZIANS003154). This study

used the computational resources of the NIH HPC Biowulf cluster (http://

hpc.nih.gov).

AUTHOR CONTRIBUTIONS

Conceptualization, H.H., O.A.R., C.L.D., J.R.G., and S.W.S.; data curation,

C.L.D., J.R.G., J.D., R.C., A.R., Z.S., and S.W.S.; formal analysis, R.C., A.R.,

Z.S., P. Reho, P. Ruffo, M.F., V.M., S.S.-A., K.K., F.A., R.K., S.S., J.D.,

J.R.G., and S.W.S.; funding acquisition, B.J.T. and S.W.S.; investigation,

R.C., A.R., Z.S., J.D., P. Ruffo, M.F., V.M., S.S.-A., P. Reho, K.K., R.L.W.,

R.H.R., R.K., F.A., M.D.-F., I.A., A.F., A.Z., W.G.M., F.T., A.P.-L.T., M.T. Pellec-

chia, P.M., V.C., L.W., L.P., M.T.H., I.B., I.L., I.R., R.N.A., S.J.L., V.K., A.M.,

E.M., T.M.D., L.S.R., A.P., M.S.A., O.P., J.C.T., J.I., G.E.S., T.G.B., P.P.,

J.C., M.R., P.A.L., W.S., W.P.C., Z.K.W., D.W.D., B.J.T., J.R.G., C.L.D.,

O.A.R., H.H., and S.W.S.; project administration, S.W.S.; resources, I.A.,

A.F., N.S., K.S., S.D., F.L., F.K., V.S., A.Z., W.P., O.R., A.F.-S., W.G.M., F.T.,

A.P.-L.T., M.T. Pellecchia, P.B., M.C.R., J.M.-L., J.K., S.T., P.M., M.T. Periñán,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human cerebellar brain tissue and/or

whole blood

Comprehensive list of study sites where

samples were collected is listed in the

Table S1 of this paper

N/A

Critical commercial assays

Maxwell RSC Tissue DNA Kit Promega Catalog # AS1610

PicoGreen dsDNA assay Thermo Fisher Catalog # P7589

TruSeq PCR-free Library Prep Kit Illumina Catalog # 20015963

HiSeq X Ten Reagent Kit (v.2.5 chemistry) Illumina Catalog # FC-502-2501

Deposited data

Human reference genome NCBI

build 38, GRCh38

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/genome/

guide/human/; RRID:SCR_006553

Individual-level whole genome

sequence data from neurologically

healthy, aged controls

DementiaSeq dbGAP (www.ncbi.nlm.nih.gov/gap/);

Accession # phs001963 RRID:

SCR_002709

Individual-level whole genome

sequence data from neurologically

healthy, aged controls

Wellderly cohort Available upon request; Contact: Dr. Ali

Torkamani (atorkama@scripps.edu)

TOPMed control genome data TOPMed consortium Available on dbGaP (www.ncbi.nlm.nih.

gov/gap/); Accession # phs001662.v2.p1,

phs00974.v5.p4, phs000951.v5.p5); RRID:

SCR_002709

Gene expression data GTEx (v.8) https://gtexportal.org/home/; RRID:

SCR_013042

Individual-level, whole genome sequencing

data from MSA cases

This paper dbGAP (www.ncbi.nlm.nih.gov/gap/);

Accession #: phs001963; RRID:

SCR_002709

MSA GWAS summary statistics This paper GWAS catalog: www.ebi.ac.uk/gwas/

Software and algorithms

GATK Broad Institute https://gatk.broadinstitute.org/;

RRID:SCR_001876

Pipeline Standardization CCDG https://github.com/CCDG/Pipeline-

Standardization/blob/master/

PipelineStandard.md

prod-wgs-germline-snps-indels Broad Institute https://github.com/gatk-workflows/broad-

prod-wgs-germline-snps-indels

PLINK (v.2.0) Chang et al.63 https://www.cog-genomics.org/plink/2.0/;

RRID:SCR_001757

FlashPCA (v.2.0) Abraham et al.64 https://github.com/gabraham/flashpca;

RRID:SCR_021680

R (v.3.5.2) R core team https://www.r-project.org/; RRID:

SCR_001905

SAMtools Li et al.65 https://samtools.sourceforge.net/;

RRID:SCR_002105

BCFtools (v.1.16.1) Danecek et al.66 https://samtools.github.io/bcftools/

bcftools.html; RRID:SCR_005227

FUSION Gusev et al.67 https://github.com/gusevlab/fusion_twas

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cell Ranger (v.6.0.0) 10X Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/overview/

welcome; RRID:SCR_017344

Seurat (v.4.3.0) Stuart et al.68 https://github.com/satijalab/seurat;

RRID:SCR_016341

Matrix eQTL Shabalin et al.69 http://www.bios.unc.edu/research/

genomic_software/Matrix_eQTL/

Ensembl Variant Effect Predictor

(VEP, v.101)

Ensembl https://useast.ensembl.org/info/docs/

tools/vep/index.html; RRID:SCR_007931

Loss-Of-Function Transcript Effect

Estimator (LOFTEE)

Karczewski et al. (2020) https://github.com/konradjk/loftee

RVTests (v.2.1.0) Zhan et al.61 https://github.com/zhanxw/rvtests;

RRID:SCR_007639

MAGMA (v.1.10) de Leeuw et al.70 https://ctg.cncr.nl/software/magma

Gene set pathway analysis Molecular Signatures Database

(MSigDB), v7.5.1

https://www.gsea-msigdb.org/gsea/

msigdb/human/genesets.jsp;

RRID:SCR_016863

ExpansionHunter Targeted (v.5) Dolzhenko et al.71 https://github.com/Illumina/

ExpansionHunter

Repeat Expansion Viewer

(REViewer, v.0.2.7)

Dolzhenko et al.72 https://github.com/Illumina/REViewer

MSA genomic analyses code This paper https://zenodo.org/records/10723069
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sonja W.

Scholz (sonja.scholz@nih.gov).

Materials availability
The study did not generate any new unique reagents.

Data and code availability
The summary statistics from the additive and recessive GWAS models have been deposited in the GWAS catalog (https://www.ebi.

ac.uk/gwas/). The individual-level sequence data for a subset of theMSA genomes (n = 683 cases) reported in this paper will be avail-

able upon publication in dbGaP (accession number: phs001963). Public data sharing was not feasible for the remaining 205 MSA

genomes; access to these data will be granted to qualified researchers via appropriate collaboration agreements. The TOPMed con-

trol genome data are available in dbGaP (accession numbers: phs001662.v2.p1, phs00974.v5.p4, phs000951.v5.p5). The control

genome data from 1,980 subjects from the DementiaSeq project are available in dbGaP (accession number: phs001963), and the

remaining control genomes are available upon request from the Wellderly study team (contact: atorkama@scripps.edu). The pro-

gramming code used in this paper is available at https://zenodo.org/records/10723069.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohorts
The study workflow is depicted in Figure S1. The cohort included 3,978 participants of European ancestry (958MSA cases and 3,021

neurologically healthy controls). MSA caseswere recruited across twenty North American and European sites and consortia to create

a genomic resource for MSA research (see Table S4 for a list of the participating sites). MSA cases were diagnosed with clinically

probable (n = 416 [47%]) or pathologically definite disease (n = 468 [53%]) according to the Gilman consensus criteria.5 The control

subjects were obtained from the DementiaSeq project (dbGaP accession number: phs001963) and selected based on a lack of ev-

idence of cognitive decline in their clinical history and no neurological deficits on neurological examination.2 The pathologically

confirmed control individuals had no evidence of significant neurodegenerative disease on histopathological examination. We addi-

tionally obtained whole genome sequence data from 5,963 European-ancestry convenience controls from the TOPMed consortium

(dbGaP accession numbers: phs001662.v2.p1, phs00974.v5.p4, phs000951.v5.p5). The demographic characteristics of the cohorts
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are summarized in Table 1. The appropriate institutional review boards of participating institutions approved the study, and informed

consent was obtained from all subjects or their surrogate decision-makers according to the Declaration of Helsinki.

Data generation and preprocessing
Whole genome sequencing

PCR-free libraries from genomic DNA samples were constructed using the Illumina TruSeq chemistry, according to the manufac-

turer’s protocol. Whole genome sequencing was performed on an Illumina NovaSeq sequencer using 150 base pair, paired-end cy-

cles (version 2.5 chemistry, Illumina). The control subjects were previously sequenced on an Illumina HiSeq X Ten using the same

parameters, as described elsewhere.2 The mean sequencing coverage of the samples was 35.85 (range, 18.34–70.75, see

Figure S9).

Sequence alignment and variant calling

The whole genome sequence data were aligned to reference genome build hg38 and processed on the Google Cloud Platform, ac-

cording to GATK (2016) Best Practices.73 Variants were called by a combination of the publicly available GATK Best Practices and

another workflow for joint discovery and Variant Quality Score Recalibration by the Broad Institute (https://github.com/gatk-

workflows/broad-prod-wgs-germline-snps-indels). All genome sequence data were processed using a uniform pipeline. The conve-

nience control genomes obtained from the TOPMed consortium were called separately and merged with the study data for quality

control checks (Figure S1).

Quality control

A workflow diagram of the quality control steps is shown in Figure S1. The cohort consisted of a discovery dataset (n = 958 MSA

cases and 3,021 controls) and a convenience control dataset from TOPMed (n = 5,963 controls). For sample-level quality control

of the discovery dataset, we removed genomes based on the following criteria: (1) failed library preparations or sequencing, (2)

abnormal heterozygosity (F-statistic outside of the -0.15 to 0.15 range), (3) low call rate (% 95%), (4) sex check failure (i.e., a discrep-

ancy between reported sex and genotypic sex), (5) non-European ancestry (based on principal component analysis when compared

to Hapmap3 data; Figure S3), (6) duplicate samples (pi-hat statistic > 0.8), (7) related samples (pi-hat statistic > 0.125), and (8) cases in

whom the final diagnosis was changed. For variant-level quality control of the discovery dataset, we excluded variants based on the

following criteria: (1) spanning deletions, (2) minor allele frequencies (MAFs) significantly different in controls from reported fre-

quencies in the NHLBI TransOmics TOPMed database (freeze 5b; www.nhlbiwgs.org) or gnomAD (version 3.1.2; https://gnomad.

broadinstitute.org), (3) a significant departure from Hardy-Weinberg equilibrium in the control cohort (p-value % 1 3 10�6), (4)

non-autosomal variants (X, Y, mitochondrial DNA), (5) non-random missingness between cases and controls (excluding variants

with p-value < 1 3 10�4), (6) haplotype-based non-random missingness (excluding variants with p-value % 1 3 10�4), (7) variants

with a high missingness rate (i.e., R 5%), (8) variants mapping to variable, diversity, and joining (VDJ) recombination sites, and var-

iants in the centromeric regions ± 10 kb (due to poor sequence alignment and incomplete resolution of the reference genome assem-

bled at these sites), (9) variants failing gnomAD filters (version 3.1.2; https://gnomad.broadinstitute.org), and (10) variants with poor

sequence alignment. A total of 888MSA cases and 3,018 controls from the discovery dataset were included in downstream analyses.

Of note, for rare variant analyses only this jointly called discovery dataset was used. Following the quality control steps of the dis-

covery dataset, we merged the data with the convenience control genomes from TOPMed and applied the same sample- and

variant-level quality control steps. Additionally, we excluded variants that had significantly different minor allele frequencies

between the discovery control genomes and the TOPMed control genomes (excluding variants with per chromosome FDR-corrected

p-value% 0.05). The final dataset included 91,594,360 variants in 888 cases and 7,128 controls (Table 1), which were used for down-

stream common variant analyses (Figure S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide association analyses (GWAS)
The GWAS was performed in 888 MSA cases and 7,128 controls using the PLINK toolset (version 2.0).63 We applied additive and

recessive logistic regression models using an MAF threshold of > 1% (based on allele frequency estimates in the MSA cases).

We determined the relevant genetic principal components in FlashPCA (version 2.0) and applied the step function in RMass package

(R version 3.5.2; https://www.R-project.org/) to calculate the number of principal components required for population substructure

correction.64 Based on this analysis, we included sex and seven principal components as covariates in our GWAS study. The Bon-

ferroni threshold for genome-wide significance was 53 10�8, and variants achieving a p-value less than or equal to 5.03 10�7 were

considered subsignificant. The effect allele was defined as the allele associated with an increased risk of disease (i.e., odds ra-

tio > 1.0).74 All of the genes located within a 1 Mb upstream and downstream of each gene were included in transcriptomic analyses

to ensure the detection of ancillary signals.

For conditional analyses on GWAS loci identified in the additive and recessive models, we additionally included the respective in-

dex variants in the covariates (Figure S4). To demonstrate the robustness of GWAS signals, we performed leave-one-out analyses by

withholding samples based on their institutional source; there were twenty-four cohorts from the twenty different institutions at which

samples were collected, meaning that twenty-four separate GWAS analyses were performed (Figure S7). A sensitivity analysis was
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performed in a subset of pathologically confirmed MSA cases (n = 468) and healthy controls (n = 7,128) under both additive and

recessive models, with sex and seven principal components included as covariates.

Transcriptome-wide association study (TWAS)
Tissue-specific expression was predicted based on the GWAS summary statistics from the additive and the recessive models by

transcriptome-wide association analyses (TWAS). To do so, we obtained gene expression data from the Genotype-Tissue Expres-

sion portal (GTEx, version 8; https://gtexportal.org). To explore a gene’s association with disease, a transcriptome-wide imputation

was achieved using the FUSION pipeline,67 where the precomputed gene expression weights obtained from the GTEx data for thir-

teen brain regions were considered. These regions included: (i) the amygdala, (ii) anterior cingulate cortex (BA24), (iii) caudate, (iv)

cerebellar hemisphere, (v) cerebellum, (vi) cervical spinal cord (C-1), (vii) cortex, (viii) frontal cortex (BA9), (ix) hippocampus,

(x) hypothalamus, (xi) nucleus accumbens, (xii) putamen, and (xiii) substantia nigra. The significant association threshold was

defined as 0.05 divided by the number of genes in GTEx (version 8) in the thirteen types of brain regions. This threshold ranged

from 2.17 3 10�5 in the substantia nigra to 6.77 3 10�6 in the cerebellum due to the variable number of genes expressed in each

tissue. Variants achieving a p-value ten-fold higher than the significance threshold were considered subsignificant.

Colocalization analyses and gene prioritization
We used the COLOC function within the FUSION package67 to test the hypothesis that an MSA risk variant colocalized with an eQTL

variant in bulk RNA-seq data obtained from the GTEx project (version 8). For the four genome-wide significant loci in the GWAS

(4q31.21, 5q34, 7q11.21, and 15q23), we extracted all SNPs with a p-value < 1310-4 for colocalization analysis to evaluate the prob-

ability of the MSA loci and eQTL sharing a single causal variant for each region. In each eQTL dataset, we extracted the associations

for the SNP-gene pairs within that range and tested for colocalization.20 A colocalization posterior prior probability hypothesis 4

(PPH4)R 80% and a permutation p-value < 0.05 was considered evidence for an eQTL-GWAS association that could substantially

influence both the expression and the GWAS trait in that region for disease.

Cell type-specific expression analysis
We evaluated the expression of SNPs and nominated risk genes identified through GWAS and TWAS in a single-nucleus RNA-

seq dataset generated using the Religious Orders Study/Memory and Aging Project (ROS/MAP) cohort.21 The ROS/MAP data

were derived from 424 dorsolateral prefrontal cortexes of individuals of advanced age using the 10x Genomics Single Cell 30 kit,
as described elsewhere.21 Sequencing reads were processed, and the unique molecule identifier count matrix was generated

using Cell Ranger software (version 6.0.0, 10x Genomics). The cell types were classified by clustering cells by gene expression

using the R package Seurat (version 4).68 The ‘‘pseudobulk’’ gene expression matrix was constructed by aggregating unique

molecule identifier counts of the same cell type of the same donor and normalizing them to the log2 counts-per-million-

reads-mapped values. Sample genotyping was performed by whole genome sequencing followed by GATK processing. The

cis-eQTLs were mapped using Matrix-eQTL (version 2.3) for single nucleotide polymorphisms within 1 megabase of the tran-

scription start sites.69

Gene-based, rare variant association analyses
A gene-based SKAT-O analyses of missense and loss-of-function mutations were conducted to determine the difference in the

aggregate burden of rare coding variants in the MSA cases (n = 888) versus healthy controls (n = 3,018). All variants were annotated

in Variant Effect Predictor (VEP; version 101),75 with the ‘LoFtee’ plugin to annotate high-confidence loss-of-function variants using

the default parameters. The variants were filtered using anMAF threshold of% 1%and anMACofR 2.We then performed a SKAT-O

analysis of filtered and annotated variants in RVTESTS (version 2.1.0),61 including sex and five principal components as covariates.

We used a genome-wide significance threshold of 3.033 10�6 (= 0.05/16,507 genes). From the genome-wide data, we extracted the

values for eight genes (COQ2, GBA1, MAPT, SNCA, GAB1, RABGEF1, KCTD7, and TENM2) implicated in MSA and used a gene-

wide significance threshold of 0.006 (= 0.05/8) to test for significant enrichment of coding mutations.

Repeat expansion analysis in short-read genomes from MSA cases and controls
As repeat expansion diseases can occasionally mimic the clinical features of MSA, we assessed the frequency of pathogenic repeat

expansions in our MSA case-control whole genome sequence data (n = 888 cases and 3,018 controls) using the ExpansionHunter

Targeted tool (version 5; Illumina).71 This tool has been validated for measuring repeat expansions in ten known disease genes (AR,

ATN1, ATXN1, ATXN2, ATXN3, C9orf72, DMPK, FMR1, FXN, andHTT).23 Pathogenic repeat expansions were validated manually by

visualization in the Repeat Expansion Viewer (REViewer; Illumina).76,77

Structural variant evaluation in the MSA cohort
We used theManta algorithm to detect the structural variants (i.e., duplications) within the SNCA locus on chromosome 4q22.1 in the

888MSA cases and the 3,018 neurologically healthy subjects.78 This analysis used default settings and focused on the region defined

by the SNCA gene [chr4:89,724,099-89,837,161]. The result files were merged with bcftools,66 and missing genotypes were set to

reference homozygotes.
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Candidate gene analyses
GWAS data were analyzed for evidence of association in six genes previously reported to be associated with MSA, including COQ2,

MAPT, SNCA, ZIC1, ZIC4, and PLA2G4C.8,12,13,25–27 The analysis was performed by subsetting gene regions from post-quality con-

trol variant files and testing for association using a generalized logistic regression model as described above.

Pathway analyses
Gene-set enrichment analyses were performed in MAGMA (version 1.10). The primary analysis used the binary PLINK files to anno-

tate all the variants to genes if they were within the genic boundaries of 1.5 kb upstream and downstream. This was followed by a

gene analysis, where the summary statistics from both the additive and recessive GWAS models were used to generate different

gene-level metrics. Using the ‘mean’ test statistics (snp-wise = mean) across all the genes, pathway enrichment evaluation was per-

formed using 13,159 gene sets from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb; version 7.5.1) to identify potential path-

ways associated with MSA.79
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