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Preamble

Čech Persistence diagrams (PDs) are topological descriptors routinely used to capture the
geometry of complex datasets. They are commonly compared using theWasserstein distances
OTp; however, the extent to which PDs are stable with respect to these metrics remains
poorly understood. We partially close this gap by focusing on the case where datasets are
sampled on an m-dimensional submanifold of Rd. Under this manifold hypothesis, we show
that convergence with respect to the OTp metric happens exactly when p > m. We also
provide improvements upon the bottleneck stability theorem in this case and prove new laws
of large numbers for the total α-persistence of PDs. Finally, we show how these theoretical
findings shed new light on the behavior of the feature maps on the space of PDs that are
used in ML-oriented applications of Topological Data Analysis.

1 Introduction

Topological Data Analysis (TDA) is a set of tools that aims at extracting relevant topological
information from complex datasets, e.g. regarding connected components, loops, cavities, or
higher dimensional features. These different notions are made formal through the use of ho-
mology theory, and in particular the i-th homology group Hi(A) with coefficients in some field
F of a set A, which captures the i-dimensional topological features of A for i ≥ 0, see e.g.
[Hat00]. TDA has been successfully applied in a variety of domains, including material sci-
ence [KKP+16, STR+17, DKR+18, BHO18], biology [CR20, SL22, ACC+22], and neuroscience
[SPCGB19, RYB+20, CPH21], to name a few. When used in conjunction with more traditional
approaches such as neural networks, TDA-based methods have outperformed state of the arts
methods for tasks such as graph classifications [CCI+20, KKZ+20].

The most prominent techniques in TDA rely on multiscale approaches, in particular through
the use of persistent homology [CDSGO16]. Given a compact set A in Rd, persistent homology
tracks the evolution of the homology groups Hi(A

t) of the t-offset At =
⋃

x∈AB(x, t) of A as t
goes from 0 to +∞ (where B(x, t) is the closed ball of radius t centered at x). The process is
summarized by the Čech persistence diagram (PD) of degree i of the set A: the PD dgmi(A) is

*The authors contributed equally to this work.
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Figure 1: The Čech PD of a point cloud A in R2 for i = 1 and its t-offsets. The two points far
from the diagonal ∂Ω in dgmi(A) correspond to the two large cycles in the set A.

a multiset1 of points in the half-plane Ω := {(u1, u2) ∈ R2 : u1 < u2}, where each point (u1, u2)
in the PD corresponds to a i-dimensional topological feature that appeared in At at scale t = u1
(its birth time) and disappeared at scale t = u2 (its death time), see Figure 1.2 Points close
to the diagonal ∂Ω = {(u1, u2) ∈ R2 : u1 = u2} correspond to topological features of small
persistence pers(u) = u2−u1

2 , which have a short lifetime in the filtration (At)t≥0.
A key property of PDs is their robustness to small perturbation in the data, making them

suitable for analyzing real-world datasets. This stability property is phrased in terms of the
bottleneck distance between PDs [ELZ02]. Let a and b be two PDs. A partial matching between
a and b is a bijection of multisets γ : a ∪ ∂Ω → b ∪ ∂Ω, where each point (u, u) of ∂Ω has
infinite multiplicity. In other words, the points of a are either paired with a single point of b,
or mapped to the diagonal ∂Ω (and similarly for the points of b). Let Γ(a, b) be the set of all
partial matchings between a and b. The bottleneck distance is defined as

OT∞(a, b) = inf
γ∈Γ(a,b)

max
u∈a∪∂Ω

∥u− γ(u)∥∞. (1)

The Bottleneck Stability Theorem [CSEH05, CDSGO16] states that if A1 and A2 are two com-
pact sets, then for any integer i ≥ 0

OT∞(dgmi(A1), dgmi(A2)) ≤ ε, (2)

where ε is the Hausdorff distance between the sets A1 and A2, defined by

dH(A1,A2) = sup
x∈Rd

|dA1(x)− dA2(x)|

and where dA is the distance function to a set A. An important property of the bottleneck
distance is that it is blind to small-persistence topological features: if OT∞(a, b) = ε, then
one can arbitrarily modify the PDs a and b on a slab of width ε above the diagonal (for the
ℓ∞-metric) without changing the bottleneck distance between the two PDs.

Due to this phenomenon, the bottleneck distance turns out to be too weak in many situations
of interest, where some topological features of small persistence can be as important as large-
scale topological features in the PD (say, with a classification or a regression task in mind). For

1A multiset is a set where each element appears with some non-zero multiplicity.
2In general, PDs can have points with infinite coordinates. For Čech PDs, this will only be the case for a

single point of the diagram for i = 0, of coordinate (0,+∞). We discard this point in the following.
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this reason, finer transport-like distances are often preferred to compare PDs. These distances,
which we denote as OTp, are defined for 1 ≤ p <∞ by

OTp(a, b) = inf
γ∈Γ(a,b)

( ∑
u∈a∪∂Ω

∥u− γ(u)∥p∞

)1/p

, (3)

with OTp ≤ OTp′ for 1 ≤ p′ ≤ p <∞. They can be seen as modified versions of the Wasserstein
distances used in optimal transport, with the diagonal ∂Ω playing the role of a landfill of infinite
mass, see e.g. [DL21].

The increased sensitivity to small perturbations of the OTp distances is of crucial importance
in the standard TDA pipeline, which we briefly recall. Starting from a sample of sets A1, . . . ,An,
one computes a sample of PDs aj = dgmi(Aj), j = 1, . . . , n. Statistical methods to analyze this
sample of PDs are typically awkward to define, due to the nonlinear geometry of the space
of PDs [BW20, Wag21]. To overcome this issue, the space of PDs is mapped to a vector
space through some map Φ called a feature map. Statistical method are then applied in the
feature space on the transformed sample Φ(a1), . . . ,Φ(an). Various feature maps have been
designed [CFL+14, RHBK15, CWRW15, KHF16, CCO17, STR+18, KFH18, HKN19], important
examples including persistent images [AEK+17], PersLay [CCI+20], and PLLay [KKZ+20]; in
the latter two, the feature map is parametrized by a neural network. A good feature map should
preserve as much as possible the geometry of the space of PDs [MV21]; in particular, Lipschitz
(or Hölder) continuity of the feature map is a basic requirement. However, due to their (often
desirable) sensitivity to small scale features, most common feature maps are not regular with
respect to the OT∞ distance on the space of diagrams. Instead, they enjoy Lipschitz regularity
with respect to either the finer OT1 distance (see e.g. [DL21, Proposition 5.2]), or to the OTp

distances (for p > 1) when restricted to diagrams a whose α-total persistence

Persα(a) =
∑
u∈a

pers(u)α (4)

is bounded for some α > 0 large enough, see [DP19] and [KFH18]. Boundedness assumptions
on the α-total persistence also yield a version of the Bottleneck Stability Theorem with respect
to the finer OTp distance: if A1 and A2 are such that Persα(dgmi(Ak)) ≤ M (k = 1, 2), then,
for p ≥ α,

OTp
p(dgmi(A1), dgmi(A2)) ≤Mεp−α, (5)

where ε = dH(A1,A2), see [CSEHM10]. Hence, in addition to having intrinsic theoretical inter-
est, controlling the total persistence and convergence with respect to the OTp distance of PDs
is crucial to ensure the soundness of most methods commonly used in TDA. This is the subject
of this article.

Contributions. We provide a deeper understanding of the structure of Čech PDs in the
specific case where the underlying set A is a compact subset of an m-dimensional manifold M
in Rd, focusing in particular on the total persistence of the PDs and their convergence to the
PDs of M with respect to the OTp distances. The importance of this case is supported by the
manifold hypothesis, which often serves as a fundamental principle guiding the development of
algorithms and models for data analysis [GPPVW12, WB19, BCR+22]. Specifically, our main
contributions are the following:
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• Theorem 2.3: When A ⊂ M is a compact set satisfying dH(A,M) ≤ ε for ε small enough,
we provide a quadratic improvement upon the standard Bottleneck Stability Theorem
(2). Namely, we show that there exists an optimal bottleneck matching γ such that the
distance between a coordinate of a point u ∈ dgmi(A) and the coordinate of the matched
point γ(u) ∈ dgmi(M) ∪ ∂Ω is of order O(ε2) whenever the coordinate of u is larger than
2ε.

• Theorem 3.7: In the case where the manifoldM is generic and the set A is a δ-sparse point
cloud (i.e. minx ̸=y∈A ∥x− y∥ ≥ δ), we provide a finer analysis by showing that the p-total
persistence Persp(dgmi(A)) remains bounded and the distance OTp(dgmi(A), dgmi(M))
converges to 0 for all p > m whenever the ratio ε/δ is upper bounded.

• Corollary 4.17: We then focus on a random context, by assuming that A = An is
obtained by sampling n i.i.d. random variables with positive bounded density f on a
generic manifold M. We prove that OTp(dgmi(An),dgmi(M)) converges in expectation to
0 for p > m. Furthermore, we obtain a law of large numbers for the α-total persistence of
dgmi(An):

Persα(dgmi(An)) = Persα(dgmi(M)) +Cin
1−α/m + oL1(n1−α/m) +OL1

(( log n

n

) 1
m )

(6)

for all α > 0, where Ci is a constant that depends explicitly on M and f . In particular,
for 0 ≤ i < m, Persα(dgmi(An)) stays bounded if and only if α ≥ m.

Our contributions are to be compared to one of the only preexisting results regarding the
α-total persistence of a PD: in [CSEHM10], the authors proved that for all α strictly greater
than the ambient dimension d, the α-total persistence of the Čech PD of a compact set A ⊂
B(0, R) ⊂ Rd satisfies

Persα(dgmi(A)) ≤ Cα,dR
α (7)

for some constant Cα,d depending on α and d. In the two scenarios we considered (either δ-
sparse or random samples), the ambient dimension d in the constraint α > d for the control
of the α-total persistence in (7) has been replaced by the smaller intrinsic dimension m of the
problem: the manifold hypothesis has been successfully exploited.

To summarize, our work sheds light on the behaviour of PDs, provides new guarantees
for commonly used ML methods (see e.g. Corollary 4.18), and suggests new heuristics (see
Section 5). We also perform various experiments to illustrate the validity of our results and
their relevance to the classic TDA pipeline.

Related work. This work is part of a long ongoing effort to understand simplicial complexes
and PDs in a random context [BA14, BKS17, BW17, BK18, KM13, DC19, Owa22, BH22, HL23].
Closest to our work, Hiraoka, Shirai and Trinh gave limit laws for Čech PDs for random points in
the cube [0, 1]d [HST18], while Goel, Trinh and Tsunoda gave similar asymptotics in the case of
samples on manifolds [GTT19]. Limit laws for the total persistence have been obtained by Divol
and Polonik in the case of random samples in the cube [DP19]. Among other contributions,
this work generalizes this result to submanifolds: unlike the cube, a manifold has a nontrivial
topology; a fact which considerably complicates the situation, for we have to take into account
the presence of large topological features in the Čech PDs in order to control the total persistence.

Notation. To simplify notation, we write K = K(M) (or K = K(M, a, . . .)) to implicitly
state that some constant K depends only on M (or only on M, a, etc.).

4



2 Čech persistence diagrams for subsets of submanifolds

Although this work is only concerned with PDs with respect to the Čech filtration, it is more
natural to define PDs for the sublevel sets of proper continuous functions that are bounded
below. We refer to [CDSGO16] for a thorough introduction to persistent homology and PDs in
an even more general context.

Let f : Rd → R be a proper continuous function that is bounded below–e.g., the distance
function to a compact set. For t ∈ R, let Xt = f−1(−∞, t] be the sublevel set of f at level
t. The collection (Xt)t∈R is called a filtration. Let i ≥ 0 be an integer. We let Hi(Xt) be the
homology group of degree i with coefficients in any fixed field F (e.g. F = Z/2Z is a popular
choice) of Xt.

The persistence diagram dgmi(f) of degree i of f tracks the evolution of the homology groups
of degree (Hi(Xt))t∈R. Define the extended half-plane Ω∞ = {u = (u1, u2) ∈ (R∪{−∞,+∞})2 :
−∞ ≤ u1 < u2 ≤ +∞} and Ω = {u = (u1, u2) ∈ R2 : u1 < u2}. Then dgmi(f) presents
itself as a multiset (a set whose elements can have multiplicity greater than 1) in Ω∞. We
refer to [CDSGO16] for its precise definition, but it can be intuitively understood as follows: for
u = (u1, u2) ∈ Ω∞, the number of points in the persistence diagram dgmi(f) found in the upper-
left quadrant Qu = {v ∈ (R ∪ {−∞,+∞})2 : v1 ≤ u1 < u2 ≤ v2} is informally equal to the
number of ith dimensional features present in the sublevel set f−1(−∞, u1] (captured through
its ith homology group Hi(f

−1(−∞, u1])) that are still present in the sublevel set f−1(−∞, u2].
Note that this number of points is always finite [CDSGO16, Corollary 3.34]. Though persistence
diagrams can have points with infinite coordinates, these will be of little interest in the cases
considered in this article.3 To simplify our notation and definitions, we let from now on dgmi(f)
denote the finite part (i.e. the points whose coordinates are finite) of the diagram of degree i of f ,
and we assume that every diagram considered henceforth has no point with infinite coordinates.
In particular, they are all multisets of the half-plane Ω := {u = (u1, u2) ∈ R2 : u1 < u2}, which
leads to the following definition: the space D of persistence diagrams is the set of all multisets
a in Ω that contain a finite number of points4 in every quadrant Qu, u ∈ Ω.

In this paper, we are interested in the PDs of the distance function dA to various compact
sets A, called the Čech persistence diagram5 of A and denoted by dgmi(A).

Changes in the topology of the sublevels of dA can be partially described in terms of zeros
of its generalized gradient, which is defined at y ∈ Rd\A as

∇dA(y) =
y − c(σA(y))

dA(y)
, (8)

where σA(y) = {x ∈ A : ∥x− y∥ = dA(y)} is the set of projections of y on A and c(τ) represents
the center of the smallest enclosing ball of a set τ . When y ∈ Rd\A satisfies ∇dA(y) = 0, y
is called a differential critical point of dA. We let Crit(A) denote the set of differential critical
points of dA. An adapted version of the classical Isotopy Lemma for Morse functions is true for
distance functions to compact sets as well, as shown in [Gro93]:

3The persistence diagram of degree i of the distance function to a set has no point with infinite coordinates if
i > 0, and a single such point if i = 0 whose coordinates are (0,+∞).

4This corresponds to the set of diagrams of q-tame persistence modules as defined in [CDSGO16].
5The distance function dA is proper due to the compacity of A, hence its persistence module is q-tame and the

associated persistence diagram is well-defined –see [CDSGO16].
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Lemma 2.1 (Isotopy Lemma for Distance Functions). If 0 < a < b are such that d−1
A [a, b] con-

tains no differential critical point of dA, then d
−1
A (−∞, a] is a deformation retract of d−1

A (−∞, b].
Consequently, any (u1, u2) ∈ dgmi(A) is such that u1, u2 ̸∈ [a, b].

A fundamental result in TDA, the Bottleneck Stability Theorem (2), states that Čech PDs
are stable with respect to Hausdorff perturbations. Consider the particular setting where one
has access to a set A, obtained as an approximation of an unknown shape of interest S through
some sampling procedure, with A ⊂ S and supx∈S dA(x) ≤ ε. The Bottleneck Stability Theorem
ensures that OT∞(dgmi(A),dgmi(S)) ≤ ε for any i ≥ 0, a bound which cannot be improved
in general. However, it turns out that a finer understanding of the proximity between dgmi(A)
and dgmi(S) can be obtained if more regularity is assumed on the shape of interest S, namely
in the situation where S = M is a compact submanifold with positive reach.

Let us first set some notation. Let M be an m-dimensional compact topological submanifold
of Rd; we always assume that the boundary of M is empty and that m ≥ 1. The orthogonal
projection πM on M is defined for x close enough to M, and we define the reach τ(M) as the
largest r > 0 such that the orthogonal projection πM is well (i.e. uniquely) defined for all x ∈ Rd

at distance strictly less than r from M. The reach is a key notion to quantify the regularity of
a manifold, see e.g. [Fed59] and [CCSL06] for more information. In particular, any compact C2

submanifold has positive reach. For x ∈ M, we let TxM be the tangent space of M at x, which is
identified with a linear subspace of Rd. We denote by πx : Rd → TxM the orthogonal projection
on this subspace and let π⊥x = id−πx be the orthogonal projection on the normal space at x. A
key property, that we will repeatedly used, is that the reach of M controls the deviation of the
manifold M from its tangent space. Namely, [Fed59, Theorem 4.18] states that for all y ∈ M,

∥π⊥x (x− y)∥ ≤ ∥x− y∥2

2τ(M)
. (9)

We also define the weak feature size of M, denoted by wfs(M), as the minimal distance between
a critical point of M and M. As by definition, the projection is not unique at a critical point,
we must have wfs(M) ≥ τ(M).

Let A ⊂ M be such that dH(A,M) ≤ ε and let z ∈ Rd. By definition of the Hausdorff
distance, it holds that |dA(z) − dM(z)| ≤ ε. However, this naive bound can be quadratically
improved as long as z stays far away from M.

Lemma 2.2. Let M ⊂ Rd be a compact submanifold with positive reach and let A ⊂ M be a
compact set with dH(A,M) ≤ ε for some ε > 0. Let z ∈ Rd\M. Then, |dM(z) − dA(z)| ≤

ε2

2dM(z)

(
1 + dM(z)

τ(M)

)
.

Proof. As A ⊂ M, we have dM(z) ≤ dA(z). Let x be a projection of z onto M, and let y ∈ A be
a point at distance less than ε from x. Then, using (9) and the fact that z − x is orthogonal to
TxM, we obtain that

dA(z)
2 ≤ ∥z − y∥2 = ∥z − x∥2 + ∥x− y∥2 + 2⟨z − x, x− y⟩
≤ dM(z)2 + ε2 + 2⟨z − x, π⊥x (x− y)⟩

≤ dM(z)2 + ε2 +
dM(z)ε2

τ(M)
.

Hence,

dA(z)− dM(z) =
dA(z)

2 − dM(z)2

dA(z) + dM(z)
≤ ε2

2dM(z)

(
1 +

dM(z)

τ(M)

)
.
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ε

Figure 2: PDs of M (red) and of A (black).

We can build upon this basic remark to obtain a very precise control of the behavior of the
Čech PD of the set A. Namely, we identify three regions in the upper halfplane Ω (displayed
in Figure 2) which contain all points in the PD dgmi(A) (for some integer i ≥ 0). In the first
region, corresponding to microscopic topological features disappearing at scales smaller than
ε + ε2/τ(M), the Bottleneck Stability Theorem cannot be improved. However, there exists
an optimal matching (i.e. a matching γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω that realizes the
bottleneck distance (1)) such that at least one of the coordinates of any point in the other two
regions is larger than τ(M)− ε2/τ(M), and the proximity between a large coordinate of a point
u ∈ dgmi(A) and the coordinate of the matched point γ(u) ∈ dgmi(M) ∪ ∂Ω is of order O(ε2).
This yields a quadratic improvement upon the Bottleneck Stability Theorem.

Theorem 2.3 (Improved Bottleneck Stability Theorem). Let M ⊂ Rd be a compact submanifold
with positive reach and let A ⊂ M be a compact set such that dH(A,M) ≤ ε < τ(M)/4. Let i ≥ 0

be an integer. Then dgmi(A) is the union of three regions dgm
(1)
i (A) := dgmi(A) ∩ {u1, u2 ≤

ε + ε2

τ(M)}, dgm
(2)
i (A) := dgmi(A) ∩ {u1 ≤ ε, u2 ≥ τ(M) − ε2

τ(M)} and dgm
(3)
i (A) := dgmi(A) ∩

{u1, u2 ≥ τ(M)− ε2

τ(M)}.

Furthermore, let C = 2
τ(M)

(
1 + R(M)

τ(M)

)
, where R(M) is the radius of the smallest ball that

contains M. There exists an optimal matching γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω for the
bottleneck distance between dgmi(A) and dgmi(M) such that

• Region (1): If u ∈ dgm
(1)
i (A), then γ(u) ∈ ∂Ω and ∥u− γ(u)∥∞ ≤ ε.

• Region (2): If u ∈ dgm
(2)
i (A), then γ(u) is of the form (0, v2) and |u2 − v2| ≤ Cε2. The

number of such points is finite and depends only on M.

• Region (3): If u ∈ dgm
(3)
i (A), then ∥u− γ(u)∥∞ ≤ Cε2.

Note that for any i ≥ d, the i-th PDs of M and A are actually trivial. Furthermore, under

the hypotheses of Theorem 2.3, the sub-diagrams dgm
(2)
i (A) and dgm

(2)
i (M) are empty if i is

strictly greater than the dimension of M.
Note also that Regions (2) and (3) can be made smaller as follows: there exists δ : R+ → R+

such that lim
ε

>−→0
δ(ε) = 0 and such that dgm

(2)
i (A) ⊂ dgmi(A) ∩ {u1 ≤ ε, u2 ≥ wfs(M)− δ(ε)}
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and dgm
(3)
i (A) ⊂ dgmi(A) ∩ {u1, u2 ≥ wfs(M) − δ(ε)} if dH(A,M) ≤ ε. These inequalities

are proved using the lower semicontinuity of the generalized gradient, as well as the Isotopy
Lemma for distance functions. As wfs(M) ≥ τ(M), this can yield tighter constraints than in the
statement of Proposition 2.3, but there is sadly no simple description of the function δ (e.g. in
terms of τ(M) or wfs(M)).

Proof. Proposition 5 from [AKF+22] states that if ε = dH(A,M) < (
√
2 − 1)τ(M), then the

offset Ar deformation-retracts onto M for any

r ∈
[
1

2
(τ(M) + ε−

√
∆),

1

2
(τ(M) + ε+

√
∆)

]
and ∆ = τ(M)2 − 2ετ(M) − ε2. Under the stronger assumption that dH(A,M) < τ(M)/4, and
using elementary calculus, we find that the offset Ar deformation-retracts onto M for any

r ∈
[
ε+

ε2

τ(M)
, τ(M)− ε2

τ(M)

]
.

This means in particular that the homology type, hence the homology, of Ar does not change
in that interval; as a result, there can be no birth or death of intervals in the Čech persistence
diagrams of A between ε+ ε2

τ(M) and τ(M)− ε2

τ(M) , and all (u1, u2) ∈ dgmi(A) must either be such

that u1, u2 ≤ ε+ ε2

τ(M) , or u1 ≤ ε+ ε2

τ(M) , u2 ≥ τ(M)− ε2

τ(M) , or u1, u2 ≥ τ(M)− ε2

τ(M) . This almost

proves that the partition of dgmi(A) into dgm
(1)
i (A), dgm

(2)
i (A) and dgm

(3)
i (A) as defined in the

statement is correct, except that the definition of dgm
(2)
i (A) requires that u1 ≤ ε, whereas we

only have obtained that u1 ≤ ε+ ε2

τ(M) .

Let γ : dgmi(A)∪∂Ω → dgmi(M)∪∂Ω be any optimal matching for the bottleneck distance:
then the Bottleneck Stability Theorem states that any point u = (u1, u2) ∈ dgmi(A) is such that

∥u− γ(u)∥∞ ≤ dH(A,M) ≤ ε. Suppose that u is such that u1 ≤ ε+ ε2

τ(M) and u2 ≥ τ(M)− ε2

τ(M) .

Its distance in the infinity norm to the diagonal ∂Ω is equal to (u2 − u1)/2 ≥ (τ(M) − ε −
2ε2/τ(M))/2 ≥ 5

16τ(M) > ε, where we use the fact that ε < τ(M)/4. Hence γ(u) must belong
to dgmi(M). Let (v1, v2) denote γ(u). The Isotopy Lemma for distance functions shows that
dgmi(M) only contains two types of points: points of the shape (0, w2), which correspond to the
homology of M itself, and points of the shape (w1, w2), where in both cases w1, w2 are critical

values of dM. In particular, both w1 and w2 must be greater than wfs(M). Let dgm
(2)
i (M) denote

the multiset of all points of the first type, and dgm
(3)
i (M) denote the multiset of all points of

the second type. If v1 was non-zero, it would have to be greater than wfs(M) ≥ τ(M), and

we would have ∥u − γ(u)∥∞ ≥ |u1 − v1| ≥ τ(M) − ε − ε2

τ(M) ≥ τ(M)/2 > ε, which would be a

contradiction (we once again use that ε < τ(M)/4). Hence v1 must be 0 (i.e. γ(u) ∈ dgm
(2)
i (M)),

and u1 = |u1 − v1| ≤ ∥u− γ(u)∥∞ ≤ ε. This proves the correctness of the partition into regions
from the statement.

Consider now u = (u1, u2) ∈ dgm
(1)
i (A). All v = (v1, v2) ∈ dgmi(M) are such that

∥u− v∥∞ ≥ v2 − u2 ≥ wfs(M)− ε− ε2

τ(M)
≥ τ(M)

(
1− 1

4
− 1

16

)
> ε ≥ ∥u− γ(u)∥∞,

hence γ(u) must belong to ∂Ω. This completes the proof of the first bullet point of the statement.

8



We have already shown that if γ is an optimal matching and u ∈ dgm
(2)
i (A), then γ(u) ∈

dgmi(M) is of the form (0, v2). As γ maps at most a single point of dgm
(2)
i (A) to each point

of dgmi(M), the number of such points is upper bounded by the number of points of the form
(0, v2) with v2 ≥ wfs(M) in dgmi(M). Though dgmi(M) need not be finite, applying Corollary
3.34 from [CDSGO16] to dM shows that dgmi(M) is q-tame, and in particular that it contains
only a finite number N of points (v1, v2) with v1 ≤ wfs(M)/4 and v2 ≥ wfs(M)/2. Hence the

cardinality of dgm
(2)
i (A) is bounded by N .

It only remains to show that γ can be chosen such that if u = (u1, u2) ∈ dgm
(2)
i (A), respec-

tively u′ ∈ dgm
(3)
i (A), then |u2 − γ(u)2| ≤ Cε2, respectively ∥u′ − γ(u′)∥∞ ≤ Cε2. To that end,

remember first that as shown above, our starting optimal matching γ must be such that points in

dgm
(2)
i (A) must be matched to points dgm

(2)
i (M). Conversely and for the same reasons, points in

dgm
(2)
i (M) must be matched to points in dgm

(2)
i (A). Similarly, points u ∈ dgm

(3)
i (A) can only be

matched to points in dgm
(3)
i (M) or to the diagonal ∂Ω; otherwise, ∥u−γ(u)∥∞ ≥ |u1−γ(u)1| = u1

would be too large. Likewise, points in dgm
(3)
i (M) can only be matched to points in dgm

(3)
i (A)

or to the diagonal. Hence γ defines disjoint submatchings

γ(2) : dgm
(2)
i (A) → dgm

(2)
i (M)

and
γ(3) : dgm

(3)
i (A) ∪ ∂Ω → dgm

(3)
i (M) ∪ ∂Ω.

Now let R(M) be the radius of the smallest ball that contains M, and consider the functions

a : Rd → R, x 7→ min(max(dA(x), τ(M)/2), R(M))

and
m : Rd → R, x 7→ min(max(dM(x), τ(M)/2), R(M)).

Let us compare the persistence diagrams dgmi(a) and dgmi(m) of the sublevel sets filtration of
a and m and the Čech persistence diagrams dgmi(A) and dgmi(M) respectively (which are by
definition the persistence diagrams of the sublevel sets filtration of dA and dM).

Note first that dA and dM can have no critical values strictly greater than R(M), as a critical
point must belong to the convex hull of its projections. Note also that for any t ∈ [τ(M)/2, R(M)],
the sublevel set a−1(−∞, t] is exactly equal to d−1

A (−∞, t] = At. Consequently, dgmi(a) contains
exactly two disjoint types of points. The first type are points of the form (τ(M)/2, u2), which
are in bijection with the points (u1, u2) ∈ dgmi(A) with u1 ≤ τ(M)/2 (the bijection maps

(u1, u2) 7→ (τ(M)/2, u2)); those are exactly the points in dgm
(2)
i (A). The second type are

points of the form (u1, u2) with u1 ≥ τ(M)/2, which are in trivial bijection (the bijection is the
identity) with the points in dgmi(A) that satisfy the same condition; those are exactly the points

of dgm
(3)
i (A). The points of dgm

(1)
i (A) cannot be “seen” in dgmi(a). We will call dgm

(2)
i (a) the

subdiagram comprised of the points of the first type, and dgm
(3)
i (a) the subdiagram of dgmi(a)

comprised of the points of the second type.
Similarly, dgmi(m) contains two types of points: the first type are points of the form

(τ(M)/2, v2), which are in bijection with the points (0, v2) ∈ dgmi(M) (the bijection maps

(0, v2) 7→ (τ(M)/2, v2)); those are exactly the points in dgm
(2)
i (M). The second type are points

of the form (v1, v2) with v1 ≥ τ(M)/2, which are in trivial bijection (the bijection is the iden-
tity) with the points in dgmi(M) that satisfy the same condition; those are exactly the points
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of dgm
(3)
i (M). We will call dgm

(2)
i (m) the subdiagram of dgmi(m) comprised of the points of

the first type, and dgm
(3)
i (m) the subdiagram comprised of the points of the second type.

Recall that Lemma 2.2 states that |dM(z) − dA(z)| ≤ ε2

2dM(z)

(
1 + dM(z)

τ(M)

)
for any z ∈ Rd\M.

If z ∈ Rd is such that dA(z) ≤ τ(M)/2, then a(z) = m(z) = τ(M)/2; if it is such that dM(z) ≥
R(M), then a(z) = m(z) = R(M). Otherwise, dM(z) ≥ dA(z) − dH(A,M) ≥ τ(M)/4 and
dM(z) ≤ R(M), hence

|dM(z)− dA(z)| ≤
ε2

2dM(z)

(
1 +

dM(z)

τ(M)

)
≤ 2ε2

τ(M)

(
1 +

R(M)

τ(M)

)
= Cε2,

where C is as defined in the proposition. This means that

∥m− a∥∞ ≤ Cε2.

Due to the Bottleneck Stability Theorem, the diagrams dgmi(a) and dgmi(m) must be at
bottleneck distance less than Cε2.

Furthermore, let δ denote maxu∈dgmi(A)∪∂Ω ∥u−γ(u)∥∞. The matching γ (and in particular

the submatchings γ(2) and γ(3)) also induces (through the correspondence detailed above between
the points of dgmi(a) and a subset of the points of dgmi(A)) a matching γ′ between dgmi(a) and
dgmi(m) such that maxu∈dgmi(a)∪∂Ω ∥u− γ′(u)∥∞ ≤ δ. Hence the bottleneck distance between
dgmi(a) and dgmi(m) is at most min(δ, Cε2).

Let β : dgmi(a) ∪ ∂Ω → dgmi(m) ∪ ∂Ω be an optimal matching for the bottleneck dis-
tance. For similar reasons as for γ, the matching β can also be decomposed into two disjoint
submatchings

β(2) : dgm
(2)
i (a) → dgm

(2)
i (m)

and
β(3) : dgm

(3)
i (a) ∪ ∂Ω → dgm

(3)
i (m) ∪ ∂Ω.

We can use the two matchings β(2) and β(3) to define a new optimal matching γ̃ : dgmi(A)∪∂Ω →
dgmi(M) ∪ ∂Ω as follows:

• The points in dgm
(1)
i (A) are matched by γ̃ to ∂Ω as with γ.

• Given u = (u1, u2) ∈ dgm
(2)
i (A), let u′ = (τ(M)/2, u2) be the point of dgm

(2)
i (a) with

which u is in bijection. We let γ̃ match u with the point v = (0, v2) ∈ dgm
(2)
i (M) which is

in bijection with β(2)(u′) = (τ(M)/2, v2) ∈ dgm
(2)
i (m). Then |u2 − v2| ≤ min

(
δ, Cε2

)
due

to the optimality of β, and this defines a bijective matching γ̃(2) : dgm
(2)
i (A) → dgm

(2)
i (M).

Note also that max
u∈dgm(2)

i (A)
|u1 − γ̃(2)(u)1| = max

u∈dgm(2)
i (A)

u1 = max
u∈dgm(2)

i (A)
|u1 −

γ(2)(u)1|, hence max
u∈dgm(2)

i (A)
∥u− γ̃(2)(u)∥∞ ≤ δ.

• We have seen that dgm
(3)
i (a) = dgm

(3)
i (A) and dgm

(3)
i (m) = dgm

(3)
i (M). We simply define

the restriction and corestriction γ̃(3) : dgm
(3)
i (A) ∪ ∂Ω → dgm

(3)
i (M) ∪ ∂Ω of γ̃ as being

equal to β(3) : dgm
(3)
i (a) ∪ ∂Ω → dgm

(3)
i (m) ∪ ∂Ω. The optimality of β implies that

max
u∈dgm(3)

i (A)
∥u− γ̃(u)∥∞ ≤ min

(
δ, Cε2

)
.

Thus the global matching γ̃ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω is well-defined, is optimal for the
bottleneck distance, and satisfies the conditions stated in the proposition. This completes the
proof.
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3 Čech persistence diagrams for subsets of generic submani-
folds

The improved Bottleneck Stability Theorem (Theorem 2.3) yields information relative to the
location of points in the Čech PD of A, but not about their numbers. However, both the α-total
persistence of dgmi(A) and the distance OTp(dgmi(A), dgmi(M)) for p <∞ crucially depend on
the number of points in dgmi(A) having small persistence. Unfortunately, no control on, say,
the total persistence, can exist without additional assumptions. Indeed, in general, even the
α-total persistence of the Čech PD of the submanifold M can be infinite.

Example 3.1. Let f : x ∈ R 7→ 1+x4 sin(1/x)2. Consider the C2 curve M in R2 defined as the
union of the graphs of the functions f and −f on [−2, 2]. Being C2, the curve has a positive
reach [Fed59]. For i = 1, the Čech PD of M contains a sequence of points (1, ℓn) for n ≥ 1, where
ℓn = 1 + Θ(n−4). In particular, as

∑
n≥1(ℓn − 1)α = +∞ for α < 1/4, the α-total persistence

of dgm1(M) is infinite for such a value of α. By considering the product Mm ⊂ R2m, one can
also build an m-dimensional C2 compact submanifold without boundary such that dgm1(M) has
an infinite α-total persistence for α < m/4.

The existence of such counterexamples is explained by the fact that the distance function
dM to a set M is not well-behaved in general, even when the set M is smooth. In contrast to
this bleak general case, Song, Yim & Monod (in the case of surfaces in R3) and the authors
(in the general case) studied the distance function dM to M when M is a generic submanifold
[ACSD23, SYM23]. Their findings indicate that, although counterexamples such as the one
presented in Example 3.1 exist, they are extremely uncommon in a sense which can be made
precise. To do so, we first need to introduce topological Morse functions.

The theory of persistent homology was historically developed for Morse functions f : Rd → R.
A Morse function f is a C2 function whose critical points x (points for which dxf = 0) are non-
degenerate (meaning that the Hessian of f at x is non-degenerate). The index of the critical
point x is equal to the number of negative eigenvalues of the corresponding Hessian. The changes
of topology of the sublevel sets of such a function are perfectly understood. First, the isotopy
lemma states that two sublevel sets f−1(−∞, u1] and f−1(−∞, u2] are isotopic if no critical
values are found in the interval [u1, u2] and if f−1[u1, u2] is compact. Second, if f−1[u1, u2] is
compact and contains the critical points x1, . . . , xK , then f−1(−∞, u2] has the homotopy type of
f−1(−∞, u1] with cells ek of dimension equal to the index of xk attached along their boundaries
(see e.g. [Mil63] for a much more in-depth treatment).

In such a situation, the PD dgmi(f) has a clear interpretation: the coordinates (u1, u2) of
a point u ∈ dgmi(f) correspond to the critical value of a critical point of index i and i + 1
respectively. Informally, the corresponding i-dimensional topological feature appears with the
attachment of a i-dimensional cell at value u1, and is “killed” by the attachment of a (i + 1)-
dimensional cell at value u2.

The notion of Morse function extends to continuous functions with the following definition.

Definition 3.2 (Topological Morse functions [Mor59]). Let U ⊂ Rd be an open set and let
f : U → R be a continuous function.

• A point z ∈ U is said to be a topological regular point of f if there is a homeomorphism
ϕ : V1 → V2 between open neighborhoods V1 of 0 in Rd and V2 of U in Rd with ϕ(0) = z
and such that for all x = (x1, . . . , xd) ∈ V1,

f ◦ ϕ(x) = f(z) + xd. (10)
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Figure 3: A generic torus.

• A point z ∈ U is said to be a topological critical point of f if it is not a topological regular
point of f .

• A point z ∈ U is said to be a non-degenerate topological critical point of f of index i if there
exist an integer 0 ≤ i ≤ d and a homeomorphism ϕ : V1 → U2 between open neighborhoods
V1 of 0 in Rd and V2 of U in Rd with ϕ(0) = z such that for all x = (x1, . . . , xd) ∈ V1,

f ◦ ϕ(x) = f(z)−
i∑

j=1

x2j +
d∑

j=i+1

x2j . (11)

• The function f is said to be a topological Morse function if all its topological critical points
are non-degenerate.

For topological Morse functions, both the isotopy lemma and the handle attachment lemma
stay valid:

Lemma 3.3 (Isotopy Lemma). Let f : Rd → R be a proper topological Morse function. Let a < b
be such that f−1[a, b] contains no topological critical point. Then f−1(−∞, a] is a deformation
retract of f−1(−∞, b].

Lemma 3.4 (Handle Attachment Lemma). Let f : Rd → R be a proper topological Morse
function. Let c ∈ R and ε > 0 be such that f−1[c − ε, c + ε] contains no topological critical
point except for z1, . . . , zk ∈ f−1(c), with zj of index ij. Then f−1(−∞, c+ ε] is homotopically
equivalent to f−1(−∞, c− ε] with cells Bi1 , . . . , Bik of dimension i1, . . . , ik attached, i.e.

f−1(−∞, c+ ε] ≃ f−1(−∞, c− ε] ∪Bi1 ∪ . . . ∪Bik .

Their proofs are roughly the same as for smooth Morse functions –see [SYM23, Theorems 4
and 5] for details. As a consequence, the description of PDs for Morse functions also stays valid
for topological Morse functions.

It is not true in general that the distance function dA to a compact set A is a topological
Morse function, as shown by Example 3.1. Though the Isotopy Lemma for distance functions
(Lemma 2.1) is an analogue of the Isotopy Lemma for Morse functions, there is no equivalent
to the Handle Attachment Lemma to control the changes occurring at critical values, and as
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a result little can be said regarding the topology of the sublevel sets of dA without further
assumptions. However, the distance function dM to a compact C2 submanifold M ⊂ Rd turns
out to be a topological Morse function in a “generic” sense, as was proven by the authors.

Theorem 3.5 (Genericity Theorem [ACSD23]). Let M be a compact C2 (abstract) manifold.
Then the set of C2 embeddings i :M → Rd such that

1. the distance function di(M) : Rd\i(M) → R is a topological Morse function,

2. for every z ∈ Crit(M), the projections σM(z) are the vertices of a non-degenerate simplex
of Rd and z belongs to its relative interior,

3. the set Crit(M) is finite,

4. for every z ∈ Crit(M) and every x ∈ σM(z), the sphere S(z, dM(z)) is non-osculating M at
x, in the sense that there exist δ > 0 and α > 0 such that for all y ∈ M ∩B(x, δ),

∥y − z∥2 ≥ ∥x− z∥2 + α∥y − x∥2, (12)

5. there exist constants C > 0 and µ0 ∈ (0, 1) such that for every µ ∈ [0, µ0), any point x
such that ∥∇dM(x)∥ ≤ µ is at distance at most Cµ from Crit(M),

is open and dense in the set of C2 embeddings M → Rd for the Whitney C2-topology.

Put another way, given an abstract manifoldM , “almost all” C2 embeddings M ofM into Rd

are such that dM is a topological Morse functions, and satisfies other regularity conditions whose
usefulness will become apparent in some of the coming proofs. In what follows, we will simply
describe a C2 submanifold M that satisfies Conditions 1-5 from Theorem 3.5 as generic. When
M is generic, the topological critical points of dM coincide with its differential critical points (see
[ACSD23, Tmh 1.8]), and the Čech PD dgmi(M) can be related to the critical points of dM in
the same way as for smooth Morse function. We summarize this fact in the next proposition.

Proposition 3.6. Let M be a generic compact submanifold of Rd.

• The set Crit(M) is finite, and so is dgmi(M) for any i ≥ 0. In particular, for all α > 0,

Persα(dgmi(M)) < +∞.

• If z ∈ Crit(M) is of index i, the set of its projections σM(z) forms a non-degenerate simplex
of dimension at most i.

• For any i ≥ 1, the multiset of critical values dM(z) of critical points z of M of index i is
equal to the multiset

{u1 : (u1, u2) ∈ dgmi(M), u1 ̸= 0} ∪ {u2 : (u1, u2) ∈ dgmi−1(M)}. (13)

Note that as for the Čech persistence diagram of any compact set, dgm0(M) contains only
points of the form (0, u2) for some u2 > 0. Note also that the proof below shows that the
Čech persistence modules of M are point-wise finite dimensional, and can be decomposed into
intervals.
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Proof. The proof is similar to that used in the case of smooth Morse functions, with the Isotopy
Lemma and the Handle Attachment Lemma playing the same role; we briefly summarize it for
completeness nonetheless. We do not distinguish between differential and topological critical
values and points, as they coincide.

The set Crit(M) is finite: this is simply Condition 3. from the Genericity Theorem. The
Isotopy Lemma shows that there is no change in homotopy type between Ma and Mb if 0 < a < b
and [a, b] contains no critical value. Similarly, M has the same homotopy type as Ma if a > 0
is small enough. Hence changes in homology in the offsets can only occur at 0, when the entire
submanifold appears in the filtration, and at critical values of dM, and there can be no birth or
death of interval between them.

Let us now consider a critical value c > 0 and 0 < ε < c such that d−1
M [c−ε, c+ε] contains no

critical point except for z1, . . . , zk ∈ d−1
M (c), where zj is of index ij . Then the Handle Attachment

Lemma states thatMc+ε is homotopically equivalent toMc−ε with cells Bi1 , . . . , Bik of dimension
i1, . . . , ik attached, i.e.

Mc+ε ≃ Mc−ε ∪Bi1 ∪ . . . ∪Bik .

Let i ≥ 1, and let Di,b be the dimension of the cokernel of Hi(M
c−ε) → Hi(M

c+ε) (where the
map is induced by the inclusion): it is precisely the number of births of intervals between c− ε
and c+ ε (hence precisely at c) in the persistence module of degree i of the filtration. Similarly,
the dimension Di−1,d of the kernel of Hi−1(M

c−ε) → Hi−1(M
c+ε) is the number of deaths of

intervals at c in the persistence module of degree i − 1 of the filtration. A straightforward
application of the Mayer-Vietoris exact sequence yields that Di,b+Di−1,d is exactly equal to the
number of i-dimensional cells among Bi1 , . . . , Bik , meaning that each i-cell corresponds exactly
either to the birth of an interval for the homology of degree i, or to the death of an interval for
the homology of degree i− 1 (in particular, an i− 1-cell and an i-cell cannot “cancel each other
out”). This proves that for any i ≥ 1, the multiset of critical values dM(z) of critical points z of
M of index i is equal to the multiset

{u1 : (u1, u2) ∈ dgmi(M), u1 ̸= 0} ∪ {u2 : (u1, u2) ∈ dgmi−1(M)}. (14)

This fact proves in turn that dgmi(M) is finite for any i ≥ 0, which immediately implies that
Persα(dgmi(M)) < +∞ for all α > 0.

Finally, the bound on the dimension of a critical simplex associated to a critical point of
index i is a consequence of Remark 7.3 in [ACSD23] –we give some additional details further
below.

Considering a well-chosen ellipse and a hyperbole gives a simple illustration of the fact that
the index of a critical point (2 for the center of the ellipse, 1 for the “center” of the hyperbole)
cannot be directly deduced from the dimension of the associated simplex (1 in both cases).
Instead, and as explained in Section 7 of [ACSD23], the index of a critical point z ∈ Crit(M)
can be further decomposed as follows: the restriction of the distance function dM to a small
neighborhood of z in {x ∈ Rd\M : dim(σM(x)) = dim(σM(z))} is a C2 Morse function, and z
if a critical point of it. Let j be its index with respect to this restriction; then the index i of z
with respect to dM satisfies

i = j + dim(σM(z)).

When M is a generic submanifold, it becomes a reasonable task to control the number of
points in dgmi(A) where A ⊂ M is an approximation of M with dH(A,M) ≤ ε. The Bottleneck
Stability Theorem implies that when ε is small enough (compared to the smallest persistence of
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a point in dgmi(M)), every point of dgmi(M) is mapped to a point in dgmi(A) by the optimal
bottleneck matching, leaving the points of dgmi(A) at ℓ∞-distance to ∂Ω less than ε unmatched;
those will be mapped to the diagonal ∂Ω. The Improved Bottleneck Stability Theorem 2.3 (see
Figure 2) shows that these points are of two kinds: those in Region (1), corresponding to small
topological features in the set A (of size of order O(ε)), and those in Region (3), corresponding
to large topological features. There are many points in Region (1) (in fact, our proofs show that
when A = An is a random sample of n points, the number of points in Region (1) is of order
O(n)). In contrast, the genericity hypothesis allows us to show that the number of points in
Region (3) is small under reasonable sampling assumptions.

We say that a point cloud A ⊂ M is (δ, ε)-dense in M if dH(A,M) ≤ ε and minx ̸=y∈A ∥x−y∥ ≥
δ. Such point clouds naturally occur, e.g. as products of the farthest point sampling algorithm
[AL18].

Theorem 3.7. Let M ⊂ Rd be a generic compact submanifold and A ⊂ M be such that
dH(A,M) ≤ ε. Let i ≥ 0 be an integer. There exist ε0 = ε0(M) > 0 and C0 = C0(M) such
that if ε ≤ ε0, then:

1. For each u = (u1, u2) ∈ dgm
(3)
i (A) with γ(u) ∈ ∂Ω, one of the finitely many critical values

c of dM is such that u1, u2 ∈ [c− C0ε
2, c+ C0ε

2].

Furthermore, assume that A is a (δ, ε)-dense set in M for some δ > 0. Let a ≥ ε/δ. Then, there
exist constants C1, C2, C3, C4 depending on M and a such that:

2. The persistence diagram dgm
(3)
i (A) has at most C1 points.

3. For all p ≥ 1, α ≥ 0,

OTp
p(dgmi(A), dgmi(M)) ≤ C2ε

p−m

Persα(dgmi(A)) ≤ C3(C
α
4 + εα−m).

(15)

In particular, as long as the ratio ε/δ is larger than some constant a > 0, the OTp distance
between dgmi(A) and dgmi(M) converges to 0 for all p > m as ε → 0, while the p-total
persistence Persp(dgmi(A)) stays bounded.

Example 3.8. Consider two parallel line segments M in R2, and a finite set A consisting of
two parallel grids of step 2ε: the set A is (2ε, ε)-dense in M. Then, there are O(ε−1) points in
dgm1(A) with birth coordinates u1 equal to 1/2 and persistence of order O(ε2); they all belong

to dgm
(3)
1 (A), whose cardinality is thus not bounded by some C0 = C0(M). This example can

be easily modified to make M a compact C2 1-dimensional manifold. This shows that the first
conclusion of Theorem 3.7 cannot hold without a genericity assumption on M.

Proof. 1. Though the distance function to A need not be topologically Morse, it remains true
(due to the Isotopy Lemma for distance functions) that the changes in topology of the sublevel

sets of dA occur at its critical values. Hence u = (u1, u2) ∈ dgm
(3)
i (A) is such that u1, u2 are

critical values of dA, with u1, u2 ≥ τ(M)/2. Theorem 1.6 from [ACSD23] states that there exists
K1 = K1(M) > 0 such that if ε is smaller than some ε1, then each point in Crit(A) at distance
more than τ(M)/2 from A must be at distance at most K1ε from one of the finitely many
points of Crit(M). Let us consider zA ∈ Crit(A) and zM ∈ Crit(M) such that ∥zA − zM∥ ≤ K1ε
and dA(zA) ≥ τ(M)/2; we are going to show that there exists C2 = C2(M) > 0 such that
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|dA(zA) − dM(zM)| ≤ C2ε
2. Let us first consider xM ∈ σM(zM); the proof of Theorem 1.6

from [ACSD23] also shows that there exists xA ∈ σA(zA) such that ∥xA − xM∥ ≤ K2ε for
some constant K2 = K2(M). As zM − xM is orthogonal to TxM

M, Inequality (9) states that

∥π⊥xM
(xA − xM)∥ ≤ ∥xA−xM∥2

2τ(M) ≤ K2
2ε

2

2τ(M) , hence

∥zM − xA∥2 = ∥zM − xM∥2 + 2⟨zM − xM, xM − xA⟩+ ∥xM − xA∥2

≤ dM(zM)2 +
K2

2ε
2

τ(M)
dM(zM) +K2

2ε
2 ≤ dM(zM)2 + ε2K3,

where K3 = K2
2

(
R(M)
τ(M) + 1

)
, R(M) is the radius of the smallest ball that contains M, and

dM(zM) ≤ R(M) because a critical point must belong to the convex hull of its projections. As
the same bound applies to each of the projections x′A ∈ σA(zA), we find that the closed ball

B
(
zM,

√
dM(zM)2 + ε2K3

)
contains σA(zA). Since zA is the center of the smallest ball that

contains σA(zA), whose radius is dA(zA), we find that

dA(zA)
2 ≤ dM(zM)2 + ε2K3. (16)

Similarly, the proof of Theorem 1.6 from [ACSD23] shows that there exists y ∈ σM(zA) such
that ∥y − xM∥, ∥y − xA∥ ≤ O(ε), and the same reasoning as above yields that ∥zA − xA∥2 =
∥zA−y∥2+O(ε2) and ∥zA−xM∥2 = ∥zA−y∥2+O(ε2) (with all big O constants depending only
on M), hence that ∥zA−xM∥2 ≤ ∥zA−xA∥2+ε2K4 = dA(zA)

2+ε2K4 for some K4 = K4(M). As

before, this shows that the closed ball B
(
zA,
√
dA(zA)2 + ε2K4

)
contains σM(zM), hence that

dM(zM)2 ≤ dA(zA)
2 + ε2K4. (17)

This, together with (16) and the fact that dA(zA) ≥ τ(M)/2, shows that |dA(zA)−dM(zM)| ≤ C2ε
2

for some C2 = C2(M). We have shown that any critical value of dA greater than τ(M)/2 is at
distance less than C2ε

2 from a critical value of dM, which concludes the proof of the first point
(by taking ε0 small enough for 2C2ε

2
0 to be smaller than the minimum distance between two

distinct critical values of dM).

2. Let us now prove the bound on the cardinality of dgm
(3)
i (A). As M is generic, Theorem 1.6

from [ACSD23] states that if ε is smaller than some ε0 = ε0(M), then each point in Crit(A) at
distance more than τ(M)/2 from A must be at distance at most K5ε from one of the finitely
many points of Crit(M) for some K5 = K5(M). Corollary 1.7 from the same article then states
that the number of points in Crit(A) at distance less than K1ε from a given point of Crit(M)
is upper bounded by some constant that depends on M and the ratio ε/δ, and is decreasing in
this ratio; hence it is upper bounded by some constant that depends on M and a. The proof of
this corollary also shows that the maximum number of projections on A of each of these points
of Crit(A) is also upper bounded by some constant that depends on M and a. Hence there exist
constants K6 = K6(M, a) and K7 = K7(M, a) such that if ε ≤ ε0, then there are at most K6

points in Crit(A) at distance more than τ(M)/2 from A, and each has at most K7 projections
on A.

Lemma A.1, applied to the interval [τ(M)/2,∞) and the set A, then states that the number
of points in dgmi(A) such that at least one of their coordinates is greater than τ(M)/2 is bounded

by K6

(
K7

i+2

)
. Hence there are at most C0 := K62

K7 ≥ K6

(
K7

i+2

)
points in dgm

(3)
i (A) when ε ≤ ε0.
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3. Let us bound OTp
p(dgmi(A), dgmi(M)) and Persα(dgmi(A)). As stated in Theorem 2.3, which

applies as ε0 < τ(M)/4, each point u = (u1, u2) ∈ dgm
(1)
i (A) is such that its coordinates satisfy

0 ≤ u1, u2 ≤ ε + ε2/τ(M) ≤ 2ε. In particular, they must correspond to the birth or the death
of an interval of the Čech persistence module of A that occurs before filtration time 2ε. The
homology of the offsets At can be computed using the Čech simplicial complex of A (see e.g.
[EH10]). In particular, each change in the homology of the offsets, hence each birth or death
in the Čech persistence module of A, is induced by the apparition of some simplex σ at the
corresponding filtration value in the Čech complex, and each such apparition causes at most
a single death or birth. If a simplex σ appears before filtration time 2ε, it is by definition
contained in a ball of radius 2ε, hence it is of diameter at most 4ε. Let us assume from now on
that ε0 ≤ τ(M)/16. Consider x ∈ A; then [AL18, Proposition 8.7] states that the intersection
B(x, 4ε)∩A contains at most K8(ε/δ)

m ≤ K8a
m points for some constant K8 = K8(M). Hence

x belongs to at most 2K8am simplices that appear before ε, and there are at most #A · 2K8am

such simplices. As the cardinality #A can be bounded by K9/δ
m for some K9 = K9(M), we

find that #(dgm
(1)
i (A)) ≤ K10/δ

m for some K10 = K10(M, a).

Furthermore, whenM is generic, Proposition 3.6 states that its PD dgmi(M) has a finite num-
ber of points. Let γ be an optimal matching between dgmi(A) and dgmi(M) for the bottleneck

distance that satisfies the conclusions of Theorem 2.3. We find that any point u ∈ dgm
(1)
i (A)

is matched to a point of ∂Ω at distance at most ε from u. Moreover, the number of points in

dgm
(2)
i (A)∪dgm

(3)
i (A) is bounded by some constant K11 = K11(M, a), and they are all matched

to a point of dgmi(M) or ∂Ω at distance at most ε. In particular, these finitely many points are
at distance at most K12 = K12(M) from ∂Ω. Furthermore, this matching is surjective, in the
sense that γ matches all points of dgmi(M) to a point of dgmi(A). As a result, for any p ≥ 1,
we find that

OTp
p(dgmi(A), dgmi(M)) ≤

∑
u∈dgm(1)

i (A)

∥u− γ(u)∥p∞ +
∑

u∈dgm(2)
i (A)∪dgm(3)

i (A)

∥u− γ(u)∥p∞

≤ K10δ
−mεp +K11ε

p ≤ K10a
mεp−m +K11ε

p ≤ C1ε
p−m

for some C1 = C1(M, a). Likewise, for any α ≥ 0, we have that

Persα(dgmi(A)) =
∑

u∈dgm(1)
i (A)

pers(u)α +
∑

u∈dgm(2)
i (A)∪dgm(3)

i (A)

pers(u)α

≤ K10δ
−mεα +K11K

α
12 ≤ K10a

mεα−m +K11K
α
12 ≤ C2(C

α
3 + εα−m)

for some C2 = C2(M, a), C3 = C3(M). This completes the proof.

4 Random samplings of submanifolds

We now turn to the case of random samplings of (non-generic and generic) submanifolds. They
tend to adopt configurations that are more regular than what can be expected from e.g. a
general ε-dense sampling, yet their randomness gives rise to new technical difficulties. Let P be
a probability measure having a density f (with respect to the volume measure) on a compact
submanifold M of dimension m ≥ 1. Let A = An = {X1, . . . , Xn}, where X1, . . . , Xn is an i.i.d.
sample from distribution P . Let i ≥ 0 be an integer; we consider the three regions described
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in Figure 2 and in the statement of Theorem 2.3, and write again dgm
(1)
i (An), dgm

(2)
i (An)

and dgm
(3)
i (An) for the three corresponding PDs. This section is devoted to the study of the

probabilistic asymptotic behaviour of these three random PDs, which can be decomposed into

two almost independent questions: dgm
(1)
i (An) only depends on small-scale phenomena and can

essentially be reduced to the case of a cube, even if M is non-generic, while dgm
(2)
i (An) and

dgm
(3)
i (An) are tightly connected to the macroscopic geometry of the submanifold and can be

further controlled using genericity assumptions on M.

Describing the limit behavior of the random PD dgm
(1)
i (An) requires extending the OTp

metrics between PDs to more general Radon measures. Indeed, a PD can equivalently be seen
as an integer-valued discrete Radon measure on Ω, by identifying a multiset a with the Radon
measure

∑
u∈a δu. Let M denote the space of Radon measures on Ω, that is the space of Borel

measures on Ω which give finite mass to every compact set K ⊂ Ω.6 The space of Radon
measures is endowed with the vague topology, where a sequence (µn)n of measures in M is said
to converge vaguely to µ ∈ M if

∫
Ω ϕdµn →

∫
Ω ϕdµ as n → ∞ for all continuous functions

ϕ : Ω → R with compact support.
The α-total persistence is defined for µ ∈ M by Persα(µ) =

∫
Ω pers(u)αdµ(u). For p ≥ 1,

we let Mp = {µ ∈ M : Persp(µ) < +∞}. The distance OTp, defined between PDs in (3), can
be extended to the set Mp as follows (see [DL21] for details): let us define Ω̄ := {u = (u1, u2) ∈
R2 : u1 ≤ u2}. We call π an admissible transport plan between ν1, ν2 ∈ M if it is a Radon
measure on Ω̄× Ω̄ such that for all Borel sets A,B ⊂ Ω,

π(A× Ω̄) = ν1(A) and π(Ω̄×B) = ν2(B). (18)

For p ∈ [1,+∞), we define

OTp
p(ν1, ν2) = inf

π∈Adm(ν1,ν2)

∫∫
∥u− v∥p∞dπ(u, v) ∈ R ∪ {+∞}, (19)

where Adm(ν1, ν2) is the set of all admissible transport plans between ν1 and ν2. We also define

OT∞(ν1, ν2) = inf
π∈Adm(ν1,ν2)

sup{∥u− v∥∞ : (u, v) ∈ Support(π)} (20)

For all p ∈ [1,∞], the infimum is in fact a minimum. We call OTp(ν1, ν2) the p-Wasserstein
distance between ν1 and ν2, though it differs from the usual Wasserstein distance, which is
defined between measures with equal finite mass, while OTp is defined between measures that
can have different (and even infinite) masses. Intuitively, OTp allows for some of the mass of ν1
and ν2 to be transported to the diagonal ∂Ω := {(u, u) ∈ R2}, which acts as an infinitely deep
landfill. The p-Wasserstein distance is a distance on the spaceMp = {ν ∈ M : OTp(ν, 0) <∞},
where 0 denotes the null measure, and its restriction to the space of PDs coincides with the
OTp distance defined earlier.

We require the following lemma from [DL21]:

Lemma 4.1. A sequence of measures (νn)n≥1 converges with respect to OTp to some measure
ν if and only if the sequence (νn)n≥1 converges vaguely towards ν and Persp(νn) → Persp(ν) as
n→ ∞.

6A compact set K ⊂ Ω is at positive distance from the diagonal. Hence, a measure µ ∈ M can have an
accumulation of mass close to ∂Ω.
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For q > 0, given a function f : N → R and a sequence of (non-necessarily measurable)
real maps (Yn)n defined on some probabilistic space, the notation Yn = OLq(f(n)) means that
E∗[|Yn|q] = O(f(n)q), where E∗ denotes the outer expectation [VDVW97, p.6] (and similarly
for the little o notation).

4.1 Region (1)

Consider the rescaled Radon measure µn,i =
1
n

∑
u∈dgm(1)

i (An)
δn1/mu –this rescaling is natural, as

the number of points in a
(1)
n,i is typically of order n, while their coordinates are of order n−1/m –

and note that µn,i is a random measure, owing to the randomness of the set An. Goel, Trinh and
Tsunoda studied the vague convergence of the sequence (µn,i)n [GTT19, Remark 4.2]. Namely,
assuming that the density f satisfies

∫
M f

j < ∞ for all j ≥ 0, they show that with probability
1 the sequence (µn,i)n converges vaguely to some (non-random) Radon measure µf,i. The limit
measure µf,i has support {0} × R+ if i = 0 and Ω if 0 < i < m; it is the zero measure if i ≥ m.
We can further describe it as follows: let µ∞,i,m be the limit of the sequence (µn,i) in the case
where the sample An is uniform on the unit cube [0, 1]m (see [DP19]). Then, for any continuous
function ϕ : Ω → R with compact support,∫

Ω
ϕ(u)dµf,i(u) =

∫
Ω

∫
M
f(x)ϕ(f(x)−1/mu)dxdµ∞,i,m(u). (21)

Note that the vague convergence of Radon measures is only defined with respect to compactly
supported functions; as such, it is blind to phenomena located increasingly close to the diagonal
∂Ω as n goes to infinity. In particular, and except in the case of the uniform distribution on
the unit cube [0, 1]m (see [DP19]), it was not known whether µn,i converges to µf,i for the OTp

distance as well, nor whether the sequences of total persistence (Persα(µn,i)) converge. We close
this gap with the following result.

Theorem 4.2 (Law of large numbers). Assume that P has a density f on M bounded away
from 0 and ∞. Let i ≥ 0 be an integer and let 1 ≤ p <∞. Then µf,i ∈ Mp and

E[OTp
p(µn,i, µf,i)] −−−→n→∞

0.

Furthermore, for all α > 0, Persα(dgm
(1)
i (An))n

α
m
−1 = Persα(µn,i) = Persα(µf,i) + oL1(1).

Note that the statement becomes clearly wrong when p = ∞, as the support of µn,i is
bounded for all n, while that of µf,i is not. Note also that without the assumption from

Theorem 4.2 that f be bounded away from 0, it is easy to find examples where
∫
M f(x)

1− p
mdx =

∞ for p large enough, hence Persp(µf,i) = ∞ and µf,i ̸∈ Mp; consider e.g. the segment
[−1/2, 1/2], f(x) = x and p ≥ 2 (boundaryless examples can be similarly constructed).

Proof of Theorem 4.2. Recall that Goel, Trinh and Tsunoda [GTT19] have shown that almost
surely, the sequence of Radon measures (µn,i)n vaguely converges to the Radon measure µf,i.
We start by showing that, using this vague convergence and Lemma 4.1, it is enough to prove
the convergence of the p-total persistence.

Lemma 4.3. Let (νn)n≥1 be a sequence of random measures in Mp that converges vaguely
almost surely to a Radon measure ν ∈ Mp, and such that E[|Persp(νn) − Persp(ν)|] →n→∞ 0.
Then, E[OTp

p(νn, ν)] →n→∞ 0.
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Proof. Let us first show that (Dn)n≥1 = (OTp
p(νn, ν))n≥1 converges in probability to 0. We use

the following standard result: if for every subsequence (Znk
)k≥1 of (Zn)n≥1, one can extract a

subsequence (Znkl
)l≥1 that converges almost surely to 0, then the sequence (Zn)n≥1 converges

in probability to 0. Let (Dnk
)k≥1 be a subsequence of (Dn)n≥1 = (OTp

p(νn, ν))n≥1. Then, as
(Persp(νn))n≥1 converges in L1 to Persp(ν), it also converges in probability. In particular, there
exists a subsequence (nkl)l≥1 such that (Persp(νnkl

))n≥1 converges almost surely to Persp(ν).
When restricting ourselves to this subsequence, we have both vague convergence of the measures
and convergence of the p-total persistence. Hence, according to Lemma 4.1, we have Dnkl

=
OTp

p(νnkl
, ν) →l→∞ 0 almost surely, proving that we actually have that (Dn)n≥1 converges in

probability to 0. To prove that E[Dn] →n→∞ 0, it remains to show that the sequence (Dn)n≥1

is uniformly integrable. By considering the trivial transport plan that sends all probability mass
to ∂Ω, we have for all n ≥ 1

Dn ≤ Persp(νn) + Persp(ν).

But the sequence (Persp(νn))n≥1 is uniformly integrable, as it converges in L1. Hence, so is the
sequence (Dn)n≥1, concluding the proof.

Using Lemma 4.3, Theorem 4.2 would follow from the facts that µf,i ∈ Mp and that
E[|Persp(µn,i)− Persp(µf,i)|] converges to 0.

Recall that Cc(Ω) is the set of continuous functions f : Ω → R with compact support (i.e.
the support is bounded and at positive distance from ∂Ω). For s ≥ 0, let Ts = {(u1, u2) ∈ Ω :
u2 ≥ s}.

Lemma 4.4. Let α > 0. Let (νn)n≥1 be a sequence of random measures in Mα that converges
vaguely almost surely to a Radon measure ν ∈ M. Assume that the sequence of random variables
(νn(Ω))n≥1 is uniformly integrable and that

sup
n

E[Persα(νn)] < +∞ and lim
s→+∞

lim sup
n

E[
∫
Ts

persα(u)dνn(u)] = 0.

Then, ν ∈ Mα and E[|Persα(νn)− Persα(ν)|] →n→∞ 0.

Proof. We divide the proof into several steps.

1. Let ϕ ∈ Cc(Ω). We first show that (
∫
ϕdνn))n≥1 converges in L

1 to
∫
ϕdν. By assumption,

the convergence holds almost surely. Furthermore, as ϕ is bounded and as the sequence
(νn(Ω))n≥1 is uniformly integrable, so is the sequence (

∫
ϕdνn)n≥1. Hence, E[|

∫
ϕd(νn −

ν)|] →n→∞ 0.

2. Let (ϕk)k≥1 be an increasing sequence of functions in Cc(Ω) that converge pointwise to
the function persα. Then, almost surely,∫

ϕkdν ≤ lim inf
n→∞

∫
ϕkdνn ≤ lim inf

n→∞

∫
persαdνn.

By Fatou’s lemma, E[lim infn→∞
∫
persαdνn] ≤ lim infn→∞ E[Persα(νn)] = C < +∞ by

assumption. Hence, by letting k → ∞ and applying the monotone convergence theorem,
we obtain Persα(ν) ≤ C, proving that ν ∈ Mα.

3. The same argument can be applied to the constant function equal to 1, showing that
ν(Ω) < +∞.
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4. Let s ≥ 1. The function persα can be decomposed into a sum of three positive continuous

functions persα = ϕ
(1)
s + ϕ

(2)
s + ϕ

(3)
s , where ϕ

(1)
s has compact support, the support of ϕ

(2)
s

is included in the band {u ∈ Ω : pers(u) ≤ 1/s} and the support of ϕ
(3)
s is included in Ts.

Hence,

lim sup
n→+∞

E[|Persα(νn)− Persα(ν)|] ≤ lim sup
n→+∞

E[|
∫
ϕ(1)s d(νn − ν)|]

+ lim sup
n→+∞

E[|
∫
ϕ(2)s d(νn − ν)|] + lim sup

n→+∞
E[|
∫
ϕ(3)s d(νn − ν)|].

The first term in the above sum is equal to zero because of the first item, the second one
is smaller than s−α(supn E[νn(Ω)] + ν(Ω)), and the third one is smaller than

lim sup
n

E[
∫
Ts

persα(u)dνn(u)] +

∫
Ts

persα(u)dν(u).

Using the hypotheses of the lemma, the second and the third term converges to 0 as s
goes to ∞. We obtain that lim supn→+∞ E[|Persα(νn)− Persα(ν)|] = 0.

Our goal is to show that the conditions of Lemma 4.4 holds for the sequence (µn,i)n≥1 to
conclude. Remark that for any Radon measure ν ∈ Mα and s ≥ 0∫

Ts

persα(u)dν(u) = α

∫ ∞

0
tα−1ν(Ts ∩ {u : pers(u) ≥ t})dt

≤ α

∫ ∞

s/2
tα−1ν(T2t)dt+ α

∫ s/2

0
tα−1ν(Ts)dt

≤ α

∫ ∞

s/2
tα−1ν(T2t)dt+ (s/2)αν(Ts),

(22)

where we use Fubini’s theorem for the first equality and the fact that {u : pers(u) ≥ t} ⊂ T2t for
the first inequality. We also have ν(Ω) = ν(T0). Hence, the different conditions of Lemma 4.4
can all be obtained by controlling the random variable µn,i(Ts) for s ≥ 0.

Proposition 4.5. Let M be a compact submanifold with positive reach. Assume that P has a
density f on M satisfying fmin ≤ f ≤ fmax for two positive constants fmin, fmax. Then there
exist c, C > 0 that depend on M, i, fmin and fmax such that for all integer n ≥ 1 and all s ≥ 0,

E[µn,i(Ts)2] ≤ C exp(−csm). (23)

Before proving Proposition 4.5, let us show how to use it to conclude the proof of The-
orem 4.2. First, it implies that the random variables µn,i(Ω) = µn,i(T0) for n ≥ 1 have a
uniformly bounded second moment, and are therefore uniformly integrable. Second, we have
E[µn,i(Ts)] ≤ E[µn,i(Ts)2]1/2 using Hölder’s inequality. Hence, (22) implies that for any α > 0,
we have

E[Persα(µn,i)] ≤ α

∫ ∞

0
tα−1E[µn,i(T2t)]dt

≤ α
√
C

∫ ∞

0
tα−1e−c2m−1tmdt.
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In particular, supn E[Persα(µn,i)] < +∞. Likewise,

sup
n

E
[∫

Ts

persα(u)dµn,i(u)

]
≤ α

∫ ∞

s/2
tα−1E[µn,i(T2t)]dt+ (s/2)αE [µn,i(Ts)]

≤ α
√
C

∫ ∞

0
tα−1e−c2m−1tmdt+ (s/2)α

√
C exp(−c/2sm)

so that lims→+∞ supn E[
∫
Ts

persα(u)dµn,i(u)] = 0.
We are therefore in position to apply Lemma 4.4, proving the convergence of the α-total

persistence. Together with Lemma 4.3 with α = p ≥ 1, we also obtain the OTp-convergence of
µn,i. It remains to prove Proposition 4.5.

Proof of Proposition 4.5. Write εn = dH(An,M). Let s ≥ 0 and let ε0 < τ(M)/2 be a small
parameter, to be fixed later. Recall that we write #S for the cardinality of a multiset S.
Notice that µn,i(Ts) = 0 if sn−1/m > εn + ε2n/τ(M). In particular, we may assume without
loss of generality that s ≤ n1/mdiam(M)(1+diam(M)/τ(M)) = n1/mεmax, for otherwise there is
nothing to prove. Consider the event E = {εn + ε2n/τ(M) < ε0}. By definition of Region (1),

if E is satisfied, then all the coordinates of points of the PD dgm
(1)
i (An) are smaller than ε0.

Notice that the cardinality of dgmi(An) is smaller than the number of i-dimensional simplices in
the Čech complex of An, which is itself smaller than ni+1 (as each simplex corresponds uniquely
to a choice of i+ 1 vertices of An). Hence

E[µn,i(Ts)21{Ec}] ≤ n−2n2i+2P(εn + ε2n/τ(M) ≥ ε0).

We require the following lemma, which bounds the upper tail of the random variable εn =
dH(An,M) and which we prove in the Appendix.

Lemma 4.6. If r ≤ τ(M)/2, then

P(dH(An,M) > r) ≤ C

fminrm
exp(−ncfminr

m) (24)

for two positive constants c = c(m), C = C(m). In particular, for any q ≥ 1, dH(An,M) =
OLq((lnn/n)1/m).

Note that εn ≤ diam(M), so P(εn + ε2n/τ(M) ≥ ε0) ≤ P(εn ≥ c0ε0), with c0 = (1 +
diam(M)/τ(M))−1. Apply Lemma 4.6 with r = c0ε0 to obtain that

E[µn,i(Ts)21{Ec}] ≤ n2i
C

fminrm
exp(−ncfminr

m) ≤ C0 exp(−c1n)

for some positive constants c1, C0. Furthermore, recall that s ≤ n1/mεmax. Hence,

E[µn,i(Ts)21{Ec}] ≤ C0 exp(−c1ε−m
maxs

m) = C0 exp(−c2sm)

for some positive constant c2.
It remains to bound E[µn,i(Ts)21{E}]. For each j = 1, . . . , n, consider the set Ξj

n,s of critical
points z ∈ Crit(An) such that σAn(z) contains the pointXi and sn

−1/m ≤ dAn(z) ≤ εn+ε
2
n/τ(M).
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Lemma 4.7. It holds that µn,i(Ts) is smaller than

1

n

n∑
j=1

Li+2
j , (25)

where Lj is the cardinality of the set
⋃

z∈Ξj
n,s
σAn(z).

Proof. Lemma A.1 applied to a realization of An and the interval [sn−1/m, εn + ε2n/τ(M)] yields
that the number of points in dgmi(An) with at least one of their coordinates in [sn−1/m, εn +
ε2n/τ(M)] is upper bounded by

∑n
j=1 L

i+2
j . By definition, this means that µn,i(Ts) ≤ 1

n

∑n
j=1 L

i+2
j ,

as desired.

One can show that the set Ξj
n,s is localized, in the sense that it is included in a ball centered

at Xj , with a radius depending on the sample An, that is small with high probability. Hence, the
number Lj is controlled by the number of points in An found in a small (random) neighborhood
of Xj . Let us make this idea rigorous.

For r ≥ 0, define the shape

C(r) = {y = (ym, yd−m) ∈ Rm × Rd−m : ∥y∥ ≤ r, ∥yd−m∥ ≤ ∥y∥2

2τ(M)
}. (26)

We build a partition of C(r) in the following way. Consider a finite partition W of the unit
sphere in Rm×{0}d−m into sets of diameters smaller than θ = π/4 (for the geodesic distance on
the sphere), which we fix for a given dimension m. Let W(r) be the partition of C(r) consisting
of the sets

{y = (ym, yd−m) ∈ C(r) : ym/∥ym∥ ∈W},

where W is an element of the partition W.
For x ∈ M, consider an isometry ιx : Rd → Rd sending Rm × {0}d−m to TxM. Let C(x, r) =

x + ιx(C(r)). Likewise, we define a partition W(x, r) by applying the affine transformation
W 7→ x+ ιx(W ) to each W ∈ W(r).

For j = 1, . . . , n, let Rjn be the smallest radius r ≤ ε0 such that every W ∈ W(Xj , r)
contains a point of An other than Xj . By convention, we let Rjn = ε0 if such a radius does not
exist. Rjn can be made measurable with a good choice of x 7→ ιx; we assume it to be the case
henceforth.

Lemma 4.8. Let ε0 ≤ τ(M)/
√
2. For all j = 1, . . . , n, if z ∈ Crit(An) is such that Xj ∈ σAn(z)

and dAn(z) ≤ ε0, then ∥Xj − z∥ ≤ c0Rjn for some positive absolute constant c0.

Proof. Recall that for x ∈ M, πx is the orthogonal projection on TxM while π⊥x is the orthogonal
projection on the normal space at x. Let j = 1, . . . , n and let z ∈ Crit(An) be such that
Xj ∈ σAn(z). The direction e = πXj (z−Xj)/∥πXj (z−Xj)∥ belongs to the unit sphere in TXjM;

note that πXj (z −Xj) ̸= 0 due to Lemma B.2 below, which applies as dAn(z) ≤ ε0 ≤ τ(M)/
√
2.

Hence, ι−1
x (e) belongs to an elementW0 of the partition W. Consider the corresponding element

W of the partition W(Xj , Rjn).
If Rjn = ε0, then the conclusion of the lemma holds (for c0 = 1): indeed we have ∥Xj −z∥ =

dAn(z) ≤ ε0 ≤ Rjn. Otherwise, by assumption, there exists a point Xk ∈W for some k ̸= j. As
Xj ∈ σAn(z), it holds that ∥Xj − z∥ ≤ ∥Xk − z∥. Hence,

∥Xj − z∥2 ≤ ∥Xk − z∥2 = ∥Xj − z∥2 + ∥Xj −Xk∥2 + 2⟨Xk −Xj , Xj − z⟩
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and

⟨Xk −Xj , z −Xj⟩ ≤
∥Xj −Xk∥2

2
. (27)

We write

⟨Xk −Xj , z −Xj⟩ = ⟨πXj (Xk −Xj), πXj (z −Xj)⟩+ ⟨π⊥Xj
(Xk −Xj), π

⊥
Xj

(z −Xj)⟩

By construction, as the diameter of W0 is less than θ, we have ⟨πXj (Xk −Xj), πXj (z −Xj)⟩ ≥
cos(π/4)∥πXj (Xk−Xj)∥∥πXj (z−Xj)∥. On the other hand, according to [Fed59, Theorem 4.18],

∥π⊥Xj
(Xk −Xj)∥ ≤ ∥Xk −Xj∥2

2τ(M)
, (28)

which also implies that ∥πXj (Xk −Xj)∥ ≥ ∥Xj −Xk∥
√
1− ε20

4τ(M)2
. Similarly, Lemma B.2 from

the Appendix states that ∥πXj (z−Xj)∥ ≥ ∥z−Xj∥/
√
2 and ∥π⊥Xj

(z−Xj)∥ ≤ ∥z−Xj∥2/τ(M)

(using our assumption that dAn(z) ≤ ε0 ≤ τ(M)/
√
2).

Hence we obtain that

cos(π/4)∥Xj −Xk∥∥z −Xj∥

√
1− ε20

4τ(M)2√
2

≤ cos(π/4)∥πXj (Xk −Xj)∥∥πXj (z −Xj)∥

≤ ∥Xk −Xj∥2

2
+

∥Xk −Xj∥2∥z −Xj∥2

2τ(M)2

≤ ∥Xk −Xj∥2
(
1

2
+

ε20
2τ(M)2

)
.

Dividing by ∥Xj −Xk∥ and using that ∥Xj −Xk∥ ≤ Rjn and that ε0 ≤ τ(M)/
√
2, we see that

∥z −Xj∥ is smaller than Rjn up to an absolute multiplicative constant.

Let us now show that the random variable Rjn has controlled tails.

Lemma 4.9. For all x ∈ M, r ≥ 0, B(x, r) ∩M ⊂ C(x, r).

Proof. Let y ∈ M be such that ∥πx(y − x)∥ ≤ r. Then, according to [Fed59, Theorem 4.18],

∥π⊥x (y − x)∥ ≤ ∥y−x∥2
2τ(M) . In particular, B(x, r) ∩M ⊂ C(x, r).

Lemma 4.10. For 0 < t ≤ τ(M)/4 and j = 1, . . . , n, we have P(Rjn > t) ≤ Ce−cfmin(n−1)tm for
some positive constants c = c(m), C = C(m).

Proof. If Rjn is larger than t, then there exists at least one set W ∈ W(Xj , t) such that its
intersection with An contains only Xj . Hence,

P(Rjn > t|Xj) ≤
∑

W∈W(Xj ,t)

P(An ∩W = Xj |Xj) =
∑

W∈W(Xj ,t)

(1− P (W ))n−1.

Let π0 be the orthogonal projection from Rd to Rm×{0}d−m. The image of a set W ∈ W(Xj , t)
by the projection y 7→ πXj (y−Xj) is equal to ιXj (π0(W0)) ⊂ TXjM for someW0 ∈ W(t). For t ≤
τ(M)/4, the orthogonal projection y ∈ B(Xj , t)∩M 7→ πXj (y−Xj) ∈ TXjM is a diffeomorphism
on its image, with Jacobian lower bounded by a constant c(m) that depends only on m, see e.g.
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[Div21, Lemma 2.2]. According to Lemma 4.9, the preimage of ιXj (π0(W0)) ⊂ TXjM by this
diffeomorphism is equal to W ∩M . Hence, by a change of variable,

P (W ) = P (W ∩M) ≥ fminc(m)Volm(W0) ≥ fminc
′(m)tm

for some c′(m) > 0. Hence,

P(Rjn > t|Xj) ≤ #We−fminc
′(m)(n−1)tm .

We conclude by taking the expectation.

Let us now control the number of points found in a ball B(Xj , κRjn) for some κ ≥ 0. Let
ρ0 > 0 be small enough such that

∫
B(x,ρ0)∩M f < 1/2 for any x ∈ M.

Lemma 4.11. Let l ≥ 0, κ > 0 be such that κε0 ≤ min(ρ0, τ(M)/4). For j = 1, . . . , n, let Kjn(κ)

be the number of elements of An found in B(Xj , κRjn). Then, E[Kjn(κ)
l] ≤ C(1+

(
fmax

fmin

)l
κlm)

for some constant C = C(m, l).

Proof. Let us write {W1, . . . ,WK} = W(Xj , κRjn). Without loss of generality, we can assume
that n ≥ K+1, as otherwise the bound is trivial. As in [DP19, Lemma 5], we remark that there
is at least one sample point in every Wi, and that there is (almost surely) one single element
Wi∗ of the partition with exactly one sample point on its boundary. Let Ni be the cardinality
of (Wi ∩ An)\{Xj}, and N−1 be the cardinality of An\B(Xj , κRjn). Define

α̃i :=

∫
Wi

f

and αi :=
α̃i

1−α̃i∗
for all i ̸= i∗, as well as α−1 =

1−
∑K

i=1 α̃i

1−α̃i∗
. Note that as κRjn ≤ ρ0, we have

α̃i < 1/2 for all i = 1, . . . ,K. As κRjn ≤ κε0 ≤ τ(M)/4, we may use once again that the
orthogonal projection y ∈ B(Xj , κRjn) ∩M 7→ πXj (y −Xj) ∈ TXjM is a diffeomorphism on its
image, with Jacobian upper and lower bounded by constants depending only on m (see [Div21,
Lemma 2.2]) to also obtain that

cfmin(κRjn)
m ≤ α̃i ≤ Cfmax(κRjn)

m

for all i = 1, . . . ,K and some constants c = c(m), C = C(m). Hence there exists C ′ = C ′(m) > 0
such that

cfmin(κRjn)
m ≤ αi ≤ C ′fmax(κRjn)

m

for all i = 1, . . . ,K. Consider a multinomial random variable L = (L1, . . . , L̂i∗ , . . . , LK , L−1) of
parameters n− 2 and (α1, . . . , α̂i∗ , . . . , αK , α−1), and let E denote the event

{Li ≥ 1 ∀i ∈ {1, . . . ,K}\{i∗}}.

Then conditionally on Xj , Rjn and i∗, the variable N = (N1, . . . , N̂i∗ , . . . , NK , N−1) follows the
same distribution as L | E. Thus, conditionally on Xj , Rjn and Wi∗ , the variable Kjn(κ) =

1 +
∑K

i=1Ni = 2 +
∑K

i=1,i ̸=i∗ Ni (where the initial 1 comes from Xj) has the same distribution
as

2 +

K∑
i=1,i ̸=i∗

Li| E.
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Note that as κRjn ≤ ρ0, we have α−1 ≥ 1/2.
As a result, Lemma B.3 in the Appendix yields that

E[Kjn(κ)
l|Xj , Rjn,Wi∗ ] = E[(2 +

K∑
i=1,i ̸=i∗

Li)
l | E] ≤ 2l(2l + E[(

K∑
i=1,i ̸=i∗

Li)
l | E])

≤ 2l(2l + C(K, l)(1 + (n− 2)
K∑

i=1,i ̸=i∗

αi)
l)

≤ C ′(K, l)(1 + (n

K∑
i=1,i ̸=i∗

αi)
l) ≤ C ′(K, l)(1 + (nKC ′fmax(κRjn)

m)l)

≤ C(m, l)(1 + κmlf lmaxn
lRml

jn ).

We can now conclude by considering

E[Kjn(κ)
l] = EXj ,Rjn,Wi∗ [E[Kjn(κ)

l|Xj , Rjn,Wi∗ ]] ≤ ERjn [C(m, l)(1 + κmlf lmaxn
lRml

jn )]

The quantity nlE[Rml
jn ] is bounded by a constant, which is proved by integrating the tail

bound found in Lemma 4.10. Indeed, Lemma 4.10 implies that the random variable nRm
jn

is subexponential with a subexponential norm m independent of n, of order O(1/fmin); the
moment of order l of such a random variable is bounded by Clm

l, see [Ver18, Section 2.7].

Let us wrap things up. Recall Lemma 4.7: it holds that

µn,i(Ts) ≤
1

n

n∑
j=1

Li+2
j , (29)

where Lj is the cardinality of the set
⋃

z∈Ξj
n,s
σAn(z). But according to Lemma 4.8, if z ∈ Ξj

n,s,

then ∥Xj − z∥ ≤ c0Rjn. In particular, dAn(z) ≤ c0Rjn, and any point y ∈ σAn(z) is at distance
less than 2c0Rjn from Xj . Hence, Lj is smaller than Kjn(κ) for κ = 2c0. Choose ε0 so that
κε0 ≤ κε0 ≤ min(ρ0, τ(M)/4). We are in position to apply Lemma 4.11. We further remark
that Lemma 4.8 implies that Ξj

n,s is empty if c0Rjn < sn−1/m.
Hence, by Jensen’s inequality,

E[µn,i(Ts)21{E}] ≤ E

 1

n

n∑
j=1

1{2c0Rjn ≥ sn−1/m}Kjn(2c0)
i+2

2
≤ E

[
1{2c0R1n ≥ sn−1/m}K1n(2c0)

2i+4
]

≤
√
P(2c0Rjn ≥ sn−1/m)E[K1n(2c0)4i+8]

≤ C(m, i) exp(−c(m)fmins
m),

where we apply Lemma 4.10 and Lemma 4.11 at the last line.

This completes the proof of Theorem 4.2.

26



4.2 Regions (2)-(3)

It is a well-known fact that the Hausdorff distance ε = dH(An,M) between a random sample
and M is of order (log n/n)1/m whenever the underlying density f is bounded away from zero

and ∞ on M, see e.g. [FLR+14]. Hence the PDs dgm
(2)
i (An) and dgm

(3)
i (An) can be described

using Theorem 2.3. However, in the case where M is a generic submanifold, one can actually
obtain tighter results. We let #E denote the cardinality of a multiset E.

Proposition 4.12. Let M be a generic m-dimensional submanifold. Assume that P has a
density f on M bounded away from 0 and ∞. Let i ≥ 0 be an integer. There exists an optimal
matching γn : dgmi(An) ∪ ∂Ω → dgmi(M) ∪ ∂Ω for the bottleneck distance between dgmi(An)
and dgmi(M) such that for any q ≥ 1:

• Region (2): It holds that max
u∈dgm(2)

i (An)
|u2 − γn(u)2| = OLq(n−2/m).

• Region (3): It holds that max
u∈dgm(3)

i (An)
∥u−γn(u)∥∞ = OLq(n−2/m) and #(dgm

(3)
i (An)) =

OLq(1).

We remark that the same bounds can be obtained almost surely (e.g. “a.s. there exists
C > 0 such that max

u∈dgm(3)
i (An)

∥u − γn(u)∥∞ ≤ Cn−2/m”), rather than in expectation, using

similar arguments.
Proposition 4.12 yields two distinct improvements upon direct applications of Theorem 2.3

and Theorem 3.7 to the random case. First, we obtain bounds of order n−2/m instead of bounds
of order (log n/n)2/m. Second, the random sample An is in general only δ-sparse for δ of order
n−2/m. Hence, An is (δ, ε)-dense in M, but with a diverging ratio ε/δ. Therefore, Theorem 3.7
cannot be applied to control the total number of points in dgmi(An) in Region (3).

Proof. Let εn = dH(An,M). Let ΠM := {x ∈ σM(z) : z ∈ Crit(M)} be the (finite) set of
projections of critical points z ∈ Crit(M). The proof of Theorem 3.7 relied on the use of
Theorem 1.6 in [ACSD23]. This theorem states roughly that both critical points z ∈ Crit(An)
far from M and their projections x ∈ σAn(z) are stable with respect to the Hausdorff distance,
meaning that every such point z is at distance O(εn) from a critical point z′ ∈ Crit(M), with x
being at distance O(εn) from a point x′ ∈ ΠM. Thus, the number of critical points of An located
close to a given z′ ∈ Crit(M) is crudely upper bounded by the number of subsets which can be
formed by selecting elements in neighborhoods of size O(εn) around x

′ ∈ σM(z′). We used the

same idea to bound the cardinality of dgm
(3)
i (A) in Theorem 3.7.

In a random setting, the distance εn is of order (lnn/n)1/m, as suggested by Lemma 4.6, while
the number of points found in a ball of radius r is typically of order nrm, yielding a logarithmic
number of elements in a neighborhood of size O(εn) around a given point x ∈ M. Hence, our

earlier strategy is not tight enough to bound in expectation the cardinality of dgm
(3)
i (A) by a

constant.
We improve upon this strategy with the following intuition: the maximal distance between

a point x of M and the point cloud An does not really matter in [ACSD23, Theorem 1.6], but
only the density of the point cloud An around the (finitely many) projections x ∈ ΠM. Although
εn is of order (lnn/n)1/m, the distance between a fixed point x ∈ M and An is known to be of
order n−1/m (see (40)). This remark explains how we can intuitively replace neighborhoods of
radii (lnn/n)1/m by radii of size n−1/m in the previous arguments.

27



We now make these ideas rigorous. Let Crit>(An) = {z ∈ Crit(An) : dAn(z) ≥ τ(M)/2}
denote the set of critical points of An “far” from M and let ΠAn := {x ∈ σAn(z) : z ∈ Crit>(An)}
be the corresponding set of projections. We let ε0 be a small constant to be fixed later. Theorem
1.6 from [ACSD23] states that, thanks to the genericity of M, there exist K1,K2 > 0 such that
for ε0 small enough, if εn < ε0:

• there exists a map ϕ : Crit>(An) → Crit(M) such that d(z, ϕ(z)) ≤ K1εn for all z ∈
Crit>(An), and

• there exists a map ψ : ΠAn → ΠM such that d(x, ψ(x)) ≤ K2εn for all x ∈ ΠAn .

Furthermore, the map ψ is such that for each z ∈ Crit>(An) and each x′ ∈ σM(ϕ(z)), there exists
x ∈ σAn(z) such that ψ(x) = x′ (if ε0 is chosen small enough). Indeed, due to the genericity
of M, each critical point z′ ∈ Crit(M) belongs to the relative interior of σM(z′) (as stated in
Theorem 3.5). In particular, it cannot belong to the convex hull of any strict subset of σM(z′).
By continuity of the convex hull for the Hausdorff distance, as soon as z ∈ Crit>(An) is close
enough to ϕ(z) and its projections x ∈ σAn(z) are close enough to σM(ϕ(z)) (i.e. as soon as εn is
small enough), the point z cannot belong to the convex hull of any subset S ⊂ σAn(z) that does
not contain for each x′ ∈ σM(ϕ(z)) at least one point x such that ψ(x) = x′. As z must belong
to the convex hull of σAn(z), we conclude that each x′ ∈ σM(ϕ(z)) has at least one preimage by
ψ in σAn(z). As Crit(M) is finite, taking the minimum distance such that this property holds
for z′ over all z′ ∈ Crit(M) proves the claim.

We introduce the random function defined as

∀r ≥ 0, E(r) := min(sup{dAn(y) : y ∈ M ∩Πr
M}, ε0) =: min(F (r), ε0), (30)

where Πr
M is as usual the r-offset of ΠM. This random variable measures the density of the point

cloud An in neighborhoods of size r of points x′ ∈ ΠM.
Let

ρn := sup{dΠM
(x) : x ∈ ΠAn} (31)

give (when εn < ε0 for ε0 small enough) the largest distance between a projection x ∈ ΠAn and
the corresponding projection ψ(x) ∈ ΠM. We also define

ηn := sup{dΠM
(x) : x = πM(z), z ∈ Crit>(An)}. (32)

We require the following controls on the random variables ρn and ηn.

Lemma 4.13. There exist positive constants ε0 = ε0(M), K3 = K3(M), K4 = K4(M) and
K5 = K5(M) such that if εn < ε0, it holds that for any z ∈ Crit>(An)

|dAn(z)− dM(ϕ(z))| ≤ K3E(ηn)
2, (33)

ηn ≤ K4E(ηn), (34)

ρn ≤ K5E(ηn). (35)

Proof. The proof mostly follows from a careful read of the proof of Theorem 1.6 in [ACSD23].
First, remark that in the proof of Lemma 5.1 in [ACSD23] (applied with r = τ(M)/2, R =
diam(M)), the Hausdorff distance ε = dH(An,M) can be replaced by E(ηn). Hence, if z ∈
Crit>(An), there exists a µ-critical point z′ of M at distance less than E(ηn), with µ ≤
L1(M)E(ηn). By genericity, for a choice of ε0 small enough, this point z′ is at distance L2(M)µ
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from a critical point z0 ∈ Crit(M). For ε0 small enough, this point z0 is necessarily equal to ϕ(z),
with ∥z − ϕ(z)∥ ≤ (1 + L2L1)E(ηn). Due to the Lipschitz property of the projection onto M
around z0 (see the arguments found at the bottom of p. 19 in [ACSD23]), any point x ∈ πM(z)
is such that ∥x− x′∥ ≤ L3(M)∥z−ϕ(z)∥ for some x′ ∈ σM(ϕ(z)). By taking the supremum over
all such points x, we obtain that

ηn ≤ L3(1 + L2L1)E(ηn),

proving (34).
One can also check that εn can be replaced by E(ηn) in the end of the proof of Theorem 1.6

in [ACSD23], so that (35) holds.
The proof of (33) is essentially the same as that of the first point of Theorem 3.7–we omit

it.

Consider a (random) optimal matching γn : dgmi(An) ∪ ∂Ω → dgmi(M) ∪ ∂Ω such that
max

u∈dgm(2)
i (An)

|u2 − γn(u)2| ≤ Cε2n and max
u∈dgm(3)

i (An)
∥u− γn(u)∥∞ ≤ Cε2n whose existence

is guaranteed by Theorem 2.3 (for some C = C(M) > 0). For r ≥ 0, we let N(r) be the number
of points of An found in Πr

M (i.e. at distance less than r from a point in ΠM).

Lemma 4.14. There exists ε0 = ε0(M) such that if εn ≤ ε0, then

max
u∈dgm(2)

i (An)

|u2 − γn(u)2| ≤ K3E(ηn)
2,

max
u∈dgm(3)

i (An)

∥u− γn(u)∥∞ ≤ K3E(ηn)
2.

Furthermore, #(dgm
(3)
i (An)) is smaller than N(ρn)

i+2.

Proof. Let us assume from now on that ε0 is small enough that 2(K3+C)ε
2
0 is smaller than the

smallest difference between two distinct critical values of dM.
Consider a point (u1, u2) ∈ dgm

(3)
i (An) that is mapped by γn to the diagonal. The co-

ordinates u1 and u2 differ by at most Cε2n, hence they are critical values of dAn that cor-
respond to critical points that are mapped by ϕ to two critical points of M that have the
same critical value (due to 2(K3 + C)ε2 being smaller than the smallest difference between
two distinct critical values of dM). But as stated in Equation (33) of Lemma 4.13, these
critical values must then be K3E(ηn)

2-close to that of the two critical points of M, hence
∥u− γn(u)∥∞ = d(u, ∂Ω) = (u2 − u1)/2 ≤ K3E(ηn)

2, as desired.

Likewise, consider a point (u1, u2) of dgm
(3)
i (An) that is mapped by γn to a point (v1, v2)

of dgm
(3)
i (M). The birth coordinates u1 and v1 differ by at most Cε2, hence the associated

critical values must correspond to a critical point z of An and a critical point z′ of M such
that ϕ(z) has the same filtration value as z′ (again due to 2(K3 + C)ε2 being smaller than
the smallest difference between two distinct critical values of dM). But as above, we have
|u1 − v1| = |dAn(z)− dM(z′)| = |dAn(z)− dM(ϕ(z))| ≤ K3E(ηn)

2. As the same applies to u2 and
v2, we find that ∥u − γn(u)∥∞ ≤ K3EE(ηn)

2 and max
u∈dgm(3)

i (An)
∥u − γn(u)∥∞ ≤ K3E(ηn)

2.

The same reasoning shows that max
u∈dgm(2)

i (An)
|u2 − γn(u)2| ≤ K3E(ηn)

2.

Finally, and by definition, ΠAn = {x ∈ σAn(z) : z ∈ Crit(An), dAn(z) ≥ τ(M)/2} is included
in An ∩Πρn

M , hence #(ΠAn) ≤ N(ρn). Lemma A.1 applied to An and the interval [τ(M)/2,+∞)

then yields that the number of points in dgm
(3)
i (An) is smaller than N(ρn)

i+2.
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Lemma 4.15. Let ε0 be the parameter defined in Lemma 4.14. It holds that for all q ≥ 1,
E(ηn)1{εn ≤ ε0} = OLq(n−1/m) and N(ρn)1{εn ≤ ε0} = OLq(1).

Assume for a moment that Lemma 4.15 holds. Then, we write (for a choice of ε0 small
enough)

max
u∈dgm(2)

i (An)

|u2 − γn(u)2| ≤ K3E(ηn)
21{εn ≤ ε0}+R(M)1{εn > ε0}

≤ K3E(ηn)
21{εn ≤ ε0}+R(M)1{εn > ε0}. (36)

where we recall that R(M) is the radius of the smallest enclosing ball of M. Because of
Lemma 4.6, the random variable 1{εn > ε0} is a OLq(n−2/m) for all q ≥ 1. But then, be-
cause of Lemma 4.15, we obtain that the right-hand side in (36) is a OLq(n−2/m) for all q ≥ 1.
Likewise, we obtain that max

u∈dgm(3)
i (An)

∥u− γn(u)∥∞ = OLq(n−2/m) for all q ≥ 1. At last, we

have

#(dgm
(3)
i (An)) ≤ N(ρn)

i+21{εn ≤ ε0}+ ni+21{εn > ε0}.

The first term is a OLq(1) for all q ≥ 1 because of Lemma 4.15, while the second one is a OLq(1)
for all q ≥ 1 because of Lemma 4.6. This concludes the proof of Proposition 4.12. Let us now
prove Lemma 4.15.

Proof of Lemma 4.15. Let t > 0. The key observation to obtain Lemma 4.15 is that (34) implies
that if ηn > t, then there exists r > t with r ≤ K4E(r).

Lemma 4.16. For all λ > 0, there exist positive constants Cλ, cλ (depending on λ, M and
fmin) such that for all r > 0, P(r ≤ λE(r)) ≤ Cλ exp(−cλnrm).

Proof. Remark that if r ≤ λE(r), then r ≤ λF (r). The set M ∩ Πr
M is the union of a finite

number of balls of radius r. Hence, it can be covered by Cλ = Cλ(M) open balls of radius r/(2λ),
with centers x1, . . . , xCλ

∈ M. Note that if all these balls intersect An, then for all y ∈ M ∩Πr
M,

dAn(y) < r/λ. Hence, if λF (r) ≥ r, then the intersection of one of these balls with An is empty.
Hence, according to Lemma B.1,

P(r ≤ λF (r)) ≤
Cλ∑
k=1

P(dAn(xk) ≥ r/(2λ)) ≤ Cλ exp(−C(M)fminn(r/λ)
m).

Remark that the fonction E is nondecreasing and 1-Lipschitz continuous: we have for r < s,
E(r) ≤ E(s) ≤ E(r) + (r − s). Fix t > 0 and consider the sequence tk = akt for some a > 1 to
fix. Assume that ηn > t and that εn ≤ ε0. Then ηn is between two values tk < tk+1. But then,
according to Lemma 4.14,

E(tk)

tk
≥ E(ηn)− (ηn − tk)

tk
≥ 1

a

E(ηn)

ηn

tk+1

tk
− (a− 1) ≥ 1

K4
− (a− 1)

E(tk+1)

tk+1
≥ 1

a

E(ηn)

tk
≥ 1

a

E(ηn)

ηn
≥ 1

K4a
.

Choose a > 1 such that 1
K4

− (a− 1) > 0, and let

λ = min
( 1

K4
− (a− 1),

1

K4a

)
> 0
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We have proven that if εn ≤ ε0 and ηn > t, then there exists k ≥ 0 with E(tk) ≥ λtk.
Hence,

P(ηn > t, εn ≤ ε0) ≤ Cλ

∑
k≥0

exp(−cλakmntm).

A standard comparison between this sum and an integral shows that this sum is at most of
order

K6(nt
m)−1 exp(−K7nt

m). (37)

for two positive constants K6, K7 depending on M and fmin. But when nt
m ≤ 1, we can simply

use the bound P(ηn > t, εn ≤ ε0) ≤ 1. Hence,

P(ηn > t, εn ≤ ε0) ≤ min(1,K6(nt
m)−1 exp(−K7nt

m)) ≤ K8 exp(−K9nt
m)) (38)

for two other constants K8, K9.
To summarize, we have shown that the random variable nηmn 1{εn ≤ ε0} is subexponential,

with subexponential norm depending only on M and fmin, see e.g. [Ver18, Section 2.7]. We will
now simply say that a random variable is subexponential to indicate that it is subexponential
with a norm depending only on M and fmin.

Lemma B.1 shows that the random variable ndAn(x)
m for a fixed x ∈ M is also subex-

ponential. Thus, so is nE(0)m = nmaxx∈ΠM
dAn(x)

m, as a maximum of a finite number of
subexponential random variables. As nE(ηn)

m ≤ n(ηn + E(0))m ≤ 2m−1(nηmn + nE(0)m), the
random variable nE(ηn)

m1{εn ≤ ε0} is also subexponential. In particular, we have E(ηn)1{εn ≤
ε0} = OLq(n−1/m) for all q ≥ 1.

It remains to bound N(ρn). First, because of (35), the random variable nρmn 1{εn ≤ ε0} is
subexponential. Also, for a fixed t, N(t) follows a binomial distribution of parameter n and
P (Πt

M). As long as t ≤ τ(M)/4, a ball of radius t is of mass smaller than Cmfmaxt
m (see

Lemma B.1). Let 0 ≤ k ≤ n be an integer. For any t ≤ τ(M)/4, we bound

P(N(ρn) ≥ k, εn ≤ ε0) ≤ P(N(t) ≥ k, ρn ≤ t) + P(ρn > t, εn ≤ ε0)

≤ P(N(t) ≥ k) + 2 exp(−K10nt
m),

where K10 is proportional to the subexponential norm of nρmn 1{εn ≤ ε0}, see [Ver18, Section
2.7]. Let t = (k/n)1/mmin(τ(M)/4, 1/(#ΠM · 2Cmfmax)

1/m). This choice of t ensures that
t ≤ τ(M)/4 and that E[N(t)] ≤ n(#ΠM)Cmfmaxt

m ≤ k/2. Then, by Bernstein’s inequality
[Ver18, Theorem 2.8.4],

P(N(t) ≥ k) ≤ P(N(t)− E[N(t)] ≥ k/2) ≤ exp

(
− k2/8

n(#ΠM)Cmfmaxtm + k/6

)
≤ exp (−K11k)

for some constant K11 depending on m, M and fmax. We have proven that for all k ≥ 0,

P(N(ρn) ≥ k, εn ≤ ε0) ≤ 2 exp (−K11k) + 2 exp(−K10nt
m)

≤ 2 exp (−K11k) + 2 exp(−K12k)

for some constant K12 depending on m, M, fmin and fmax. Hence, the random variable
N(ρn)1{εn ≤ ε0} is subexponential, with a subexponential norm depending on M, fmin and
fmax. This implies in particular that N(ρn)1{εn ≤ ε0} = OLq(1) for all q ≥ 1.
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4.3 Consequences for the Wasserstein convergence of persistence diagrams

As a simple consequence of Theorem 4.2 and Proposition 4.12, we obtain that for i < m, the
p-Wasserstein convergence of (dgmi(An)) to dgmi(M) holds if and only if p > m, as well as
precise asymptotics for the total persistence of (dgmi(An)).

Corollary 4.17. Let p ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.12, the following holds:

• If p > m, then E[OTp
p(dgmi(An),dgmi(M))] → 0 as n→ ∞.

• If p = m, E[OTp
p(dgmi(An),dgmi(M))] → Persp(µ∞,i,m)Vol(M) as n → ∞, where Vol(M)

is the volume of M.

• If p < m and i < m, then E[OTp
p(dgmi(An),dgmi(M))] → +∞ as n→ ∞.

Furthermore, for all α > 0, Persα(dgmi(An)) is equal to

Persα(dgmi(M)) + n1−
α
mPersα(µ∞,i,m)

∫
M
f(x)1−

α
mdx+ oL1(n1−

α
m ) +OL1

(( log n

n

) 1
m )

.

As noted earlier, both dgmi(An) and dgmi(M) are trivial if i ≥ d.
This corollary, whose proof can be found in the Appendix, gives a precise answer to the

questions raised in the introduction. First, when An is a random subset of a m-dimensional
generic manifold in Rd, the α-total persistence of dgmi(An) is not only bounded for α > d (as
was shown by Cohen-Steiner & al. [CSEHM10]), but for all α ≥ m. Moreover, the sequence
dgmi(An) converges for the OTp distance if p > m. A curious phenomenon can be observed
in the case p = m: the sequence does not converge to dgmi(M) as one would expect, but its
distance to the power p to dgmi(M) converges to some constant–in that case, the cost to the
power p of matching all the points in Region (1) to the diagonal ∂Ω neither converges to 0 nor
diverges, but is asymptotically equal to this constant.

Using these asymptotics for the total persistence, we obtain regularity guarantees for a large
family of feature maps, called linear feature maps, which includes feature maps introduced in
[CFL+14, AEK+17, RHBK15, CWRW15, KHF16, STR+18, CCI+20]. Let (V, ∥·∥) be a normed
vector space, and let ϕ : Ω → V be a continuous bounded map. For α ≥ 0, the linear feature
map Φα associated to ϕ and defined on the space Df of PDs having a finite number of points is
defined for all a ∈ Df by Φα(a) =

∑
u∈a pers(u)

αϕ(u) ∈ V .

Corollary 4.18. Let α ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.12, it holds that Φα(dgmi(An)) converges in probability to Φα(dgmi(M)) whenever
α > m.

The proof is given in the Appendix. Remark that other weighting schemes are possible. For
instance, [KFH18] argued for using linear feature maps of the form

Φα(a) =
∑
u∈a

arctan(pers(u)α)ϕ(u).

Similar results would hold for such feature maps, as the map u 7→ arctan(pers(u)α)ϕ(u)/pers(u)α

is continuous and bounded whenever ϕ is.
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Figure 4: Left: the Čech PD dgm1(An) of a sample of n = 104 points sampled on a generic torus,
with points in Regions (1), (2) and (3) highlighted in different colors. Right: the persistence
images of dgm1(An) with weight persp for different values of p.

5 Numerical experiments

We illustrate our results with synthetic experiments. We create a generic submanifold of dimen-
sion m by applying a random diffeomorphism Ψ to a given m-dimensional submanifold M0 (e.g.
a torus). We then draw a sample of n i.i.d. observations sampled according to the pushforward
P of the uniform distribution on M by Ψ.

Figure 5: Plot in log-log scale of Persp(dgm
(1)
i (An)) as a function of n for points sampled on a

circle, i = 0 (left), points sampled on a torus, i = 0 (center), points sampled on a torus, i = 1
(right). Dashed lines have slopes equal to 1− p/m.

Continuity of feature maps. As a first experiment, we test the continuity of a feature
map, the persistence image [AEK+17]. In Figure 4, we plot the persistence image of dgm1(An)
where An is a sample of n = 104 points on a generic torus. We observe that the map is
discontinuous for p < 2: the two points with large persistence corresponding to the PD of the
underlying torus are nonapparent in the image. For p > 2, the two points are apparent, and the
contribution of points with small persistence (close to the lower edge) has vanished. In the limit
situation p = 2, we see the contribution of both points with large and small persistence. This
phenomenon suggests the following heuristics: when in presence of multiple datasets on
m-dimensional objects whose global geometries need to be distinguished, feature
maps with weights persp with p > m should be used; when the relevant information
is the underlying density of the datasets, the choice p < m should be preferred.

Convergence of total persistences. We verify the rate of convergence of the total per-
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sistence predicted by Theorem 4.2. For values of n ranging from 102 to 104, we compute

Persp(dgm
(1)
i (An)) in three scenarios: points sampled on a circle for i = 0, and points sampled

on a torus for i = 0 and i = 1. The correct rates of convergence are observed on a log-log plot,
see Figure 5. For i = 1, we remark that the asymptotic regime starts at larger values of n, above
n = 103.

Convergence of µn,i. We sample n points on a torus by uniformly sampling the two angles
(θ, ϕ) parametrizing the torus. We obtain a (nonnuniform) probability measure, having density
f . We then compute, for various values of n, the measure µn,1. The measure is approximated
by kernel density estimation (see Figure 6). We approximate in a similar manner the measure
µ∞,1,2 by sampling n = 105 points on a square. We then apply the change of variable formula
(21) to compute the theoretical limit µf,1. The distance OT2(µn,1, µf,1) is then computed by
approximating the measures on a grid: the distance converges to 0 as predicted by Theorem 4.2.
See also Figure 6.

Figure 6: Left: Heatmap of µn,1 for n = 5 · 104 points sampled on the torus with density
f . Center: Heatmap of µf,1. Right: OT2 distance between µn,1 and µf,1 (normalized by
OT2(0, µf,i)) for n ranging from 102 to 105.

6 Conclusion

Under the manifold hypothesis, we have greatly refined earlier work regarding the persistent
homology of subsamples of compact sets, with especially strong results when the sampling is
either random or well-behaved. In particular, we have precisely described the PDs of such
samplings, and provided new convergence guarantees w.r.t. the p-Wassertein distances, as well
as detailed asymptotics for their total α-persistence. The main limitations of our work were the
assumptions that the data is sampled from a submanifold, and without any noise. Relaxing those
assumptions, as well as establishing similar guarantees for Vietoris-Rips complexes, could be the
subject of future research. We also plan on exploring the consequences of our findings regarding
the persistent homology dimension [AAF+20, SSDE20, BLGS21, Sch21] of submanifolds.

A Proofs of additional lemmas in Section 3

The goal of this section is to prove the following lemma, used in the proof of Theorem 3.7.
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Lemma A.1. Let A ⊂ Rd be a finite set, and let a < b ∈ R ∪ {−∞,+∞} and i ≥ 0. Let

L⋃
j=1

Cj = Crit(A) ∩ d−1
A [a, b]

be a covering of the set of critical points of dA whose critical value belongs to [a, b],7 and let

Nj := #

 ⋃
z∈Cj

σA(z)


be the cardinality of the union of the projections of the critical points of Cj. Then the number
of points in dgmi(A) such that at least one of their coordinates belongs to [a, b] is upper-bounded
by
∑L

j=1

(Nj

i+2

)
, hence by

∑L
j=1N

i+2
j .

We first require an intermediate result. Following [BE17, Definition 4.2], we say that a
finite set B ⊂ Rd is in general position if for every S ⊂ B of at most d + 1 points, S is affinely
independent in Rd and no point of B\S lies on the smallest circumsphere of S.

Lemma A.2. Let A ⊂ Rd be a finite set. For any ε > 0, there exists a finite set B ⊂ Rd such
that:

• B is in general position,

• the distance function dB is topologically Morse,

• there exists a bijection ϕ : B → A with d(ϕ(b), b) ≤ ε for all b ∈ B, and

• there exists a map ψ : Crit(B) → Crit(A) such that |dB(z)−dA(ψ(z))| ≤ ε and ϕ(σB(z)) ⊂
σA(ψ(z)) for all z ∈ Crit(B).

Proof. Let N be the cardinality of A = {p1, . . . , pN}. As being in general position is a dense
property, we can find for any δ > 0 a set B := {q1, . . . , qN} ⊂ Rd such that d(qi, pi) ≤ δ and
such that the set B is in general position in Rd. If δ < ε is small enough, this defines a bijection
ϕ : B → A, qi 7→ pi that satisfies the second condition of the statement. As B is in general
position, the distance function dB is then topologically Morse (see [GR97]).

Moreover, Theorem 3.4 from [CCSL06], combined with the lower semicontinuity of the norm
of the generalized gradient ∇dA and the compactness of A, implies that for any ρ > 0, each
critical point of B must be at distance less than ρ from one of the critical points of A as long
as δ > 0 is small enough. This defines a map ψ : Crit(B) → Crit(A). If δ + ρ < ε, then
|dB(z)− dA(ψ(z))| ≤ |dB(z)− dA(z) + dA(z)− dA(ψ(z))| ≤ δ + ρ < ε and the first condition on
ψ is satisfied.

Furthermore, for each of the finitely many critical point z′ ∈ Crit(A), there exists λ(z′) >
0 such that B(z′, dA(z

′) + λ(z′)) ∩ A = σA(z
′). Assume now that δ > 0 is small enough

that δ < minz′∈Crit(A) λ(z
′)/4 and that each critical point z of B is at distance less than

minz′∈Crit(A) λ(z
′)/4 from ψ(z) ∈ Crit(A). Then such a z is necessarily such that σB(z) ⊂

ϕ−1(σA(ψ(z))). Hence ψ is as required for δ small enough, and the lemma is proved.

7When a = −∞, we commit a minor abuse of notation by writing [a, b] rather than (a, b], and similarly when
b = +∞.
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Proof of Lemma A.1. Lemma A.2 states that for any δ > 0, there exists a point cloud B in
general position, a bijection ϕ : B → A with d(ϕ(b), b) ≤ δ for all b ∈ B, and a map ψ :
Crit(B) → Crit(A) such that |dB(z)−dA(ψ(z))| ≤ δ and ϕ(σB(z)) ⊂ σA(ψ(z)) for all z ∈ Crit(B)
and such that dB is topologically Morse. Let ρ > 0 be such that all critical values of dA in
[a − ρ, b + ρ] belong to [a, b], and let B be as described for some δ < ρ/2. Since the distance
function dB is topologically Morse, and as explained in the proof of Proposition 3.6, the critical
points z ∈ Crit(B) are topological critical points and are in bijection (via their critical values)
with the non-zero coordinates of the points in (the union over all degrees of) the Čech persistence
diagrams of B. In particular, the number of points in dgmi(B) such that at least one of their
coordinates belongs to [a− ρ/2, b+ ρ/2] is upper bounded by the number of points z ∈ Crit(B)
of topological Morse index i or i + 1 such that dB(z) ∈ [a − ρ/2, b + ρ/2]. For any such z,
the point ψ(z) ∈ Crit(A) is such that dAn(ψ(z)) ∈ [a, b], and as such belongs to Cj for some
j ∈ {1, . . . , L}. Furthermore, ϕ(σB(z)) ⊂ σA(ψ(z)) ⊂

⋃
z′∈Cj

σA(z
′). As B is in general position,

each critical point of B of index i is uniquely identified by its i+1 projections on B (respectively
i+2 projections for points of index i+1), and this bounds the total number of z ∈ Crit(B) such
that dB(z) ∈ [a− ρ/2, b+ ρ/2] by

∑L
j=1

(Nj

i+2

)
.

We have shown that dgmi(B) does not have more than
∑n

j=1

(Nj

i+2

)
points with at least one

of their coordinates greater ∈ [a−ρ/2, b+ρ/2]. By the Bottleneck Stability Theorem, there is a
surjection from this set to the set of points in dgmi(A) with at least one of their coordinates in
[a, b] as soon as δ > 0 is small enough. Hence there are at most

∑n
j=1

(Nj

i+2

)
points in dgmi(A)

with at least one of their coordinates in [a, b], as desired.

B Proofs of additional lemmas in Section 4

In this section, we give additional lemmas needed to prove Theorem 4.2. First, we state two
simple lemmas on properties of probability measures and of samples on M.

Lemma B.1. Let M be a compact submanifold with positive reach. Let P be a probability
measure having a density f on M satisfying fmin ≤ f ≤ fmax for two strictly positive constants
fmin, fmax. There exist constants c = c(m), C = C(m) such that for all 0 ≤ r ≤ τ(M)/4

cfminr
m ≤ P (B(x, r)) ≤ Cfmaxr

m. (39)

Let An be a sample of n i.i.d. observations of law P . Then, there exists C0 = C0(M) depending
on M such that for all x ∈ M and all r > 0,

P(d(x,An) ≥ r) ≤ exp(−nC0fminr
m). (40)

Proof. For the first statement, see [AL18, Proposition 31]. Let us prove the second one. Remark
that the probability is zero for r > diam(M). Hence, we can assume that r ≤ diam(M). When
r ≤ τ(M)/4, it holds that

P(d(x,An) ≥ r) = (1− P (B(x, r)))n ≤ exp(−ncmfminr
m).

When τ(M)/4 ≤ r ≤ diam(M), we write

P(d(x,An) ≥ r) ≤ P(d(x,An) ≥ τ(M)/4) ≤ exp(−ncfmin(τ(M)/4)m)

≤ exp(−ncfmin
(τ(M)/4)m

diam(M)m
rm).
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Hence, the result holds with C0 = cmin
(
1, (τ(M)/4)m

diam(M)m

)
.

Lemma 4.6. If r ≤ τ(M)/2, then

P(dH(An,M) > r) ≤ C

fminrm
exp(−ncfminr

m) (24)

for two positive constants c = c(m), C = C(m). In particular, for any q ≥ 1, dH(An,M) =
OLq((lnn/n)1/m).

Proof. The bound P(dH(An,M) > r) is given in [Aam17, Lemma III.23]. Furthermore, [Aam17,
Lemma III.23] also states that for any q > 0, there exists C(q) depending on fmin and m such

that, with probability at least 1− n−q/m, dH(An,M) ≤ C(q)
(
lnn
n

)1/m
. In particular, we obtain

that

E[dH(An,M)q] ≤ C(q)q
(
lnn

n

)q/m

+ diam(M)qn−q/m,

proving the second claim of the lemma.

Next, we state a simple geometric lemma.

Lemma B.2. Let A ⊂ M, z ∈ Crit(A) and x ∈ σA(z). Then ∥π⊥x (z − x)∥ ≤ ∥z − x∥2/τ(M).
Furthermore, if dA(z) ≤ τ(M)/

√
2, then ∥πx(z − x)∥ ≥ ∥z − x∥/

√
2.

Proof. The point z can be written as a convex combination z =
∑

k λkyk where the points yk
are in A ⊂ M. Then, using [Fed59, Theorem 4.18],

∥π⊥x (z − x)∥ ≤
∑
k

λk∥π⊥x (yk − x)∥ ≤
∑
k

λk
∥yk − x∥2

2τ(M)

=
∑
k

λk
∥yk − z∥2 + ∥z − x∥2 + 2⟨yk − z, z − x⟩

2τ(M)
=

∥z − x∥2

τ(M)
,

as ∥yk−z∥2 = ∥x−z∥2 and
∑

k λk(yk−z) = 0. The second inequality ∥πx(z−x)∥ ≥ ∥z−x∥/
√
2

from the statement follows from the first one through a direct computation.

At last, the following property of the multinomial distribution was used in the proof of
Theorem 4.2.

Lemma B.3. Let K ≥ 1 and L = (L1, . . . , LK , LK+1) be a random multinomial variable of
parameters n and α1, . . . , αK , αK+1. Then there exists C = C(K, l) such that

E[(
K∑
i=1

Li)
l|Li ≥ 1 ∀i = 1, . . . ,K] ≤ Cl(1 + (n

K∑
i=1

αi)
l).

Proof. Let X1, . . . , Xn be i.i.d. categorical variables of parameters α1, . . . , αK , αK+1. De-
fine Lk(p) =

∑
r≤p 1Xr=k; then (L1(n), . . . , LK(n), LK+1(n)) has the same distribution as

(L1, . . . , LK , LK+1), and we identify the two in our notation. For a fixed n, and for any in-
jective function ι : {1, . . . , k} → {1, . . . , n}, consider the event

Eι := {L1(ι(1)) = 1, . . . , L1(ι(K)) = 1},
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i.e. ι(i) is the first appearance of i among the variablesX1, . . . , Xn. Note that E := {L1, . . . , LK ≥
1} =

⊔
ιEι where the sum is taken over all such injective functions. Then

E[(
K∑
i=1

Li)
l|E] =

∑
ι

P(Eι|E)E[(
K∑
i=1

Li)
l|Eι].

Fix a function ι, and assume without loss of generality that ι(1) < ι(2) < . . . < ι(K). Con-

ditioned by Aι, the variable Yi :=
∑ι(i+1)−1

r=ι(i)+1 1Xr ̸=K+1 is a binomial variable of parameters

ι(i+1)− ι(i)− 2 ≤ n and
∑i

i=1 αi

α1+...+αi+αK+1
≤
∑K

i=1 αi. Hence E[Y l
i |Eι] ≤ C1(l)(n

∑K
i=1 αi)

l using
classical bounds on the l-th moment of a binomial variable, and we see that

E[(
K∑
i=1

Li)
l|Eι] = E[(

n∑
r=1

1Xr ̸=K+1)
l|Eι] = E[(K +

K∑
i=0

ι(i+1)−1∑
r=ι(i)+1

1Xr ̸=K+1)
l|Eι]

≤ C2(K, l)(K
l +

K∑
i=0

E[Y l
i |Eι]) ≤ C3(K, l)(1 + (n

K∑
i=1

αi)
l)

where we write ι(0) = 0 and ι(K + 1) = n to simplify notation.

C Proofs of Corollary 4.17 and Corollary 4.18

We restate and prove two corollaries from Section 4.

Corollary 4.17. Let p ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.12, the following holds:

• If p > m, then E[OTp
p(dgmi(An),dgmi(M))] → 0 as n→ ∞.

• If p = m, E[OTp
p(dgmi(An),dgmi(M))] → Persp(µ∞,i,m)Vol(M) as n → ∞, where Vol(M)

is the volume of M.

• If p < m and i < m, then E[OTp
p(dgmi(An),dgmi(M))] → +∞ as n→ ∞.

Furthermore, for all α > 0, Persα(dgmi(An)) is equal to

Persα(dgmi(M)) + n1−
α
mPersα(µ∞,i,m)

∫
M
f(x)1−

α
mdx+ oL1(n1−

α
m ) +OL1

(( log n

n

) 1
m )

.

Proof. Let εn = dH(An,M). Consider the event E = {εn < τ(M)/2}. According to Theo-

rem 2.3, on E, the number of points of dgm
(2)
i (An) is bounded by some constant N0 depending

only on M.

• Consider the optimal matching γn given by Proposition 4.12. On the event E, this optimal

matching sends all the points of dgm
(1)
i (An) to the diagonal ∂Ω. Thus, we have (when E

is satisfied)

|OTp
p(dgmi(An),dgmi(M))− Persp(dgm

(1)
i (An))|

≤ N0 max
u∈dgm(2)

i (An)

∥u− γn(u)∥p∞ +#(dgm
(3)
i (An)) max

u∈dgm(3)
i (An)

∥u− γn(u)∥p∞.
(41)
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Furthermore, note that

max
u∈dgm(2)

i (An)

∥u− γn(u)∥p∞ ≤ max

(
max

(u1,u2)∈dgm(2)
i (An)

|u2 − γn(u)2|p, εpn

)
≤ max

(u1,u2)∈dgm(2)
i (An)

|u2 − γn(u)2|p + εpn.

We take the expectation and apply the Cauchy-Schwarz inequality to obtain (together
with Theorem 4.2, Proposition 4.12 and Lemma 4.6):

E[OTp
p(dgmi(An), dgmi(M))1{E}] ≤ n1−p/mPersp(µf,i) + o(1).

When E is not realized, we crudely bound OTp
p(dgmi(An),dgmi(M)) by considering the

matching sending every point to the diagonal. The cost of this matching is bounded by
CM(1 + ni+1), where ni+1 is an upper bound on the number of points in dgmi(An) and
CM is some constant depending on M. Hence,

E[OTp
p(dgmi(An), dgmi(M))1{Ec}] ≤ CM(1 + ni+1)P(εn > τ(M)/2) = o(1),

according to Lemma 4.6. This proves the first bullet point.

• The second bullet point is proved likewise from (41). Indeed, in that case, it holds that

E[|OTp
p(dgmi(An),dgmi(M))− Persp(dgm

(1)
i (An))|1{E}] = o(1). (42)

Also, using the same crude bound, we obtain that

E[|OTp
p(dgmi(An),dgmi(M))− Persp(dgm

(1)
i (An))|1{Ec}] = o(1). (43)

So far, we have proved that OTp
p(dgmi(An), dgmi(M)) = Persp(dgm

(1)
i (An)) + oL1(1). Ac-

cording to Theorem 4.2, it holds that Persp(dgm
(1)
i (An)) = Persp(µf,i)+ oL1(1) for p = m,

proving the second bullet point.

• For the third bullet point, we use that on the event E,

OTp
p(dgmi(An),dgmi(M)) ≥ Persp(dgm

(1)
i (An)). (44)

The latter is equal to n1−p/mPersp(µf,i) + oL1(n1−p/m), with Persp(µf,i) > 0: indeed, the
support of the measure µf,i is nontrivial for i < m, see [HST18, GTT19]. Hence,

E[OTp
p(dgmi(An), dgmi(M))] ≥ E[OTp

p(dgmi(An),dgmi(M))1{E}]

≥ E[Persp(dgm
(1)
i (An))]− E[Persp(dgm

(1)
i (An))1{Ec}].

The second term goes to zero (use the crude bound Persp(dgm
(1)
i (An)) ≤ CM(1 + ni+1)),

while the first one diverges. This proves the third bullet point.

At last, we prove the formula for the asymptotic expansion of

Persα(dgmi(An)) = Persα(dgm
(1)
i (An)) + Persα(dgm

(2)
i (An)) + Persα(dgm

(3)
i (An)). (45)
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The first term is equal to n1−α/mPersα(µ∞,i,m)
∫
M f(x)

1− α
mdx+ oL1(n1−α/m) according to The-

orem 4.2. Remark that for u, v ∈ Ω, |persα(u)− persα(v)| ≤ 2α(persα(u) + persα(v))∥u− v∥∞.
Hence, on the event E = {εn < τ(M)/2},

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))|

≤ 2αεn(Persα(dgm
(2)
i (An)) + Persα(dgm

(3)
i (An)) + Persα(dgmi(M))).

We crudely bound the persistence of a point in dgmi(An) by R(M), the radius of the smallest
enclosing ball of M, to obtain that

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))|

≤ 2αεn(R(M)α + 1)(#(dgm
(2)
i (An)) + #(dgm

(3)
i (An)) + Persα(dgmi(M))).

We have already established that #(dgm
(2)
i (An)) = OL2(1) (actually, it is larger than N0 with

only exponentially small probability). Furthermore, Proposition 4.12 states that #(dgm
(3)
i (An)) =

OL2(1). Lemma 4.6 also states that εn = OL2(((log n)/n)1/m). Hence,

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))| = OL1(((log n)/n)1/m).

This concludes the proof.

Corollary 4.18. Let α ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.12, it holds that Φα(dgmi(An)) converges in probability to Φα(dgmi(M)) whenever
α > m.

Proof. According to [DL21, Proposition 5.1], the feature map Φα is continuous with respect to
the OTα distance. But we have shown in Corollary 4.17 that E[OTα

α(dgmi(An),dgmi(M))] → 0
as n→ ∞. In particular, OTα(dgmi(An),dgmi(M)) converges in probability to 0. By continuity,
so does ∥Φα(dgmi(An))− Φα(dgmi(M))∥.
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