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ABSTRACT
In the context of complex system development, heterogeneous mod-
eling responds to the need to integrate several domains. This need
requires the use of the most appropriate formalism and tooling
for each domain to be efficient. Model federation promotes the se-
mantic interoperability of heterogeneous models by providing the
means to reify correspondences between different model elements,
add custom behaviors and bridge the gap between technological
spaces. As such, it can be used as an infrastructure to address many
different software engineering problems. We have been doing so
for over a decade in a tight collaboration between a small soft-
ware engineering startup and academia. This paper reports on this
experience.

Concretely, we discuss the context, ambitions, and challenges
that led to the inception of our practice of model federation, and we
present five use cases experiences, stemming from real industrial
and academic needs, and elaborate on lessons learned. In addition,
we also report on challenges and lessons learned regarding the
development and maintenance of a model-driven model federation
tool, the Openflexo framework. Finally, we set up a road map for
the future of model federation and Openflexo.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; Abstraction, modeling and modularity; Interoper-
ability.

KEYWORDS
Model federation, Model management, Experience report
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1 INTRODUCTION
It has long been acknowledged that the description, and then the
development, of complex systems often requires the integration of
different points of view [32]. These different points of viewmay cor-
respond to different aspects of the system (e.g., structure, behavior,
cost) and/or to different domains (mechanics, electronics, chemistry,
computer science, etc.). In both cases, effective mechanisms must
be in place so that the different views can be developed by the
corresponding experts using the most appropriate tools while their
work contributes to the description and development of the system
as a whole.

Multi-view modeling tries to provide an answer to this prob-
lem [2, 13] by proposing different approaches and mechanisms
for the creation and management of systems, together with their
views and correspondences (i.e., links between elements in differ-
ent views). However, when views are heterogeneous (in the sense
of views in different technological spaces [37]), additional mech-
anisms are required to bridge the gap between the view system
(containing the correspondences) and its multiple views. In this
regard, in [32], model federation is identified as a solution to this
problem. From the multi-view modeling perspective, model fed-
eration is a synthetic approach (e.g., the system is built from the
views) with explicit (reified) correspondences (see [12] and [29]
for other approaches in this category). Additionally, it promotes
the autonomy of heterogeneous views, the federated models for us,
which remain in their technological space and follow their own
processes (connectors are used to access these views).

We advocatemodel federation provides the means to design com-
plex systems which involve different stakeholders, including non-IT
ones, while preserving the practices and processes of a given do-
main or enterprise. In this sense, this paper presents the experiences
of applying the model federation approach to deal with complex
multi-view use cases, both in industry and academia, for more than
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a decade. Concretely, we elaborate on the challenges we have faced
all along this adventure, give details on five representative use cases
and discuss lessons learned. Our practice of model federation is
tightly coupled with the development of the Openflexo framework,
an MDE tool. Therefore, we also report experiences, challenges,
and lessons learned regarding the development and maintenance
of this tool.

This paper follows a tradition of experience reports on modeling
in real and industrial scenarios [6, 46, 33, 14]. It does so from the
perspective of a small startup and academic partners trying to apply
model federation, a lesser-knownMDE approach, in the wild. In this
respect, we are convinced that this is a contribution of interest for
the MDE community. The rest of the paper is organized as follows.
Section 2 offers an historical context including the challenges we
faced. The basic principles of model federation are introduced in
Section 3 followed by a detailed description of selected use cases
in Section 4. Lessons learned are explored in Section 5. We end
the paper by discussing related work in Section 6 and presenting
conclusions and future challenges in Section 7.

2 CONTEXT & CHALLENGES
The objective of this section is twofold. First, we briefly introduce
the historical background that led to the inception of our practice of
model federation, the development of the Openflexo framework as
a supporting tool, and its associated company. Second, we present
the high-level challenges we have faced.

2.1 A bit of history
"Bridging the gap between business and IT" was the motto of the
original company1 where the Openflexo project took its roots. The
original aim was to make IT and digital tools more accessible to as
many people as possible, in other words to help bridge the gap be-
tween various business areas and IT. Capturing business expertise
is at the heart of these concerns and is based on the increased ab-
straction and use of models, by and for non-specialists. Our starting
point was the proposition that any source of information can be
considered as a model [8], leaving the various players free to choose
the paradigms, data, and tools best suited to their vision, skills and
culture. From this context emerges the need for coherent manage-
ment of multiple models (or information sources interpreted as
models), each with its own autonomy and life cycle, which we call
semantic interoperability. This raises many major scientific issues
(such as interpretation, heterogeneity, and dynamicity).

We started from the idea that it would be useful for scientific
research to feed into the development of a commercial product,
and conversely for industrial use cases to feed into research. Open-
flexo SCIC company was built around this association between
academic researchers, professional developers, and industrial cus-
tomers. From the company’s point of view, the activity was concen-
trated around a technical and commercial response to very concrete
business needs, while the researchers worked on building abstrac-
tions to solve the "meta-problem" that lays behind each problem
encountered. The result is an original software infrastructure, based
both on pragmatic solutions and very generic abstractions. It also
offers a very clear separation between technical issues (intrinsically
1Openflexo SCIC

shared) and business issues (intellectual property that needs to be
protected). Openflexo SCIC company has since been wound up.

2.2 Challenges
In the following, we elaborate on the challenges we faced by ap-
plying the model federation approach to various use cases where
semantics interoperability of heterogeneous information sources
was required. Other authors identify challenges in a multi-modeling
context. For instance, T. Denton et al. [19] identify three challenges
for their multi-modeling platform: "Capturing Multi-Model Interde-
pendencies", "Maintaining Multi-Model Consistency", and "Seman-
tic Precision of Inter-model Data Exchange". Their challenges focus
on technological aspects and ignore process or methodological is-
sues. We share technical challenges, even if we organize them a bit
differently, but our challenges take more explicitly into account the
autonomy and diversity of modeling processes.
Challenge 1: preserving existing practices

The first challenge stems from the idea that it is not up to users to
adapt to tools, but rather the opposite. Existing practices around a
given concern often result from a consensus within the community
dealing with this aspect. These concerns are embodied in specific
data, paradigms, representations, vocabularies, processes and tools.

Under the pretext that we want to bring together different con-
cerns and professions, we must not break or disrupt what already
exists and works. The challenge here is to be able to manage the
semantic interoperability of these various business worlds while
preserving all existing practices. This implies being able to manage a
certain amount of heterogeneity. The heterogeneity we are talking
about here is multiple. First, it is technical and syntactic: semantic
interoperability obviously requires the ability to connect diverse
technologies, which pertain to semi-structured or unstructured
paradigms (with no metamodel). It is also conceptual and seman-
tic, since it involves linking different conceptual and/or technical
universes (often constructed in various contexts and with different
intentions). From the point of view of pragmatics and processes,
heterogeneity is finally linked to different domain-specific busi-
nesses, such as engineering departments that do not work in the
same way and do not necessarily understand each other. Preserving
the independence of existing things means linking things that were
not meant to be together, including in terms of life cycle, while
keeping them autonomous. We also need to be able to adapt to the
flexibility of existing practices without interfering with them.
Challenge 2: seeing everything as a model

Today, there is a clear consensus around the use of modeling.
Modeling enables an increase in abstraction, making it possible to
use, analyze, and design complex software and systems, by reducing
their complexity and bringing it within reach of human cognition.
This approach is sometimes explicit, as shown by the model-driven
approaches in certain engineering fields. Other communities manip-
ulate models in less explicit ways, using, for example, spreadsheets,
drawings, or slides. More generally, experts organize themselves by
domain and use the most appropriate formalism [51] and tools [38]
for the task in hand. They do not necessarily give importance to
the existence of metamodels or to conformance issues.

Our second challenge is to propose that any source of informa-
tion (called resources below) should be considered as a model. In
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the world of MOF-like models or metamodels, there is generally
no ambiguity related to model interpretation2. But when modeling
takes place in a less formalized framework, the semantics can be
implicit. Sometimes, it is the tool used to create and manipulate
resources that provides their semantics. In such a case, interpreting
these resources from outside the tooling poses problems (it may
need retro-engineering). Notice that non-standard usage of "no-
tations" also happens in practical engineering. Consequently, we
need a way to explicitly define the semantics we want for such
external resources. Furthermore, this semantic should be defined
in a contextual way because several uses of the same resources can
require different interpretations.
Challenge 3: conceptualizing and organizing

In the context of heterogeneous modeling, we face several issues
when keeping the various models independent and maintaining
them in their technological space (as presented in the challenge 1).

First, the elements of the various models need to be identified
and referenced when defining the links between them. This must
be true even for elements of different technological spaces. For in-
stance, elements from EMF models are not designated and accessed
in the same manner as cells in a spreadsheet or variables in an
Event-B specification. Heterogeneous modeling therefore requires
to consider the targeted technologies when establishing correspon-
dences between model elements. But this must be done in a uniform
and neutral way when creating the links.

Then, we need a modeling space to contain these links. This
modeling space must remain both technologically and semantically
neutral with respect to the heterogeneous models (as detailed in
challenge 2). Furthermore, this space may contain a large network
of links between the elements of the various models. Organizing
this space to manage this potentially large number of links becomes
crucial. This modeling space must therefore offer abstraction, mod-
ularity and classification mechanisms. Lastly, the elements reifing
the links, called correspondences, vary in nature. They range from
concrete values to pure abstractions, and are frequently hybrid
entities (part concrete and part abstract, typically clabjects [1]).

These various aspects highlight the essential role of a conceptual
space where the links between the heterogeneous models are reified.
This conceptual space needs structuring constructs and ways to
link elements of the heterogeneous models. The strategic issues
surrounding this conceptual space are significant, given the time-
consuming nature of modeling activities. Therefore, maximizing
reusability becomes imperative, with a focus on modularity and
genericity to facilitate on-demand specialization. Notice that here,
reusability concerns both the elements of the conceptual space
and the technical elements in charge of connecting to the various
technological spaces of the heterogeneous models.
Challenge 4: mastering evolution

Working with multiple models requires to focus not only on
structural features, but also on behavioral features. As mentioned
above, preserving existing practices is critical and implies the preser-
vation of the life cycle of these models. First, it is crucial to be able
to detect (and potentially react to) the evolution of a model el-
ement. Second, unless we are in a read-only context where we
only support analysis such as inconsistencies detection, many use
2Except when ambiguity is a feature (e.g. "semantic variation points" of UML).

cases require interacting with the model elements and modifying
them. Some other use cases (such as model synchronization) would
require explicit element modifications triggered from the corre-
spondences (within the conceptual space). Mastering coherence
means supporting several strategies to deal with inconsistencies:
from detecting and ignoring them (for a shorter or longer period of
time), to proposing automatic propagation of inconsistency repairs,
to including semi-automatic inconsistency resolution, thanks to
human and interactive decisions.

3 THE MODEL FEDERATION APPROACH
The aim of this section is to provide a quick overview of the model
federation approach, including the language and framework used
to support the use cases presented in the section 4.

Model federation, as defined in ISO-14258 [31], introduces prin-
ciples that complement the integration and unification approaches
to interoperability. The purpose of this standard is to characterize
possible strategies to define correspondences between viewpoints,
or languages associated with different engineering concerns. In
this standard, the federation approach keeps the models (and their
metamodels) unchanged and independent. The semantic equiva-
lence is encoded within a new element, the federation, that holds
the correspondences between the model elements. The federation
approach is summarized by figure 1. A user may keep its usual
practice and tools (right part of the figure), while an additional
autonomous model, the federation model is introduced to encode
the dependencies and their semantics. The federation model can
offer new additional services (left part of the figure).

In our approach to model federation, we rely on a domain-
specific language, FML (Federation Modeling Language) to define
federation models. This language supports the definition of both
the structure of conceptual models and their behaviors. It has an
object-oriented flavor. Our Openflexo tool is then able to execute
federations. The central element of the structural part of FML is the
FlexoConcept, which enables the reification of a business concept. A
FlexoConcept defines both structural properties and behaviors. Flex-
oConcepts are structured within VirtualModels that contain them
and are organized according to multiple inheritance semantics.

Structural functionalities, also known as properties or FlexoProp-
erty, are used to define or reference data. These properties may
be internal to the federation or external (i.e., refer to one of the
federated models). A specialized kind of property, FlexoRole is used
to implement these latter external dependencies. A link to an exter-
nal data is made through a ModelSlot (see figure 1). The definition
of ModelSlot is based on a Technological Adaptor, which provides
an API dedicated to interaction with the technological space of
the target element. The behavior of a FlexoConcept is defined by
executable methods called FlexoBehaviour. Such behaviors encode
the semantics of the concept such as their creation and modification
but also more specific business behaviors that form the basis of the
federation services.

As an example, a VirtualModel System could contain a Flexo-
Concept Component. This concept could gather information about
a component from three federated models: its configuration de-
scribed in a spreadsheet, its internal structure described within a
SysML Block Definition Diagram and its detailed description from

3
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Figure 1: The principle of federation

a PDF document. Three FlexoRoles would use three ModelSlots to
interact with these external elements. The System could have a be-
havior to create a new instance of the concept Component for each
instance found in the federated architecture model (expressed in a
SysML diagram). A Component could have a behavior to support
the modification of one of its configuration parameter by updating
both the configuration spreadsheet and the documentation with
the PDF document. Similarly, a component can offer users the
service of synthesizing information about its behavior and initial
configuration. It may also trigger the associated behavior to update
the Component’s configuration or maintain it unchanged (as shown
in the left part of the figure, the arrows represent the connections
between the users and the federation model).

The FML language is integrated in the Openflexo framework3,
which provides a language IDE (editors, debugger, etc.), a language
interpreter and a library of technological adapters that allows ad-
dressing the technological spaces of the Use Cases exposed in the
next section.

ModelSlots and libraries of Technological Adaptors provide some
kind of proxy, that realize a bidirectional (read/write) connection to
an external source, giving it a contextual semantic/interpretation.
This helps to preserve usual practices (challenge 1), but, moreover,
allows giving to external sources a contextual semantic/interpretation
that increases “simple” unstructured or semi-structured source of
information to the status of the model (challenge 2).

VirtualModels, FlexoConcept, FlexoBehavior, and FlexoRoles pro-
vide constructs for organizing and reusing model federations. Mod-
els themselves are reified thanks to VirtualModel and links (cor-
respondences) thanks to FlexoRole. When reified, both can have
behaviors and be reused. These constructs in FML help to improve
the organization of model space and its semantics (challenge 3).

Evolution and consistency (challenge 4) are highly dependent on
organization, but the key is the linking mechanism that supports
3https://openflexo.org/, https://github.com/openflexo-team/

crossing technological boundaries. Correspondences defined be-
tween model elements may evolve over time and, since processes
are independent, lead to broken links. However, since the links
are reified, they can be handled as usual data and can be updated
by specific behaviors. Finally, being interpreted, FML can perform
on-the-fly interpretation and smoothly handle broken links.

4 SELECTED USE CASES
We present here a selection of 5 use cases from all the projects
carried out over the last 10 years. This selection results from the
will to cover all challenges, several application domains and several
contexts of realization. Figure 2 summarize how these use cases
cover the challenges of section 2.2. Some other projects are pub-
lished; the reader could be interested in a multi-level modeling
challenge [28], security modeling in MBSE [11], or process model-
ing [25] for instance.

4.1 Formose
Formose was a research project4 aiming to propose a formally
grounded, model-based requirements engineering (RE) method for
critical systems. The main partners were ClearSy, LACL, Institut
Mines-Telecom, Openflexo, and Thales. Our role in the project was
to provide the open source tool core of the proposed REmethod [23].
This tool, Formod, relies on the model federation paradigm to con-
nect the various elements needed during a RE process.

More precisely, Formod federates (1) documents (e.g.Word file)
providing the informal requirements, (2) a domain model describing
the essential concepts for the system under study using a graphical
DSL based on ontologies [52], (3) a goal model (SysMLKaos [44])
structuring the requirements in a tree refining abstract goals into
concrete requirements affected to elements of the system and (4)

4https://formose.lacl.fr/
4
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Figure 2: Uses cases challenge covering matrix

formal descriptions of these requirements in Event-B together with
their formal refinements.

Formose was a complex project that faced all the challenges
described in section 2. More precisely:

• Challenge 1: Eliciting requirements, analyzing a domain,
refining and allocating requirement to subsystems and con-
ducting proof are four very different engineering done by
specialists. For example, within Formod, the operation on B
code was done from within the Atelier B, a mature prover
for Event-B. The federated B code could evolve in its tech-
nological space and the federation takes in charge the evo-
lution management in the related goal model.

• Challenge 2: The elicitation and justification parts of the
method use both the document view that interprets a text
document as a model. Requirements can be linked to parts
of the document (e.g. text, figure). For this, a document is
interpreted as a model containing linkable elements. The
B code is also viewed as a model and connected to the
elements of the goal model.

• Challenge 3: A requirement is a multi-faceted element with
information coming from the informal documents but also
from the goal and domain models and the B code. A cen-
tral concept of requirement federates all these concrete
elements. Furthermore, as the proposed method is iterative
and incremental, the conceptual space was highly struc-
tured, based on several virtual models, to support various
concrete practice.

• Challenge 4: The model federation at the core of Formod
was in charge of maintaining consistency. For example, an
evolution made to B code is propagated to the goal models.
Similarly, decomposing abstract goal was done using SysM-
LKaos but was directly reflected on the B code. Similarly,
modification done in Word to a requirement document is
kept in consistence with the model of requirements.

The main result of the project is the Formod tool5. It federates
the previously described elements and provides four business views
of figure 3 to build a central requirements model:

(1) A document view where the user elicits and justify require-
ments.

(2) A goal view where users structure and refine requirements,
allocate them to agents.

(3) A domain view gathering knowledge about the future oper-
ational context of the system under study.

5https://github.com/openflexo-team/formod

(1) Document view

(2) Goal View

(3) Domain View

(4) Formal View

Requirements
model

: conceptual links

: model links

Figure 3: Formod: four views for a requirements model

(4) A proof view where the overall refinement level of models
is translated into Event-B and the proofs can be conducted.

Formod is implemented as a model federation containing 19
virtual models defining in total 177 concepts for around 8000 lines of
FML. It relies on height technology adapters, one for each dedicated
tooling and its language or data source. The complete metamodel
can be browsed as it is available in the tool6.

4.2 SSE4Space
The goal of the SSE4Space (Secure Systems Engineering for Space)
project was to develop a complex project management framework

6The .fml files of https://github.com/openflexo-team/formod/tree/master/formod-
rc/src/main/resources.

5

https://github.com/openflexo-team/formod
https://github.com/openflexo-team/formod/tree/master/formod-rc/src/main/resources
https://github.com/openflexo-team/formod/tree/master/formod-rc/src/main/resources


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA J.-C. Bach, A. Beugnard, J. Champeau, F. Dagnat, S. Guérin, and S. Martínez

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

for secure systems engineering. We brought our expertise in soft-
ware engineering, architecture, and modeling to Telindus, a com-
pany with expertise both in cybersecurity and in tooling that inte-
grates security aspects into project management. With our assis-
tance, Telindus provided the SSE4Space tool built upon the Open-
flexo framework for the European Space Agency (ESA).

In the space industry, projects are usually long (more than 10
years) and complex due to the nature of the products (costly Cyber-
Physical Systems in constrained environments). Thus, they require
a strict and careful management. The tool helps to monitor a project
and to better control and integrate cybersecurity risks. It provides
global traceability to support auditing and certification. To achieve
this, it federates several tools and technologies. The core of the tool
uses Openflexo to orchestrate information from multiple sources
and enable specific processing within models. More precisely, the
federation model integrates workflow models, risk analysis models,
and requirement models.

SSE4Space met three out of the four challenges of section 2:
• Challenge 1: The preservation of existing practices and tools

was at the core of this multidisciplinary project: the frame-
work had to support project management by integrating
expertise in system engineering, risk analysis, cybersecu-
rity (e.g. pentesting). For example, risk analysts use the
Secure Engineering Support Tool 7, a risk assessment tool
that uses the MEHARI methodology8. System engineers
can use SysML which is supported by various tools such as
Papyrus, Rational Rhapsody, MagicDraw... Pentesters use
commercial scanners and custom scripts in addition to man-
ual methods to produce their analyzes. All these business
domains had to be integrated into the project workflow,
each task producing artifacts and tasks feeding it.

• Challenge 2: Models are built from heterogeneous sources
(user interactions, files, or data extracted from tools). The
workflow, which is defined in terms of precedence con-
straints, orchestrates the tasks and the artifacts. They are
fed by elements of the risk model, which in turn are fed by
security requirements or requirements that have an impact
on security. For example, updating a vulnerability database
can trigger a risk assessment task. Risk analystsmay request
a vulnerability scan or a specific check from a pentester
to feed their threat model and their vulnerability model,
resulting in a pentesting task whose result will feed into
the risk assessment task.

• Challenge 3: Each task and each artifact (pentest analysis,
risk analysis, system constraint, etc.) can be used as input
to the workflow, leading to its recalculation. Therefore,
there was a need to structure the concepts of risks and
requirements so that each element could be integrated into
the workflow, leading to three main models: workflow, risk
analysis, and requirements.

The main outcome of the project is the SSE4Space tool developed
by Telindus for ESA. According to ESA policy, it will eventually be
published as an open-source tool9. This work has been published at

7SEST: https://github.com/mmerialdo/Secure-Engineering-Support-Tool
8MEHARI: http://meharipedia.org/home/
9https://gitlab.space-codev.org/sse4s/sse4space-proximus

(1) Diagram

(3a)
Model

(3b)
Meta
model

(2)
Palette

(4) Graphic
properties

Figure 4: Free Modeling Editor.

an industrial conference of the space domain [39]. Through fruitful
exchanges with the Telindus engineers, this project also enabled us
to push Openflexo’s development towards the next major version.
The published version 2.99 introduced the textual syntax FML and
its associated toolset.

4.3 Free Modeling Editor
The Free Modeling Editor (FME) is an internal research project dedi-
cated to understanding the modeling process [7]. The starting point
of this approach is based on the observation that, in the context of
DSL development, identifying the metamodel is not always straight-
forward. In this context, the aim is to develop an approach and a
tool for graphically editing models and their metamodels concur-
rently. The metamodel does not take precedence over the models,
although it remains an option. Thus, models and metamodels can
be co-constructed [24]. This tool has been used in many projects
to help define domain-specific metamodels: local administration
organization [7] or emergency department [20] for instance. Note
that the co-construction of model and metamodels is also explored
in other flexible modeling approaches [53, 26].

In the FME tool, instances or model elements may exist without
a definition of the corresponding concept. In such cases, these in-
stances exist without any formal definition, but can be utilized to
define new abstractions or concepts. Alternatively, these instances
can be identified as instances of an existing concept after their
creation. Concepts can also be created directly through a general-
ization process. Classically in this case, a concept can be used to
create new instances associated with the graphical representation
of the concept.

Figure 4 shows a screenshot of the FME editor. It comprises
four main regions: (1) A modeling view where concrete instances
(model elements) or concepts are drawn. This region is not tied to
a dedicated abstraction level and depends only on the modeling
needs. (2) This view contains several tabs, including a tab for the
palette of concepts (metamodel) and a tab for defining shapes to
create instances. (3) A list of instances classified by concepts (or
without a particular definition) is displayed in the view (3a), along
with a list of concepts created (metamodel definition) (3b). (4) A
view dedicated to the customization of graphical properties.

6
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The Free Modeling Editor met two out of the four challenges
previously identified:

• Challenge 2: FME allows us to explore the relationship be-
tween an abstraction and its concretizations. We consider
that any modeling element can be abstracted, concretized,
or even duplicated at the same level of abstraction. In this
manner, we remove any reference to the modeling level
while associating one or more graphical representations
with the elements. In many projects, we used the Free Mod-
eling Editor, coupled with the ability to address external
tooling, to launch reflection from examples, sometimes pro-
vided in a PowerPoint document [24], sometimes from tex-
tual description [20]. In doing so, we have successfully
defined metamodels for DSML, supported by a prototype
tool built simultaneously.

• Challenge 3: The Free Modeling Editor is a conceptual space
editor. In that sense, it provides the capacity to create con-
cepts and their instances in the conceptual space indepen-
dently of any federated models.

FME is a pure Java application embedded in Openflexo, and
distributed as a desktop application on the Openflexo website10. It
appears it is a useful environment for testing modeling activities.

4.4 Model Mapping
The Openflexo SCIC company was commissioned by a major de-
fense contractor to design a tool for mapping business DSMLs used
in very different contexts. An important aspect of this contract was
the very high level of sensitivity of the domains involved, with
classified data, in particular. The tool developers did not have ac-
cess to the models. Furthermore, on the customer’s side, very few
experts had knowledge of the two business areas to be linked. The
business rules relating to the mapping were not directly accessible
to the developers but only to the tool’s expert users, which meant
that the Openflexo developer’s team had to work at a high level of
abstraction to provide the tool.

To overcome the problem of data sensitivity, Openflexo worked
on and delivered a version of the tool based on desensitized meta-
models (modeling a city using EMF technology). The "CityMapping"
prototype was built to demonstrate the model mapping facilities
over heterogeneous EMF models11. Figure 5 shows an example of
such a model mapping metamodeling. The two DSMLs appear on
either side of the figure. The two metamodels overlap partially. The
correspondences between the business concepts common to each
of the two DSMLs are metamodeled using the FML language. These
correspondences are based on n-ary links that connect entities of
different granularity (e.g. EMF class or EMF attribute). House type
is implemented, for example, with a HouseType attribute in the
left metamodel (Model1) while it is implemented by a specialization
in the right metamodel (Model2).

Model mapping activity faced all the challenges previously identi-
fied, but mainly focuses on managing consistency while preserving
existing engineering practices (challenges 1 and 4).

10https://openflexo.org/downloads
11Details on this prototype can be found in https://openflexo.org/docs/Tutorials/
Tutorial7-WorkingOnModelMapping.

City

Resident
+ name : String

House

Mansion
+ number : int

Appartment
+ label : String

City
+ name : String

Resident
+ name : String

House
+ info : String<< enum >>

HouseType
+ MANSION
+ APPARTMENT

City

House
+ owner : String

Mansion
+ number : int

Appartment
+ label : String

0..* residents

0..* houses

0..*

0..*

1

1

Model1 Model2

0..*
residents

housesowner

type

houses

Figure 5: Model federation for model mapping

• Challenge 1: This preservation is at the heart of this mod-
eling activity, in particular because the experts in each
domain do not have prior knowledge of the other domain
to be linked.

• Challenge 4: After an initial phase of model alignment and
elimination of any inconsistencies that need to be resolved
manually, the aim is to be able to maintain the mapping
over time, as the two federated models evolve.

4.5 PDF labels
This last use case has been selected to illustrate a very unusual
scenario, but reflects real use cases that can be encountered in
industry. This scenario arises in contexts where the architecture
of the information system is poor or when the nominal processes
have not been followed.

The Openflexo SCIC company was requested by a chemical com-
pany to help audit and update part of its information system, which
contained a number of inconsistencies. The company was a sub-
sidiary of an international group that managed a large number
of chemical products in different countries under different cus-
tomer references. The task was to synchronize the internal product
database with the references to the products marketed. The par-
ticularity of this project was that the only source of information
for the product marketed was contained in the PDF product labels.
This involved several hundred references, managed by numerous
independent graphic designers. Additionally, the process had to
ensure that the labels display the safety recommendations on the
products comply with local regulations, depending on the compo-
sition of the product described in the internal product database.
This required a large number of highly specific business rules to
be implemented for checking and updating various sources of in-
formation, including SQL databases, Excel spreadsheets, and PDF
files.

Openflexo SCIC designed and delivered a specific tool that en-
coded these various business rules. The tool had to be intuitive
enough to be used by the company’s employees and interactive
enough to explicitly manage inconsistencies and propose problem
resolution. The delivered solution was based on a model federation
infrastructure described in FML and executed in Openflexo.

This use case met three out of the four challenges :
7
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• Challenge 2: PDF files are especially considered a primary
source of information (such as safety recommendations,
product composition, market, usage, etc.).

• Challenge 3: The conceptual space allows us to define the
business concepts involved in various data sources, such as
the variations of a generic product in different countries,
with the associated safety rules.

• Challenge 4: Specific business rules are defined at concep-
tual space level, allowing for the detection and resolution
of inconsistencies.

5 LESSONS LEARNED
The previous section presented five selected projects relying on
our approach of model federation. These use cases were chosen to
illustrate the challenges we faced and resolved. They also concretize
the model federation approach. This section outlines six selected
lessons learned over the past ten years. The first two are usage
oriented, the next two are related to federation and the last two
touch on modeling.

5.1 Separate business from technique
This is probably one of the most important lessons: when model-
ing, focus on business concepts, forget your own modeling habits,
especially those depending on technical choices.

We naturally experienced this when using the free modeling
editor (use case 4.3). Elaborating the metamodel while modeling in-
stances gives users the freedom to focus on their business concepts.
Additionally, we often encounter situations where users describe
entities that are mid-abstract, mid-concrete, introducing multi-level
modeling aspects as if it were a natural modeling paradigm.

This requires abstraction abilities, to focus on the essence of
things and to forget technical details or constraints. This lesson
directly meets challenge 1. Technical aspects live in their space,
with experts and their own models and habits; federation lives in a
tailored model with specific semantics.

The explicit separation between federated modeling spaces and
the conceptual space of the federation was initially driven by tech-
nological considerations, such as interfacing with various domain
tool APIs. This separation has evolved beyond its technical origins
and allows the interpretation of a domain model with different
semantics defining in the conceptual spaces, depending on the re-
quired point of view. This capability relies on a local interpretation
at the boundary during integration into the conceptual space (using
technological adapters for us) and considers different models within
the conceptual space in relation to the boundary (using ModelSlots
in our case).

It enables the explicit separation of domain models, sometimes
subject to intellectual property constraints or different life cycles,
from their interpretation in the federation.

5.2 Tool maintenance & dissemination
This is probably the most worrying lesson: tool maintenance in a
small research team is time consuming. We have observed numer-
ous research tools disappear and promising ideas abandoned as a
result. Indeed, with a very small team of developers, the available
manpower rarely allows for community management, answering

questions or updating tutorials when versions change, which hin-
ders the adoption of the tool.

Aware of this issue, the Openflexo company has been created
with a two-fold goal: first, to bridge the gap between industrial
companies - driven by profit - and academic institutions - driven by
recognition and reputation - and second, to organize a community.
This period helped to gather a small community composed of model
users and developers. In fact, it was during this period that the
main architectural refactoring was carried out. In addition, this is
also the period where the continuous integration and continuous
development processes were installed.We used to generate different
tools on demand for the three most popular OS. Alas, with time and
OS evolution, we failed in maintaining this service after Openflexo
SCIC wound up.

We face other technical evolution. The fast evolution of Java
versions is also challenging. Openflexo still relies on Java 8. Java
modules constraints, among other novelties, make the evolution to
Java 11 complicated. We still encounter a few issues. As a matter of
fact, the fast evolution of technology hinders the development of
long-running research tools.

When developing Openflexo, we chose a reflexive and inter-
preted approach. Indeed, the framework relies on the interpretation
of a set of models which may change their behaviors. This brought
a lot of flexibility, but made it difficult to join the Eclipse ecosystem
that relies heavily on code generation. As a consequence, we did
not benefit from the visibility Eclipse ecosystem provides. The con-
trol of the development chain and the flexibility of interpretation
(versus code generation) seem critical to us.

Recently, Openflexo has been adopted by a Luxembourg com-
pany for developing an application for the European Space Agency
(use case 2). This was the first autonomous development with Open-
flexo, outside our team. On this occasion, we have observed that it
was possible to become autonomous using Openflexo, and that we
were able to provide a reasonable support.

5.3 Need for many concrete syntax
Historically, Openflexo was designed for non-software users and
was focusing on capturing business concepts from various data
and tools, which come with their own representations and nota-
tions. Its preferred interface was graphical with numerous win-
dows, check boxes, menus, and so on. Behaviors (method body)
were themselves defined with dialog boxes. This was ideal for small
size projects. When projects became larger, or behavior became
more sophisticated, graphical interface hindered development, and
textual interface, with a concrete syntax was expected. Other cir-
cumstances revealed other needs, such as tabular entries when it
comes to entering long lists of class instances.

The right tool at the right place is not only a matter of users, but
also depends on the development phase of a project. In the early
stages, the same user may need a graphical view to sketch up ideas,
then a textual language to scale up, but again a graphical view to
build an abstract view of too large a text, before to identify and
rectify a small error. One needs the right concrete syntax at the
right time. This requires a language authorizing various concrete
syntax that need to be synchronized. Recent work [16, 45] links
this need to Blended Modeling or Hybrid Programming.

8
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5.4 Federation requires organization
Federation models lead to the creation of new models containing
potentially many entities that make correspondences between other
model entities. To do this, the entities must be designated (referred
to). The designation must be flexible enough to function when
entities change or move, or at least to detect designation breaks,
without preventing the federation from functioning. In the Open-
flexo framework, this role is played by the technological adapters.

Beyond the designation requirement, the multiplicity of entities
and correspondences be managed in the conceptual space show
the need for organizational mechanisms. Here, Openflexo reuses
standard techniques since conceptual spaces are real models which
are organizational units. These can be composed, or can inherit
from each other.

For instance, in a use case such as Formose (described in sec-
tion 4.1), there are thirteen virtual models, linking six pre-existing
models allowing making various tools and methodologies interact-
ing with each other (SysML-Kaos, OWL, B, Word, Excel). Managing
the complexity of this federation requires proper organization of the
conceptual space. On the other hand, in the multi-level challenge
use case [28], virtual models are used to implement, by inheritance,
the sequence of specification evolution.

5.5 Modeling requires flexibility
All along our experience of doing model federation in industrial
and academic scenarios we have perceived that a key factor to
succeed is flexibility. This flexibility concerns both practices and
tools, which should be adaptable to the problem at hand and its
environment (e.g., IT culture).

As already stated in other contributions (e.g., see [17, 14, 41])
the strict hierarchical two-level approach presents limitations in
the description of complex domains with several levels of special-
ization. This results in the introduction of accidental complexity
which pollutes domain models. We have found similar problems
and experimented with multi-level in Openflexo as explained above
(see Section 5.4).

In the same vein, we have found that when building domain
models, the implication of the domain experts in early stages is
crucial to get the right abstractions. In this scenario, modeling
sessions with domain experts become really fruitful but are not
without difficulties. Indeed, we have found that domain experts
often feel more comfortable starting from instances instead of ab-
stractions. As an example, we have recently acted as consultants
in the development of a tool to manage enterprise strategies. This
was the procedure preferred by the domain experts involved. In
this scenario, constantly building or adapting metamodels so that
the creation of instances is possible becomes rapidly inefficient and
expensive while the alternative of using mere drawing tools unsat-
isfactory, as abstractions cannot be capitalized. These difficulties
inspired the Free Modeling Editor described in Section 4.3 which
has been used since then to perform pair modeling with domain
experts.

From a more technical point of view, it is noteworthy that Open-
flexo relies on interpretation instead of compilation or code gener-
ation. We think this has helped us to support the aforementioned
flexibility scenarios and often validate ideas with customers and

domain experts in shorter iterations resulting in better end prod-
ucts. The advantages of interpretation are also discussed regarding
other notable model-driven engineering tools such as Epsilon and
Viatra [48].

5.6 Modeling needs model capitalization
In all our projects, we have observed that keeping the domain ex-
perts practices require the production of a large number of models
and metamodels. Following classical software engineering prin-
ciples, reuse should be systematic to reduce the cost of complex
engineering processes. Therefore model capitalization is a key to
large scale modeling.

But model capitalization is a difficult and elusive goal due to a
lack of flexibility of modeling tools. However, we have observed
that model federation significantly facilitates capitalization. First,
the conceptual space provides an environment decoupled from
the domain models and each virtual model within the conceptual
space is decoupled from the other virtual models. This low coupling
makes it possible to reuse any portion of an existing model either
by composition or inheritance mechanisms. Furthermore, when
reusing an element of another model a virtual model can freely
adapt its semantic interpretation. Second, the levels of abstraction in
the conceptual space may not necessarily be aligned with those in a
domain model, and they may differ between various domain models.
For example, a virtual model may reuse any element whatever its
abstraction level is.

This simplicity and flexibility of reuse greatly improve the ben-
efit of model capitalization to lower the development cost of new
models. This is especially true for metamodeling which, as already
mentioned, becomes crucial when adapting to new domains. Con-
cretely, rather than developing new metamodels from scratch with
all the associated cost, we tended to build on previously developed
ones. The Formod tool (presented in section 4.1) perfectly exem-
plifies this approach by using 19 virtual models in the conceptual
space while there are only four engineering views. Furthermore, a
part of these 19 virtual models are reused in other projects. For ex-
ample, the goal approach proposed by the Formose project extends
the KAOS method. This extension is also true at the (meta)model
level. We have a virtual model defining the concepts of KAOS that
is reused for the Formose methodology. In this experiment, the fact
that when reusing one can adapt the semantic was needed as the
constraints on the KAOS models and our requirements model were
different.

6 RELATEDWORK
Many different reports can be found in the literature w.r.t. the use
of modeling in industrial scenarios. They generally are of two types,
surveys which summarize the current status of modeling practice
at a given time and concrete experience reports that describe a
particular use case, its challenges and its lessons learned.

Among the first group, in [46] the authors sought to find evi-
dence supporting the claimed benefits of modeling. They report
on hurdles to its adoption, e.g., immature tools and lack of specific
processes, and key elements for success (e.g., the use of domain-
specific approaches and the integration of in-house tools). Similarly,
in [30] the authors describe a number of use cases and some lessons
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learned. Notably, they highlight how MDE is often about the use
of DSLs when adopted in non-software engineering companies.
In [3] the authors account of a survey conducted in two phases
with ten years span. Although they agree with the shortcomings
presented in previous studies (e.g., bad tools), they also evidence
an increased adoption of both rigorous and casual (e.g., blackboard-
based) modeling. From an embedded systems perspective, in [40]
the authors conducted a survey on MBE industrial practice. They
report challenges related to tool interoperability and the integration
of existing processes.

In the group of concrete use-case reports, many different works
have been contributed in the recent years, showing that modeling
for real and/or industrial scenarios remains challenging. As exam-
ples, in [6], [47] and [33] the authors report challenges and lessons
learned of respectively applying component modeling, SysML and
component fault trees for safety and MBE in general. In [14] the
authors discuss the model-based development of a modeling work-
bench using open-source modeling technologies such as EMF [50]
and Epsilon [35, 36].

With respect to the aforementioned works, ours complements
the discussion by contributing a report on a multiuse-case expe-
rience of applying a specific modeling approach, that is, model
federation, in different scenarios for more than ten years. Addi-
tionally, we account on the concurrent development, evolution and
maintenance of our supporting model-federation tool, Openflexo.
Model federation approaches

From a technical point of view, model federation can be seen as a
special flavor of multi-modeling [10] or multi-viewmodeling [2, 13].
Concretely, it corresponds to the synthetic approach of multi-view
modeling, with explicit correspondences. Canonical approaches
on this category can be found in [12] and [29]. However, in our
view, one notable additional feature of model federation is that
models (i.e., views) remain in their technological space with their
own business process and special mechanisms are used to connect
to them.

The principles of model federation have been well known for
at least two decades [31] and early works already describe experi-
mental approaches [21, 19, 27] that adhere (sometimes partially) to
these principles. Unfortunately, these aforementioned approaches
have remained in either a conceptual or prototypical stage, lacking
widespread adoption and/or mature toolsets. In this sense, the in-
creased adoption of modeling in complex and emerging scenarios
requiring multimodeling such as cyber-physical systems has led
to a plethora of recent contributions intending to fill this gap. We
discuss these recent approaches in the following, with a focus on
pragmatic approaches with corresponding implementations.

In [5, 4] the authors present Syndeia, a model federation tool
around SysML. Concretely, Syndeia links a SysML system archi-
tecture model with multiple engineering models and repositories
to create a so-called Total System Model, which is a graph of mod-
els. Syndeia provides a number of different inter-model connection
patterns (from simple referencing to model-transformation and syn-
chronization) with a granularity set at the model element/attribute
level. The main difference from our approach is the central role
that the SysML model plays.

Although not explicitly a model federation approach, the Ep-
silon [36] ecosystem provides through its diverse scripting lan-
guages (e.g., see EOL [34] and EML [35]) and its connectivity layer
all the building blocks to build model federations.

More similar to our approach in [49] the authors present reactive
links, an approach developed on top of DesignSpace [18] aimed at
maintaining synchronization among heterogeneous models (which
are accessible through adapters).

7 CONCLUSIONS & ROADMAPS
In this paper, we have presented our experience, both industrial
and academic, in using model federation to address software en-
gineering problems that require the semantic interoperability of
heterogeneous models. We have illustrated the diversity of this ex-
perience with five selected use cases and discussed a number of
lessons learned. We intend to continue our practice of model feder-
ation and the support to the Openflexo framework in the future. In
this sense, we present below a roadmap with future challenges and
goals.

Collaboration.Model federation fosters the collaboration of dif-
ferent stakeholders in the development of complex systems by
providing the infrastructure to achieve semantic interoperability,
manage consistency, etc. However, collaboration in both the de-
velopment and the management of a federation model itself has
not yet been explored. This will require exploring the integration
of features such as multi-user views, conflict resolution, and secu-
rity [43, 42, 15].
Free Modeling.We have discussed in Sections 4 and 5 the interests
of free modeling as a means of effectively involving experts in
domain modeling. We intend to further explore this path. Among
others, we want to explore the means to provide a configurable
level of freedom [22], perform free-modeling in other environments
than box and line diagrams (e.g. text documents or drawings), and
mix multilevel concepts in free-modeling.
Maintainability. As we have indicated in Section 5, the maintain-
ability of the Openflexo framework has been challenging. In this
sense, we intend to explore different ways to improve it. This in-
cludes enlarging the community of users and maintainers (this is
already ongoing, with different labs and a company already con-
tributing bug descriptions and bug fixes to the framework), foster
re-use of models and code within the framework itself and the
automation of processes.
Digital Twins. In recent years, digital twins have emerged as
a means of studying and managing complex systems and as an
important application domain for model-driven engineering. This
raises opportunities and challenges [9] for the MDE community.
Among the challenges, the management and synchronization of
heterogeneous models are of notable importance and one of the
strengths of model federation. In this sense, we intend to explore
the application of model federation to the domain of digital twins.
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