
HAL Id: hal-04617092
https://hal.science/hal-04617092

Submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Reducing End-to-End Latencies of Multi-Rate
Cause-Effect Chains in Safety Critical Embedded

Systems
Luiz Maia, Gerhard Fohler

To cite this version:
Luiz Maia, Gerhard Fohler. Reducing End-to-End Latencies of Multi-Rate Cause-Effect Chains in
Safety Critical Embedded Systems. 12th European Congress on Embedded Real Time Software and
Systems (ERTS 2024), Jun 2024, Toulouse, France. �hal-04617092�

https://hal.science/hal-04617092
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Reducing End-to-End Latencies of Multi-Rate
Cause-Effect Chains in Safety Critical Embedded

Systems
Luiz Maia, Gerhard Fohler

University of Kaiserslautern-Landau, Germany
{maianeto,fohler}@rptu.de

Abstract—The Logical Execution Time (LET) model has de-
terministic timing and data-flow properties, which simplify the
computation of end-to-end latencies of multi-rate cause-effect
chains. However, the LET model results in pessimistic end-to-
end latencies since it abstracts the underlying platform and
scheduling choices. In this paper, we propose a method to reduce
end-to-end latencies of multi-rate cause-effect chains applying
the LET model, by considering knowledge of the schedule in
later design phases of safety critical embedded systems. Our
method shortens and shifts the communication intervals of the
LET model. If needed, e.g., for legacy reasons, our method can be
applied to a subset of tasks only. We evaluate our work based on
automotive benchmarks and synthetic task sets. We compare our
results with previous work and the LET model. The experiments
show significant reductions of maximum reaction time and data
age values.

Index Terms—Safety Critical Embedded Systems, Real-Time
Systems, End-to-End Timing Analysis, LET

I. INTRODUCTION

Designing safety critical applications in embedded systems,
such as in AUTOSAR, requires complex analysis for temporal
properties, such as end-to-end latencies. During early design
phases, designers abstract system semantics, e.g., scheduling
algorithms, in order to reduce the complexity. However, ab-
stracting system semantics in this manner results in pessimistic
end-to-end latencies [1].

A cause-effect chain (CEC) represents a sequence of tasks,
which are executed to achieve a given functionality. A typical
example is a sensor to actuator CEC, which consists of a task
that reads the sensor (cause), a task that processes the read
value, and a task that writes the output to an actuator (effect).

The analysis of whether or not the end-to-end (E2E) la-
tency between the cause and the effect respects system’s
timing requirements is not trivial [2]. Especially when the
CEC contains tasks with different periods and multiple data
dependencies. The complexity of computing E2E latencies
of multi-rate CECs increases even further when considering
multi-core systems as tasks can be mapped to different cores
and can execute in parallel [3].

Depending on the adopted communication model, the points
in time when inter-task communications (accesses to shared
resources) occur can be non-deterministic. They depend on
when tasks start and finish their execution.

The Logical Execution Time (LET) model [4] emerged as a
solution which significantly reduces timing analysis complex-
ity of multi-rate CECs. By having fixed inter-task communica-
tion points that are independent from the actual task execution,
the LET model brings timing and data-flow determinism to the
analysis of multi-rate CECs. In LET, inter-task communication
only occurs at the boundaries of the so-called communication
interval [5], which is considered equal to the period interval
of the task. As a result, the LET model helps abstracting from
the actual system implementation (scheduling choices), and
consequently reduces complexity of analysis, but at the cost
of increased pessimism, i.e., larger E2E latency values.

In this paper we propose a method to reduce the pessimism
present in the LET model by taking scheduling choices into
consideration. The method shortens and shifts communication
intervals based on a chosen scheduling algorithm. Therefore,
our method is applied later in the design process (after
scheduling choice). By analyzing a feasible schedule, it derives
new boundaries for the communication intervals.

Our method is built on the ideas of adding phase to specific
tasks [6] and shortening the communication interval equal to
task’s worst-case response time [7].

As design phases progress and a schedule has to be deter-
mined, our method can be applied during later design phases
to optimize the E2E latencies of multi-rate CECs applying
the LET model. Without losing the timing and data-flow
determinism of LET, our method keeps tasks periodic and
with well-defined communication points. If needed, it can be
applied individually to selected tasks and/or CECs during later
design phases, e.g., for legacy reasons. Results from evaluation
based on an automotive benchmark presented by BOSCH [8],
as well as synthetic task sets show a reduction of ≈ 65% for
the E2E latencies, on average.

Summary of contributions: Our method
• significantly reduces the E2E latencies of multi-rate CECs

applying the LET model
• shortens and shifts tasks’ communication intervals by

taking scheduling decisions into consideration
• keeps tasks periodic and with well-defined inter-task

communication points
• can be applied individually to selected tasks and/or CECs

for legacy reasons

II. RELATED WORK

The two most commonly considered latencies when an-
alyzing a multi-rate CEC are: reaction time (First to First
semantic) and data age (Last to Last semantic) [9]. The
reaction time measures the reactivity of the system. It is the
time interval between the occurrence of an external event until
the first output based on that event. Data age measures the
freshness of data in the CEC. It is the time interval between
a data sampled (read) by the first task in the CEC until the
last output (actuation) based on such data is produced by the
last task in the CEC. Recently Günzel et al. [10] showed that
the values for the maximum reaction time and maximum data
age are equivalent.

In order to take data propagation delays into account, Klaus
et al. [11] proposed an extension of the Real-Time Systems
Compiler (RTSC), while Forget et al. [12] proposed a language
to do a formal verification of E2E constraints at the model
level. Becker et al. [13] proposed to use job-level dependency
as a way to control data propagation and E2E latencies in
multi-rate CECs. In [14], Dürr et al. introduced the concept of
job chains and provided an analysis of the maximum reaction
time and maximum data age. Schlatow et al. presented in [15]
an analysis of the data age for periodic offset-synchronized
tasks. In [16], Günzel et al. presented a timing analysis of
asynchronized distributed CECs.

The LET model [4] was first introduced as part of the Giotto
programming language in the context of time-triggered tasks.
In [17], Biondi et al. presented a method to implement the LET
model using additional dedicated tasks to realize the logical
behavior of LET. In [18], Pazzaglia et al. used LET to enforce
causality and determinism as a way to control accesses to
shared memory and optimize the functional deployment on
multi-core platforms.

In [19], Kloda et al. proposed to decouple the communi-
cation interval from the periods of tasks as an extension for
the Timing Definition Language (TDL) [20], a successor of
Giotto. However, Kloda et al. [19] did not present a method
to formally compute the additional offsets or how to actually
decouple the communication intervals.

Techniques have been proposed to compute the E2E laten-
cies of multi-rate CECs applying the LET model. Becker et
al. [21] presented a method to compute the maximum data
age considering different communication models. Kordon and
Tang [22] proposed a method to determine the maximum data
age based on a task dependency graph. In [6], Martinez et
al. presented a phase-aware LET analysis to improve the E2E
latencies of multi-rate CECs. In [7], Bradatsch et al. proposed
a method to reduce data age by setting the communication
intervals equal to tasks’ worst-case response time.

We build our work on top of the ideas proposed by Martinez
et al. [6] and Bradatsch et al. [7]. By taking scheduling
decisions into consideration, our method shortens and shifts
communication intervals while keeping tasks periodic and with
well-defined inter-task communication points.

III. SYSTEM MODEL

We consider a multi-core system composed of identical
cores and a task set Γ containing periodic and independent
real-time tasks.

A. Tasks and Jobs

A task τ is a tuple (Cτ , Tτ , Dτ , φτ), where Cτ represents
the worst-case execution time (WCET), Tτ is the period, Dτ

is the deadline, and φτ is the phase. We assume tasks have
implicit deadlines, i.e., deadline is equal to period. A job J
represents an instance of τ , where J(i) is the ith instance
of τ , i ∈ N+. J(i) has a release time at φτ + (i − 1)Tτ
and an absolute deadline Dτ time units later. A schedule S
specifies the execution behavior of all jobs of τ according to
a scheduling policy. The start time of J(i) according to S
is sSJ(i), while the finishing time is fSJ(i). If the choice of a
schedule is clear, we omit the index S for all definitions.

B. Communication Model

We assume communication between tasks happens through
the use of shared resources and to be based on the LET model.
Each task τ has a fixed and well defined communication
interval Lτ (Figure 1). The inputs and outputs of τ are
logically updated at the boundaries of Lτ . begin(Lτ) and
end(Lτ) are relative points in time representing the boundaries
of Lτ , i.e., Lτ = [begin(Lτ), end(Lτ)]. |Lτ | represents the
length of interval Lτ .

Each job J of τ has a communication interval LJ . The
boundaries of LJ define when a job J logically receives (read)
input from a shared resource, as well as when it logically
transmits (write) output to a shared resource. At begin(LJ),
the logical read-event of J from a shared resource occurs. For
instance, if begin(Lτ) = 0, that means the logical read-event
of each J ∈ τ happens during its release. At end(LJ), the
logical write-event of J to a shared resource occurs.

Figure 1 shows the communication boundaries of interval
LJ(i) for a given job J(i) of task τ assuming |Lτ | = Tτ , i.e.,
Lτ = [0, Tτ].

Fig. 1: Communication boundaries of interval LJ(i) for a
given job J(i) of task τ assuming Lτ = [0, Tτ]

C. Cause-Effect Chain

A Cause-Effect Chain (CEC) represents an ordered se-
quence of communications carried out between a finite set of
tasks. We represent a CEC by E = (τ1 → τ2 → · · · → τ|E|),
|E| being the number of tasks in E. The function E(i) returns
the ith task in E, i ∈ {1, 2, · · · , |E|}. The → operator
indicates that τi+1 acts as a consumer/reader task, while τi
as a producer/writer task.

We assume that E samples (acquires data) at every
begin(J1), J1 being a job of task E(1). We use z to represent
the time interval between the occurrence of an external event
(input) and its sampling by J1. Likewise, z′ represents the
time interval between end(J|E|) and the actuation (output).

D. Job Chain
Given a CEC E, a job chain cE = (J1 → · · · → J|E|)

is a finite sequence of jobs representing one of the possible
data propagation paths of E. In a job chain, the following
requirements are respected:
• Ji is a job of E(i), i ∈ {1, 2, · · · , |E|}.
• The data written by Ji is read by Ji+1. That is,
end(LJi) ≤ begin(LJi+1) for all i ∈ {1, 2, · · · , |E| − 1}

We use cEi to represent the ith job chain of E, i ∈ N+, while
function l(cE) returns the time interval between end(LJ|E|)
and begin(LJ1).

IV. MANIPULATING LET COMMUNICATION INTERVALS TO
REDUCE END-TO-END LATENCIES

As discussed in Section I, multi-rate CECs applying the
LET model have timing and data-flow determinism, but pes-
simistic E2E latencies. By exploiting information from a feasi-
ble schedule, our method reduces the pessimism present in the
LET model while maintaining its deterministic characteristics
and the periodicity of tasks.

Instead of setting |Lτ | = Tτ , i.e., Lτ = [0, Tτ] ∀τ ∈ Γ, our
method derives new relative points in time for begin(Lτ) and
end(Lτ). By repositioning the boundaries of Lτ and therefore
the boundaries of LJ , it can postpone the logical read-event
of J and prepone the logical write-event of J .

A. Defining Schedule-Aware Intervals
In order to make Lτ schedule-aware, ∀τ ∈ Γ, our method

sets Lτ ’s length and position equal to a new time inter-
val Iτ , where the length of Iτ is Cτ ≤ |Iτ | ≤ Tτ .
begin(Iτ) and end(Iτ) delimit the boundaries of Iτ , i.e.,
Iτ = [begin(Iτ), end(Iτ)].

The length and position of Iτ are defined according to
schedule S. As explained in Section III-A, S specifies the
start time sJ and the finishing time fJ for all J ∈ τ .

Below we define the terms relative start time (SJ) and
relative finishing time (FJ) to derive the communication
boundaries for Iτ .

Definition 1: Relative Start Time (of a Job). Let J(i) be
the ith job of task τ in schedule S. The relative start time
(SJ(i)) of a job is the start time of J(i) minus its release
time.

SJ(i) = sJ(i) − (φτ + (i− 1)Tτ) (1)

Definition 2: Relative Finishing Time (of a Job). Let J(i)
be the ith job of task τ in schedule S. The relative finishing
time (FJ(i)) of a job is the finishing time of J(i) minus its
release time.

FJ(i) = fJ(i) − (φτ + (i− 1)Tτ) (2)

Depending on when each J executes between its release and
deadline, the values for SJ and FJ can change for each J ∈ τ
(one job may execute early during its period, while another job
may execute later). In order to keep the timing and data-flow
determinism of LET when setting Lτ = Iτ , it is necessary to
ensure that all J ∈ τ have a common periodic communication
interval, i.e., respects SJ and FJ , for all J ∈ τ .

Our method sets communication boundaries for Iτ by
computing the earliest relative start time (ESτ) and the latest
relative finishing time (LFτ) of a task τ based on S.

Definition 3: Earliest Relative Start Time (of a Task).
Let τ be a task in schedule S. The earliest relative start time
(ESτ) of τ is the minimum relative start time among all jobs
of τ in S.

ESτ = min
∀J∈τ

SJ (3)

Definition 4: Latest Relative Finishing Time (of a Task).
Let τ be a task in schedule S. The latest relative finishing time
(LFτ) of τ is the maximum relative finishing time among all
jobs of τ in S.

LFτ = max
∀J∈τ

FJ (4)

In order to exemplify definitions 1 to 4, we show in Figure
2 a schedule S for three tasks that are part of a CEC E,
E = (τ1 → τ2 → τ3). In this example, we analyze task τ2,
which has three jobs in S . Following definitions 1 and 2, the
first job of τ2, J(1), has SJ(1) = 2 and FJ(1) = 3, while
J(2) has SJ(2) = 0 and FJ(2) = 1. J(3) has SJ(3) = 1
and FJ(3) = 2. Following definitions 3 and 4, ESτ2 = 0 and
LFτ2 = 3. By using definitions 1 to 4, ESτ and LFτ for
the other tasks in E, ESτ1 = 0 and LFτ1 = 1 for τ1, while
ESτ3 = 1 and LFτ3 = 2 for τ3.

Fig. 2: Schedule S for a CEC E = (τ1 → τ2 → τ3)

Based on the values of ESτ and LFτ , our proposed method
shifts and shortens the communication intervals of a given task
τ . It repositions the communication intervals of τ by shifting
them according to ESτ . For instance, it sets the new phase of
τ to be: φτ = φ′τ +ESτ , φ′τ is τ ’s initial phase. Our method
shortens the length of τ ’s communication intervals according
to LFτ . Since the boundaries of Iτ are relative points in
time with respect to τ and our proposed method shifted τ

according to ESτ , begin(Iτ) = 0 and end(Iτ) = LFτ−ESτ .
Therefore, by setting Iτ = [begin(Iτ), end(Iτ)], and Lτ = Iτ ,
our method shortens and shifts the communication intervals of
τ . For instance, for task τ2 shown in Figure 2, instead of setting
Lτ2 = [0, Tτ2], i.e., [0, 5], our method sets Lτ2 = Iτ2 = [0, 3].
Note that in this example τ2 is not shifted because ESτ2 = 0.

In Figure 3, we show the communication boundaries of
interval LJ(i) for a given job J(i) of task τ assuming Lτ = Iτ .

Fig. 3: Communication boundaries of interval LJ(i) for a
given job J(i) of task τ assuming Lτ = Iτ

Note that although our method adds a phase ESτ to a task
τ , neither the schedulability of the task set nor jobs’ execution
order in schedule S are affected: for any J(i) ∈ τ , i ∈ N+,
there is no J(i) that executes before (i−1)Tτ+ESτ according
to S. All J of τ have to wait at least ESτ time units after its
release in order to execute. Therefore, as long as our method
postpones the release of τ by ESτ time units, ∀τ ∈ Γ, our
method does not affect the schedulability of the task set and
preserve the execution order of jobs in schedule S.

B. Computing Communication Points

Since the logical read and write-events of J happen at
well defined points in time, it is possible to identify the
communication points where data propagates from one task to
the other. Martinez et al. [6] presented an analysis to compute
the communication points between two tasks applying the LET
model assuming that |Lτ | = Tτ , ∀τ ∈ Γ. As our method
shortens and shifts communication intervals, the assumption
does not hold anymore and the analysis is no longer applicable.

Inspired by the work done by Martinez et al. [6], we present
a new analysis to compute the communication points of tasks
applying the LET model assuming that Lτ = Iτ in theorems 1
and 2. Below we define the terms publishing point and reading
point, which are later used in theorems 1 and 2.

Definition 5: Publishing Point. Given a pair of tasks in a
CEC E, where τi → τi+1, i ∈ {1, 2, · · · , |E| − 1}. Let a
publishing point (Pnτi,τi+1

) be the nth point in time where the
resource shared by τi and τi+1 is updated by τi. After Pnτi,τi+1

,
no other logical write-event of τi will take place before the
next logical read-event of τi+1.

Definition 6: Reading Point. Given a pair of tasks in a CEC
E, where τi → τi+1, i ∈ {1, 2, · · · , |E| − 1}. Let a reading
point (Qnτi,τi+1

) be the nth point in time where the resource
shared by τi and τi+1 is read by τi+1. The logical read-event
of τi+1 after the nth publishing point of τi is the reading point
Qnτi,τi+1

.

Theorem 1: Let τi → τi+1 be a pair of tasks applying the
LET model with schedule-aware intervals in a CEC E, where
Tτi ≤ Tτi+1

, i ∈ {1, 2, · · · , |E| − 1}. Then the reading and
publishing points between τi and τi+1 can be computed as:

Qnτi,τi+1
= nTτi+1 + φτi+1 (5)

Pnτi,τi+1
=

⌊
Qnτi,τi+1

− φτi − end(Lτi)

Tτi

⌋
Tτi + φτi + end(Lτi)

(6)

n ≥

{
0, if φτi+1

≥ φτi + end(Lτi)⌈
φτi+end(Lτi)−φτi+1

Ti+1

⌉
, otherwise

Proof: We prove this theorem in two steps.
Step 1 (Reading point): Since Tτi ≤ Tτi+1 , there is always one
job of τi being released between two job releases of τi+1. That
means, τi always updates the resource shared with τi+1 before
each logical read-event of τi+1. By definition (Section III-B),
the inputs of τi+1 are logically updated at begin(Lτi+1

), which
occurs every Tτi+1 time units after φτi+1 . Therefore, a reading
point between τi and τi+1 occurs every nTτi+1 + φτi+1 .
Step 2 (Publishing point): By definition (Section III-B), the
logical write-event of the first job of τi logically occurs at
φτi + end(Lτi). That means, any reading point Qnτi,τi+1

has
to be ≥ than φτi + end(Lτi). If Qnτi,τi+1

= φτi + end(Lτi),
then Pnτi,τi+1

= Qnτi,τi+1
. If Qnτi,τi+1

> φτi + end(Lτi), the
publishing point that immediately precedes Qnτi,τi+1

depends
on how many logical write-events of τi happened within
the interval [φτi + end(Lτi), Q

n
τi,τi+1

]. Since logical write-
events of τi occur periodically according to Tτi , the num-
ber of logical write-events within the considered interval is⌊
Qnτi,τi+1

−φτi−end(Lτi)
Tτi

⌋
. Hence, the publishing point that im-

mediate precedes Qnτi,τi+1
is at

⌊
Qnτi,τi+1

−φτi−end(Lτi)
Tτi

⌋
Tτi +

φτi + end(Lτi).

Theorem 2: Let τi → τi+1 be a pair of tasks applying the
LET model with schedule-aware intervals in a CEC E, where
Tτi > Tτi+1 and i ∈ {1, 2, · · · , |E| − 1}. Then the publishing
and reading points between τi and τi+1 can be computed as:

Pnτi,τi+1
= nTτi + φτi + end(Lτi) (7)

Qnτi,τi+1
=

⌈
Pnτi,τi+1

− φτi+1

Tτi+1

⌉
Tτi+1

+ φτi+1
(8)

n ≥

{
0, if φτi+1

≤ φτi + end(Lτi)⌊
φτi+1

−(φτi+end(Lτi))
Ti

⌋
, otherwise

Proof: We prove this theorem in two steps.
Step 1 (Publishing point): Since Tτi > Tτi+1

, there is always
one job of τi+1 being released between two job releases of τi.
That means, τi+1 always reads the resource shared with τi after
each logical write-event of τi. By definition (Section III-B), the
outputs of τi are logically updated at end(Lτi), which occurs

every Tτi after φτi + end(Lτi). Therefore, a publishing point
between τi and τi+1 occurs every nTτi + φτi + end(Lτi).
Step 2 (Reading point): By definition (Section III-B), the
logical read-event of the first job of τi+1 logically occurs
at begin(Lτi+1

), i.e., φτi+1
. That means, any reading point

Qnτi,τi+1
has to be ≥ than φτi+1

. By intuition, if Pnτi,τi+1
≤

φτi+1 , then Qnτi,τi+1
= φτi+1 . If Pnτi,τi+1

> φτi+1 , the reading
point that immediately succeeds Pnτi,τi+1

depends on how
many logical read-events of τi+1 happened within the interval
[φτi+1

, Pnτi,τi+1
]. Since logical read-events of τi+1 occur peri-

odically according to Tτi+1
, the number of logical read-events

within the considered interval is
⌈
Pnτi,τi+1

−φτi+1

Tτi+1

⌉
. Hence,

intuitively, the read point of τi → τi+1 that immediately

succeeds Pnτi,τi+1
is at

⌈
Pnτi,τi+1

−φτi+1

Tτi+1

⌉
Tτi+1

+ φτi+1
.

In Section V, we show how to compute the E2E latencies
of a given CEC using theorems 1 and 2.

V. COMPUTING END-TO-END LATENCIES

In Section IV we presented a method that exploits informa-
tion from a schedule and define new communication intervals
for tasks applying the LET model. Since our method shortens
and shifts the communication intervals, we derived theorems 1
and 2 to identify the points in time when data propagates from
one task to another in a CEC. In the following, we demonstrate
how to identify which job chains have to be investigated during
the E2E analysis of a multi-rate CEC. We also show how to
compute the maximum reaction time and data age latencies
related to those job chains.

A. Identifying Job Chains

Due to the under/oversampling nature of multi-rate CECs,
some job chains might have jobs in common. For instance,
when multiple actuations (outputs) of a CEC E are based on
the same sampled (input) data, multiple job chains have the
same J(i) as their J1 in E. As mentioned in Section II, when
analyzing the data age of a multi-rate CEC, it is necessary to
know for how long a sampled value affects the actuation of the
CEC, i.e., know the time interval between two consecutive job
chains with different J(i) as their J1. In order to distinguish
job chains that have different J(i) as their J1, below we define
the term primary job chain.

Definition 7: Primary Job Chain. Given a set of job chains
that have the same J(i) as their J1. We call primary job
chain (pcE), the job chain with the earliest end(LJ|E|) in
the set. pcEi = (J1 → J2 → · · · → J|E|) represents the
ith primary job chain of E, i ∈ N+. Given a prime job
chain pcEi , we represent the next prime job chain of E after
pcEi as pcEi+1. That is, pcEi+1 is the first job chain after pcEi
that has a different J(i) as J1. Function pcEi (k) returns the
communication interval LJ(k) of the kth job in the given
primary job chain, k ∈ {1, 2, · · · , |E|}. Function l(pcEi) return
the time interval between end(pcEi (|E|)) and begin(pcEi (1)).

In order to identify the primary job chains of a given
CEC E, our method first identifies the job chains of E using

algorithms 1 and 2. As shown by Leung et al. [23], for a
task set with periodic tasks and offsets, a schedule S repeats
itself every LCM(Tτ1 , · · · , Tτ|E|) units of time. The repetition
starts at: Φ(E) + H(E), Φ(E) = max(φτ1 , · · · , φτ|E|) and
H(E) = LCM(Tτ1 , · · · , Tτ|E|). Günzel et al. [10] showed
that for the sake of computing the maximum reaction time
and data age latencies of a given CEC E applying the LET
model, it is enough to analyze the job chains within one of
the repetition intervals after the warm-up period. The warm-up
period covers the time interval required for an input to fully
traverse E for the first time [10].

In order to identify which jobs are part of the job chains
within one of the repetition intervals, our method applies
Algorithm 1 to all jobs of E(|E|) released within the rep-
etition interval. The process of identifying jobs chains starts
with the J|E| that has the earliest begin(LJ|E|) within the
repetition interval. Our method starts the analysis with the
last communication task pair in E, i.e., τ|E|−1 → τ|E|. By
applying Algorithm 1 to a given J|E| of E(|E|), our method
obtains the publishing point related to a J|E|−1.

Algorithm 1 Compute publishing points
Input: begin(LJi), τi−1, τi

1: if Tτi−1 ≤ Tτi then

2: According to Theorem 1

3: else

4: According to Theorem 2

5: end if

6: Find mmax, the largest value of m such that Pmτi−1,τi
≤ begin(LJi)

Output: Pmτi−1,τi

Using the output of Algorithm 1 as an input to Algorithm 2,
our method computes the publishing and reading points of the
previous communication task pair in E, i.e., τ|E|−2 → τ|E|−1.
Note that the process of identifying a job chain‘ starts from its
tail (J|E|) and stops when its head (J1) is found. Our method
identifies the remaining part of the job chain by applying
Algorithm 2 recursively to all the other communication task
pairs in E until our method obtains the reading and publishing
point related to a job J1 of E(1).

Algorithm 2 Compute reading points
Input: Pnτi−1,τi

, τi−2, τi−1

1: if Tτi−2 ≤ Tτi−1 then

2: According to Theorem 1

3: else

4: According to Theorem 2

5: end if

6: Find mmax, the largest value of m such that Qmτi−2,τi−1
< Pnτi−1,τi

7: n = mmax

8: Compute Qnτi−2,τi−1
and Pnτi−2,τi−1

9: i = i− 1

Output: Qnτi−1,τi
and Pnτi−1,τi

Our method uses Equation 9 on each identified publishing
point (Pnτk,τk+1

), k ∈ {1, 2, · · · , |E|−1}, in order to determine
the ith job of each task τk that is part of the communication
task pairs in the CEC E. Note that reading points could also
be used to determine the ith job of each task τk, i.e., i =

1 +
Qnτk,τk+1

−φτk
Tτk

.

i = 1 +
Pnτk,τk+1

− end(Lτk)

Tτk
(9)

Following Definition 7, our method selects, within the
repetition interval, the primary job chains among the set of
job chains identified using algorithms 1 and 2. Our method
adds the selected primary job chains to a set ζ and use it to
compute the maximum reaction time and data age latencies.

B. Computing the Maximum Reaction Time and Data Age
Latencies

As discussed in Section V-A, in order to compute de
maximum reaction time and data age latencies of a given CEC
E, our method first needs to identify all primary job chains
of E within one of the repetition intervals after the warm-
up period. In this section we show how to compute the E2E
latencies of a CEC E given the set of primary job chains
within a repetition interval.

We follow the definitions of maximum reaction time and
data age latencies used by Günzel et al. [10]. As mentioned
in Section III, we consider an additional delay z between
the occurrence of an external event (input) and its sampling
by J1. In the same manner, we consider that z′ represents
an additional delay between end(LJ|E|) and the actuation
(output). Therefore, in order to compute the maximum reaction
time and data age latencies as done by Günzel et al. [10], we
append z to the beginning of a primary job chain pcE and
z′ to its end, i.e., pcE = (z, J1, · · · , J|E|, z′). Despite the fact
that the maximum latency values of the reaction time and data
age are equivalent [10], in the following we also demonstrate
how to calculate individually the intermediate values of those
two latency metrics.

1) Maximum Reaction Time: For a given CEC E and its
set of primary job chains ζ, our method computes the reaction
time for all pcEi ∈ ζ considering the maximum delay z that an
incoming input could suffer. In the worst case, for a primary
job chain pcEi , an input arrives right after the logical read-
event of the first job of pcEi . As a result, the incoming input
has to wait until the logical read-event of the next primary job
chain (pcEi+1) in order to be recognized and propagated through
E. We consider, as Günzel et al. [10], that actuation takes place
at the logical write-event of pcEi+1(|E|), i.e., z′ = 0.

Equation 10 shows how to compute the reaction time of
a given primary job chain pcEi assuming the maximum input
delay.

RT (pcEi) = z + l(pcEi+1) + z′ (10)

where:
z = begin(pcEi+1(1))− begin(pcEi (1)) and z′ = 0

The maximum reaction time of a CEC E is:

MRT (E) = max
∀pcEi ∈ζ

RT (pcEi) (11)

2) Maximum Data Age: For a given CEC E and its set of
primary job chains ζ, our method computes the data age for all
pcEi ∈ ζ considering the maximum delay z′ that an actuation
output could suffer. In the worst case, for a primary job chain
pcEi , the last actuation based on a given input happens right
before the logical write-event of the last job of pcEi+1. We
consider, as Günzel et al. [10], that the input data on which
the outputs are based is read during the logical read-event of
pcEi (1), i.e., z = 0.

Equation 12 shows how to compute the data age of a given
primary job chain pcEi assuming the maximum output delay.

DA(pcEi) = z + l(pcEi) + z′ (12)

where: z = 0 and z′ = end(pcEi+1(|E|))− end(pcEi (|E|))
The maximum data age of a CEC E is:

MDA(E) = max
∀pcEi ∈ζ

DA(pcEi) (13)

VI. PRACTICALLY ENFORCING DETERMINISTIC
COMMUNICATION POINTS

The LET model assumes that tasks’ inputs and outputs are
logically updated at the beginning and end of their commu-
nication intervals. However, platforms are not infinitely fast
to realize such behavior. Therefore, the deterministic ordering
and atomic execution of these updates must be enforced to
preserve the desired logical behavior. At the implementation
level, the LET model is enforced by using hardware/software
mechanisms [24] [17]. In the literature, different ways to
implement the logical behavior of the LET model have been
proposed [2] [5] [17] [18] [25].

One way to implement the logical behavior of the LET
model is by implementing auxiliary tasks, which are respon-
sible for updating the inputs and outputs of the tasks [2] [17].
For instance, the implementation of a task τ would consist of
three tasks: (i) a reader (copy-in) task τR; (ii) an execution task
τE ; (iii) a writer (copy-out) task τW . Hereafter, we discuss
one of the possibilities of implementing the logical behavior
of the LET model when shortening and shifting communica-
tion intervals. Note that other implementations respecting the
logical behavior and the deterministic ordering of execution
of the tasks could be used.

At the beginning of Lτ , the auxiliary reader task (τR) copies
all the input data necessary for τE’s execution to a local
variable. At the end of Lτ , the auxiliary writer task (τW)
copies τE’s output data to the shared variable that will be
accessed by the next task in the CEC. Therefore, tasks τR

and τW are responsible for updating the inputs and outputs of
τ at the boundaries of Lτ .

Since the auxiliary reader (resp. writer) task has to be
executed as close as possible to the start (resp. end) of Lτ , τR

and τW have to be characterized by a very short WCET and a

very high priority level [17]. Therefore, the correct positioning
of τR and τW is important in order to achieve the expected
logical behavior of τ [2].

We use the parameters of τ and its communication interval
Lτ to set the parameters of τR, τE and τW . The auxiliary
tasks τR and τW are periodic task with period TτR (resp.
TτW) equal to Tτ . The correct positioning of τR and τW

is done by means of an additional phase. Therefore, τR has
a phase φτR = φτE = φ′τ + ESτ , while τW has a phase
φτW = φ′τ +LFτ . We consider that the execution times of the
copy operations done by τR and τW are very short and their
overhead included in Cτ . The parameters (CτE , TτE , DτE) of
τE are equal to the parameters of τ .

Figure 4 shows how the auxiliary tasks τR and τW of a
given task τ can be modeled. Note that in Figure 4 τE = τ .

Fig. 4: Enforcing deterministic communication points by
means of auxiliary tasks

The copying operations carried out by the auxiliary tasks
(τR and τW) are facilitated via highest priority interrupts,
which are added for each periodic auxiliary task. These
interrupts are activated with the same period as the tasks
they correspond to, allowing them to execute immediately. In
order to obtain freshest data values, write output operations
are favored over read input operations. Therefore, the write
output operations are given the highest priority in the system,
whereas read input operations are given the second highest
priority.

VII. EXPERIMENTAL RESULTS

We evaluate our work based on the Real World Automotive
Benchmarks presented by BOSCH [8] and synthetic task sets.
We compare our method with the approach presented by
Bradatsch et al. [7] and the LET model. The method proposed
by Bradatsch et al. [7] will be referenced as the WCRT-
LET model. We consider that the task sets run on a system
comprising four cores and that tasks are scheduled according
to rate monotonic.

A. Real World Automotive Benchmarks
We generated and tested 500 schedulable task sets based on

the parameters of the Real World Automotive Benchmarks [8].
We assign periods to tasks following the definitions of Table
III in [8]. The range of possible periods is: [1, 2, 5, 10, 20,
50, 100, 200, 1000]ms. Note that the sum of the probabilities
for possible periods in [8] is 85%. The remaining 15% is for
angle-asynchronous tasks. Since, we do not consider angle-
asynchronous tasks, we divided all probability values by 0.85.
Inter-task communications follow the definitions of Table II
in [8]. For each task we generated a WCET following the
definitions of Tables IV and V in [8].

As stated in [8], in typical engine control applications there
are between 30 and 60 CECs. In our experiments, on average,
there are 38 CECs per task set. The number of periods per CEC
is randomly chosen between the interval [1,3] following the
definitions of Table VI in [8]. For each period that composes
the CEC, there are 2 to 5 tasks with that same period (Table
VII in [8]). Each CEC is composed of 2 to 15 tasks. The total
utilization of cores is ≈ 71% (per core), on average.

In figures 5 and 6, we show the maximum reaction time
and data age results respectively. The box plots show the
25th percentile, average, 75th percentile and the maximum &
minimum-case values. Note that in Figure 5, we normalized
the results with respect to the maximum reaction time obtained
by the LET model, while in Figure 6 we normalized the results
with respect to the maximum data age.

Fig. 5: Normalized maximum reaction time w.r.t LET

As shown in Figure 5, our model managed to obtain
maximum reaction time values that are on average, ≈ 63%
lower than the values obtained by LET. Similarly, the WCRT-
LET model managed to improve the maximum reaction time
values by ≈ 20%.

As recently shown by Günzel et al. [10], values for the
maximum reaction time and data age are equivalent. Figure
6 shows the results for the maximum data age. On average,
our method obtained maximum data age values that are ≈
63% lower than the values obtained by LET. The WCRT-LET
model improved the maximum reaction time values by ≈ 20%.

Fig. 6: Normalized maximum data age w.r.t LET

Table VI in [8] shows that 70% of the CECs present in
the benchmarks are single-rate. Since our method shortens
and shifts the communication intervals of the tasks, it makes
possible for incoming inputs to propagate through the CEC
within one repetition interval rather than in multiple as with
|Li| = Ti. As a result, in some cases our method resulted in an
improvement exceeding 80% of that achieved using the LET
model as shown in figures 5 and 6.

B. Synthetically Generated Workloads

We randomly generated 500 schedulable task sets, where
we chose task periods and inter-task communication as in the
previous experiment. However, this time we allowed tasks to
have higher WCET values, increased the number of possible
periods per CEC from 3 to 5 and reduced the probability of
single-rate CECs from 70% to 7%. The 63% difference was
split equally among the other possible number of periods. The
new probabilities for possible number of periods per CEC are
{1: 7%, 2: 35.75%, 3: 25.75%, 4: 15.75%, 5: 15.75%}.

As a result of increasing the number of possible periods in
a CEC, we increased the total number of tasks composing it
from 15 to 25. We chose randomly the amount of CECs per
task set from interval [10, 20], with an average of 13 CECs per
task set. The total utilization of cores is ≈ 80%. The obtained
results are summarized in figures 7 and 8.

As shown in figure 7 and 8, our method outperformed
WCRT-LET and the LET model once again. For synthetic
task sets, our model managed to obtain maximum reaction
time values that are on average, ≈ 67% lower than the values
obtained by LET, while the WCRT-LET model managed to
improve the maximum reaction time values by ≈ 20%.

In Figure 9, we analyze a single task set to further show how
much improvement our method achieves over the LET model
with respect to the maximum data age. We randomly selected
one task set from the 500 schedulable task sets to analyze.
The selected task set has 12 CECs and a total of 107 tasks
distributed on the 4 cores. For example, the CEC with ID=9
has 18 tasks and 5 periods [20, 50, 100, 200, 1000]ms. Figure

Fig. 7: Normalized maximum reaction time w.r.t LET

Fig. 8: Normalized maximum data age w.r.t LET

9 shows that for the CEC with ID=9, our method improved the
maximum data age value by ≈ 76%, while the WCRT-LET
model improved it by ≈ 20%.

Fig. 9: Comparison of the normalized maximum data age
values of the CECs present in a randomly selected task set

VIII. CONCLUSION

In this paper, we proposed a method to obtain less pes-
simistic end-to-end latencies of multi-rate cause-effect chains
applying the LET model, by considering knowledge of the
schedule in later design phases of safety critical applications.

Our method shortens and shifts communication intervals
by exploiting schedule information, while maintaining the
deterministic characteristics of the LET model and tasks’
periodicity.

Experiments showed that for task sets based on the Real
World Automotive Benchmarks presented by BOSCH [8] or
randomly generated, our method produced less pessimistic
end-to-end latencies than previous works. On both test case
scenarios, it obtained end-to-end latency values that are, on
average, ≈ 65% lower when compared to the LET model.

If needed, e.g., for legacy reasons, our method does not have
to be applied to the entire task set, but also to only a subset.

In future work, we plan to investigate the impact of our
method in cause-effect chains containing different execution
models and how it can influence the end-to-end latencies.

ACKNOWLEDGMENTS

We would like to thank Denis Claraz, Vitesco Technologies
France S.A.S, and the anonymous reviewers for their feedback
and thorough comments. We are also grateful for all the
feedback provided by the members of the Real Time Systems
Chair at the University of Kaiserslautern-Landau.

REFERENCES

[1] S. Matic and T. A. Henzinger, “Trading end-to-end latency for com-
posability,” in 26th IEEE International Real-Time Systems Symposium
(RTSS’05). IEEE, 2005, pp. 12–pp.

[2] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Com-
munication centric design in complex automotive embedded systems,”
in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[3] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate dags from multi-rate task sets,” in 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2020, pp. 226–238.

[4] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in International Work-
shop on Embedded Software. Springer, 2001, pp. 166–184.

[5] J. Martinez, I. Sanudo, P. Burgio, and M. Bertogna, “End-to-end latency
characterization of implicit and let communication models,” in Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), Dubrovnik, Croatia, 2017.

[6] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical characterization of
end-to-end communication delays with logical execution time,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2244–2254, 2018.

[7] C. Bradatsch, F. Kluge, and T. Ungerer, “Data age diminution in the log-
ical execution time model,” in International conference on Architecture
of computing systems. Springer, 2016, pp. 173–184.

[8] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS),
vol. 130, 2015.

[9] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in IEEE Real-Time Systems Symposium:
30/11/2009-03/12/2009. IEEE Communications Society, 2009.

[10] M. Günzel, H. Teper, K.-H. Chen, G. von der Brüggen, and J.-J. Chen,
“On the equivalence of maximum reaction time and maximum data
age for cause-effect chains,” in 35th Euromicro Conference on Real-
Time Systems (ECRTS 2023). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2023.

[11] T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich, “Data propagation
delay constraints in multi-rate systems: Deadlines vs. job-level depen-
dencies,” in Proceedings of the 26th International Conference on Real-
Time Networks and Systems, 2018, pp. 93–103.

[12] J. Forget, F. Boniol, and C. Pagetti, “Verifying end-to-end real-time
constraints on multi-periodic models,” in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2017, pp. 1–8.

[13] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in 2016 IEEE 22nd International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE, 2016, pp.
159–169.

[14] M. Dürr, G. V. D. Brüggen, K.-H. Chen, and J.-J. Chen, “End-to-end
timing analysis of sporadic cause-effect chains in distributed systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 5s, pp. 1–24, 2019.

[15] J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst, “Data-
age analysis and optimisation for cause-effect chains in automotive con-
trol systems,” in 2018 IEEE 13th international symposium on industrial
embedded systems (SIES). IEEE, 2018, pp. 1–9.

[16] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen, M. Dürr, and
J.-J. Chen, “Timing analysis of asynchronized distributed cause-effect
chains,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2021, pp. 40–52.

[17] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2017.

[18] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in 2019
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2019, pp. 207–219.

[19] T. Kloda, B. d’Ausbourg, and L. Santinelli, “Towards a more flexible
timing definition language,” in 12th International Workshop Quantitative
Aspects of Programming Languages and Systems-at ETAPS 2014, 2014.

[20] W. Pree, J. Templ, P. Hintenaus, A. Naderlinger, and J. Pletzer, “Tdl-
steps beyond giotto: A case for automated software construction.” Int.
J. Softw. Informatics, vol. 5, no. 1-2, pp. 335–354, 2011.

[21] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104–113, 2017.

[22] A. Kordon and N. Tang, “Evaluation of the age latency of a real-time
communicating system using the let paradigm,” in ECRTS 2020, vol.
165. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.

[23] J. Y.-T. Leung, Merrill, and ML, “A note on preemptive scheduling of
periodic, real-time tasks,” Information processing letters, vol. 11, no. 3,
pp. 115–118, 1980.

[24] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level logical
execution time: Augmenting the logical execution time paradigm for
distributed real-time automotive software,” ACM Transactions on Cyber-
Physical Systems, vol. 5, no. 2, pp. 1–27, 2021.

[25] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2018, pp. 240–250.

