
HAL Id: hal-04616772
https://hal.science/hal-04616772

Preprint submitted on 19 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RISC-V processor enhanced with a dynamic
micro-decoder unit

Juliette Pottier, Thomas Nieddu, Bertrand Le Gal, Sébastien Pillement,
Maria Mendez Real

To cite this version:
Juliette Pottier, Thomas Nieddu, Bertrand Le Gal, Sébastien Pillement, Maria Mendez Real. RISC-V
processor enhanced with a dynamic micro-decoder unit. 2024. �hal-04616772�

https://hal.science/hal-04616772
https://hal.archives-ouvertes.fr

RISC-V processor enhanced with a dynamic
micro-decoder unit

Juliette POTTIER†, Thomas NIEDDU‡, Bertrand LE GAL‡, Sébastien PILLEMENT†, and Maria MENDEZ REAL†
†Nantes Université, CNRS, IETR-UMR 6164, F-44000 Nantes, France

‡Université de Rennes, IRISA/INRIA lab., CNRS UMR 6074, 35042 Rennes, France

Abstract—For years, the open-source RISC-V instruction set
has been driving innovation in processor design, spanning from
high-end cores to low-cost or low-power cores. After a decade
of evolution, RISC architectures are now as mature as the CISC
architectures popularized by industry giant Intel. Security and
energy efficiency are now joining execution speed among the
design constraints. In this article, we assess the benefits and
costs associated with integrating a micro-decoding unit inspired
by CISC processors into a RISC-V core. This unit, added in a
specific pipeline stage, should enable dynamic custom instruction
sequences execution whose usage could be, for instance to
compress binaries, obfuscate behavior, etc.

Index Terms—Architecture, RISC-V, ISA, CISC, micro-
decoding

I. INTRODUCTION

The field of Internet of Things (IoT) [1] and Edge Comput-
ing [2] requires the production of a wide range of processor
architectures that meet various application constraints (com-
puting power, cost, energy, security, etc.). Currently, Complex
Instruction Set Architecture (CISC) and Reduced Instruction
Set Architecture (RISC) processors provide high levels of
performance, but in two different ways [3]. The efficiency
of CISC architectures comes from their ability to implement
complex operations with a single assembler instruction. They
provide the compiler with many macro-instructions that are
efficiently decoded and executed by the hardware architecture.
These macro-instructions offer advantages from an application
perspective; for example, they allow for optimal utilization of
the hardware architecture on which the application is executed,
and they also enable a high density of binary programs.
These architectures are mainly developed by large industrial
groups such as Intel or AMD and are therefore closed. Efforts
from the scientific community have enabled the extraction of
microcode from AMD K8 and K10 processors and under-
standing the operation of their micro-decoding unit [4]. While
being transparent to the end user, the microcode (stored in
dedicated a memory) can be updated by the manufacturer to fix
potential bugs and/or counter certain post-fabrication attacks.
This is notably what allowed Intel to address the security
vulnerabilities SPECTRE [5] and MELTDOWN [6].

RISC architectures are designed to integrate few instruc-
tions, thus lacking the micro-decoding mechanism. The open-
source RISC-V ISA (Instruction Set Architecture), in its RVI
configuration, provides the compiler with about fifty elemen-
tary instructions [7]. Many architectures, both low-cost [8]–

[12] and high-end [13]–[15], implement this instruction set.
Currently, high-end RISC-V processors feature 64-bit data
paths, deep pipelines, and are capable of running a Linux-
type operating system thanks to their advanced architectural
optimizations. When using all these architectures, it is up to the
compiler to identify the appropriate instruction combinations
to generate efficient code. This inevitably leads to the produc-
tion of larger programs compared to their CISC counterparts,
despite the use of compressed instruction formats [16], [17].
Furthermore, unlike CISC architectures, hardware implemen-
tations of this reduced instruction set do not allow for post-
fabrication architecture updates necessary, for example, to
address security vulnerabilities, fix bugs, better adapt to the
application domains or support new instruction set extensions.

In this paper, we investigate the introduction of a micro-
decoder unit into RISC-V processor architectures to provide
flexibility. This mechanism, introduced into the architecture,
enables the decoding of custom instructions to RISC-V in-
structions, or from RISC-V instructions to RISC-V instruc-
tions. This work would allow the designer to: (1) dynamically
alter the behavior of the micro-architecture without modifying
the original binary, (2) compress the size of programs, or (3)
modify the execution of an instruction. To our knowledge,
there is no existing work in the literature addressing the
integration of such a unit into a RISC processor.

The rest of the article is structured as follows. Section II
presents the study’s context and the selected RISC-V core
architecture. Section III discusses the strategies for integrating
the micro-decode unit, our chosen approach, and the necessary
architectural modifications. The testing environment, experi-
mental methodology, and initial results are detailed in Sec-
tion IV. Section V discusses these results before concluding.

II. MICRO-DECODING UNIT PROPOSAL

Various high-end processor architectures compatible with
the RISC-V instruction set are currently available. The most
popular processor cores are BOOM [14], CVA6 [13], SHAKTI
and ROCKET cores. To achieve high-performance levels, they
incorporate many pipeline stages that partition the computa-
tions to be executed. The number of pipeline stages generally
varies from 5 to a dozen, depending on the core setup. In
the most traditional configuration, architectures supporting
compressed instructions, such as the CVA6 [13], feature 6
pipeline stages. The first 2 stages, called Frontend, handle

FSM

ROM

IDFrontend SECV Issue

Scoreboard

Read
Operands

Register
Renaming

32 GPR
+5 regs

00

µD

@dr+1

32
or

 skip

EX Commit

Re-aligner

Compressed
decoder

Decoder

FIFO

Fig. 1: CV64A6 core architecture enhanced with our micro-decoding unit

PC generation, instruction cache access, branch prediction
and an instruction queue. The following stage (ID) realigns
compressed instructions and translates instructions into control
signals. The next stage, Issue, integrates the scoreboard. The
scoreboard controls the next 2 stages, scheduling the opera-
tions to be executed according to available resources. This is
where the register queues (GPR and FPR) are accessed. The
execution stage (EX) takes care of the execution of the oper-
ations by the functional units. Finally, the last stage, Commit,
removes the instructions from the pipeline and retrieves the
pending results.

The addition of a CISC-like micro-decoding unit can be
introduced at different levels. The simplest strategy is to
integrate it ahead of the instruction decoder (after the fetch
stage). The main advantage of this approach is that macro-
instructions can be easily detected, as they are still compressed
to 32 bits. In addition, it is possible to reuse the traditional
instruction decoder to generate the control signals that will
drive the architecture. However, this approach has some no-
table drawbacks. The main limitation is the impossibility of
addressing additional registers outside GPR space to store
temporary computation data, thus limiting the interest of the
approach. Indeed, it discards the possibility to store temporary
values. Consequently, it was decided to add a micro-decoding
unit between the Decode stage and the Issue one, as shown
in Figure 1. A specific pipeline stage, dedicated to this task,
is added to provide both (1) flexibility and modularity and (2)
to avoid impacting the critical path of the core.

III. MICRODECODING UNIT DESIGN

The micro-decoding unit must be able to generate sequences
of NP instructions for each of the P macro-instructions it
needs to handle. Different strategies are possible for generating
such sequences, such as the use of hardwired logic. However,
hardware complexity will quickly increase with the values
of NP and P, and the architecture of the micro-decoding
stage will need to be revised with each modification of
the sequences. Moreover, this approach disables post-design
microcode upgrade. The most generic approach is based on

the use of memory, which is responsible for storing the P
sequences of NP micro-instructions.

Assuming that each macro-instruction is made up of a
maximum of NP micro-instructions, and that for address
simplicity, macro-instructions reserve P slots for all macro-
instructions, then memory is made up of NP × P elements.
Instructions relating to the macro-instruction idx are stored in
the address range [idx ×N, (idx + 1) ×N − 1]. Each binary
word in this memory represents an instruction in the sequence
NP. To reduce the hardware complexity of the microdecoding
unit, it is important that these binary words are as compact
as possible. However, they must first indicate the functional
unit on which the operation is to be performed (e.g. ALU
(Arithmetic-Logic Unit), LSU (Load-Store Unit), . . .) and the
operation to execute (e.g. ADD, XORI, . . .). In the case of
the CVA core, this information is encoded using the fu and
opcode fields, as shown in Figure 2. Initially, we assume that
the sequences of arithmetic and logical operations for the two
fields can be stored on 4 bits and 8 bits, respectively.

In addition, it is necessary to memorize the source (rs1 and
rs2) and destination (rd) registers to be used by the micro-
instructions. When microdecoding a macro-instruction, the
rd register provisioned by the compiler for macro-instruction
execution may not be enough to store temporary data. Conse-
quently, the addresses of the rd, rs1 and rs2 registers are
encoded on 3 bits, enabling each instruction to access rs1,
rs2, rd as well as 5 additional registers (added to the GPR)
which are only accessible via the microdecoder. Finally, to
make the microdecoder more flexible, two additional fields
have been added. The first (imm), allows manipulation of
immediate values, while the second (skip) indicates the
current instruction is the last valid instruction in the sequence.

Without further optimization of the microdecoder’s memory
structure, and assuming that immediate data is encoded on 10
bits, the M size of each microinstruction is 32 bits. The overall
cost of memory would evolve linearly with P: P ×N ×M =
P ×N × 32 bits. This format is consistent with the size of
the memory blocks available on FPGA circuits. It should be
noted that it would be possible to implement special coding of

rs1 rs2

bin

13 1116 1431 28

110
110
001 010

110
110
001 010
000 001
110
110
001 010

110
110
001 010
000 001
000
000

110 001

000 001

000
000

000
000

000
000

000
000

000
000

SRLW
SLLW
ORL

SRLW
SLLW
ORL

XORL
SRLW
SLLW
ORL

SRLW
SLLW
ORL

XORL
XORL
ANDL

XORL

XORL

srliw
slliw
or

srliw
slliw
or
xor

srliw
slliw
or

srliw
slliw
or
xor
xori
andi

xor

xor

CVA6asm
t2 rs1 7
t3 rs1 1
t2 t2 t3

t2 rs1 6
t3 rs1 2
t2 t2 t3

t2
t2 rs1 5
t3 rs1 3
t2 t2 t3

t2 rs1 4
t3 rs1 4
t2 t2 t3

t2
99

rd 255

rs1 t2

t2

rd rs1 rs2 imm
t1

0
0

0
0

0
0

0
0

t1

t1
t1

t1
t1

t1
t1

t1
t1

t1
t1

t1
t1

t1 t1

t1 t1

t1

t1

rd

19 17

001
010
001

001
010
001
000
001
010
001

001
010
001
000
000
101

000

000

fu

0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011

op

27 20

00001010
00001011
00000101
00000100

00000101
00000100

00000101
00000100

00000101
00000100
00000100
00000110

00001011

00001011

00001011

00001010

00001010

00001010

10 1
imm

0000000111

0000000001

0000000110

0000000010

0000000101

0000000011

0000000100

0000000100

0001100011

0011111111

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

0000000000

... 0

000 0000000011 00000000 0000000000 0

ROM @dr

...

idx x 32 + 0
idx x 32 + 1
idx x 32 + 2

idx x 32 + 31

idx x 32 + 15
idx x 32 + 16
idx x 32 + 17

idx = 0

skip

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

1

Fig. 2: Micro-decoding unit ROM content for macro-instruction encoding for S-Box computation

micro-instructions (type-R, type-I, etc.) to minimize memory
complexity, but this would require decoding logic.

The microinstruction memory is controlled and interfaced
with the processor pipeline by a state machine (FSM: Finite
State Machine). This machine has two modes of operation: (1)
a bypass mode that transmits conventional RISC-V instruc-
tions to the next pipeline stage; and (2) a mode for injecting
micro-instructions into the pipeline, which is triggered as soon
as a macro-instruction is detected. The microdecoding mode
includes address calculation based on the sequence to be
injected. Synchronization with other stages can be achieved
using a register barrier or even a register queue of the FIFO
(First In First Out) type.

As depicted in figure 1, the additional pipeline stage inte-
grates 3 elements:

1) a FIFO in charge of synchronization (acknowledgement
signals) with the Issue stage. It enables instructions to be
delayed, as the microdecoder can generate one instruction
per cycle, thus saturating the scoreboard. Its depth has been
set at 2, while its width is linked to the control signals
carried in the pipeline, i.e. 364 bits. This is a FIFO of the
FWFT type (First-Word-Fall-Through), minimizing the data
access penalty.

2) an FSM associated with an address counter. In its initial
state, it behaves like a register barrier: it stores the relevant
information (PC, immediate value, rd, rs1, rs2, . . .) of
decoded instructions. When a decoded macro-instruction is
presented, it triggers a microdecoding sequence. Based on
its idx ∈ P, the FSM calculates the address corresponding
to the correct sequence in memory and enters the microde-
coding state. When the sequence run is complete, the FSM
returns to the (bypass) state.

3) the memory containing the sequences of micro-instructions
described in the previous section. An example of memory
from one of the test applications (AES encryption/decryp-
tion) is shown in Figure 2. This calculation generates the
contents of the S-Box. It requires logical operations: SHIFT,
AND, OR, XOR in order to rotate on 8 bits (⟲). This
operation is broken down into 18 RISC-V instructions. In
the sequence, the registers marked t refer to temporary
registers accessible only via the microdecoding unit.

IV. EXPERIMENTAL RESULTS

The impact of inserting the micro-decoding unit inside a
new pipeline stage was evaluated in terms of execution time
penalties of a set of test applications. To achieve this, we
modified a CV64A6 [13] core. The architecture was simulated
at cycle level using the Verilator tool (version 4.110) to
accurately evaluate the execution times of various benchmarks
from the literature [18]–[21]. Benchmark execution times were
calculated from CSR registers. The toolchain used to generate
the test programs is based on GCC compiler version 12.1.0.

The results of the cycle accurate simulations show that when
the micro-decoding unit is included in the CVA6 core, it has a
slight impact on program execution time, even if the program
does not use the micro-decoding unit. A slight variation of
up to +0.3% was observed on 25 benchmarked applications,
This penalty is due to the time taken to re-fill the pipeline
in the event of incorrect branch prediction at runtime. The
same protocol was followed for the two pedagogical examples,
including the S-Box generation and an AES encryption using
the microdecoding unit. In simulation, without using the
microdecoder, the blank CV64A6 completes the execution
in 55368 clock cycles. On the proposed architecture, when
the micro-decoding unit is used to deliver the 18-instruction

LUT SRL FF BRAM36 BRAM18 DSP

baseline 44148 0 24076 36 0 27

With µdec. 45880 0 25078 36 0 27
(2 instr.) +3,9% - +4,2% - - -

With µdec. 45922 0 25046 37 0 27
(32 instr.) +3,8% - +3,8% +2,6% - -

With µdec. 45937 0 25068 38 0 27
(64 instr.) +4,1% - +4,1% +5,6% - -

TABLE I: Hardware complexity comparison

sequence, the timing is 54796 clock cycles. Performance is
better (-1% less clock cycles) when it is used. This is due to
the fact that ROM injects one instruction per clock cycle into
the pipeline, whereas the blank architecture has to fetch them
from its instruction cache or even its main memory, incurring
penalties. This finding is similar when the study is carried
out directly on an FPGA board. However, unlike simulation
results cycle-accurate, those obtained on circuit FPGA are
more difficult to obtain and interpret. This is due to the OS,
and more particularly the scheduler, which due to its regular
execution noises the measurements, making it impossible to
obtain accurate data when DDR memory and caches are no
longer simulated.

The impact on the core’s hardware complexity was also in-
vestigated. The architecture was synthesized and implemented
on a Kintex-7 FPGA (XC7K325T-2FFG900C) using Xilinx’s
Vivado 2020.2 tool. A summary of the results obtained after
placement and routing is provided in Table I. In this assess-
ment, the maximum operating frequency set at 50 MHz is
not impacted by the micro-decoding stage, demonstrating the
absence of a critical path in our stage.

The first experiment illustrates the case where the micro-
decoding unit has only 2 micro-instructions. In this context,
there was a slight increase in hardware complexity of 3.9%
for LUTs and 4.2% for FFs. These increases are mainly due
to the addition of the FSM, 5 registers in the GPR queue (and
its multiplexing logic) and the insertion of a FIFO of depth
2 and width 364 bits between the microdecoding stage and
the execution stage. Note that in its version with more than 2
micro-instructions, the memory of our stage is implemented
by distributed memory. The type of implementation changes
as the size of the memory containing the micro-instructions
increases. For example, when 64 macro-instructions are stored,
2 RAM blocks are added to the LUTs and FFs.

V. CONCLUSION

In this article, a CISC-type microdecoding unit has been
implemented in a RISC-V ecosystem processor. This solution,
involving the addition of an extra pipeline slice, results in
only a small latency overhead for applications not using this
functionality. Moreover, the additional costs in terms of hard-
ware complexity are low in comparison with the complexity
of the CVA6 core. This work shows that it is possible to
hybridize a RISC-V architecture by adding a microdecoder.
This enhancement opens the way to new research perspectives

for: (1) binary size reduction, identifying recurrent instruction
patterns and incorporating them into the micro-decoding mem-
ory (2) for static code obfuscation purposes, adding specialized
instructions, akin to “black boxes,” (3) to address security con-
cerns for instance by injecting phantom instructions [22], [23]
into the processor pipeline and/or alter the way calculations
are performed to complicate attacks via side-channels.

ACKNOWLEDGMENT

We thank the ANR which supports this work under the
convention ANR-21-CE-39-0017.

REFERENCES

[1] M. Hasan, “State of IOT 2022: Number of connected IOT devices
growing 18% to 14.4 billion globally,” https://iot-analytics.com/number-
connected-iot-devices, 2022, consulté: 29 Mars 2023.

[2] V. N. Chander and K. Varghese, “A soft RISC-V vector processor for
Edge-AI,” in Proceedings of VLSID, 2022.

[3] M. Burrell, Fundamentals of Computer Architecture. Red Globe Press
London, 2004.

[4] P. Koppe, B. Kollenda, and al., “Reverse Engineering x86 Processor
Microcode,” CoRR, vol. abs/1910.00948, 2019.

[5] P. Kocher, J. Horn, and al., “Spectre Attacks: Exploiting Speculative
Execution,” in Proceedings of S&P’19, 2019.

[6] M. Lipp, M. Schwarz, and al., “Meltdown: Reading Kernel Memory
from User Space,” in Proceedings of USENIX Security, 2018.

[7] S. L. Harris and D. Harris, Digital Design and Computer Architecture,
RISC-V Edition. Elsevier Inc., 2021.

[8] Y.-H. Cheng, L.-B. Huang, and al., “RV16: An Ultra-Low-Cost Em-
bedded RISC-V Processor Core,” Journal of Computer Science and
Technology, vol. 37, no. 6, pp. 1307–1319, 2022.

[9] K. Patsidis, D. Konstantinou, and al., “A low-cost synthesizable RISC-
V dual-issue processor core leveraging the compressed Instruction Set
Extension,” Microprocess. Microsystems, vol. 61, pp. 1–10, 2018.

[10] D. A. Santos, L. M. Luza, and al., “A Low-Cost Fault-Tolerant RISC-V
Processor for Space Systems,” in Proceedings of DTIS, 2020.

[11] R. Serrano and al., “A Low-Power Low-Area SoC based in RISC-V
Processor for IoT Applications,” in Proceedings of ISOCC, 2021.

[12] N. Albartus, C. Nasenberg, and al., “On the design and misuse of mi-
crocoded (embedded) processors — a cautionary note,” in Proceedings
of USENIX Security, 2021.

[13] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2019.

[14] J. Zhao, B. Korpan, and al., “SonicBOOM: The 3rd Generation Berkeley
Out-of-Order Machine,” in Proceedings of the Workshop on Computer
Architecture Research with RISC-V, 2020.

[15] D. Petrisko, F. Gilani, M. Wyse, and al., “BlackParrot: An Agile Open-
Source RISC-V Multicore for Accelerator SoCs,” IEEE Micro, vol. 40,
no. 4, pp. 93–102, 2020.

[16] H. Lekatsas and W. Wolf, “Code compression for embedded systems,”
in Proceedings of DAC, 1998.

[17] H. Lozano and M. Ito, “Increasing the code density of embedded risc
applications,” in Proceedings of ISORC, 2016.

[18] B. Le Gal and C. Jego, “Softcore Processor Optimization According
to Real-Applicaion Requirements,” IEEE Embedded Systems Letters,
vol. 5, no. 1, pp. 4–7, 2013. [Online]. Available: https://hal.science/
hal-00945635

[19] M. Guthaus, J. Ringenberg, and al., “MiBench: A free, commercially
representative embedded benchmark suite,” in Proceedings of WWC-4
(Cat. No.01EX538), 2001.

[20] Fossati, Luca, “TRAP benchmark suite for SystemC and TLM based
Instruction Set Simulators (ISS),” http://code.google.com/p/trap-gen.

[21] S. Lin and D. J. Costello, Error control coding: fundamentals and
applications. Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.

[22] G. Leplus, O. Savry, and L. Bossuet, “Insertion of random delay with
context-aware dummy instructions generator in a RISC-V processor,” in
Proceedings of HOST, 2022.

https://hal.science/hal-00945635
https://hal.science/hal-00945635
http://code.google.com/p/trap-gen

[23] M. Taram, A. Venkat, and D. Tullsen, “Mitigating Speculative Execution
Attacks via Context-Sensitive Fencing,” IEEE Design & Test, vol. 39,
no. 4, pp. 49–57, 2022.

	Introduction
	Micro-decoding unit proposal
	Microdecoding unit design
	Experimental results
	Conclusion
	References

