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Abstract Many land surface models (LSMs) assume a steady‐state assumption (SS) for forest growth,
leading to an overestimation of biomass in young forests. Parameters inversion under SS will potentially result
in biased carbon fluxes and stocks in a transient simulation. Incorporating age‐dependent biomass into LSMs
can simulate real disequilibrium states, enabling the model to simulate forest growth from planting to its current
age, and improving the biased post‐calibration parameters. In this study, we developed a stepwise optimization
framework that first calibrates “fast” light‐controlled CO2 fluxes (gross primary productivity, GPP), then leaf
area index (LAI), and finally “slow” growth‐controlled biomass using the Global LAnd Surface Satellite
(GLASS) GPP and LAI products, and age‐dependent biomass curves for the 25 forests. To reduce the
computation time, we used a machine learning‐based model to surrogate the complex integrated biosphere
simulator LSM during calibration. Our calibrated model led to an error reduction in GPP, LAI, and biomass by
28.5%, 35.3% and 74.6%, respectively. When compared with net biome productivity (NBP) using no‐age‐
calibrated parameters, our age‐calibrated parameters increased NBP by an average of 50 gC m− 2 yr− 1 across all
forests, especially in the boreal needleleaf evergreen forests, the NBP increased by 118 gCm− 2 yr− 1 on average,
increasing the estimate of the carbon sink in young forests. Our work highlights the importance of including
forest age in LSMs, and provides a novel framework for better calibrating LSMs using constraints frommultiple
satellite products at a global scale.

Plain Language Summary Physical and biological process‐based models always overestimate the
biomass of young forests, with an assumption that they usually hold maximum carbon stocks like old‐growth
stands. Such an assumption can lead to biased carbon fluxes and stocks in further simulation. Considering stand
age in LSMs improves their ability to simulate real forest growth. In this study, we develop a stepwise method to
account for stand age effects in model simulations by assimilating remotely sensed information on vegetation
productivity, leaf area, biomass, and age. To reduce the computational cost of the complex original code, we use
a substitute model constructed using a machine learning method for calculations. The improved model
successfully reproduces the changes in ecosystem biomass and fluxes as forest age varies. Our research provides
a novel approach to improving other land surface models for predicting age‐dependent ecosystem properties.

1. Introduction
Land surface models (LSMs) are an important tool for exploring the dynamics of energy budgets (Alton, 2013; Li
et al., 2016), water and carbon cycles (Lafont et al., 2012), and plant growth (Liu et al., 2016) due to their
capability of representing the complex interplay between biophysical and biogeochemical processes. However,
carbon fluxes predicted by LSMs exhibit substantial variability in spatiotemporal patterns (Krause et al., 2022;
Seiler et al., 2022). This variability can be due to uncertainties in input variables (Barman et al., 2014), over-
simplified model structures and assumptions like a simple big leaf canopy model for vegetation (Chaney
et al., 2016), or poorly specified parameters resulting from a lack of information (Bastrikov et al., 2018; Xiao
et al., 2014). To increase the realism of LSMs, the modeling community has been adding more and more detailed
processes into LSMs, which may have decreased model structural uncertainties, but inevitably increased model
complexity and the number of unknown parameters (Famiglietti et al., 2021).
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To reduce the number of unconstrained parameters, observations on ecosystem properties from various temporal
and spatial scales are being used for model calibration (MacBean et al., 2016, 2022; Xiao et al., 2019). Current
calibration of carbon‐related parameters mainly focuses on using data that are intensively observed by field
measurements or space sensors, such as gross primary productivity (GPP), leaf area index (LAI), soil moisture,
and the fraction of absorbed photosynthetically active radiation (FAPAR), as independent or joint constraints
(Bacour et al., 2015; Forkel et al., 2019; He et al., 2021; Kumar et al., 2019; Ma et al., 2022a). These land surface
variables provide information on fast carbon and water fluxes exchanging, but poorly indicate the ecosystem
carbon stock evolution at longer timescales, leading to uncertainties in biomass, respiration, and net biome
productivity (NBP) predictions (Santaren et al., 2014; Thum et al., 2017).

Adding carbon stock observations into parameter optimization schemes makes it possible to constrain slower
processes like carbon allocation and tissue turnover, but will be challenged by the lack of representation of in-
dividual land age cohorts in models (Carvalhais et al., 2010). Initialization of LSMs usually runs repeating climate
conditions until equilibrium, or steady state (SS), when net carbon exchanges approach zero at the annual scale
(Ge et al., 2018; Pietsch & Hasenauer, 2006). This will result in an overestimation of the simulated biomass for
young forests, as the SS assumption would imply that they always hold maximum carbon stocks (Ciais
et al., 2008). However, in reality, young forests are considered to be strong carbon sinks irrespective of envi-
ronmental changes with GPP exceeding carbon losses from respiration (Heinrich et al., 2021, 2023). It will impact
the assessment of regional or global carbon budget, since young forests make up a significant proportion of the
global forested areas (Besnard et al., 2021; Pugh, Lindeskog, et al., 2019). Moreover, the SS assumption could
also introduce bias in parameter inversion within a model‐data fusion framework. For example, several ecological
parameters, like the decay rate of recalcitrant pools, turnover time and allocation have been indicated to exhibit
poor performances under the SS assumption (Ge et al., 2018; Wutzler & Reichstein, 2007). Such biases in the
initialization of pools and retrieved parameters could lead to incorrect assessments of forest carbon storage
capacity.

New frameworks for model calibration are required which consider the non‐equilibrated state of ecosystems. For
example, Carvalhais et al. (2008) introduced a factor to initialize the model running from an imbalance state
(carbon sink or source) and demonstrated that the differences between modeled carbon pools and observations
could be decreased with such relaxed steady‐state assumption. Considering that the growth process of a forest can
be reflected by the relationship between biomass and age (Amiro et al., 2010; Bukoski et al., 2022; Liu
et al., 2014; Repo et al., 2021; Thum et al., 2017) proposed a method that removed all biomass pools in the model
when the stand age was zero, followed by a simulation up to the current age. This approach enables the modeled
biomass to match the real age of the forest, and facilitates a more accurate representation of forest growth dy-
namics. Such age‐dependent biomass data assimilation has been performed at a site or plot scale but rarely at the
regional or global scale (Smallman et al., 2017; Thum et al., 2017). The lack of long‐term carbon stock data and
spatial age maps and the high computational cost of LSMs have been major bottlenecks for global applications
(MacBean et al., 2016; Thum et al., 2017).

The emergence of novel large‐scale biomass and age maps now provides the opportunity to explore the growth
trajectory of forests and the data basis for calibration of age‐dependent biomass dynamics in global models
(Besnard et al., 2021; Poulter et al., 2019; Xu et al., 2021). In addition, computationally efficient machine learning
(ML) emulators of computationally intensive LSMs are becoming available for LSMs calibration (Reichstein
et al., 2019). ML emulators are typically constructed with parameter samples and the corresponding model
outputs or errors, and then substitute the LSMs for the calibration. Many studies have shown that with a well‐
trained ML emulator, the calibration can be dramatically accelerated while maintaining sufficient model preci-
sion (Fer et al., 2018; Hawkins et al., 2019; Ma et al., 2022a; Xu et al., 2018).

In this study, we developed a stepwise calibration framework to assimilate age‐dependent biomass, GPP, and
LAI into a LSM (the integrated biosphere simulator, IBIS). We sequentially calibrated the sensitive parameters
in three steps by taking GPP, LAI, and biomass observations as constraints separately. Real stand age in-
formation was added to the IBIS by artificially removing all the biomass pools in IBIS for a simulated forest.
To reduce the computing time, we applied a modified adaptive surrogate modeling optimization method
(MASM) with a ML emulator in our calibration and tested the framework on several representative forests
across the world. The objectives of this study are to present a new framework for improving both the fast and
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slow processes of IBIS with multiple remotely sensed products and to explore the possibility of global
application.

2. Model and Materials
2.1. Model Description

The IBIS is a process‐based LSM representing energy balance, hydrological, soil, and vegetation dynamics in
different terrestrial ecosystems like forests, grass, and shrubs (Foley et al., 1996). The carbon cycle in IBIS
depends on processes including photosynthesis, respiration, allocation, and phenology. The canopy level
photosynthesis, that is, GPP, of vegetation follows Farquhar's scheme (Farquhar et al., 1980), and is calculated as
a function of absorbed light, temperature, CO2, and Rubisco enzyme capacity (Kucharik et al., 2000; Winter
et al., 2009). For forests, autotrophic respiration (Ra) is deduced from GPP to calculate net primary productivity,
which is then allocated into three biomass pools including leaf (Cbiol), wood (Cbiow), and fine root (Cbior)
(Equation 1) (Sierra et al., 2022). These pools are updated annually with constant allocation ratios (aleaf, awood,
aroot) and turnover times (tauleaf, tauwood, tauroot) as follows:

dBioi
dt

= ai(GPP − Ra) −
Bioi
taui

∑ ai = 1 (1)

where Bio represents live biomass including leaf, wood, and root biomass (Cbiol, Cbiow, Cbior), a is the allo-
cation ratio of different carbon pool i (i = leaf, wood, or fine root), and tau defines the turnover time (years) of
each pool.

The annual updated Cbiol is used to calculate daily LAI using specific leaf area (specla) and phenology function
in each plant functional type (PFT) as follows:

LAI = plai ∗ phen = Cbiol ∗ specla ∗ phen (2)

where “plai” is the potential LAI (yearly maximum LAI), “specla” represents the specific leaf area depending on
forest types, and “phen” is the function of temperature, representing the seasonal variation of leaves in each PFT.
The value of phen is one during the peak growing season, while equals zero when all leaves are shed. The climate
triggers of leaf flushing and shedding are different for deciduous and evergreen forests (Botta & Foley, 2002;
Kucharik et al., 2000).

The detailed description and parameterization strategy of the IBIS model can be found in Foley et al. (1996) and
Kucharik et al. (2000).

2.2. Data Sources

2.2.1. Model Forcing

The meteorological forcings including air temperature (°C), pressure (Pa), wind speed (m s− 1), specific humidity
(%), precipitation (mm), and downward solar radiation flux (Wm− 2) are from a gridded historical climate data set
CRUJRA v2.2 (Harris, 2021), which were reconstructed using the Japanese Reanalysis data (JRA) and the
Climate Research Unit data set from 1901 to 2020 with a resolution of 0.5° × 0.5° (Harris et al., 2014, 2020;
Kobayashi et al., 2015) (Table 1). The original 6 hourly data was aggregated into daily values to drive the IBIS
model. Soil sand and clay contents (%) are derived from a gridded Global Soil Data set for use in Earth System
Models (GSDE) with a resolution of 0.083° × 0.083° (Shangguan et al., 2014). The CO2 concentration used in our
simulations was reconstructed based on the ice‐core records before 1958, while from the Mauna Loa Observatory
measurements after 1958 (Thoning et al., 1989).

2.2.2. Satellite Products for Model Calibration: GPP, LAI, Biomass, and Age

We used eight‐day gridded GPP (2000–2019) and LAI (2000–2020) maps from the Global Land Surface Satellite
(GLASS) products suite (Liang et al., 2021) with a spatial resolution of 0.05°. The GPP product was derived from
a revised light use efficiency model that was calibrated using eddy covariance measurements and driven by
meteorological data (Zheng et al., 2020). The LAI data was generated by combining several existing global LAI
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products and the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) reflec-
tance information using a deep learning algorithm (Ma & Liang, 2022).

The biomass data used in this paper comes from a global annual biomass carbon density data set from 2000 to
2019 with a spatial resolution of 0.1° (Xu et al., 2021). It was developed spatially using a self‐improving ML
model trained with extensive biomass and forest height measurements (more than 100,000 plots) from ground, air,
and space. For the age of forests, we used a global ML product trained with more than 40,000 plots of global forest
inventories, biomass, and climate records (Besnard et al., 2021). It provides the age information of each 1 km
pixel circa 2010, with forest age values capped at 300 years. We resampled the age data into 0.1° to match the
biomass map by averaging all the 1 km forested pixels within every 0.1‐degree cell.

To ensure a relatively pure and unchanged forest type for our calibration, initially, we screened the data based on
two criteria: (a) vegetation type remained unchanged from 2010 to 2020, according to the MODIS annual land
cover product (MCD12Q1) (Homer et al., 2020), which was resampled to 0.1° × 0.1° to align with the satellite
products; (b) grid cells did not experience forest loss from 2010 to 2020 according to the forest cover and forest
loss data extended from Hansen et al. (2013) (data available at https://glad.earthengine.app/view/global‐forest‐
change). Following this, we randomly select 25 forests (one 0.1° × 0.1° pixel for each) from the remaining data,
with 3–4 in each PFT (Table 2).

3. Parameter Calibration Scheme
The objective of the calibration is to improve the simulation of biomass, which is regulated by “fast” (photo-
synthesis, phenology, respiration, etc.) and “slow” processes (long term carbon accumulation, etc.). We employed
a step‐by‐step calibration approach to sequentially calibrate various processes operating on distinct timescales.
This method allows for a more targeted and iterative calibration, ensuring that each data stream exclusively
constrains the most relevant model processes based on their relative contributions (Peylin et al., 2016). First, we
use the observed 8‐day LAI as forcing and 8‐day GPP as a reference to calibrate the light‐dependent carbon
parameters. Second, the observed LAI (8‐day) was used as a reference to calibrate the leaf carbon allocation and
turnover (thus indirectly the allocation to wood) as well as phenology parameters. Third, we used the annual
biomass and forest age data to calibrate the slow processes affecting wood and fine root biomass.

3.1. Parameter Selection

We used a two‐step parameter selection approach. First, based on model processes and parameter selection of
previous model calibration studies, we select 20 key parameters that obviously affect photosynthesis, carbon
allocation, and phenology simulation as the candidate parameters (Text S1 in Supporting Information S1). Then

Table 1
Description of the Data sets Used in This Study

Variables Products Time span Spatial resolution Temporal resolution References

Model forcing

Climate variables* CRUJRA 1901–2019 0.5° 6‐hourly Harris (2021)

CO2 CO2 1700–2019 – Yearly Thoning et al. (1989)

Soil sand, soil clay Soil textures – ∼10 km – Shangguan et al. (2014)

Land cover MCD12Q1 2010–2020 500 m Yearly Homer et al. (2020)

Tree cover and Lossyear Hansen_2022 30 m Hansen et al. (2013)

Remotely sensed products

LAI GLASS LAI 2000–2020 0.05° 8‐day Ma and Liang (2022)

GPP GLASS GPP 2000–2019 0.05° 8‐day Zheng et al. (2020)

Biomass Biomass 2000–2019 0.1° yearly Xu et al. (2021)

Age Age 2010 1 km yearly Besnard et al. (2021)

Note. Climate variables include daily air temperature (°C), the minimum temperature (°C), the maximum temperature (°C), precipitation (mm), pressure (Pa), specific
humidity (%), wind speed (m s− 1), and downward solar radiation flux (W m− 2). Lossyear: year of tree cover loss.
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we performed sensitivity analyses among the candidate parameters to identify the ones affecting GPP, LAI, and
biomass most for the final calibration. The bounds of each parameter used in sensitivity analysis and calibration
were derived from the literature (Cunha et al., 2013; Kucharik et al., 2000; Varejão et al., 2013) or set to ±40% of
the default values (Table 3). Specifically, for phenology‐related parameters, temperature‐related thresholds
(tempu_tth, tempu_gth, tempu_gdd) were applied in the boreal and temperate deciduous forests to optimize the
flushing and shedding of the leaves. While for tropical deciduous forests, the leaves begin to drop with the trigger
by the 10‐day carbon photosynthesis rates via the regulation of the parameter tempu_drop.

When selecting the parameters to be optimized, we first identified the parameters that are most relevant to the
simulation processes of LAI, GPP, and biomass based on the modules they affect. Then we performed a sensi-
tivity analysis based on the Sobol method (Sobol, 1993) within the ranges of parameters, with GPP, LAI, biomass,
Cbiol, Cbiow, and Cbior as the target variables. All the parameters were set to a uniform distribution and sampled
more than 8,000 combinations from their prior spaces randomly. Finally, we selected the 11 most influential
parameters (Figure 1), including three GPP‐sensitive parameters (alpha3, theta3, vmax for step 1), four LAI‐
sensitive parameters (aleaf, tauleaf, specla, tempu_gth for step 2) and four biomass‐sensitive parameters
(awood, tauwood0, tauroot, rgrowth for step 3).

Table 2
Information on all the Selected Forests (See Spatial Locations in the Supplement Information, Figure S1 in Supporting
Information S1)

Num ID Latitude Longitude PFTIBIS Age2010 Yearini

1 BoND1 52.87 120.95 Boreal needleleaf cold‐deciduous tree (BoND) 74 1936

2 BoND2 60.47 116.05 Boreal needleleaf cold‐deciduous tree (BoND) 115 1895

3 BoND3 61.68 70.76 Boreal needleleaf cold‐deciduous tree (BoND) 93 1917

4 BoBD1 56.17 − 115.85 Boreal broadleaf cold‐deciduous tree (BoBD) 94 1916

5 BoBD2 58.07 59.55 Boreal broadleaf cold‐deciduous tree (BoBD) 100 1910

6 BoBD3 39.07 − 79.60 Boreal broadleaf cold‐deciduous tree (BoBD) 78 1932

7 TeNE1 42.87 − 122.75 Temperate needleleaf evergreen tree (TeNE) 169 1841

8 TeNE2 − 33.97 150.08 Temperate needleleaf evergreen tree (TeNE) 89 1921

9 TeNE3 28.14 96.44 Temperate needleleaf evergreen tree (TeNE) 100 1910

10 TeBD1 35.37 − 83.85 Temperate broadleaf cold‐deciduous tree (TeBD) 74 1936

11 TeBD2 48.47 23.45 Temperate broadleaf cold‐deciduous tree (TeBD) 70 1940

12 TeBD3 − 43.19 − 72.39 Temperate broadleaf cold‐deciduous tree (TeBD) 113 1897

13 BoNE1 63.07 44.35 Boreal needleleaf evergreen tree (BoNE) 87 1923

14 BoNE2 44.28 − 65.60 Boreal needleleaf evergreen tree (BoNE) 54 1956

15 BoNE3 59.94 12.81 Boreal needleleaf evergreen tree (BoNE) 57 1953

16 TroBD1 21.57 96.75 Tropical broadleaf drought‐deciduous tree (TroBD) 47 1963

17 TroBD2 − 23.13 − 64.15 Tropical broadleaf drought‐deciduous tree (TroBD) 36 1974

18 TroBD3 − 8.78 29.42 Tropical broadleaf drought‐deciduous tree (TroBD) 36 1974

19 TroBE1 − 1.63 23.75 Tropical broadleaf evergreen tree (TroBE) 300 ‐

20 TroBE2 0.47 114.85 Tropical broadleaf evergreen tree (TroBE) 300 ‐

21 TroBE3 − 17.31 − 64.86 Tropical broadleaf evergreen tree (TroBE) 60 1950

22 TroBE4 − 24.49 − 48.00 Tropical broadleaf evergreen tree (TroBE) 34 1976

23 TeBE1 − 30.03 152.55 Warm‐temperate broadleaf evergreen tree (TeBE) 71 1939

24 TeBE2 20.16 103.97 Warm‐temperate broadleaf evergreen tree (TeBE) 33 1977

25 TeBE3 52.04 − 8.04 Warm‐temperate broadleaf evergreen tree (TeBE) 112 1898

Note. PFTIBIS stands for plant functional type in IBIS. Age2010 refers to age values from the age product, Yearini represents the
year when the age is equal to zero according to the age map.
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It should be noted that we did not include specla and tauleaf when calibrating GPP, although they are more
influential than alpha3, theta3 for GPP. This is because we used the observed LAI as forcing when calibrating
GPP. The specla and tauleaf are directly associated with leaf biomass and LAI, but cannot affect GPP. The large
sensitivities of GPP to the two parameters (Figure 1) imply a strong impact of LAI on GPP in the model,
highlighting the necessity of using more accurate LAI for GPP calibration. Regarding biomass, the influential
parameters for GPP and LAI also show a strong impact. However, they have been calibrated in the first two steps
(See Section 3.3.3). Therefore, we only calibrated awood, tauwood0, tauroot, rgrowth in the last step.

3.2. Modified Adaptive Surrogate Modeling Optimization

TheMarkov ChainMonte Carlo method (MCMC) is a commonly used algorithm for model parameter calibration.
It iteratively samples parameter values within predefined priors, evaluating each set through model runs. Sub-
sequently, the cost function is computed to determine the acceptance or rejection of this set of parameters based on
the Metropolis–Hastings criterion. All accepted parameters are then used to generate posterior distributions, with
a mode approximating a normal distribution indicating well‐constrained posterior parameters. To assimilate
biomass data, simulation from planting (or the most recent disturbance) up to its current age is needed, which may
markedly increase computing time, especially when using Metropolis algorithms. Therefore, running the LSMs
using all the random parameter sets is computationally intensive. Here we applied a Modified Adaptive Surro-
gating Modeling optimization method (MASM), which trains an emulator of the IBIS model using a ML tech-
nique and uses the computationally cheap emulator to examine all the parameter sets (Gong & Duan, 2017; Ma
et al., 2022a).

In parameter distribution estimation, the target distribution is usually the posterior probability distribution
generated through the framework of Bayes' rule, and is proportional to the likelihood and prior probability density
under the observation constraints:

P(θi
⃒
⃒ yOt )∝P( yOt

⃒
⃒θi)P(θ) = L(θi

⃒
⃒ yOt )P(θi) i = 1,2,3,⋯,n (3)

where yOt is the referenced (observed) data, P(θi
⃒
⃒ yOt ) denotes the posterior probability density functions of target

parameters given by y, P( yOt
⃒
⃒θi) stands for likelihood. P (θi) represents prior distribution (set as uniform in this

Figure 1. Sensitivity indexes of the 20 key parameters in integrated biosphere simulator at 25 forests, represented by different symbols. The dashed lines are employed to
group parameters that serve distinct functions (F1: Photosynthesis; F2: Allocation and turnover; F3: Respiration; F4: Stress; F5: Phenology).
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study), and n is the number of sensitive parameters. Based on this, theMASMmethod includes the following steps
(Figure S2 in Supporting Information S1):

1. Randomly sample parameter sets ns times (parsns) within the prior range of each parameter (ns = 18*number
of parameters), and run the IBIS model to generate the time series of target variables.

ynsM = IBIS(parsns,mf t) + εt t = 1,2,…,n (4)

where parsns, mft and εt are parameters, model forcings, and model error at time t. The definition of the
likelihood function (L) and cost function CFns is as follows:

CFns = − 2 log{L} = − 2 log{(2πσ)− n/2∏texp [−
( yo − ynsM)

2

2σ2
]}, (5)

where σ2 should be the error variance of each observation. We assumed that the errors between the model and
the observation (yo − ynsM) are independent (i.e., the covariance is zero), and therefore σ

2 here is expressed by the
variance of each observation product (Yuan et al., 2012).

2. Fit a surrogate model using the Gaussian Processed Regression (GPR) model between the sampled parameter
sets (parsns) and the corresponding model errors CFns, and apply ASMO‐PODE (Adaptive Surrogate
Modeling‐based Optimization‐Parameter Optimization and Distribution Estimation, Gong and Duan (2017))
to the GPR model to decrease the number of model evaluations. Update the GPR model through an iterative
loop (iloop = 120) to improve its accuracy. In each iteration, three representative points from the posterior
distribution, along with the corresponding CF values obtained from the IBIS model, are added to the sample
for re‐training the GPR model. The IBIS model may find a parameter set with lower model error within a
limited number of runs, but achieving convergence is challenging (Figure S3 in Supporting Information S1,
gray lines). The predicted CF values from GPR model gradually approached the minimum CF value of the
IBIS model during 120 loops (Figure S3 in Supporting Information S1, red lines).

3. After finishing the iterative loop, we carried out Metropolis optimization on the trained GPR model. Once the
loop ends and the Markov Chain converges (GR < 1.2, Equation 6) (Gelman & Rubin, 1992), the final
established GPR model can be obtained. By applying the Metropolis algorithm to the final GPR model
(200,000 samplings × 4 chains), the best CF value can be quickly approached as the number of runs increases
(Figure S3 in Supporting Information S1, blue lines). Additionally, the posterior probability distribution of
each parameter can be determined using the last 100,000 values.

GR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2 − 1
N2

+
Nchain + 1
Nchain × N2

×
B
W

√

, (6)

where N2 = 200,000, Nchain = 4, B represents the variation among the averaged values of each chain, andW is
the average of the variances within chains.

A detailed explanation of theMASM and its corresponding code is available inMa et al. (2022a, 2022b) and Gong
and Duan (2017). Unlike traditional parameter calibration, we only need to run the IBIS model a few hundred
times (ns+3*iloop) with the MASM method instead of millions of times, which greatly reduces the time cost of
the model running without excessive loss of accuracy.

3.3. Optimization Strategy

3.3.1. Biomass‐Age Curves Fitting

To define long‐term age‐dependent biomass relationships for calibration of the IBIS parameters, we first fitted
relationships between biomass and stand age using the widely employed Chapman‐Richard growth function
(Richards, 1959), where the biomass increases with age until it reaches the asymptote:

Biot = A(1 − exp (− k · t))c,k and c > 0 (7)
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where Biot is the (observed) biomass stock inMgC ha− 1 at (observed) age t; A stands for the asymptote limit of the
equation where biomass saturates; k refers to the growth rate coefficient of Bio; c determines the shape of the fitted
curve.

For younger forests with an age of less than 300 years old in Besnard et al. (2021), we collected all the gridded
biomass and age data of the corresponding vegetation type within a 5° × 5° window and grouped them into 5‐year
age bins. We then randomly selected one point in each age bin and fitted a curve using these points weighted by
the size of each group. This step was repeated 100 times. The median of the 100 curves was taken as the final
fitting curve, and the upper and lower quartiles (25 and 75th percentiles) were used to quantify the fitting un-
certainty. For the forest which was set to 300 years old circa 2010 in the age map (regarded as an old forest in
Besnard et al., 2021), it was difficult for us to build reasonable growth curves if its surrounding forests are all old
forests, due to the lack of data at earlier growth stages (TroBE1 and TroBE2 in Table 2).

3.3.2. Real‐Age Forest Simulation

For forests younger than 300 years, we calculated the year when the forest age is 0 based on the observation‐based
age map (as shown at point B in Figure 2) and removed all the biomass pools (including leaves, woods, and roots)
in the year when the forest age was zero, and continued the simulation from that year with varying climate
forcings (transient simulation) until 2020 (Figure 2). The experiment protocol used during the calibration can be
found in Table S1 in Supporting Information S1.

3.3.3. Stepwise Calibration Approach

The calibration was performed step by step using the MASM algorithm described above in Section 3.2. The best
value was defined as the mean value of the parameter corresponding to the last 100 minimum cost functions. The
parameters calibrated in each step were kept in the following steps. The calibration was conducted individually for
each chosen forest. The calibration made use of the GLASS GPP and LAI products from 2000 to 2009, while the
years following 2009 were set aside for independent validation. To establish a biomass‐age curve reference, 80%
of the data was randomly selected for calibration, and the remaining points were used for independent validation.
Posterior parameters were obtained by the following steps:

Step 1. We performed the IBIS model simulation with prescribed GLASS LAI to calibrate the key physiological
parameters regulating photosynthesis, including alpha3, theta3 and vmax, to minimize the mismatch between the
modeled and GLASSGPP (2000–2009). Since LAI is prescribed to the model instead of predicted, the parameters
affecting LAI will not be included in this step.

Figure 2. The flow of biomass assimilation in the integrated biosphere simulator model. The blue points correspond to the
data used for fitting the curve. Point A indicates the time after the model spin‐up, whereas point B refers to the time when the
forest age is zero (B = 2020–age). The black solid curve represents the original model trajectory, the red curve depicts the
model trajectory after a clear cut, and the blue curve corresponds to the biomass‐age curve utilized as a reference during our
calibration process.
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Step 2. We calibrated key LAI parameters using GLASS LAI as a reference. Three parameters (tauleaf, aleaf,
specla) related to the leaf carbon allocation, turnover, and structure were calibrated in this step. Besides, pa-
rameters regulating leaf phenology were also tuned in each forest type (tempu_gth for TeBD, BoBD, and BoND;
tempu_drop for TroBD). Note that calibrating leaf carbon allocation indirectly constrained allocation to wood and
fine root, which can affect biomass calibration in the next step.

Step 3. For forests younger than 300 years old, the modeled biomass at different stand ages from simulations was
compared against the fitted biomass‐age curve from the initial year (age= 0) to 2020. For older forests, we directly
compared the modeled biomass against the reference during 2000–2019 without a clear‐cut. Parameters including
tauroot, awood, tauwood, and rgrowth were calibrated at this step to fit the observed biomass‐age curves.

We used a comprehensive index called the distance between indices of simulation and observation (DISO) as our
accuracy index to evaluate model simulations (Hu et al., 2019). DISO is a combined statistical value that in-
tegrates three widely used indices: Pearson's correlation coefficient (R), root mean square error, and average error
(AE). A low value of DISO indicates that the simulation is closer to the observation, while a high value indicates a
greater discrepancy between modeled and observed data.

R =
∑
n

i=1
(Si − S) (Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Si − S)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Oi − O)2

√ (8)

AE =
1
n
∑
n

i=1
(Si − Oi) (9)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

i=1
(Si − Oi)

2

√

(10)

DISO =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R − 1)2 + (
AE
O
)

2

+ (
RMSE
O

)

2
√

, (11)

where n represents the total number of variables, Si andOi denote the simulated and observed variables, and S and
O are averaged values.

4. Results
4.1. Improvement to the Simulation of GPP and LAI

Figures 3 and 4 reveal the temporal dynamics of 8‐day GPP and LAI in three forests of different PFTs (TeNE1,
TeBD2, TroBE1). The other forests showing similar results can be found in the supplement (Figures S4–S5 in
Supporting Information S1). The posterior best parameters with their uncertainties are listed in Table S2 in
Supporting Information S1. In forests with distinct GPP seasonality (Figures 3a and 3b), both the prior and
posterior estimates are capable of capturing the general seasonal patterns exhibited in the GLASS GPP. Spe-
cifically, optimized parameters result in reduced biases of GPP across all the forests compared to the original
parameters. For all temperate and boreal forests, the optimized GPP during the growing season has shown obvious
improvements. Notably, for all TeNE types and BoNE2 (Figure 3a and Figure S4 in Supporting Information S1),
the peak GPP has increased by almost twofold. This is due to a noticeable increase in optimized and vmax,
indicating considerable improvements in the maximal photosynthetic rate of leaves (Table S2 in Supporting
Information S1). For tropical forests, the optimized vmax has decreased, while alpha3 has increased by nearly
50%. For TroBE (Figure 3c; Figure S4 in Supporting Information S1), which is sensitive to alpha3, the
improvement in the intrinsic quantum efficiency has a more pronounced effect on increasing carbon fixation. For
TroBD (Figures S4–S15, S17, S18 in Supporting Information S1), which is more sensitive to vmax, the reduction
in the maximum photosynthetic rate precisely reduces the overestimation of GPP by default parameters (Figure
S4 in Supporting Information S1).

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004048

MA ET AL. 10 of 20

 19422466, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004048 by C
ochrane France, W

iley O
nline L

ibrary on [20/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In the second step, the LAI is simulated using the model, and the GLASS LAI is used as a reference for calibrating
the influential parameters of LAI (aleaf, tauleaf, specla, phen_gth). Our findings reveal that the IBIS model
performs reasonably well in simulating the timing of leaf flushing and shedding in temperate and boreal de-
ciduous forests, as seen in Figure 4b and Figure S5 in Supporting Information S1. However, the model has
difficulty in capturing the peaks and valleys of the GLASS LAI due to the oversimplified phenology parame-
terization that cannot describe the variation of LAI within growing seasons. For evergreen forests, we find that
GLASS LAI displays noticeable seasonal changes, while IBIS shows a constant LAI value. The reason for this is
that IBIS calculates the maximum LAI potential for the entire year using the leaf biomass from the previous year
and then adjusts LAI values throughout the seasons based on phenological changes. However, IBIS assumes that
the leaves in evergreen forests do not undergo phenological changes and remain consistent throughout the year,
resulting in a constant LAI value. To ensure the utmost accuracy of the LAI simulation model, it is imperative to
rely not only on high‐quality observations but also on more refined phenology models that encompass detailed
descriptions of leaf dynamics.

4.2. Improvement to the Simulation of Biomass

4.2.1. Construction of Biomass‐Age Curves in Forests

We construct the relationship between forest biomass and age for each forest using the Chapman‐Richard
function, as shown in Figure 5 and Figure S6 in Supporting Information S1. The biomass for young forests
accumulates rapidly at the early stages of growth; this increase slows down as trees age, and eventually biomass
reaches a steady state, typically at around 150–200 years. In contrast, old forests (TroBE1 and TroBE2) have

Figure 3. Time series of modeled 8‐day GPP before (blue line) and after (red line) calibration, and GLASSGPP (black points)
from 2000 to 2018 in the three selected forests. Data from 2000 to 2009 is used for training and the remaining years (shaded)
for validation. The calibrated GPP was derived using the best posterior parameters.
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already reached maturity and maximum biomass. Therefore, we only display the annual biomass in 2000–2019 in
Figure 5, as it is not possible to establish a reliable growth curve due to the absence of data at the early stage of
growth (Figure 5c, Figure S6 in Supporting Information S1). Of all the forests considered, the maximum carbon
storage varies among deciduous forests, with boreal forests exhibiting a slightly lower ability to sequester carbon.

Figure 4. Time series of modeled 8‐day leaf area index (LAI) before (blue line) and after (red line) calibration, and GLASS
LAI (black points) from 2000 to 2020 in the three selected forests. Data from 2000 to 2009 is used for training and the
remaining years (shaded) for validation. The calibrated LAI was derived using the best posterior parameters.

Figure 5. Annually observed biomass with observed forest age in three selected forests. All the curves are fitted based on the
parameterized Chapman‐Richards growth model. SZ refers to the size of samples when fitting the curves. The blue broken
lines refer to the median values of the 100 curves fitted in Section 3.3.2. The blue shaded area represents the 75th and 25th
percentiles of the 100 curves. The red points with the error bar are the median of the biomass records corresponding to each
age bin (5‐year interval). The right y‐axis represents the fraction of the size of each age bin to the total and is used as a
weighting factor for fitting curves (Section 3.3.2).
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For evergreen forests, biomass accumulates more rapidly and has a higher maximum stock for high‐productivity
forests. When the forest reaches a steady state, TeNE1 exhibits approximately 2.5 times higher biomass compared
to deciduous forests such as BoBD and BoND. We also find a large uncertainty in the curves at the early growth
stage, primarily attributable to the absence of biomass data for the entire period of forest growth. This uncertainty
varies across different types of forests. For example, the uncertainty during the early growth for TeNE1 can reach
up to 170 MgC ha− 1, while it shows lower values for TeBD2.

4.2.2. Model Performance in Simulating Biomass With Calibrated and Prior Parameters

We use the fitted biomass‐age curves as a reference to calibrate the IBIS parameters affecting biomass (awood,
aroot, tauwood0, rgrowth). Basically, all optimized biomass‐age growth curves (red) can better capture the
accumulation of biomass (blue), compared with the curves from the default parameters (gray) (Figure 6, Figure S7
in Supporting Information S1). In the BoBDs, the untuned model shows saturation of biomass at older ages with a
much higher maximum carbon stock than the reference. In needleleaf forests, the annual carbon accumulation is
seriously underestimated in the original estimates due to the lower accumulation rate at the early stages
(Figure 6a, Figure S7 in Supporting Information S1). The posterior parameters result in curves that improved the
carbon stocks in forests over 50 years old, but still underestimate carbon accumulation rates during early growth
stages. For two mature forests older than 300 years, the biomass at the stable state fluctuates around
200 MgC ha− 1 with slight interannual variations. These biomass values are severely underestimated by the
original model but are much better simulated after the calibration. For instance, in TeBD2, the age‐calibration
decreased the wood turnover time (tauwood0), indicating that the overestimation of original biomass is mainly
due to slower turnover. In contrast, the biomass calibration corrected the underestimation of biomass in TeNE1 by
increasing awood and tauwood0. During the early phases of forest growth, greater wood allocation means more
resources being allocated to wood growth, resulting in an accelerated rate of biomass accumulation. However, the
original model parameters underestimated the carbon allocation to wood and overestimated the turnover speed of
wood carbon pools in TeNE1.

We also found that our stepwise calibrated parameters showed large differences in posterior values (e.g., tau-
wood0) even within the same PFT (Table S2 in Supporting Information S1). This is partly because ecosystem
characteristics, density, or disturbance history can vary substantially within a PFT across the region. Some studies
have shown that the carbon turnover time exhibits noticeably spatial differences and is closely related to tem-
perature and precipitation (Carvalhais et al., 2014), which indicates that each specific environment can influence
model parameters when performing calibration. This is also the reason why we emphasize the importance of
conducting calibration at the pixel scale rather than a parameter per PFT, and this study has provided the potential
for pixel‐scale calibration with our surrogate‐based calibration framework.

4.3. Back‐Compatibility Check for the Stepwise Calibration Approach

The consistency of the stepwise strategy has been evaluated with a back‐compatibility check after the third
calibration. Figure 7 and Figure S8 in Supporting Information S1 summarize the prior and posterior performance

Figure 6. Validation of modeled biomass with default (Prior) and optimized parameters (Posterior) from the initial year
(age = 0) to 2020. Blue lines used as reference refer to the fitted biomass‐age curves in Section 3.3.2. The blue shaded area
represents uncertainties of corresponding curves. The calibrated biomass was derived using the best posterior parameters.
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of the model‐data fit of each step, with an obvious DISO reduction in GPP, LAI, and biomass when compared to
the prior model. The optimization with the final set of parameters does not appreciably degrade the fit to GLASS
GPP that is used as a reference in the first steps (only minor changes of the DISO indexes occurred in our results),
even though LAI and biomass have been improved greatly. In the 25 forests (Figure 7 and Figure S8 in Supporting
Information S1), only three forests (TroBE1, BoNE1, and TeBE1) exhibited worse GPP and three forests
(BoND1, TeNE2, and TeBD3) exhibited worse LAI after the step 3 calibration. This may due to the impact of
changed biomass on respiration, which affects the carbon allocated in leaves, consequently resulting in changes in
GPP and LAI. Nevertheless, this effect is small in most of the forests. We also make a final comparison between
prior and posterior values of GPP, LAI, and biomass from 2000 to 2020 (Figure S9 in Supporting Information S1).
The optimization results in a substantial reduction of errors in LAI (− 35.3%), GPP (− 28.5%), and biomass
(− 74.6%). For biomass, the DISO for most forests has been reduced by over 70%. The improvements of LAI and
GPP are also remarkable, although some errors are derived from the imperfect model structure. Nevertheless,
there remain considerable errors in LAI not reduced even when phenological parameters have been taken into
account during the calibration, which is mainly due to the oversimplified phenology parameterization in IBIS. In
general, the stepwise calibration strategy used in this study enables a better constraint of both “fast” and “slow”
processes in IBIS, with the application of remotely sensed GPP, LAI, and biomass.

5. Discussion
5.1. Importance of Stand Age in Improving Ecosystem Carbon Estimation

Forest age offers a starting point for LSMs to correctly simulate forest recovery from the last disturbance (Pan
et al., 2011; Pugh, Arneth, et al., 2019; Zhu et al., 2019). Previous LSMs often omitted stand age, and start
simulating carbon pools from an equilibrium state (i.e., model spin‐up). This will result in a systematic over-
estimation of carbon pools since young forests are not yet equilibrated. Similar findings were reported by Thum
et al. (2017), wherein the authors demonstrated an overestimation of modeled biomass when forest age was not
considered.

Attempting to calibrate the model under such a steady state will lead to biases in parameters. Using these
biased parameters, LSMs will not be able to correctly simulate the regrowth of forests, even when real age is
considered in the simulation. For example, we repeated the step 3 calibration on each forest but without
considering real age (Figure S10 in Supporting Information S1). The calibrated biomass derived in such a way
(PostNAge) exhibited larger differences compared to the observations than our previous results (PostAge). In this
study, parameter inversion under the SS mostly overestimated wood turnover time (Figure S11 in Supporting
Information S1, tauwood0) but underestimated wood allocation rates (except TroBE types). This result agrees
with Ge et al. (2018), who demonstrated that biased inverted parameters under the SS overestimated mean
turnover times in young‐aged ecosystems, which in turn led to obvious deviations in simulating carbon ef-
fluxes (e.g., litterfall and respiration). With proper consideration of carbon pool initialization and parameter

Figure 7. Accuracy index between model outputs and references of gross primary productivity (2000–2009), leaf area index (LAI) (2000–2009), and biomass (Bio)
(from the initial year to 2020) in three steps. The bars with a light color are results obtained using prior parameters, while those with a dark color are optimized indexes.
For TroBE1 with missing values for prior LAI, the modeled LAI with default parameters is a fixed value (8 m2/m2) from year to year, making it unable to calculate the
correlation.
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retrieval, our calibration framework yields a better model capacity for simulating carbon stocks (Figure S10 in
Supporting Information S1).

The biomass error due to the omission of age will cause further biases in ecosystem carbon budgets (Amiro
et al., 2010; Bellassen et al., 2010). The biomass of young forests is much smaller than equilibrated old forests,
which leads to much smaller Ra. Meanwhile, young forests have smaller LAI, resulting in smaller GPP. The
coupling effects from Ra and GPP can drive changes in carbon balances (Amiro et al., 2010; Williams
et al., 2014). Biased parameters retrieved from disequilibrium initialization further propagate into changes in NBP
in a transient simulation. We reveal that the parameters retrieved from noage‐calibration (SS) can result in un-
derestimation of the mean annual NBP during 2000–2020 (Figure S12 in Supporting Information S1). Our age‐
calibrated parameters increase NBP by an average of 50 gC m− 2 yr− 1 across all forests, especially in the BoNE
type, the NBP increased by 118 gC m− 2 yr− 1 on average, increasing the estimate of the carbon sink in young
forests. Such underestimation of NBP under SS assumption is also supported by Ge et al. (2018) and Yu
et al. (2014). It should be noted that we did not calibrate the parameters affecting heterotrophic respiration, thus
the NBP may be biased. Nevertheless, our results still highlight the importance of considering age in calibrating
LSMs for correct carbon flux simulations.

5.2. Uncertainties for Age‐Dependent Biomass Assimilation

The accuracy of the biomass‐age curve is crucial for model calibration. Therefore, the uncertainties in the biomass
and age maps will have a big impact on the carbon stock estimates. Both of these two maps are the products of
machine learning models trained on observations from the ground and space. Errors in training data and models
will directly affect the spatial accuracy of these products, and then ultimately propagate to our fitted curves
(Raczka et al., 2021).

An additional factor contributing to uncertainty is the imperfect fitting of biomass‐age curves. First, we averaged
age pixels (1 km) within 0.1° to match the biomass product, which may result in a loss of variability in ages.
Second, to ensure sufficient data for curve fitting, we collected data within a 5° × 5° window instead of temporal
features (Section 3.3.1). This “space for time” approach may ignore the spatial variation in growth rates. Although
our framework provides a good method for assimilating age‐dependent biomass in LSMs, high‐resolution and
long‐time‐series data are still needed to provide a more robust and reliable relationship between biomass and age.
In this study, the fitting curves have large uncertainty at young forest ages (Figure 5). This is because our data
does not cover the entire period of forest growth and the predictions at such ages rely on extrapolation of the
observations using the parameterized equation (Equation 7). Nevertheless, when we use the fitting curve within
the observed forest age range as the reference in the calibration (the gray shaded area in Figure 5 and Figure S6 in
Supporting Information S1), the model performance does not deteriorate obviously. By comparing the fitted
curves with field survey data, we found obvious mismatches in this comparison (results not shown), which are
likely due to scale differences. For example, small plots are associated with edge effects that may cause dis-
crepancies in tree representation between remote sensing footprints and field plots (Nesha et al., 2022). In large‐
scale regional studies, more field data needs to be collected for exploring a more convincing relationship than that
obtained solely through remote sensing products. This could be achieved by constraining the fitted curves at
different scale through field observations (Shang et al., 2023), or upscaling tree/plot level observations to a
regional scale with the support of spatial remote sensing data. Meanwhile, calibrating multiple parameters of
complex DGVMs at high resolution is challenging due to computational cost. We still need to develop a faster
calibration approach that can facilitate regional‐scale parameter optimization by integrating remote sensing and
field observations.

Another source of uncertainty is the oversimplified allocation parametrization in the IBIS model, which assumes
constant allocations of carbon among plant tissues (Merganičová et al., 2019). However, in reality, plants may
alter their allocation strategies under the influence of climate changes (Collalti et al., 2020; Xu et al., 2012), and
during different periods. The static allocation assumption has been reported to considerably affect the simulated
carbon pools (Pappas et al., 2013; Xia et al., 2017, 2019). Such uncertainties in model structure will be transmitted
to the calibrations and simulations, leading to biases in both posterior parameters and modeled biomass. To
improve the simulation of carbon dynamics, adaptive carbon allocation strategies that account for varying climate
changes are needed, as suggested by Xia et al. (2019).
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5.3. Stepwise Versus Simultaneous Calibration Approach

Adding extra data streams helped to constrain unresolved sub‐spaces of the total parameter space. In multiple
constraints, simultaneous and stepwise calibration approaches are both options for integrating several observa-
tions with the LSMs.

For multi‐objective calibration, simultaneous optimization is mathematically advantageous, which stems from its
preservation of strong parameter linkages across diverse processes, coupled with its more rigorous handling of
error correlations within the same inversion (MacBean et al., 2016). When dealing with disparate numbers of
observations, like GPP and biomass in our study, the different constraint effects provided by such unbalanced data
could bring a performance conflict for each variable (Oberpriller et al., 2021). That is to say, the optimized results
may match well with one set of data and deviate from others (Figure S13 in Supporting Information S1, Opt_-
Sim2). Assigning appropriate weights to different observations within the same objective function is crucial but
challenging for optimization, as it directly influences the constraints imposed by each reference, and may result in
an overestimation of posterior errors for parameters constrained by the abundant data streams (Thum et al., 2017;
Wutzler & Carvalhais, 2014). We performed three simultaneous calibrations with different weighting strategies
(Table S3 in Supporting Information S1) in Figure S13 in Supporting Information S1, and found different per-
formances in improving GPP, LAI, and Biomass. Simultaneous calibration may also provide alternative sets of
posterior parameters to achieve a similar reduction in the model‐data inconsistency, a phenomenon referred to as
parameter equifinality, which requires more model evaluations to find the optimal sets.

Given the complexities involved in designing the cost function and the computational costs, we tend to prefer
adopting a step‐wise calibration framework, which ensures that each data stream only constrains the most relevant
processes of the model based on their relative contributions. This way can move beyond the model equifinality of
multi‐objective in calibration, and avoid weight problems that need to be considered in simultaneous calibration,
and also bring more information at different spatial and temporal scales (Peylin et al., 2016). Another reason for us
to use a stepwise approach is that we can separate our calibration into “fast” and “slow” processes calibration. In
the “fast” steps (step 1 and step 2), we only need a short simulation period for GPP and LAI to rapidly reach a
steady state, while in the “slow” step (step 3), we need a longer spin‐up to optimize biomass.

Nonetheless, stepwise optimization still comes with its challenges, especially the propagation of parameter error
matrices among each step. Because the parameters calibrated from previous steps are assumed constant in later
steps, its error is thus taken by the parameters in later steps. Although we cannot avoid the error propagation, our
stepwise calibration still results in better GPP, LAI, and biomass of most forests compared with default pa-
rameters after the final step. This is because we use each data constraint only for its most relevant parts of the
model, which seems more feasible and straightforward. So, for stepwise calibration, it is still essential to perform
a back‐compatibility check to ensure that subsequent calibrations have an acceptable impact on other variables.

Furthermore, considering that the parameters (aleaf, tauleaf, specla, and tempu_gth) associated with LAI in Step
2, also have a notable effect on biomass (Figure 1), we conduct a test to see if we could optimize the same 11
parameters only limited by GPP and biomass (Table S4 in Supporting Information S1). In this scenario (GPP‐
Bio), we keep Step 1 unchanged, while calibrating 8 parameters using biomass in Step 2. According to the results
presented in Table S4 in Supporting Information S1, the modeled biomass does not show an obvious difference
with our three‐step calibration (GPP‐LAI‐Bio). However, it is observed that the accuracy of the modeled LAI
noticeably decreases. For evergreen forests, the decrease in LAI accuracy does not greatly impact GPP. However,
for deciduous forests, there is a 45% increase in DISO (i.e., worse GPP). In our three‐step calibration experiment,
we find that GPP, LAI, and biomass all have good performance in each step, and subsequent calibrated parameters
have minimal impact on the variables of the first two steps (Figure 7 and Figure S8 in Supporting Information S1).
This result indicates our three‐step calibration framework can better improve carbon cycle simulation in IBIS.

5.4. Challenges in Large‐Scale Assimilation of GPP, LAI and Biomass

This study conducted a stepwise calibration across 25 forests, enhancing the ability of the IBIS model to simulate
GPP, LAI, and biomass. It provided an initial framework and theoretical foundation for establishing a GPP‐LAI‐
Biomass calibration system. Although these calibrations are performed at individual forests, they can be
potentially implemented at a regional or even global scale. The emergence of machine learning methods provides
an opportunity to scale up the parameters obtained in this study. Compared with previously used parameters that
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are fixed for each PFT, the parameters derived from scaling up site‐level calibrations can better represent the
heterogeneity of vegetation within each PFT, thus resulting in much better simulations of carbon dynamics. There
have been successful implementations of such methods to reduce model uncertainties of GPP and LAI over North
America (Ma et al., 2022a) and also soil organic carbon over the Conterminous United States (Tao et al., 2020).

Despite the potential, there remain several challenges to accurately simulate biomass evolution at the global scale.
First, most grid cells include different PFTs and cohorts with different ages which most models cannot deal with.
To fully consider the sub‐grid heterogeneity requires explicitly modeling efforts to represent various age cate-
gories present within each PFT (Bellassen et al., 2010; Zaehle et al., 2006). Second, the current forest age data
used in our study is only available in 2010 (Besnard et al., 2021). The forest age distribution before and after that
year still needs to be reconstructed. Finally, we can only assume temporal consistency of parameters for our
calibration. Although this assumption is accepted by most of the LSMs, it may still fail due to structural and
biogeophysical differences between young and old forests. With the advent of new forest age maps, and if those
maps were accurate enough, we could nevertheless use a space‐for‐time approach where LAI and GPP high‐
resolution values in the present period are matched to certain forest age, allowing us to derive GPP‐age and
LAI‐age relationships that could be used for calibration.

6. Conclusions
Forest age is an effective indicator of the duration since the last disturbance and drives forest NBP. In LSMs,
forests are often assumed undisturbed, leading to unrealistic forest growth patterns and inaccurate estimations of
carbon stocks. Joint assimilation of remotely sensed GPP, LAI, and age‐dependent biomass has been proven
feasible in 25 forests across the world, and provided great constraints on parameters related to photosynthesis,
allocation, phenology, and respiration processes. With consideration of stand age, modeled biomass was greatly
improved in each forest, and also revealed a marked impact of age on NBP simulation. Our three‐step calibration
framework offers a reliable and robust approach for optimizing both “fast” and “slow” processes in IBIS, and has
the potential to be applied worldwide using machine learning‐based surrogate modeling. The quality of refer-
enced data used in our framework is of utmost importance for calibration, and the performance of our fitted
biomass‐age curves exerts a major influence on carbon allocation and turnover rates. We expect that the avail-
ability of reliable observations or remotely sensed products will offer additional insights for optimizing future
carbon flux simulations.

Data Availability Statement
The scripts, and instructions of the MASM method can be archived through Zenodo at https://doi.org/10.5281/
zenodo.6953354 (Ma et al., 2022b). The version of IBIS model and codes for fitting biomass‐age curves used in
this paper are available at https://doi.org/10.5281/zenodo.8376379 (Ma, 2023).
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