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Abstract

The aim of this paper is to give a decomposition of the displacements of plates with a very high
thickness contrast. Estimates of all terms of the decomposition with respect to the norm of the
strain tensor are obtained. Weighted Poincaré-Wirtinger and Korn inequalities are also given.
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1 Introduction

The aim of this paper is to extend the tools developed in our previous articles (see [12, [13] 14]), to
plates with very high thickness contrasts. An aircraft wing or a lens (in optics) can be considered as
plates with a very high thickness contrast. The plates we are studying not only vary widely in thickness,
but also have uneven top and bottom surfaces.

Let w be a bounded domain in R? with a Lipschitz boundary. Here, the open set w plays the same role
as the mid-surface of a plate of constant thickness. The plate with very high thickness contrast is €.,
its thickness varying continuously from one part of its boundary of thickness of the order € to another
part of thickness of the order 2.

In this paper we show that every displacement u belonging to W1P(Q.)3, p € (1,00), is written as the
sum of an elementary displacement U,y and a residual displacement @ (the warping),

’U/(I) e[(/ll) U(I) , fOI' ae T = (:,C/,Qf?,) e QE
Uee(z) =U(2") + 23R (x")
so that (o € {1,2})
/ u(x’,w3)drs =0, / Uy (2, 23)2r3drs =0 for ae. 2’ in w (1.1)
FO(a") FO(a")

where F?(z2') is a part of the fiber of Q. passing through 2’ € w. The segment F(z') is symmetric
with respect to w and, like all the fibers of €., is perpendicular to w.

The above conditions determine U(2") and R(z') in terms of u and integrals on F2(x’) (see
and also [12]). The field U belongs to W1P(w)3, it represents the displacement of the 2D domain
wx{0}, while R = Rie; + Raez belongs to WP (w)2. The term 23R (z’) stands for a ”small rotation”



of the fiber passing trough z’. The axis of this rotation is directed by —Ra(z')e; + R1(2')es and its
angle is approximately the euclidian norm of this vector.

The last term of our decomposition, u, gives information about the deformations of the fibers of the
plate. Compare to the other terms of the decomposition (4 and xz3R) it is very small (see Theorems
and . In early work on elasticity in the 19th century, this term was neglected, as were certain
terms in the stress tensor. Below, in Section [6] we show that it is as important as the other two terms
U and R in the strain tensor and therefore in the stress tensor. It is interesting to note that if we
study the asymptotic behavior of a sequence of displacements, the strain and stress tensor terms are
all determined using the limits of the three terms in our decomposition.

As a general reference on elasticity, we refer to [21] [7, 22]. A general introduction to the mathematical
modeling of elastic plates can be found in [§, [I0]. For the study of thin plates with rapidly varying
thickness we refer to [18, [19]. For the decomposition of the displacements or deformations we refer
to [12], B} 4, [14], some applications of these decompositions for the study of junctions can be found
in [I1}, [16] [15]. The study of a beam with very high thickness contrast was carried out in [I7]. The
Poincaré-Wirtinger and Korn inequalities have been extensively studied, here are a few articles devoted
to them [6l, 23] 20} 5] 2] 1]

The paper is organized as follow:

e Section 2 is devoted to the main notations,

e in Section 3 we recall some important results about the geometry of the structure and the de-
compositions of the displacements of a thin plate via Kirchhoff-Love displacements,

e the main decomposition result of this paper is given in Section 4, Theorem

e in Section 5, Theorem for a clamped plate, we give the full estimates of a displacement and
a weighted Korn inequality with respect to the norm of the stain tensor,

e in Section 6, we introduce the rescaling operator Il and we study the asymptotic behavior of a
sequence of displacements,

e Section 7 is devoted to applying the results of the previous sections to solve a classical elasticity
problem,

e in Appendix we prove some technical lemmas and weighted Poincaré-Wirtinger and Korn inequal-
ities.
In this work, the constants appearing in the estimates will always be independent from e. If this is
1 1
not stated, p is a real number belonging to (1,00) and p" denotes the dual exponent of p, — + — = 1.

As a rule the Latin indices 4, j, k and [ take values in {1, 2, 3} while the Greek indices « and S in {1, 2}.
We also use the Einstein convention of summation over repeated indices.

2 Notations

The euclidian space R3 is referred to the orthonormal frame (O;el,eg,eg) and R? to the frame
(O; e, 62). We denote | - |2 the euclidian norm in R? and - its scalar product.
In this paper ¢ is a small parameter belonging to (0, 0], 0 < g9 < 1), it will tend to 0.

Denote

e w a bounded domain in R? with Lipschitz boundary, below it is improperly referred to as the
”mid-surface” of the plate,



o p € WH(R?) the function defined by

p(z') = inf {1, dist(2’, Ow) } for all ' € R?,
e 7 a non-empty subset of Jw, possibly containing only one point,
e p, € WH(R?) the function defined by

py(2) = inf {1,dist(2’,~)}  for all 2’ € R?,
o p. € WH(R?) the function defined by

pe(z') =e+ (1—¢)py(2f)  forall 2’ € R?
e ¢, 1 two functions belonging to W°(w) and satisfying

V(IE/ Z/) c wz |¢(I/) - ¢(Z/)| S K0|xl - Z/‘27 ¢($/) 2 2005 vxl S W,
’ (@) —¥(2')| < Kola’ — 2’2, ¥(a’) >22Co, V2’ €w,

where Ky and Cj are strictly positive constants
o C1r = max{(|]|l L= (), 1VllLo ()}
e (). the plate with a very high thickness contrast
Q. = {x = (2/,13) € wxR | —ep.(2")Y(2') < x3 < sps(x/)qﬁ(x’)},
the plate €2 is much thinner in the neighborhood of 7,
e ) the plate with a non-planar top and bottom surfaces and thickness of order €

0 = {2 = (&a0) €wxR | — ev(e)) <73 < e(a")

e 7 the clamped part of the ”mid-surface”, v C dw \ 7, 7o has a non-null measure,

o'y, = (fyo XR) N 0N, the clamped part of €2,

e ) = {(xl,x2,X3) € wxR | —p,(2")y() < X3 < pv(z’)qﬁ(x’)} the re-scaled plate and
Iy = ('yo XR) N 0N the clamped part of €2,

e e(v) the strain tensor of v € WHP(Q.)3, 1 < p < oo,
1 . 1
6(’[}) = 5 ((V’U) + VU), €ij (’U) = 5 (ajvi + 81-11]»).

e(v) is the 3 x 3 symmetric matrix whose entries are the e;;(v)’s,

0= 2 o2 = o (i,7) € {1,2,3}?
K3 81‘1-’ 1] 8.131833], ’ )< .

Note that the function p. satisfies

e<p(@) <1 and |po(a)) = p() S =l V@, ) €w? (2.1)



3 Preliminary reminders

The following lemma is proved in [I3].

Lemma 3.1. Let B. C w be a domain of diameter less than eR, star-shaped with respect to the disc

D(O,eRy). If R < % then the domain
0
D, = {33 = (2/,23) € Be xR | —eyp(2) < z3 < Egb(x’)}
has a diameter less than e(R 4+ 2Ch) and is star-shaped with respect to the ball B(O,eR)) where
Rll :min{C’o,Rl}. (31)

Denote
ws = {z' ew | p(z) >}, 6 >0.

The boundary of w being Lipshitz, there exist constants A, B and ¢g strictly positive and a finite
number N of local coordinate systems (1, Z25,) in orthonormal frames (On; €1n,€2,) and maps f, €
W10, 4), 1 <n < N, such that

N
Ow = U {(l'lnax%) S R2 | Top = fn(«rln)y Tin € (0’14)}7

n=1

B, = {($1n7x2n) € Rz | fn(xln) < ZTop < fn(zln) + B, 71, € (O7A)} Cuw,
N
w\@g C | B
n=1
Note that
N
W= we, U ( UB">
n=1
Since f, € Wh>(0,4), 1 < n < N, there exists K; > 0 such that

Ifn(t) = fu)| < Kit =1,  V(t,t)e]0,4?  Vne{l,...,N}.

Without loss of generality, we assume that

B<1 and K> (3.2)

-

Now, set
x = kke, ke{O,...,NE—l} and zny. = A — ke

A
where N, = [—], [t] € N is the integer part of t € RT, k is a strictly positive constant which will be
KE

given below (see (3.5)).
Denote (see Figure

Ty <T1p < Tk + KE,

Bn 5 = > n ERQ
.k, {(331 T2 ) | fn(fﬂln) <Top < fn(l'ln)

+B} ke{o,...,N.}.

We cover B, ke, (n, k) € {1,...,N}x{0,...,N.} as follows:
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Figure 1: The domains B and By, k.. In these drawings e = ke.

n,k,e’ ~n,k,e

e first, its top and bottom with the small domains B,°; _ and Bpo'e™ (see Figure [1|left) which are

n,k,e
star-shaped with respect to discs of radius ke/2 and whose diameters are less than (3K + 2)ke,

e then, between max frn(x1,) and min fn(x1n) + B, we cover by squares whose
Tin €Tk, xp+KeE] ZT1n €Tk, Tk +kE]

edges have length xe and possibly we add a rectangle whose width is ke and length lies between
ke and 2ke (see Figure [1| right). These quadrilaterals are star-shaped with respect to discs of
radius ke/2, and their diameters are less than 3ke.

Denote

N—

Y =(0,1)% E.={€Z?|YeoCuw), Yee=re(E+Y), @ = Interior( U Ve

§€B.

The squares Y ., { € Z. which are included in &, cover most of w.

Below are the conditions that will enable us to determine k.
To take account of the conditions imposed by the covering of the domains B,, n € {1,..., N}, and
Lemma we assume that

C
ke < keo < A, (6K1 +2)ke < (6K +2)keg < B and  wmax {(3K; +2),3} < ?0 (3.3)
0
For the squares Y¢ ., we need
Co
2< — 3.4
w2 < 2 (3.4)



to take account of the condition imposed by Lemma [3.1
We also assume
keV2 < kegV2 < ¢
to get We C we,-
The above conditions (3.3))-(3.4)) allow to give x

1. B ) Coeo
=— A, y—= . 3.5
K - Hlln{ 6K +2" 2 Komax{(3K1+2)73}} (3.5)

Finally, any point of the open set w belongs to at most Cy = 3N + 1 domains of the w covering

Bror Bottom (n,k) e {1,...,N}x{0,...,N.} (3.6)

n,k,e? n,k,e >

and quadrilaterals included in &, or By, .. The diameters of these small domains are less than 3(K; +
1)ke and all these domains are star-shaped with respect to discs of radius ke /2.

Denote Q. a generic quadrilateral included in &, or B, ;. and

—~

Brr = (B xR) NQL, B/B;/m = (BEpenxR)N QL Qo= (QuxR) N L. (3.7)

These domains, included in ., have a diameter less than (3(K1 + 1Dk + 201)5 and by construction
they are star-shaped with respect to balls of radius min {CO, g}s (k is given by (3.5)).

As a consequence of [I3] Theorem 4.1] we have

Theorem 3.2. Ewvery displacement u in WP (QL)3 is decomposed as the sum of a Kirchhoff-Love
displacement and a residual displacement

Uy (2" — x301Us (")

u(x) = Ugp () +u®(x) = | Us(z") — z30oU3 (a") | + u®(z) for a.e. z in QL
. v (3.8)
Uus (z') residual displacement

Kirchhoff-Love displacement

where US, = UYer +USes € WHP(w)2, US € WP (w) and u® € WHP(QL)3.
The terms U® and u® satisfy

C
leas@)llzrwy < —7 le()llze(y),

1D 1) < s el (59)
le(u®)llzr o) < Clle(u)|lLrr)
and
[ull () < Celle(u)||Lrr), (3.10)

[Vu?l|lLrar) < Clle(u)l|Lrr)
The constants depend only on Ky, K1, Cy, C1, A, B, ¢y, N and p.

In the proof of [13, Theorem 4.1], the coverings of w and Q. given by (3.6)-(3.7) play an important
role via the ratio of the diameter of an element of these coverings to the radius of the ball for which it

K +1 2
S(m;:{r CZ ?HJ/;}CH for both coverings (x is given by (3.5)).

is star-shaped, that is



4 Decomposition of the displacements of plates with a very
high thickness contrast via elementary displacements

Denote R , , , ,
Fe(2') = {a'}x(—epe (29 (a") , epe(2')d(a")), ,
(') = {2} x(—epe(a”)Co, epe(a)Co),  F(2') C Fe(a'),
F.(2') is the fiber passing through the point 2’ of w.

Definition 4.1. An elementary displacement of the plate Q. is a displacement v € L'(Q.)? written in
the form

v(z' z3) = V(') + 23A(2")  for a.e. = (2, 23) € Q..
The component V belongs to L' (w)? while A = Aje; + Ases is in L' (w)?.

Here, V gives the ”mz’d—surface’ﬂ displacement and x3A(z") represents a "small rotation” of the fiber
F.(2'), whose axis is directed by —Aa(x")e1 + Aj(2')ea and whose angle is approzimately |A(x')|2 (see
[9, Chapter 11] or [11), [12] for more details).

To any displacement v € L'(.)® we associate an elementary displacement U., € L'(©.)% and a
warping u € L(.)3
— Ue + u
u@) Z(/x) @) , for a.e. x = (2, 23) € £ (4.1)
Uet(z) =U(z") + z3R(2")
so that (o € {1,2})
/ u(z', z3)dzs =0, / Ug (2, w3)x3drs =0 for a.e. 2’ in w. (4.2)

The above equalities determine (2’) and R(z’) in terms of u and integrals on the fiber FO(z') (see
[12]). We have

1
[E2 (@) Jpo @

12
R(z") = GIGE /Fo(zl)m(ul(x’,mg)el—I—ug(x’,mg)eg)dxg,

U = u(z', x3)dxs,

for a.e. 2’ € w (4.3)

where |F2(2)| = 2ep.(2)Cy is the length of the fiber F2(z').

Theorem 4.2. Let u be a displacement in WP(Q.)? decomposed as ([4.1). The terms U, R and u of
this decomposition satisfy

Ue Wl’p(w)3, R € Wl’p(w)z, e Wl”’(Qs)3,
C
||Pi/pea8(um)||m(w) < TPIIG(U)HLP(Q )s
Hp;/p(VU;),—F'R Hm(w) ” ( )HLP (4.4)

C
P2 PRI Lo () < 1+1/p|| e(w)|lzr(0.)s
u

5
where Uy, = Urey + Useq € WHP(w)2.
The constants do not depend on &[]

I Here the set wx{0}.
2 They depend on Ky, K1, Co, C1, A, B, ¢, N and p.

LP(9.) < Celle(w)lze (), IVl e 0.y < Clle(u)||ze(o.)




Proof. Since p. € W1 (w) and u € WP (€.)3, the function U belongs to WP (w)? and R to WP (w)?.
So, u belongs to W1P(Q,)3.

Let Y. be an element of the w covering, of type BZ?/?,@ Byoe™ or Qe, and a. a point in Y.

Step 1. Preliminary considerations about Y..

Denote

e =R the diameter of Y. (R < 3(K; + 1)k + 2C1),

We have
I1<=<R and e<p.<1. (4.5)

We define Y C R? by
Y. =a. +¢Y.

Now, consider the portion of €2, _
Y. = (YEXR) N Q..

The domain ?5 is a small plate with non-planar top and bottom surfaces. We transform ?5 by a
dilation of center a. and ratio 1/e, we obtain the domain Y,

Y. = {y EYXR | —pape(y) <ys < EQSE(Z/)}

where

boly) = L)@t oY) (p-0) @ +2y')
2= o

The functions 1. and ¢. belong to W>°(Y) and they satisfy

. oY) = . YW =p)eY.

max{||dc || o (v Vel Lo (v) } < RCY, d:(y') > 2Co, Y(y') > 2Cy,
9:(y') — ¢-(2")] < (RKoeo + Ch) |y — 2] V(y',2') € Y2,

[Ve(y') = ve()] < (REKoso + C1)ly' = 2| V(y,2) e Y
Case 1. Y. is a domain of type BZ‘;,?E (resp. be",‘c“;m)
In this case Y is included in a rectangle whose width is x and length less than (3K + 1)k.
Firstly, we cover most of Y with squares of side length x1pz (k1 is given below by (4.6))). These squares
are star-shaped with respect to discs of radius k;1p:/2, the diameter of these small squares are less than
2%1@.
Then, since the top of this domain (resp. the bottom) is given by a map defined on the interval [0, &]
which has a Lipschitz constant eK; < goK; < Kj, we cover the neighborhood of the top (resp. the
bottom) of Y with domains similar to B} _ (resp. By'e™). These domains have width equal to #1pz
and length between (2K + 1)k1p: and (3K + 1)k1pz. Their diameters are less than (3K + 2)k1pe
and they are star-shaped with respect to discs of radius k1pz/2.

So, as we did for B} _ (resp. Bpo'2™) in Section 3} we determine x; taking into account the condition

given by Lemma and the simple conditions to get these domains included in Y. That is

C
(3K1 + 2);‘%1 < WO-FCH’ K1pe < K1 < K, (3K1 + l)lﬁlm < (3K1 + 1)/4:1 < (2K1 + l)li.
We set o (2K, + 1)
. 0 1+ 1)k
_ 4.6
1= i { (RKoeo + C1)(3K, +2) 3K, +1 } (46)



So, every point of Y belongs to at most 4 domains of this covering.
Case 2. Y. is a quadrilateral.

In this case Y is also a quadrilateral whose width is x and whose length is between « and 2x. We cover
it with squares of side length x1p: (k1 is given above by ) These squares are star-shaped with
respect to discs of radius x1p-/2, the diameter of these small squares are less than 2k;p;. Every point
of Y belongs to at most 4 squares of this covering.

Step 2. From a Kirchhoff-Love displacement to an elementary displacement.
Let u be a displacement belonging to W1?(€.)2. We can now apply Theorem to the displacement
u(ac + ) of the plate Y.
First, we replace
e whbyY,
e c by pe,

¢ by ¢e, ¥ by 1,
Ky by RKopeg + C1,

e (Cj remains Cy,

C1 by RCy,

e x by k1.

Then, we decompose the displacement u = u(a. + ¢-) as the sum of a Kirchhoff-Love displacement and
a residual displacement

w1 ous -,
Ui (y') Y 50, (¥ A
u(y) =Ukp(y) +u*(y) = U (') — s ous (v +u*(y) for a.e. yin Y, (4.7)
)
Us (y')

where U, = Ure, +Uje, € WIP(Y)2, U € W2P(Y) and u* € WIP(Y,)3.
We have (see Theorem [3.2)

, ce
e @) lrn) < —llen(@ o,
€

. C° 4.8
1Dy Uileece) < g lew @ o, o

Hey(u*)HLp(?E) < OoHey(u)HLP(?E)
and
1l gy < C° B2 eyl oy
Hey(u*)HLp(?s) < OO”%(“)HLP(?E)a (4.9)
Hvyu*HLp(?E) < COHey(u)HLp(?E)-

The constant C° depends only on Ky, K1, Cy, C1, A, B, ¢ and p via the constants introduced in the
previous step and summarised above.
We have

lley ()l 0w,y = 81_3/p||e(u)||L,,(§E). (4.10)



Denote _
F2(y') = {y'}x (= Cope(ac + £y'), Cope(ac +ey'))

the portion of fiber of Y. obtained by scaling from the fiber FO(z').
From and we obtain for a.e. ¥y €Y

1
|FO ()| R

U(ae +ey’) =U* () + u*(y)dys,

ous ouz 12
aR(as + Ey/) — _(J(y/)el + 3 (y’)92> + = /N (u{el + u;eg)(y)ygdyg,
O Oy2 [E2(y)I? JFo () il
our 1 du* (411)

edall(as +ey’) = (y)dys,

Yy =
Ya [EO(y")| JFO(y') OYa

821/{* 822/1* 12 8(u*e1 =+ u*eg)
2 / 3 ’ 3 / 1 2
13 BQR a, & = — e e + = / T —— dys.
(ae y') (9111 Dy (y')e1 + 20y (") 2) ‘FSO( ,)|3 FO(y") Yo (v)ysdys

Step 3. We prove inequality (4.4));.
From equality (4.11)s we deduce

1
[E2(y")]

s Un) (az +2y) = eapy UL W) + /F  casa )0
2(y’

We elevate the above equality to the power p, multiply it by p.(a. +¢ey’) and then use Holder inequality.
We obtain

1 *
ePp(ac +ey’)|eapUm)(ac +ey' )P < 277 Dl eap,y (Un) (y)P + 20752 /~ leap,y (W) (y)[Pdys.
200/’8 Fo(y")

Now, we integrate with respect to ¢y and use (4.5)-(4.8])-(4.10)). This yields

— —1= * 2p—1 *
e 2||p;/176a,@(um)”ip(y€) <2 1pa‘|€aﬁ7y/(um)”§p(y) + 2C, Rlleap,y(u )”i,,@—a
p—1 O\ P p—3 p—l(co)p p—3
S HHOPRE )y )+ 2 R e

Thus, we obtain

1 _ _
||p;/PeaB(L{m)||I£p(YE) < (1 + ﬁ)(QCO)PRE 1|| ( )HLP(Y ) < (020) 1||€(u)”§p(?€)

The constant C?° depends on C°, Cy, R and p. The sum over all the elements of the w covering leads
to

12 PeasUm)llf 1) < Cn(C*)Pe le()], .-
Step 4. We prove inequality (4.4])s.
From equality (4.11)2 35 we get

1 ouj

e Us(ae +ey') + eRal(as + ey
sl )+ eRala ) = 1m0 Jrse) e

(y)dys + u?, (y)ysdys.

12 /
|[E2(y") 13 JFoy)

We elevate the above equality to the power p, multiply it by p.(a. +ey’) and then use Holder inequality
and (4.5)). This leads to

2Cy

2r—1 ou* P 6° .
pe(a-+ey)e? |0alts(ac+ey’)+Ra(ac ey’ )| < R(/~ (y)) dys+—5— /~ [u (y)|pdy3).
FO(y') FO(y')

Co pe’

10



We integrate with respect to y’. This yields

B Pt * 6 \7 1 "
&2 o7 (0l + R ) [1 < 20 ROVl g+ (50) 5 W)

Then, with (4.9)-(4.10) we obtain

lp2/" (9alh + Ra) < (CF)Pe e, 5

Izecy.) <

The constant C3° depends on C°, Cy, R and p. The sum over all the elements of the w covering leads
to

Hp;/p(a U+R HLp(w <CN(C3O)p5_1H ( )HLP(Q

Step 5. We prove inequality (4.4))s.
From equality (4.11))4, we have

20, Rp(a: +ey) =

U 12 ou*;
S (yf /F . 2 (y)yadys.

+ =
32![33?4& |FO(y)))3 ) Wa

We elevate the above equality to the power p, multiply it by p.(a. + ey’)?T! and then use Holder
inequality. This gives

_1=p+1
e pe(a. +ey )P0 Ra(a: +ey')[” < 207157

(‘ U "

0
U 5 )| ).

p n 6P /
205 5Pt JFo )

We integrate with respect to y’. This yields

92U ot

8115
8y58y HLP(Y) Cp+1 71,_;,_1 H H

o0 Rs vy < 27

Due to (4.5)-(4.8)2-(4.9)2 and (4.10)), this implies

127
e pe PO R .y < 207 HCOOP RPH P e(u) ]

+1_p—3
b * e OV RS )

‘LP(Y )

Hence
o170, Ralh, iy < (€ e, g

The constant C*® depends on C°, Cy, R and p. The sum over all the elements of the w covering leads

to
ot P00 Ra 17, ) < CN(CPE e}, g

Step 6. We prove inequality (4.4])4 5.
By proceeding as the above steps and using equalities (4.11)) together with estimates (4.9) we obtain

(e

||z4(as+5.)—u*\|§pY < S P e, g )
o ey
|cduti(a. + =) HL,, w0 = a0 el g
4.12)
au3 69 (CoyP =3 (
”ER(X(aE+E')+ GBI HLP (Y) < Cp+1 D= H ( )HLP(Y )’
02U 6P(C°)
2 3 p

H€ 6(1Rﬁ(as+€ ayﬁay || >~ Wﬂip—‘rl“ ( )||Lp(?6).

11



We have

oux ~
u(a. +ey) = —(U(a- +ey') —U(Y')) — y3(eRal(ac + ') + 3y3 (y))ea +u*(y)  forae yeY..

Remind that the length of the fibers of ?s are less than 2C pz.
Now, elevate the above equality to the power p, then divide it by p.(a.+¢ey’)? and use Holder inequality.

Thanks to estimates (4.12]); 3 and (4.9)-(4.10)), this gives

u(as +¢-) ’ P 1 Ci P , 3
\Fe T <3P ( ooy ZLle p P
o e, s (Er g e e, ¢,
C1pe \PHLGP(CO)P | 5 P o\p p—3 P
+2(55) o el g, + (VW g )
Hence, with the help of (4.5) we obtain

ﬂ p 14
_ < 90\P P r .

’ pellLe¥.) = (@yeflle(ll, .

The constant C®° depends on C°, Cy, C1, R and p. The sum over all the elements of the w covering
leads to B

’ u
Pe

Now, we estimate the partial derivatives of u. We have

p

50 P
iy = OV q,)-

ou o*U. ou
— _ n Yo 2 3 el
Opu(a + ey) =~ (Dst(ac + ') = 52 0)) ~ w5 (FRalac +2v) + 5 (w)ea + 5 w)
N ou ou
Ogi(a. + ey) = —(Ralac +ey) + 52 0))Jea + 5 (v)

Thanks to the estimates (4.12])2 3 4, we obtain

ot} 5.y <37 (0P S LSS el
N Q(C;EPE)W Gggl)pep3||e(u)||ip .+ €O, o )
and
e"~?|0sa g,y <277 Gggl)p 26;:1;)66]03||6(u)||§p<?6) + 2OV el 5,
Thus
Va7, g, < (CEPlle@l, g -

The constant C% depends on C°, Cy, C1, R and p. The sum over all the elements of the w covering
leads to
IV, ) < ON(C™) @) -

This completes the proof of Theorem O

12



5 Korn’s type inequality

Denote
Wll(’)ps(QE) = {v eWHP(Q.)|v=0 ae. on I‘O,E},

1, - 1, —
WP (w) = {V eEWP(w)| V=0 ae. on fyo}.
Let u be a displacement belonging to WI}(’JP 5 (€2.)? decomposed as (4.1)). The boundary conditions imply
U=0, R=0 ae.on vy and u=0 a.e on I'g..

Theorem 5.1. For every displacement u € Wl}())ps () decomposed as (A1) we have

C
el )y < 75 lle(@)l e (.,
c c
1 1
1P PR 1y < g le@llern, |l IPVUs| o) < g leWlizr @), (5.1)

C
’|u3HLP(w) = mH@(WHLP(QE)-

Moreover,
C .
102/ Vo[ Lo () < mHe(U)HLr)(QE) if pe(1,2),
C )
Ip2/ vum||L2(w) < T/QHS(U)HL%QE) ifp=2, qe(1,2), (5.2)
INUnllaw) < 7 || (W) e (0 if pe(2,00), qe€(1,p/2),

In addition, we have

luillze (o) + lluzlle o) + ellusllr .y < Clle(w)]Lr .y,

3 2
(5.3)
Z Haiui||LP(QE) + ZE(||83ui‘|LP(QE) + HaiuBHLP(QE)) < Clle(w)llze(a.)
i=1 =1
and
020110+ 0102l 1o < Clle@liniany i p€ (1,2), o
02| o) + 10102 o) < Clle@llzre,y i p € [2,00), g € (1, max{2,p/2}). .
The constants do not depend on &}
Proof. Step 1. Preliminary estimates.
First of all, since p. > ¢, from we obtain
leapUm)Lrw) < || (Wllze .,
C’
| Vtds + RHLP(W) < {_:27"6(”)‘|LP(QE) (5.5)

C
eV RIlLr ) < Sz lle(w)llzr ).

Then, the above estimate (5.5))1, the 2D-Korn inequality and the fact that U, vanishes on 7, yield

C
e w2p ) < Clle@m)llrw) < 7 lle(@)llr@.)- (5.6)

3 The constants of the estimates (5.2) and (5.4) depend on p and gq.
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Observe that (1 —¢)py = p. —e and 0 < p. — e < p., then from estimate (4.4)3 and the fact that
0<1—e9<1-—e<1 weobtain

C
(I =co)loy VRILr(w) < (1 = &)llpy VRl o) < llpe VRI o) < 7 lle(@lze@0)-

This above estimate together with (8.16)) lead to

C
IR @) < Clloy VR Lo (w) < 575 lle(w) | L (a.)- (5.7)
cl+2/p

Now, from this inequality, (5.5)2 and then the Poincaré inequality we obtain

C
esllwrr ) < gz le(@llze .- (5.8)

Step 2. We prove (5.1));.
Proceeding as in Step 1 and using the estimate (4.4));, we obtain

C
(1 —0) P llpX/P eUm )l o) < (1= )VP10YP e(Um)l Loy < 11927 eUnm)llLr(w) < 61Wﬂe(U)HLP(QE)«

Then, Corollary in Appendix gives
1/p ¢
Ul Lr () < Cllpy/ P e(Um)llLr(w) < i le(u)llLr .- (5.9)

So, (5.1 is proved.
Step 3. We prove (5.1)23.4.

We have
(1= &) 2 pS VPR Ly = (0 = ) FVPVR] Ly -

Then, 3 yields
C
(1= e AR, ) < VR ) < o e,
The above estimate and the one below from in Appendix
13 "R Loy < Cllo T PIR] e, (5.10)

lead to o
1
pr/pRHLp(w) < m”e(u)nm(nsy
Thus
C
1 1/p 1
(pe — ) /PRHLP(W) =[1-e) /PpW/PRHLP(w) < ElJrl/p||e(u)||Lp(Qa)

which, in turn, with (5.7)) and the fact that pi/p < (pe — )P 4 £/ give (5.1)s.
Now, from (4.4)2 and (5.1))2 we get

C
o2 PV Us|| oy < (P2 PR oy + 1027 (Vs + R) || oy < Sy le(@) 2oty

and then o
/P VU | Lo ) < sy le(w)l| e (o)

14



This estimate, those of (5.8]) and (8.16]) in Appendix yield

C C
1PV Us | Lo () < mlle(u)llm(m), sl Loy < CllpyPVUs | o) < mne(u)nm(ﬂw

As a consequence, (5.1))34 are proved.
Step 4. We prove (5.2)).

1
e if p € (1,2) we choose s = —— then, Lemma gives the estimate ([5.2))1,
p

1 2 1
e if p =2, we choose s = — — 1 with ¢ € (1,2). Then we have 2s+1==-—1>0and s+ 1= —. Due
q q q
to (8.18))2 and (5.5); we obtain
10y TVt | L2y < Cllpy/ "€l 2w,
C
1 Te@m)l| 2 (w) < 10y 2e@Um)ll2(w) < Cllpt )| 2w < a7z el
This proves (5.2)2 with a constant which depends on q.

1
o if p € (2,00), Lemma with s = — implies that for any ¢ € (1,p/2) one has
p

C
leas@m)llza) < ClloyPem) o) < Cle/Pe@m)lrw) < 7 le@lzr@.)-

The constant depends on p and ¢ and is independent of . The 2D Korn inequality, the above inequality

and (5.1]); lead to
C
VUl Law) < C(lleUm)llLaw) + [UmllLa)) < 1/p||e(u)||LP(QE)~

This proves (5.2)3 with a constant which depends on p and g.

Step 5. We prove (5.3 and ( .
Estimates (5.3) (resp. (5.4)) are the consequences of those in and (5.1)) (resp. (5.2)). O

Remark 5.2. See also Remark [8.11 If w is a polygonal domain and if v has a finite number of
connected open components then we have

C
03PV Umllzo ) < Clloy PeUm)llLoy == N102/" Vo) < 7 le(@lzon)-
Moreover, we have the following Korn type inequalities:

HulHLP(Q )y + ||U2||Lr(Q +ellusllzr ) < Clle(w)llzr .

Z |0 ulHLP Z |a3“iHLp(Q€) + Haiu?’HLP(QE)) < Clle(u)llzr .,

||52U1HLP<QE> + H51U2||Lp(95> < Clle(w) Lo (o).
The constants do not depend on ¢.

Theorem 5.3. If v = 0w then, for every displacement u € W1P(Q.)3 there exits a rigid displacement
r such that

lur = rillze(a.) + luz — rollze(a.) +ellus — r3llLe(o.) < Clle(w)l|Lr0.)s
Z HaiuiHLP(QE) + (|02 (us — rl)HLP(QE) + (|01 (uz — rl)HLP(QE) < Clle(w)lLr .y,

i=1
2

C
Z (||33(Ui - I“z‘)HLp(Qe) + H@‘(Us - r3)||Lp(QE)) < ;HE(U)HLP(QE)-

=1
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The constants do not depend on €.

Proof. First, we decompose u as (4.1). The terms U, R satisfy (4.4). Then, Proposition with
1
= — gives a rigid 2D displacement R (R(z’) = (a1 — bsxa)e; + (az + bzz1)ez2) such that
D

e = Rl| oy < Clip"P eUom) Lo ()
1PV U = R) 15w < Cllp"? eUunll oo
As in the proof of Theorem (see Steps 1-2), we show that

C
e = Rl oy + 1027 V Ui = R) |10y < 7 le(@llzr)-

The Poincaré-Wirtinger inequality, given in Lemma provides two constant bs and b3 such that

le/p bo‘)HLP(w) < C||pl+l/PVRaHLP(w).

As in the proof of Theorem (see Step 3), we obtain

1/1)

C C
1027 (Ras = bl oy < s le@lznanys 102" Galls + ba)l 1oy < iz lle@llzrcany:

The Poincaré-Wirtinger inequality provides a constant as such that

C
tds — (a5 — bray — bowa)|| Lo (w) < CllpY/PVUs||Lr(w) < SEs Y le(w)|| e (a.)-

Set
r(z) = (a1 — bgxa + bixs)er + (az + b3zy + baxws)er + (az — bixy — baxo)es.

The estimates above and the last two in (4.4) lead to those of the theorem with the rigid displacement
above. O

6 Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator.

Definition 6.1. For ¢ measurable function on Q., the dimension reduction operator I1.(¢) is defined

as follows:
I (¢) (2, X3) = ¢(2',eX3) for a.e. (2',X3) € Q.

I (¢) is a measurable function on Q.

Observe that for all (2/, X3) € Q we have —ep, (2')(2") < eX3 < ep,(z')d(x’). So, since 0 < p, <
pe we get (a/,eX3) € Q.. Therefore, the above definition makes sense.

We easily check that

1. for any ® € L'(Q.) such that ® > 0 a.e. in ., we have

1
/HE(Q)da?’ng < f/ P dx. (6.1)
Q € Ja,

2. for any ® € LP(Q).) and ¢ € LP(w), 1 < p < o0

1 1
II.(®)| 1» < — || zr(q.),
I (@)zrie) < 775 773 12l (6.2)

I.(¢) =¢ and (4Co)"?|p}/P¢l Loy < ITe(d)]lLr(@) < (2C1)P) 02/ PPl Lo (),
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3. for any ® € WhP(Q.), 1 <p< o0

Ol (2)
0X3

OallL () = I (9,P), = el (8;®). (6.3)

Let u be a displacement belonging to W1?(Q.), decomposed as (4.1)).
The strain tensor of u is given by the following 3 x 3 symmetric matrix defined a.e. in €. by

ell(L{m) + 2301 R1 + 611(@) * *
e(u) = e1o(Um) + % (82R1 + 8{/32) +e12(u)  e(Un) + 1302R2 + €22(T) * (6.4)
1 1
3 (O1ls + Rq) + er3(nw) 3 (0ol + R2) + e23(n) e33 (1)

where U,,, = Ure1 + Uses.

First, we introduce the spaces

Warp,(Q) = {&» € LP(Q)

8
o € P

Y o
W, () = {q> € Warp,(Q) | / ¢<I>(-,X3)dX3 =0 ae inw}.
—P~

We equip 20,,(£2) with the semi-norm

12, = VP € W, (Q).

Han ’ e ()’

This semi-norm is equivalent to the usual norm of Warp,,(£2). Indeed the Poincaré-Wirtinger inequality
implies

(27 Py ® 8@
/ 1B(-X3)|PdX5 < Clpy|? / () X3)‘ dX;  ae in w
—py Py 6X3

from which we deduce that

Vo € 20,(Q).

[@llr @) <

H 6X3 ’ LP(Q

~

P

The above estimate also shows that — belongs to LP(Q)3.
P~y

Now, for p € (1,00) and s € R, we denote

@ = {6 € L) | pio € L)},

*w) = {o e Wil w) | Ve e Lw)?},

Mll/’g(“)i{q’eWzl (w)* | ph/Pe(® )GL”(w)4}, (6.5)
) ={
@) ={

Wi ) = {6 € I (w) | pH/7V6 € LP(w)?},
WP @) = {6 € L7(w) | o7V e LP(w)?, plT /7 H(9) € L7 (w)'}
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where H(¢) is the Hessian matrix of ¢ and

Wir(w) = {6 € IPw) | V6 € L@, =0 ac. on )},

M (w) = {<I>6M1;p( ) | =0 ae. on »yo}, o
Wi, @) = {6 €Wl @) | 6=0 ac on ),

Wiy p(w) = { eWPP () | ¢=0, V¢=0&eon%}

Note that in a neighborhood of 7 in w the functions belonging to W1?(w) (resp. MIZ) (w), Wllf | /p( w),

Wffl/p(w)) belong to the space WP (resp. (W1P)2 WP W2P) of this neighborhood. Concequently,
the spaces introduced in make sense.
Note also that if ¢ belongs to M 1p P (w) then, proceeding as in the proof of Theorem . Step 4) w

obtain

Wi (W) if pe(1,2),

1, ; .

M (w) € § Wi (w)? if p=2, qe(1,2),
Wi (w)? if pe(2,00), q€(1,p/2).

Lemma 6.2. We have

Ly, (W) CIP(Q),  WiP(w) c Whr(Q),
Wik w) € {¢ € LP(Q) | p, Vo € LP(Q)°}, (6.7)
W (@) C {o e WHP(Q) | p,H(9) € LP(Q)*}.
We also have
1p 1, q=p if pe(1,2),
Mjpl) C WEHQ)T where {q e(max{2p/2)  if pe [2,00) (05

Proof. The inclusions given by ([6.7]) are the consequences of the definition of these spaces and inequal-
ities (6.2]).
If p € (1,2) then, the (6.8); comes from the equality M e Plw) = VVll/”];(w)2 (see Lemma and (6.7).

If p € [2,00) then, for any ¢ in W. /’p( w), the Holder inequality gives

1P/ 1V Ly < w577 109V ]| 1oy

So ¢ belongs to Wll/’g (w) and therefore to W14(Q). This ends the proof of (6.8). O
For every (@, <I>) € M}/’;( )xW?’fl/p( w)x LP(w; WHP(—1,1))3 we denote
611(@m> — X38%1(I)3 * ES
B(®,8) = e12(Pm) — X301203  €02(P) — X305,P5 (6.9)
199, 109, 0Ps
29X5 20X5 X5

where ‘bm = ‘1)161 + @282, P = (I)m + @383 = ((Dm, @3)
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Note that we have

V(®,®) € MyP (w)x WP, (w)x LP(w; WHP(=1,1))%,

1+1/p
Co (¥ e(@m) o + 0179, +H8X3\Lp ) < IE@. Bl (6.10)
< 4 (IoY/Pe(@,) o +||P”””V‘I’3||L”<w>+Haxg‘m Q))

Theorem 6.3. Let {u.}. be a sequence of displacements belonging to WF")pE (Qe), decomposed as (4.1)
and satisfying
le(ue)l|z2(.) < Ce*FH/P (6.11)

where the constant does not depend on .

Then, there exist a subsequence of {e}, still denoted {c} and U,, = Ure; + Usey € Ml/p( w), R €
W}fl/p( w)?, Us € W1+1/p(w) and U € 20,(Q) such that
1
6—21/Im,8 —U,, weakly in M1/ (w),
1
*u?, e —Us  weakly in Wl/p( w), (6.12)
fR — R weakly in W1+1/p( w)?.
Us and R are linked by the followmg condition:
VUs; = —R a.e. inw. (6.13)
We also have
1 , q=p if pe(1,2),
— T (ua ) — Ui — X30,U ki Wh(Q), wh
gz Teltoe) = = XoOully - weally in WHH(R), where {q € (Lmax{2p/2})  if pe[2.00).
1
EHE(U&E) —Us  weakly in WHP(Q)
(6.14)
and .
?Hs(e(us)) — BEU,U) weakly in LP(€2)**? (6.15)

where U = (Up,,Us).

Proof. Step 1. We prove ((6.12)) and (6.13]).

First, as mention above we have (1 —e¢)p, < (1 —¢)py < p. in w. Hence, estimates (4.4)-(5.1) and

(6.11) give

C
U, a”Ll’(w + ”p’y/pe( m,e)HLP(w) < Tp”e(ua)”LP(QE) < 0527
C
s el oy + 0% < gy le(e)llie ) < Ce,
c (6.16)
102/ PRe | Lo () + IIP}Y“/”VR ey < g le(ua)linon) < Ce
C
10%/P (Vs e + Re)l| Loy < 61ﬁ”e(ue)ﬂmms) < Ce.
We also have (see (5.2))
102? Vi cl| o) < CE® it pe(1,2),
, (w)
192/ Vit e 2y < C&? it p=2, g€ (1,2), (6.17)
VU el La(w) < Ce? if pe(2,00), qe€(1,p/2).
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Then, up to a subsequence of {5} still denoted {e}, we have the convergences (6.12) and Vi = —
a.e. in w. So, Uz belongs to W17+1/p( w).

From the above estimate 4, we also deduce that there exists Z € L7 /p (w)? (it also belongs to
LP(Q)?) satisfying the following equivalent convergences:

Qp;/p(VU&E +R) — p#/pZ weakly in Lp(w)Q,
(6.18)
II.(VUs,. + R.) = Z weakly in LP(Q)Z.
Step 2. We prove ([6.14)).
From the estimates (4.4)45 and the properties (6.2)-(6.3) of the operator II., we obtain
1 _
| @), o) < O lleuollira,) < O
ML (@)l o0y < Ce'~VPlle(ue) || Loy < O,
_ C
@ < i 02
Ol (u.)
Tee) < 6 < Ce?
H 0Xs v 51/P lefue)llzr@.) < O
Then, up to a subsequence of {¢}, still denoted {¢}, there exists U € LP(w; WP(—1,1))3 such that
1 —
— 1L (u:) =~ U weakly in Warp,(f2),
° (6.19)

1
?aang(us) — 0 weakly in LP(Q)%.

11
Since the sequence {——31'[5 (ﬂg)} is uniformly bounded in L?(2)? we also have

Pe € €

11 1~
— 5 (u.) = —U weakly in LP(Q)3.
Pe € P~

Now, the estimates (5.3)) yield ((a, 8) € {1,2}?)

c
IMLe (us.e)ll o) < g lle(ue) e ) < Ce,
H N H Ol ()
Lr() 0Xs3 llre() = eltl/p
Then, the above convergences lead to those of (6.14)5.
Besides, from and (| we have

19aT1 (us.c)

le(ue) || Lo o) < Ce.

C
e lrie) < 75 letwollzrgan) < O
Ol (ugp,e) 2
19a11e (us.2) | o o) + ‘ Xy N S amlleelli@y < O

So the above convergences ((6.12]), (6.18]) and (6.19) lead to that of (6.14]);.

Step 3. We prove (|6.15]).

ell(um) — X33121M3 * *
1 _ 2 _ 2
721—[6 (G(UE)) N elQ(Um) X3812Z’{3 622(Mm) X3822U3 * weakly in Lp(Q)Sxii.
U, 1 U, U3
zZ — - Z — —
3 ' o) 32+ 50)  ax
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Set (« € {1,2})

A o 1 (21 o
O, Xs) = X3Za + Ual Xs) 7/ (X520 + Ual-, X)) dXs,
p’y(¢+ ¢) —p .
. oo a.e in Q.
Us(-, X3) = Us(+, X3) — 7/ Us(-, X3)dXs3,
p7(¢ +) —py
This gives convergences (6.15) with U € W,(£2). O

7 The linear elasticity problem in ()

We denote
De = HE, (), Dar = My (@) x W3 ().

In this section, D, is the set of admissible displacements of the plate €. while D,; is the space of
macroscopic limit displacements.

For 1 <i,j,k,1 <3, let a;ji; be in L>°(2) and satisfy the symmetry conditions
aijr (2, X3) = ajin (2, X3) = agij (2, X3) for a.e. (2',X3) € Q,
as well as the coercivity condition
QijklTijThi = €O TijTij a.e. in (7.1)

for every symmetric matrix 7 = (7;;) of order 3, where ¢y is a strictly positive constant.
The constitutive law of the materials is the relation between the strain tensor and the stress tensor

0 (v) = aijr er(v), Yo € Dy. (7.2)

For simplicity, we consider only applied body forces F.
The displacement u. € D, is the solution of the following elasticity problem:

;i (u eivvdx:/ F, -vdx
[ ez = [ . )
Yv € D..

We make the assumption that the applied body forces F; are of the form

F.(z) = (52 fae(@') + ex3g0.(2"))eq + €3 f3.(x')es for ae. x € Q. (7.4)
where 1 1
fe=—1, ge = 549
pE p{-:

f = fiei € L*(w)® and g = gae, € L*(w)*.
Now, for every u € D, decomposed as (4.1)) one has

84

3 /wgapeRa (¢3 + 1/13)d$/

/ F. - Ugdx = 53/ Jolo (¢ +)dz’ +
Qe w
3 4
+ % /w 9o Z/[a (¢2 - ¢2)d$/ + % /w focpaRoc (¢2 - ¢2)d1’/

e[ Bk (o4 v
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and due to (4.4)4

[ Fvude] < C(1N + I9llizo) ez (75)

From the estimates (5.1]) and the one above, we obtain an upper bound on the right-hand side of (7.3])

Vu € De, e '“dﬂf‘ < C (1 fllz2) + 19l 2y lle(w) 2@, -

‘ Q.

Applying the above estimate with u = u. taken as the test function in (7.3)), this gives

le(ue)lz2a.) < O™ (I1f 1220y + 9l z2w))- (7.6)

7.1 The limit problem in )

In this subsection, we investigate the asymptotic behavior of the sequence {u.}., the solution to

problem ([7.3)).

Theorem 7.1. Let u. be the solution to problem (7.3). There existU = (Up, Us) € Dpy and U € W ()
such that

1 .

‘C:—zlxlm’g4 U, weakly in M}é(w)

1

EU&EA Us  weakly in Wié (w), (7.7)

1
EREA R = —VUs weakly in W;/é(w)

and
1 ~
8—21'16 (e(us)) — E(U,U)  strongly in L*(Q)**? (7.8)

The pair (U, ﬁ) € Dprx2Wo(Q) is the unique solution to

/ aiiEi; U, ﬁ)Ekl(V, 17) dr'd X5

Q

= . /_ 1/ . 3 3 /
—/wf V(o+9)dn’ =3 | g-VVspy (07 +v7)da 7o)
1
45 [ 0+ - TVapy) (8 = P
V(V, V) € Dy x205(Q)

where
Im = f1e1 + faea.

Proof. Step 1. The convergences ([7.7]) and (|7.8]).

Due to the estimate ([7.6)), there exist a subsequence of {€}, still denoted {e}, and U, = Ure; +Uszez €
Mi’/é (w), Us € Wgé (w) and U € W5(N) such that the convergences (7.7) and ([7.8) hold in the weak
sense.

Step 2. The limit problem in €.
Let ¥V = (Vp, V3) be in Dy and Ve (wx(—C1,Cl))3 such that V = 0 a.e. on YoX(—C1,C1). We

choose as test displacement

ve(z) = 8%[(Vl(x’)fxgalvg(:c’))eﬁr(Vg(x’)f:vgagvg(m’))eﬁrvg(x')e3+53‘7(:E’, %)} for a.e. z in Q..
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A straightforward calculation gives

11, (e(ve)) — E(V,V) strongly in L?(€)**?

and
é/ﬁ Fe-vgdx—>/f-V(qS—Fw)d:B’—%/Q'VVSPV(¢3+¢3)d$/
+%/w(gvm+fmvv3p7) (¢2—¢2)d1'/.

We take v, as the test displacement in (7.3)), then we transform with II., divide by € and pass to the
limit using the convergences and ([7.8]) (in the weak sense) and those above concerning the test
displacement. This leads to with the pair (V, 17)

Then, since the space of restrictions to €2 of fields v belonging to H'(wx(—Cy,C1))? and satisfying
B =0 on Yox(—C1,C1) is dense in Wq(12), problem is satisfied for every V in Warp,(Q) and
thus for every field in 205(Q).

Step 3. Uniqueness of the solution to the problem ([7.9).
The bilinear form over Dy x22(Q2)

(V. T), W, ) € (Darx2Wa())* — /Q aiy By (V. V) B (W, ) da’dX

is coercive and bounded (see (6.10]) and (7.1])). So, problem (7.9) admits a unique solution. Hence, the
whole sequences in ([7.7)) and (|7.8)) converge to their limits.

Step 4. Strong convergence of the rescaled strain tensor.

Take u. as the test displacement in (7.3)), then transform using II. and divide by *.
We first have

1 1
lim — /Q I.(F.) - (u:)do'dX = /w f-U(p+v)da' — 3 /wg VU pry (¢* + ) da’

+ %/w (9 U + frn - VU3 py) (¢° — °)da’.

Now, the weak lower semi-continuity of the left-hand side of ([7.9)), the convergences (|7.7)-(7.8)) (in the
weak sense) together with (6.1) yield

_ . o 1 1
/QaijklEij(U,U) EuU,U)dr'dX3 < lim inf (/Q%‘kl gﬂa(eu‘(ua)) 21k (ekl(ua))dx/dXB)

e—0

1 1
< lim sup (/Q Qijkl ?HE (eij(ue)) 5—21_[E (ekl(ue))dx’ng)

e—0

e—0 55 e—0

1 1
< limsup —+ / 0ij(ue) €;5(us) de = lim sup = / F.-u.dx
Q " Ja,

€

— [rttor s~ [ g Vihap, (& 40000+ 5 [ (g-Un + for- Tlapy) (8 = 0’

Hence, the above inequalities are equalities. This proves the strong convergence (7.8)) of the strain
tensor. O
7.2 The correctors

Set
M22 _

Mll _ M12 _

O O
o O O
o OO
O = O
o O =
o OO
o O O
o = O
o OO
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Below we introduce the six correctors.

X2 Xy’ e Wa (), (a,f) € {(1,1),(1,2),(2,2)},

defined by

pyé R
/ Qijkl (M%ﬁ + Eij (0, X%ﬁ))Ekl(O, V)ng =0 a.e. in w,

P VW oeWo(Q).  (7.10)

pyé R
/ aijr (XsM§Y + Ei5(0,x57)) Eri(0, V)dX5 = 0 a.e. in w,
—py

Using these correctors, U can be written as follows:

U = easUn)XoP + 02 5Us )" (7.11)

7.3 The limit problem posed in the "mid-surface” w

Theorem 7.2. The limit displacement U = (U, Us) € Dy is the unique solution to

[ [Aasarsran(Unm)carsr (V) + Basars (cap Uon)02: Vi -+ eovir (V)22 s )

+ Caﬁa’B’ (9252/[3 82/5/ Vg] d{ZZ/

. (7.12)
— [ £Vt~ [ - Iip 60+ v
+%/ (g’vm+fnl 'VVBPV) (¢2*1/12)d1?’, YV € Dy

where

prd »
Aasars = [ a0+ B0 02 Mg

797#’

Pw¢ ;o
Boparpr = / aijr (XsM§ + Ei(0,x"))My,” d X,

—py¥

Py ’at
Coporgr = / , aijr (XsM§Y + Ei(0,x0)) XsMpy 7 dXs.
— P~

Proof. In problem ([7.9)), we choose V =0 and we replace U by its expression given above by (7.11)).
Then, as in [9, Theorem 11.21], we prove that the bilinear form over D xDy,

(U, V) }—)/Q [Aagalgf €ap (Z/[m)ear@w (Vm) + Ba,@a/,@/ (eag (Z/[m)ailﬁz]}g + eqrpr (Vm)aiﬁu;),)
o+ Caprargr 02 s 0215/ Vi | o’
is coercive and bounded. Therefore, problem (|7.12]) admits a unique solution. O

7.4 Case of a homogeneous and isotropic material

In this subsection, we consider a plate made of a homogeneous and isotropic material. So, we have

aijil = N0ii0k + (80 + 8ud5%),  {i,5,k, 1} € {1,2,3}4
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where 4;; is the Kronecker symbol and A, u the Lamé’s constants.
In this case, we can easily obtain U taking V = 0 in problem (7.9). We find (see also [14])

8[71 - 8[72 =0

2)53 aX)Z\% a.e. in Q. (7.13)
Us

270 _ 7 (_ — X3 A

OXa Az On) T enlt) XA

Now, inserting the above value of U in (7.9) leads to the variational problem satisfied by U.

Theorem 7.3. The field U € Dy is the unique solution to

1— V2 / [(1—=v)eapU) eap(V) + veaaU)ess(V)] (¢ + ©)py da’

)(eap(U) D25Vs + eas(V) 02 5Us ) (¢° — ¢*)p2 da

2(1 - 1/2 /w
S VQ / U (CanlU) AVs + ean(V) Als) (6% — )0 da’
¢ (7.14)
T y2 /w V)02 5Us 025Vs + vAUsAV3] (¢ + ¢°) p3 da’
:/ fV(p+p)ds — g/g-VV3p7(¢3+¢3)da:’
1
+§/ (9 Vi + fin - VV3 py) (¢* — p?)da’, YV € Dy
where B = M s the Young modulus and v = # the Poisson constant.
A+ p 2(A+ )
Moreover, we have
1 E 2 2 12
6—21'15 (011(U5)) — T2 |:611(U) — X307,Us + 1/(622(U) - X3622Z/{3)} strongly in L“(Q),
1 E 2 2 12
— e (022(u5)) - — |:€22(Z/{) — X3055Us + 1/(611(U) - X3611U3)} strongly in L(Q),
p l—v (7.15)
E—QHE (012(U5)) —2u [612(1/{) - XganU3:| strongly in LQ(Q),
1 .
E—Qﬂs (0is(us)) — 0 strongly in L*(2).
Proof. The strong convergences ([7.15)) are the consequences of (7.8]). O

Now, we can reconstruct the solution to problem . We obtain for a.e. x € Q.
2Uy (') — ex301Us(2')
uc(z) ~ | e2Us (') — cx3dolhs(z’) | +
eUs(x")

>\€2$3
A+2u

(‘ 11 (U)(2') — e (U)(2') + 2¢ 2AZ/{3( ))
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and for the stress tensor, we have

% (e U) (') + ves(U)(a)) Spers(U)(2) 0
O'(Us) (1') = 52 2#612(“) (l’/) % (622 (u) (x/) +vey (Z/[) (:L'/)) 0
0 0 0

s (PR ) + 1Rty () 20408 45« 0

~ s 200 () (Bt (a) TR )) 0

0 0 0

8 Appendix

8.1 Preliminary lemmas

Lemma 8.1. For any x € WYP(0,d), d > 0 satisfying x(d) = 0 and any b > 0, if sp+1 > 0 then we
have

sp+1

! sp P p p [ (s+1)p|\/ (+)|P
| ervriora < (SE)" [ernerriora (8.1)

Proof. We start with x € C*([0,d]) satisfying x(d) = 0. We have

d d d
p/ (t+6) " sign (x(1) XD~ (1) dt = [(t + 0) " X (B)IP], — (sp + 1)/ (£ +0)"P[x(8)[" dt.
0 0

Then, thanks to the Holder inequality we obtain

d

d
(sp + 1)/0 (t +0)*[x(®)]" dt = —p/o (t 4 0)* " sign(x(8)) X (8) "1 x (t) dt — 671 [x (0)[”

d
- / (t + 6)* P Vsign (x(1) [X(D)P~L(t + 0} X (£) dt — b7+ L[ (0)]?

<o [Carorora)” ([ eroevara)”

from which we derive (8.1)) for x € C'([0,d]) satisfying x(d) = 0. A density argument gives (8.1) for
any y € W1P(0,d) satisfying x(d) = 0. -

Lemma 8.2. Let (¢,x) be in L>=(0,d)xW1P(0,d), d > 0, satisfying
m(t+6) <o) < M({t+b) forae te(0,d) and  x(d)=0

where b > 0 and (m, M) € (0, 4+00)?.

Then
le* Xl e 0,0y < Cle® X Lo (0,05 Vs € (=1/p, +00) (8.2)
where e
m ifs € [0, +oo),
C = ) P (8.3)

m ifse(—l/p,()].
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Proof. If s > 0 then we have

d d
/ D&)X (B dt < MoP / (t+ )| (B) dt

0 0
P \[SP d
ot L T ar
0

— mbtp(sp+ 1
pP MSP /d (s41)p |t
t Pl (t)|P dt.
— m(s+1)p(8p+ 1)17 0 SO( ) |X ( )l

If s € (—1/p,0] then we have (s + 1)p € (p — 1,p] C (0, +00) and

d d
/ PP (P dt < mo” / (4 0)P|x(1)|P dt
0 0

pPmsP /d (o41) (e41yppt
< STUP(t 4 p)sTHP t)|P dt
— (S+1)p(5p 1)p o m ( ) ‘X ( )|

D d ( )
< ——n—— o) ETVPIN (1) [P dt.
_mp(; 1),,/0 (t) Ix' ()]

This ends the proof of the estimate (8.2]). O

8.2 Preliminary considerations on boundaries

Denote

e C(a, h,0) the cone with apex O (the origin of R?), axis directed by the unit vector a, height h > 0
and half-angle 6 € (0,7/2)

C(a,h,0) = {2’ € R? | |2/|]zcos(d) <2’ -a < h},

e H(a,h) = {2’ € R* |2’ =ta, t€(0,h)}, H(a,h)is the axis of the cone C(a, h,0),

e D(a,2h,0) the diamond
D(a,2h,0) = {2/ € R® | |2'|zcos(f) < 2"-a < h}U{z’ € R* | |2ha—2/|5 cos(f) < 2h—a'-a < h}.

A B
First, since Jw is a compact set, there exists a > 0 satisfying ¢ < min {g, ﬁ} such that
1

N
ow=|]J (0w),, (dw), = {(xln,mzn) €R? | 2gn = fol(@1n), 1m € (0, A — a)}. (8.4)

n=1
Set , 5 , | .
h =aK; < > 0 € (0,#/3} such that cos(f ) = \/Til{%’
e;;%ﬁ\/%?v e:%, nel{l,... N}, (535)
6" € (0,7/3) such that cos(9") = ——FKE oy 1ESKT
VA + K21+ 9K?) JIOK?

4 Due to the assumption (3.2)2.
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and

’

Bn i{(1'1na$2n) S RQ | fn(fﬂln) < Top < fn(xln) —+ h/’ Tip € (G,A _ (1)}

= U (2], + H(ezn, h/)) C U (2], + H(ean, 2h/)) C B,.

@), €(0w),, ), €(dw)],

Note that by construction of the two cones

A

1"

Figure 2: The two cones CAB = A + C(egn,h',0') and CAE = A+ Cle
CABD = A + D(eay, 2h’, 9l) whose common apex is A.

", h",0") and the diamond
CAB = A+Cley,h',0) and CAE=A+Cle, h ,0")
we have (see Figure [2))
° ﬁ:ﬁ:h'egm ﬁ:ﬁ:aeln, @:mzﬁl,

e AC=AE, CAH =HAE =4¢",

e since A belongs to (8w) , the diamond C ABD is included in B,

o the line AH intersects the segment [D, C] at its midpoint J,

" . .
e ¢, has the same direction as Aj,

2 ” 1+ 3K?
OC@:faeln, AH =h :m>h’7
3 V1+9K?
o dist(G,CABD) = dist(G, AC) 2 h dist(F,CABD) = dist(F, AC) h
1 K = 1 ) = o S5 1 K = 1 K = T 5
3,1+K2 V1+ K}



e thanks to assumption (3.2)) we have
2 , ’" s
0<0 <0 <20 < 3

As a consequence the segment AF is included in the cone CAFE,

e the cone CAF is included in the diamond CABD.

So, we have

B;c( U (x;+H(e;;,h”)))u( U (x;+7{(e;;’,h”)))c6n

), €(0w);, ), €(0w);,

! ’ (8-7)
and U (27, + D(e2n,2h ,0)) C By.
z! €(0w)!,
N ’
Since U (&u)n = Ow (see (8.4])), there exists a strictly positive constant ¢; < ¢o/2 such that
n=1
N
Vo€ (0,2¢1], w\Ws Cw\Wag Cw\W C UB;L (8.8)
n=1

Note that 2¢; < K.

8.3 A weighted Poincaré-Wirtinger inequality
We remind that WP (w) is defined by (6.5).
Lemma 8.3. For any ¢ in Wsl_;_pl (w) with s € R such that sp+1 > there exists as € R such that

1056 = ) 1oy < ClPS Vol Lo (8.9)

The constant depends on s, p and Ow.

Proof. The proof is based on the result given in Lemma[8.2]
We first prove for any ¢ € C}(w).

First, observe that for all 2/ € w,, we have
¢ < pla)) < py (@) < 1.

Now, the Poincaré-Wirtinger inequality applied to the function ¢ restricted to w, gives a € Rﬂsuch
that

C
T1

~ C
16 = &llirwe) < CIVSlLrwy) < mrrllef™ Vel o, < wFlley™ Vol o,
1 1

(8.10)

_ _ _ c .
= 1656 = Dllree) < (e M0 =l < mrlloy™ Vol -
1

5 Observe that s +1 > 1/p'.
6

a is the mean value of ¢ in we,, @ = / ¢da’
|we, | wey
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The last constant C' depends on dw and p.

Besides, there exists a function 1y € C°(w) such that
Po(z') €10,1] for all 2’ in w,
o(z’) =0 for all 2’ such that p(z) < ¢y,
o(2') =1 for all 2’/ such that p(z') > 2¢;.

We have
V((1 = 1ho)(¢ —a)) = (1 —1po) V¢ — Vipo(¢ — a).
Hence, from ([8.10) and the above equality we get

10540(6 = Bl o) < 165(6 = D)l prwry) < ClloST VO L
15 V(1 = 10) (¢ — @) [l o) < 1057 Vol Lo (w) + ClloS (6 — @)l Lo (e, ) (8.11)
< Cllp5 'Vl Lo (w)-
Set ¢o = (1 — t)(¢ — @), this function vanishes in wa,. Now, from (8.11])> we have

1057 Vol o) < CllpS™ Vol o (w)-

N
Remind that and w \ Wz, C U B,/l (see and (8.8)).

n=1

Now, we consider the open set B,,, n € {1,...,N}, and we define the function ¢ € W1>°(0, 1) by

Qﬁ(t) = p’Y(x;L + te?n)? 37;1 = (xlru fn(xln))a Tin € (a, A— a)-

First case: ¢(0) = p,(z},) = 0.
In this case, by considering the cone .Z';L + C(egn, h/,H/), we obtain (see Figure D

t ,
— < (1), vt e (0,h ).
R S o(t) (0,7)
Second case: ¢(0) = p,(z),) € (0,h].
In this case, simple geometrical arguments lead to

©(0) if t € (0,(0)),

V1+K?

p(t) > ;

VI+KZ

if t € (p(0),h),

Third case: ¢(0) = py(z),) > h .
In this case

2O o(t),  Vte (0,h).

VI+K?

Therefore, in these three cases we have
m(t+b) < (t) < M(t+b), Vte(0,h)

where 1
m=———- b = ¢(0), M =1.

2¢/1+K?'
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Lemma [8.2] implies

h

h
[ ewrporasc [*enemropa,
0 0

where (t) = ¢o(x!, 4 tes,) (remind that ¢o(z), + 2c1€a,) = 0 and 2¢; < h').
So, we have

’ ’

h h
/ (P27 160)IP) (&, + teny) dt < CP / (PHOP|V g - e0alP) (& + tesy) dt,
0 0 (8.12)
— /B o)l do! < €7 /B ARG da.

n

Hence, due to 1) and the above inequality (8.12))2, we obtain

N
[oonrar = [ priopas < [ prlonpas
w w\Wze; n=1"5B,

N
<> cr /B IRV go|"da’ < €7 / Pl P IV g "’
n=1 n w

Thus
|5 (1 = bo)(¢ — 5)||Lp(w) = lp5dollLr(w) < CllpST Vol o (-

From the above inequality and (8.11); we obtain
Hpi((b - 5)”[})@;) < C||pf/+1v¢||Lp(w)

for any ¢ in C! ().
Then, taking the mean value of p3 (¢ — a) leads to

[ Mo (p50) = aMu(p3)] < Cllps ' Vo).

Thus, we can replace a by

M, (ps
a, = M (8.13)
Mw(p’y)
Finally, a density argument gives for any ¢ € W;;fl (w). O
Now, since 7o \ v is a set with non-null measure, there exist no € {1,..., N}, ¢ > 0 and a closed

interval [c1, 2] C (0, A) such that
o = {($1n07332n0) € R? | Zany = fro(T1ny), Ting € (01702)} MY

has a non-null measure and dist(vg,v) > 2¢3.

Lemma 8.4. For any ¢ in Wsl_;_pl (w) vanishing on 7§ and any s € R such that sp+1 > 0, we have
10261110 ) < ClAEF 1 V6liner (3.14)

where the constant depends on vy, v§, Ow, s and p.
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Proof. As a consequence of the definition of 7§, the distance between v and

B;i) = {(xlnmeno) S RQ | fno(xlno) < Ton < fno(xl’ﬂ()) + €3, xlno S (01;62)}

is greater than cs.
Then, the Poincaré inequality gives

1612,y < CNV0llncany <€ () 1057V ocos

From Lemma [8:3] there exists a; € R such that

< Ollo5™ Vel | oo

o)

195(@ = 29[ 1oy < CllPT Vol o) < Cllos ' Vel Lo o)
So .
HpvaéwLP(Bno) = Hp"/ —as HLP (BE) + Hp"/¢|‘LP BE) < C'||p v¢||L1’(¢v)
= Hp;( —as HLP(W) + cs/pH‘bHLp(B* < C”p;—i_lquHLP(w
Therefore

las| < Cllp5 Vel L)
As a consequence (8.14) is proved.
Corollary 8.5. [Poincaré-Wirtinger inequality] For any ¢ in W P(w), s € [0,1], we have

o — Mw(@HLp(w) < ClpiV ol Lr(w)
Moreover, if ¢ =0 a.e. on v} then we have
||¢HLP(W) < Clp5V Rl Lr(w)-
The constants depend on v, V5, Ow and p.
Proof. As a consequence of Lemma[8.3] we have
16 = Muw(O)| 11y < ClorVollLo) < ClPS VS Lo
Similarly, if ¢ = 0 a.e. on 7 then Lemma leads to (8.16}).

Lemma 8.6. For any s € [0,1) we have
/ py *da’ < 4o0.

Proof. First, we consider the open set B;L, n € {1,...,N}, and the function

’

t— poy(,, + tean), z, = (@10, fu(T1n)), T1n € (a, A —a).
From the proof of Lemma [8.3] there exists m > 0 such that
(t + (2 )) < p7($ + teon) Vit e (Ovhl)-

Then, we have

’

' 1-s
J o< [l I
d < = .
o (py(x), +team))® tegn ms(t + py(x msts (1—s)ms®

N 1
o < / /+/
7;1 B;L (p"/)s we
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1

(8.15)
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As a consequence we obtain

1 1
Lemma 8.7. For any p € (1,00), s € (0,1/p") with — + — = 1, we have the following continuous
p D

inclusion:

D
q P
Li(w) C LP(w), Vg € [1,ps+1).

Proof. Let f be in LP(w). The Héldder inequality yields

Csas s s B 1-q/p s a/p
[ 1s1aa = [ oasisivae < ([ oewo-oan) ([ e

Since pgs < p — q the inclusion is proved. O

8.4 A weighted Korn inequality
Denote (p € (1,00), s € R)
W) = {0 e W2 W) | 16} e(@)llirw) < +oo .
Lemma 8.8. For any s € R such that sp+ 1 > 0, we have
W (w) € LE(w)®.
Moreover, for any displacement ® € Ws+1( w) we have

{Ilpi( —13)[lzrw) < Cllps™ e(®)lLe ),
1957 V(@ = 15) | o) < Cllp3™ e(@) Lo ()

where v is a rigid displacement.

(8.18)

In addition, if ® belongs to ngl( ) and vanishes on 5 then we can choose rs = 0.
The constant depends on s, p, v, Ow and g .

Proof. Step 1. We prove (8.18));.
We start with ® € C!(w)?.

We apply the 2D-Korn inequality in w,,. There exists a rigid displacement T such that

s ~ -1 =~ C s
”p'y(q) - r)HLP(w(l) < (1 +c /p)”q) - r”L”(wcl) < C”e(‘I))HLP(w(l) < ‘,»+1 Hp i ( )”L?’(wcl)

C
< +1HP 1 e(@) o (w)

We have

eap((1—10)(® —T)) = (1 — Yo)eas(®) — %(%wo(% —Ta) + Optho(Pp — Tp)).

Hence ] 5 ] )
1p5%0(® = T)l[Lr(w) < 1P5(® = T)|Lr(we,) < Cll5T (@)l Lr(w),
o5t e((1 = 10) (@ = 1)) o) < CIlo3 e(®)ll Loy + 105 (2 = F)ll Lo wr,)) (8.19)
< Cllpst e(®)]| pe )

Set &y = (1 — ¢)(P — ), this displacement vanishes in wa.,. Moreover, from (8.19) we have

1057 e(@o) | Lr(w) < Cllos™ e(®)]| Lo w)-
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Now, proceeding as in Lemma and thanks to Lemma and the inclusions lb we obtain

/ PP ®g - egp|Pda’ < C’/ pgs+1)P|(vq>0 ey,) - ez, |Pdr’
w\wze;)NB By,

/ P3P ®o - ei,[Pdr’ < C/ PSYSH)Z)KVCDO e2,) - e, |Pda’
(W\wze)NB B,

/
n

e / PP ((Tdgel) - elP + |(VBoe,,) - e |P)da’

n

From the above two inequalities we deduce that

/ P3P |Po|Pda’ < C/ plTIP|e(Dg) Pda.
w\waep)NB; Bn

Thus
N
[ prawpar<c Z / I <0 [ derme@arar < c [ g par
w\wztl \U.)Q,_-l _.JB, w
Hence
P50l Lr(w) = ||p'y(I)0||LP(w\UJ2c1) < Cllpzt e(®0) | Lo (w)- (8.20)

Finally from (8.19); and (8.20) we obtain (8.18); for any ® € C!(w)?%.

Then, we replace r by

rs(z') =

M. (p5®) —(z2 — Ass) r_
W bs < . Als > Vo' = (xl,xg) cw

where A = (A1, Aog) is the "relative center of mass” of w defined by

/ p3(x" — Ag)dx' =0

and

bs = E/wpi (®a(2") (21 — Ass) — Pr(2) (w2 — Agy))da’, I, = /wp,SYIx' — A, f5da,

A density argument glveb the result for every displacement in VVg P(w).

Step 2. We prove (8.18).
Using (8.18); and a straightforward calculation, we obtain
lle(p5t( rs))HLp( < Cllpse(® — 1ol prw) = CllpS ™ e(®)| Lo (w)
Then, the 2D-Korn inequality yields
IV (o5 (@ =) < O([le(p™ (@ —1y))

< Cllpste(®)|| Lo -

HLp( HLr(w +||p5+1 _rS)HLP(w))

Besides we have

v(p§y+1(q) - rs)) = p§y+1v((1> —rg) +(s+ 1)p§yvfa’y (® —ry)
from which thanks to the estimates 1 and the above we obtain 2.
Step 3. We prove the last statement of the proposition.

If ® belongs to WS ¥1(w) and vanishes on Y& then proceeding as in the proof of Lemma H we first
obtain

105 @l Lo 52,y < CH‘I’IILP(B* < Cllp5e(@)l o)
which allows to estimate ry and then gives without rigid displacement. O
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Corollary 8.9. For any ® in WP(w), s € [0,1], we have
WP (w) C LP(w)?.
Moreover, for any displacement ® € WP (w) we have
[® —rllzr(w) < Cllp5 e(P)||Lr(w) (8.21)

where r is a rigid displacement.

In addition, if ® belongs to WLP(w) and vanishes on ~v§ then we can choose r = 0.
The constant depends on p, v, Ow and v .

Proof. As a consequence of Lemma there exists a rigid displacement such that
12 =2l < Cllore@lzrw) < Clloe(®)lloe)-

Similarly, if ® = 0 a.e. on 7§ then, again from Lemma we can choose r = 0. O

8.5 Complements
Lemma 8.10. The domain

O = {z = (2", 25) €wxR | |z3] < p°(a)}, s € (0,1]
has a Lipschitz boundary.

Proof. Step 1. Some recalls.

First, we recall a result shown in [9, Lemma 5.22]: there exists a constant ¢, ¢ € (0,1/2), such that for
all § € [0, c] the open sets ws are uniformly Lipschitz.

So, there exists an open covering {V;}ieq1,...my of w and 2D-cones {C(a;,h,0)}icq1,...mp, h > 0,
6 € (0,7/2), a; a unit vector, such that for all § € [0, ¢] and d; € (0, c]

M
. {a:’ € ws | dist(x’, 0ws) < 51} C U (ws N V),

i=1
o for everyi € {1,...,M}, U (2' +C(aj, h,0)) C ws.

' EwsNV;

For any i € {1,..., M}, we denote b; € R? a unit vector orthogonal to a;.
Step 2. We prove the claim of the lemma.

We fix s € (0, 1] and set
s = min{c,exp (inﬁsl)} < 1.

Note that scg_l > 1.
Denote

Opeiy = {z= (7, )GV'XR | fzs] < p°(2"), pla’) <cf, i€ {l,...,M},
{}—{x— 3) EwxR | 0<az3 < p®(a’), p(a)>c/2},
O, =1{z=("23) €wxR | 0< —a3 <p*(z'), p(z') > cs/2}.
Step 2. We prove that there exists a 3D cone C such that

U (a?+Ci)CO{S}7 for every i € {1,..., M}
ZL‘EO{SJ}

35



where C; is a cone isometric to a cone C (given below).

Let M = (a/,x3) be a point in Oy, 43, 2’ € V; and |x3| < p*(z). We also have p(z') < ¢s.

The 2D-cone 2’ 4 C(ay, h, #) is included w), ;).

Let P; = OP, P, P3Py the right pyramid whose apex is O, height h = ¢;/4 and boundary given by
OR = 21b; + z08; + z3e3, Re 0P iff |z5) = sin(@)zs — cos(d)|z1],  0< 2 < h.

The other four vertices of the pyramid are

P1 :hai—l—ngg, P2 :hai—&—Hlbi, P3 :hai—ngg” P2 :hai—Hlbi,

where
H1 = htan(G), H3 = hsin(@).

The right pyramid M + P; is included in Oy,;.

Indeed, let Oﬁ = z1b; + 208; + z3e3 be a point belonging to the interior of the pyramid M + P;,
OM = z1b; + x0a; + xr3es3. We have

|zg — 23] < sin(0)(z2 — x2) — cos(0)|z1 — z1]
= |z3| < sin(6) (22 — x2) — cos(0)|z1 — x1| + |x3].
Observe that
p(x") +sin(0)(z2 — x2) — cos(0)|z1 — 1| < dist(a’, dw) + dist(2, dwp(yy) < dist(2,0w) = p(2').
Hence
p(@') +H < p(2'), H = sin(0)(z2 — x2) — cos(f)|z1 — z1].

For any s € (0,1] we have (remind that 0 < p(z’) < ¢s <1 and p(2’') < 1)

p*(&) +H < (p(a') +H)* if sp*H(2)) > 1.
Therefore, since sc3~1 > 1 this implies that

28] < p*(@") + H < (pla!) + H)* < p*(2).

The right pyramid M + P; contains a cone whose height is h, axis directed by a; and base a disc of
radius hcos(f). So, we can choose as cone C, the cone whose apex is O (the origin of R3), height h,
axis directed by ez and base a disc of radius h cos(6).

Now, for every (z',%') € w, /4 we have

S\ St ;o (AN
@) =W S K -yl Ke=s()

Then, for any x € Oi} there exists a cone with apex z, half-angle 65 € (0,7/2) such that cos(fs) =
K : . .
and height h = ¢,/4 included in Oy,;.

V1+ K2
Then, we can easily give the N + 2 cones attached to the cover of the boundary of Oy, and isometric
to a same cone.

Step 3. We prove that for all § in (O, (cs

1
§> V14 K2

} we have

M
{reop | dist(@,00(,) <6} c Of juOT U O
i=1

Let x be in Oyyy such that dist(x, 8(9{5}) <4. If
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e p(2’) > ¢s/2 and p*(z') > x3 > 0 then, simple geometrical arguments lead to

ps(.%'/) — a3

V1+ K2
So, x5 > p°(x') — /1 4+ K2 > 0 then a belongs to Oy,y.

e p(2') < ¢ then, there exists i € {1,..., M} such that 2’ € V;, thus z € Oy, ;.

< dist(z, 80?'8}) < p°(x') — 3.

Hence, the claim of this step is proved.

As a consequence of steps 1 and 2, Oy, is a domain with a Lipschitz boundary. O

Remark 8.11. Denote
(wy)s = {2’ € w | py(a) < 3}

One can construct open subsets v of Ow (with countable connected components) such that for all k € N*
the boundary of (w)1k is not Lipschitz. Consequently, the corresponding 3D open sets

O, = {z=(2/,23) € xR | |a3| < p3(2)}, s€(0,1]

are not Lipschitz.

If w is a polygonal domain and if v has a finite number of open connected components then, proceeding
as in the proof of Lemma we can show that there exists ¢y € (0,1] such that for all 6 € (0, ¢4] the
sets (w’Y)s are uniformly Lipschitz and therefore O has a Lipschitz boundary (s € (0,1]).

We denote (p € (1,00), s € R)
WA (W) = {® e W) | l" e(®)] 1) < +o0
L2y (@) = {® € I, () | 16" ®ll1ow) < +oo}.
Proposition 8.12. We have for any s € R such that sp+1 >0
WPy (w) C LF (W)

Moreover, for any displacement ® € W?sﬂ_l}(w) we have

[10°(® = x5l Lr(w) < Cllp™ (@)l () (8.22)
1p" V(@ = 1) l|Lrw) < Cllp*™ e(@) Lo ().
where vy is a rigid displacement.
The constants depend on s, p and Ow.
Proof. In Lemma [8.8| we replace v by dw, which gives all the results of the proposition. O
Proposition 8.13. We have for any s € (0, 1]
Wik (w) C LP(w)?.
Moreover,
(I) —7T P(w S C s e (I) P(w)s
1p° V(@ —1)|lzrw) < Cllp® e(®) || Lr(w),

where r s a rigid displacement.
The constants depend on s, p and Ow.
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Proof. For any s € (0,1] and any ® € W%@( w), we have

lp* e(q’)HLp(w) = ||€((I))||LP(O{S})

where ® = ®ie; + Pres + Oes. Hence, disa displacement belonging to lep(O{s})3. The 3D Korn
inequality gives a rigid displacement r such that

[® —Tllwiro.,) < Clle(®)llrro,.,)
from which we easily obtain of a 2D rigid displacement r such that
[0°(® = 1)l Lr () + [l0° V(® = 1)l Lr () < Cllp® e(®) | Lr(w)-

Then, since W7’ }( w) is included in W {,117}( w), there exists a rigid displacement r’ such that estimate

-1 holds. So

12 'l r) < Clloe@)lrwy < Cllo™ e(®) 12

From the above inequalities we obtain

1p° (" = 1) 1r(w) < Cllp" e(®)|Lr(w)-
Thus, we can replace r’ by r. This ends the proof of the proposition. O

Proposition 8.14. For any ® in WP (w), s € (0,1], we have

12 = rllLew) < Cllp5 e(P)lLr(w),

s s (8.24)
1p° V(® — 1) Lr(w) < Cllp5 e(®)l|Lr(w),
where r is a rigid displacement.
If Og has a Lipchitz boundary then we have
VO e WIPW), o3 V(O — 1)) < Cllod e(®) 1. (8.25)

In addition, if ® belongs to WLP(w) and vanishes on v then in all cases we can choose r = 0.
The constants depend on s, p, dw, v and 7§ .

Proof. First, observe that WP (w) is included in W}Sﬁ (w) since we have
1% (@)l Lrw) < 1195 e(P)]lLr(w)
As a consequence we obtain (see Proposition |8.13)

1D —rllo(w) + 110° V(® = 1)l Lr(w) < Clip® e(®)l|Lrw) < Clips e(®)llr(w)

This gives (8.24]).
The proof of (8.25) follows the same lines as the proof of (8.22))5. O

All the results of subsections 8.2, (8.9, (8.4 and can be extended to
domains w included in R*, k > 3, having a Lipschitz boundary.
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