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Abstract

The aim of this paper is to give a decomposition of the displacements of plates with a very high
thickness contrast. Estimates of all terms of the decomposition with respect to the norm of the
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1 Introduction

The aim of this paper is to extend the tools developed in our previous articles (see [12, 13, 14]), to
plates with very high thickness contrasts. An aircraft wing or a lens (in optics) can be considered as
plates with a very high thickness contrast. The plates we are studying not only vary widely in thickness,
but also have uneven top and bottom surfaces.

Let ω be a bounded domain in R2 with a Lipschitz boundary. Here, the open set ω plays the same role
as the mid-surface of a plate of constant thickness. The plate with very high thickness contrast is Ωε,
its thickness varying continuously from one part of its boundary of thickness of the order ε to another
part of thickness of the order ε2.

In this paper we show that every displacement u belonging to W 1,p(Ωε)
3, p ∈ (1,∞), is written as the

sum of an elementary displacement Ue` and a residual displacement u (the warping),

u(x) = Ue`(x) + u(x)

Ue`(x) = U(x′) + x3R(x′)
for a.e. x = (x′, x3) ∈ Ωε

so that (α ∈ {1, 2})∫
F 0
ε (x′)

u(x′, x3)dx3 = 0,

∫
F 0
ε (x′)

uα(x′, x3)x3dx3 = 0 for a.e. x′ in ω (1.1)

where F 0
ε (x′) is a part of the fiber of Ωε passing through x′ ∈ ω. The segment F 0

ε (x′) is symmetric
with respect to ω and, like all the fibers of Ωε, is perpendicular to ω.
The above conditions (1.1) determine U(x′) and R(x′) in terms of u and integrals on F 0

ε (x′) (see (4.3)
and also [12]). The field U belongs to W 1,p(ω)3, it represents the displacement of the 2D domain
ω×{0}, while R = R1e1 +R2e2 belongs to W 1,p(ω)2. The term x3R(x′) stands for a ”small rotation”
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of the fiber passing trough x′. The axis of this rotation is directed by −R2(x′)e1 +R1(x′)e2 and its
angle is approximately the euclidian norm of this vector.
The last term of our decomposition, u, gives information about the deformations of the fibers of the
plate. Compare to the other terms of the decomposition (U and x3R) it is very small (see Theorems
4.2 and 5.1). In early work on elasticity in the 19th century, this term was neglected, as were certain
terms in the stress tensor. Below, in Section 6, we show that it is as important as the other two terms
U and R in the strain tensor and therefore in the stress tensor. It is interesting to note that if we
study the asymptotic behavior of a sequence of displacements, the strain and stress tensor terms are
all determined using the limits of the three terms in our decomposition.

As a general reference on elasticity, we refer to [21, 7, 22]. A general introduction to the mathematical
modeling of elastic plates can be found in [8, 10]. For the study of thin plates with rapidly varying
thickness we refer to [18, 19]. For the decomposition of the displacements or deformations we refer
to [12, 3, 4, 14], some applications of these decompositions for the study of junctions can be found
in [11, 16, 15]. The study of a beam with very high thickness contrast was carried out in [17]. The
Poincaré-Wirtinger and Korn inequalities have been extensively studied, here are a few articles devoted
to them [6, 23, 20, 5, 2, 1]

The paper is organized as follow:

• Section 2 is devoted to the main notations,

• in Section 3 we recall some important results about the geometry of the structure and the de-
compositions of the displacements of a thin plate via Kirchhoff-Love displacements,

• the main decomposition result of this paper is given in Section 4, Theorem 4.2,

• in Section 5, Theorem 5.1, for a clamped plate, we give the full estimates of a displacement and
a weighted Korn inequality with respect to the norm of the stain tensor,

• in Section 6, we introduce the rescaling operator Πε and we study the asymptotic behavior of a
sequence of displacements,

• Section 7 is devoted to applying the results of the previous sections to solve a classical elasticity
problem,

• in Appendix we prove some technical lemmas and weighted Poincaré-Wirtinger and Korn inequal-
ities.

In this work, the constants appearing in the estimates will always be independent from ε. If this is

not stated, p is a real number belonging to (1,∞) and p′ denotes the dual exponent of p,
1

p
+

1

p′
= 1.

As a rule the Latin indices i, j, k and l take values in {1, 2, 3} while the Greek indices α and β in {1, 2}.
We also use the Einstein convention of summation over repeated indices.

2 Notations

The euclidian space R3 is referred to the orthonormal frame
(
O; e1, e2, e3

)
and R2 to the frame(

O; e1, e2

)
. We denote | · |2 the euclidian norm in R2 and · its scalar product.

In this paper ε is a small parameter belonging to (0, ε0], 0 < ε0 < 1), it will tend to 0.

Denote

• ω a bounded domain in R2 with Lipschitz boundary, below it is improperly referred to as the
”mid-surface” of the plate,
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• ρ ∈W 1,∞(R2) the function defined by

ρ(x′) = inf
{

1,dist(x′, ∂ω)
}

for all x′ ∈ R2,

• γ a non-empty subset of ∂ω, possibly containing only one point,

• ργ ∈W 1,∞(R2) the function defined by

ργ(x′) = inf
{

1,dist(x′, γ)
}

for all x′ ∈ R2,

• ρε ∈W 1,∞(R2) the function defined by

ρε(x
′) = ε+

(
1− ε

)
ργ(x′) for all x′ ∈ R2,

• φ, ψ two functions belonging to W 1,∞(ω) and satisfying

∀
(
x′, z′

)
∈ ω2

{
|φ(x′)− φ(z′)| ≤ K0|x′ − z′|2, φ(x′) ≥ 2C0, ∀x′ ∈ ω,
|ψ(x′)− ψ(z′)| ≤ K0|x′ − z′|2, ψ(x′) ≥ 2C0, ∀x′ ∈ ω,

where K0 and C0 are strictly positive constants

• C1 = max{‖φ‖L∞(ω), ‖ψ‖L∞(ω)},

• Ωε the plate with a very high thickness contrast

Ωε
.
=
{
x = (x′, x3) ∈ ω×R | − ερε(x′)ψ(x′) < x3 < ερε(x

′)φ(x′)
}
,

the plate Ωε is much thinner in the neighborhood of γ,

• Ω′ε the plate with a non-planar top and bottom surfaces and thickness of order ε

Ω′ε
.
=
{
x = (x′, x3) ∈ ω×R | − εψ(x′) < x3 < εφ(x′)

}
,

• γ0 the clamped part of the ”mid-surface”, γ0 ⊂ ∂ω \ γ, γ0 has a non-null measure,

• Γ0,ε
.
=
(
γ0×R

)
∩ ∂Ωε the clamped part of Ωε,

• Ω
.
=
{

(x1, x2, X3) ∈ ω×R | − ργ(x′)ψ(x′) < X3 < ργ(x′)φ(x′)
}

the re-scaled plate and

Γ0
.
=
(
γ0×R

)
∩ ∂Ω the clamped part of Ω,

• e(v) the strain tensor of v ∈W 1,p(Ωε)
3, 1 ≤ p ≤ ∞,

e(v) =
1

2

(
(∇v)T +∇v

)
, eij(v) =

1

2

(
∂jvi + ∂ivj

)
.

e(v) is the 3× 3 symmetric matrix whose entries are the eij(v)’s,

• ∂i =
∂

∂xi
, ∂2

ij =
∂2

∂xi∂xj
, (i, j) ∈ {1, 2, 3}2.

Note that the function ρε satisfies

ε ≤ ρε(x′) ≤ 1 and |ρε(x′)− ρε(z′)| ≤ |x′ − z′|2 ∀(x′, z′) ∈ ω2. (2.1)
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3 Preliminary reminders

The following lemma is proved in [13].

Lemma 3.1. Let Bε ⊂ ω be a domain of diameter less than εR, star-shaped with respect to the disc

D(O, εR1). If R ≤ C0

K0
then the domain

Dε =
{
x = (x′, x3) ∈ Bε × R | − εψ(x′) < x3 < εφ(x′)

}
has a diameter less than ε(R+ 2C1) and is star-shaped with respect to the ball B(O, εR′1) where

R′1 = min
{
C0, R1

}
. (3.1)

Denote
ωδ

.
=
{
x′ ∈ ω | ρ(x′) > δ

}
, δ ≥ 0.

The boundary of ω being Lipshitz, there exist constants A, B and c0 strictly positive and a finite
number N of local coordinate systems (x1n, x2n) in orthonormal frames

(
On; e1n, e2n) and maps fn ∈

W 1,∞(0, A), 1 ≤ n ≤ N , such that

∂ω =

N⋃
n=1

{
(x1n, x2n) ∈ R2 | x2n = fn(x1n), x1n ∈ (0, A)

}
,

Bn
.
=
{

(x1n, x2n) ∈ R2 | fn(x1n) < x2n < fn(x1n) +B, x1n ∈ (0, A)
}
⊂ ω,

ω \ ωc0 ⊂
N⋃
n=1

Bn.

Note that

ω = ωc0 ∪
( N⋃
n=1

Bn
)
.

Since fn ∈W 1,∞(0, A), 1 ≤ n ≤ N , there exists K1 > 0 such that

|fn(t)− fn(t′)| ≤ K1|t− t′|, ∀(t, t′) ∈ [0, A]2, ∀n ∈ {1, . . . , N}.

Without loss of generality, we assume that

B ≤ 1 and K1 ≥
1√
3
. (3.2)

Now, set

xk = kκε, k ∈
{

0, . . . , Nε − 1
}

and xNε = A− κε

where Nε =
[ A
κε

]
, [t] ∈ N is the integer part of t ∈ R+, κ is a strictly positive constant which will be

given below (see (3.5)).

Denote (see Figure 1)

Bn,k,ε
.
=
{

(x1n, x2n) ∈ R2 |
xk <x1n < xk + κε,

fn(x1n) <x2n < fn(x1n) +B

}
k ∈

{
0, . . . , Nε

}
.

We cover Bn,k,ε, (n, k) ∈ {1, . . . , N}×{0, . . . , Nε} as follows:
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Figure 1: The domains BTop

n,k,ε, BBottom

n,k,ε and Bn,k,ε. In these drawings e = κε.

• first, its top and bottom with the small domains BTop

n,k,ε and BBottom

n,k,ε (see Figure 1 left) which are
star-shaped with respect to discs of radius κε/2 and whose diameters are less than (3K1 + 2)κε,

• then, between max
x1n∈[xk,xk+κε]

fn(x1n) and min
x1n∈[xk,xk+κε]

fn(x1n) + B, we cover by squares whose

edges have length κε and possibly we add a rectangle whose width is κε and length lies between
κε and 2κε (see Figure 1 right). These quadrilaterals are star-shaped with respect to discs of
radius κε/2, and their diameters are less than 3κε.

Denote

Y
.
= (0, 1)2, Ξε

.
=
{
ξ ∈ Z2 | Yξ,ε ⊂ ω

}
, Yξ,ε

.
= κε(ξ + Y ), ω̂ε

.
= Interior

( ⋃
ξ∈Ξε

Y ξ,ε

)
.

The squares Yξ,ε, ξ ∈ Ξε which are included in ω̂ε cover most of ω.

Below are the conditions that will enable us to determine κ.
To take account of the conditions imposed by the covering of the domains Bn, n ∈ {1, . . . , N}, and
Lemma 3.1, we assume that

κε ≤ κε0 ≤ A, (6K1 + 2)κε ≤ (6K1 + 2)κε0 ≤ B and κmax
{

(3K1 + 2), 3
}
≤ C0

K0
. (3.3)

For the squares Yξ,ε, we need

κ
√

2 ≤ C0

K0
(3.4)
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to take account of the condition imposed by Lemma 3.1.
We also assume

κε
√

2 ≤ κε0

√
2 < c0

to get ω̂ε ⊂ ωc0 .

The above conditions (3.3)-(3.4) allow to give κ

κ =
1

ε0
min

{
A,

B

6K1 + 2
,
c0√

2
,

C0ε0

K0 max
{

(3K1 + 2), 3
}}. (3.5)

Finally, any point of the open set ω belongs to at most CN = 3N + 1 domains of the ω covering

BTop

n,k,ε, BBottom

n,k,ε , (n, k) ∈ {1, . . . , N}×{0, . . . , Nε} (3.6)

and quadrilaterals included in ω̂ε or Bn,k,ε. The diameters of these small domains are less than 3(K1 +
1)κε and all these domains are star-shaped with respect to discs of radius κε/2.

Denote Qε a generic quadrilateral included in ω̂ε or Bn,k,ε and

B̃Top

n,k,ε
.
=
(
BTop

n,k,ε×R
)
∩ Ω′ε, B̃Bottom

n,k,ε
.
=
(
BBottom

n,k,ε ×R
)
∩ Ω′ε, Q̃ε

.
=
(
Qε×R) ∩ Ω′ε. (3.7)

These domains, included in Ω′ε, have a diameter less than
(
3(K1 + 1)κ + 2C1

)
ε and by construction

they are star-shaped with respect to balls of radius min
{
C0,

κ

2

}
ε (κ is given by (3.5)).

As a consequence of [13, Theorem 4.1] we have

Theorem 3.2. Every displacement u in W 1,p(Ω′ε)
3 is decomposed as the sum of a Kirchhoff-Love

displacement and a residual displacement

u(x) = U�KL(x) + u�(x) =


U�1 (x′)− x3∂1U�3 (x′)

U�2 (x′)− x3∂2U�3 (x′)

U�3 (x′)


︸ ︷︷ ︸

Kirchhoff-Love displacement

+ u�(x)︸ ︷︷ ︸
residual displacement

for a.e. x in Ω′ε
(3.8)

where U�m = U�1 e1 + U�2 e2 ∈W 1,p(ω)2, U�3 ∈W 2,p(ω) and u� ∈W 1,p(Ω′ε)
3.

The terms U� and u� satisfy

‖eαβ(U�m)‖Lp(ω) ≤
C

ε1/p
‖e(u)‖Lp(Ω′

ε)
,

‖D2U�3 ‖Lp(ω) ≤
C

ε1+1/p
‖e(u)‖Lp(Ω′

ε)
,

‖e(u�)‖Lp(Ω′
ε)
≤ C‖e(u)‖Lp(Ω′

ε)

(3.9)

and
‖u�‖Lp(Ω′

ε)
≤ C ε ‖e(u)‖Lp(Ω′

ε)
,

‖∇u�‖Lp(Ω′
ε)
≤ C‖e(u)‖Lp(Ω′

ε)

(3.10)

The constants depend only on K0, K1, C0, C1, A, B, c0, N and p.

In the proof of [13, Theorem 4.1], the coverings of ω and Ω′ε given by (3.6)-(3.7) play an important
role via the ratio of the diameter of an element of these coverings to the radius of the ball for which it

is star-shaped, that is
3(K1 + 1)κ+ 2C1

min{C0, κ/2}
for both coverings (κ is given by (3.5)).
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4 Decomposition of the displacements of plates with a very
high thickness contrast via elementary displacements

Denote
Fε(x

′)
.
= {x′}×(−ερε(x′)ψ(x′) , ερε(x

′)φ(x′)
)
,

F 0
ε (x′)

.
= {x′}×(−ερε(x′)C0 , ερε(x

′)C0

)
, F 0

ε (x′) ⊂ Fε(x′),
x′ ∈ ω.

Fε(x
′) is the fiber passing through the point x′ of ω.

Definition 4.1. An elementary displacement of the plate Ωε is a displacement v ∈ L1(Ωε)
3 written in

the form
v(x′, x3) = V(x′) + x3A(x′) for a.e. x = (x′, x3) ∈ Ωε.

The component V belongs to L1(ω)3 while A = A1e1 +A2e2 is in L1(ω)2.

Here, V gives the ”mid-surface”1 displacement and x3A(x′) represents a ”small rotation” of the fiber
Fε(x

′), whose axis is directed by −A2(x′)e1 +A1(x′)e2 and whose angle is approximately |A(x′)|2 (see
[9, Chapter 11] or [11, 12] for more details).

To any displacement u ∈ L1(Ωε)
3 we associate an elementary displacement Ue` ∈ L1(Ωε)

3 and a
warping u ∈ L1(Ωε)

3

u(x) = Ue`(x) + u(x)

Ue`(x) = U(x′) + x3R(x′)
for a.e. x = (x′, x3) ∈ Ωε (4.1)

so that (α ∈ {1, 2})∫
F 0
ε (x′)

u(x′, x3)dx3 = 0,

∫
F 0
ε (x′)

uα(x′, x3)x3dx3 = 0 for a.e. x′ in ω. (4.2)

The above equalities determine U(x′) and R(x′) in terms of u and integrals on the fiber F 0
ε (x′) (see

[12]). We have

U(x′) =
1

|F 0
ε (x′)|

∫
F 0
ε (x′)

u(x′, x3)dx3,

R(x′) =
12

|F 0
ε (x′)|3

∫
F 0
ε (x′)

x3

(
u1(x′, x3)e1 + u2(x′, x3)e2

)
dx3,

for a.e. x′ ∈ ω (4.3)

where |F 0
ε (x′)| = 2ερε(x

′)C0 is the length of the fiber F 0
ε (x′).

Theorem 4.2. Let u be a displacement in W 1,p(Ωε)
3 decomposed as (4.1). The terms U , R and u of

this decomposition satisfy

U ∈W 1,p(ω)3, R ∈W 1,p(ω)2, u ∈W 1,p(Ωε)
3,

‖ρ1/p
ε eαβ(Um)‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(Ωε),∥∥ρ1/p

ε

(
∇U3 +R

)∥∥
Lp(ω)

≤ C

ε1/p
‖e(u)‖Lp(Ωε)

‖ρ1+1/p
ε ∇R‖Lp(ω) ≤

C

ε1+1/p
‖e(u)‖Lp(Ωε),∥∥∥ u

ρε

∥∥∥
Lp(Ωε)

≤ Cε‖e(u)‖Lp(Ωε), ‖∇u‖Lp(Ωε) ≤ C‖e(u)‖Lp(Ωε)

(4.4)

where Um = U1e1 + U2e2 ∈W 1,p(ω)2.
The constants do not depend on ε.2

1 Here the set ω×{0}.
2 They depend on K0, K1, C0, C1, A, B, c0, N and p.
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Proof. Since ρε ∈W 1,∞(ω) and u ∈W 1,p(Ωε)
3, the function U belongs to W 1,p(ω)3 andR to W 1,p(ω)2.

So, u belongs to W 1,p(Ωε)
3.

Let Yε be an element of the ω covering, of type BTop

n,k,ε, BBottom

n,k,ε or Qε, and aε a point in Yε.

Step 1. Preliminary considerations about Yε.

Denote

• εR the diameter of Yε (R ≤ 3(K1 + 1)κ+ 2C1),

• ρε = min
x∈Yε

ρε(x), ρε = max
x∈Yε

ρε(x).

We have

1 ≤ ρε
ρε
≤ R and ε ≤ ρε ≤ 1. (4.5)

We define Y ⊂ R2 by
Yε = aε + εY.

Now, consider the portion of Ωε
Ỹε =

(
Yε×R

)
∩ Ωε.

The domain Ỹε is a small plate with non-planar top and bottom surfaces. We transform Ỹε by a
dilation of center aε and ratio 1/ε, we obtain the domain Ŷε

Ŷε =
{
y ∈ Y×R

∣∣ − ρεψε(y′) < y3 < ρεφε(y
′)
}

where

ψε(y
′) =

(
ρεψ

)
(aε + εy′)

ρε
, φε(y

′) =

(
ρεφ
)
(aε + εy′)

ρε
, ∀y′ = (y1, y2) ∈ Y.

The functions ψε and φε belong to W 1,∞(Y) and they satisfy

max{‖φε‖L∞(Y), ‖ψε‖L∞(Y)} ≤ RC1, φε(y
′) ≥ 2C0, ψε(y

′) ≥ 2C0,

|φε(y′)− φε(z′)| ≤
(
RK0ε0 + C1

)
|y′ − z′| ∀(y′, z′) ∈ Y2,

|ψε(y′)− ψε(z′)| ≤
(
RK0ε0 + C1

)
|y′ − z′| ∀(y′, z′) ∈ Y2.

Case 1. Yε is a domain of type BTop

n,k,ε (resp. BBottom

n,k,ε ).

In this case Y is included in a rectangle whose width is κ and length less than (3K1 + 1)κ.
Firstly, we cover most of Y with squares of side length κ1ρε (κ1 is given below by (4.6)). These squares
are star-shaped with respect to discs of radius κ1ρε/2, the diameter of these small squares are less than
2κ1ρε.
Then, since the top of this domain (resp. the bottom) is given by a map defined on the interval [0, κ]
which has a Lipschitz constant εK1 ≤ ε0K1 ≤ K1, we cover the neighborhood of the top (resp. the
bottom) of Y with domains similar to BTop

n,k,ε (resp. BBottom

n,k,ε ). These domains have width equal to κ1ρε
and length between (2K1 + 1)κ1ρε and (3K1 + 1)κ1ρε. Their diameters are less than (3K1 + 2)κ1ρε
and they are star-shaped with respect to discs of radius κ1ρε/2.

So, as we did for BTop

n,k,ε (resp. BBottom

n,k,ε ) in Section 3, we determine κ1 taking into account the condition
given by Lemma 3.1 and the simple conditions to get these domains included in Y. That is

(3K1 + 2)κ1 ≤
C0

RK0ε0 + C1
, κ1ρε ≤ κ1 ≤ κ, (3K1 + 1)κ1ρε ≤ (3K1 + 1)κ1 ≤ (2K1 + 1)κ.

We set

κ1 = min
{ C0

(RK0ε0 + C1)(3K1 + 2)
,

(2K1 + 1)κ

3K1 + 1

}
. (4.6)
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So, every point of Y belongs to at most 4 domains of this covering.

Case 2. Yε is a quadrilateral.

In this case Y is also a quadrilateral whose width is κ and whose length is between κ and 2κ. We cover
it with squares of side length κ1ρε (κ1 is given above by (4.6)). These squares are star-shaped with
respect to discs of radius κ1ρε/2, the diameter of these small squares are less than 2κ1ρε. Every point
of Y belongs to at most 4 squares of this covering.

Step 2. From a Kirchhoff-Love displacement to an elementary displacement.

Let u be a displacement belonging to W 1,p(Ωε)
3. We can now apply Theorem 3.2 to the displacement

u(aε + ε·) of the plate Ŷε.
First, we replace

• ω by Y,

• ε by ρε,

• φ by φε, ψ by ψε,

• K0 by RK0ε0 + C1,

• C0 remains C0,

• C1 by RC1,

• κ by κ1.

Then, we decompose the displacement u = u(aε + ε·) as the sum of a Kirchhoff-Love displacement and
a residual displacement

u(y) = U∗KL(y) + u∗(y) =


U∗1 (y′)− y3

∂U∗3
∂y1

(y′)

U∗2 (y′)− y3
∂U∗3
∂y2

(y′)

U∗3 (y′)

+ u∗(y) for a.e. y in Ŷε (4.7)

where U∗m = U∗1 e1 + U∗2 e2 ∈W 1,p(Y)2, U∗3 ∈W 2,p(Y) and u∗ ∈W 1,p(Ŷε)
3.

We have (see Theorem 3.2)

‖eαβ,y′(U∗m)‖Lp(Y) ≤
C�

ρε
1/p
‖ey(u)‖Lp(Ŷε)

,

‖D2
y′U∗3 ‖Lp(Y) ≤

C�

ρε
1+1/p

‖ey(u)‖Lp(Ŷε)
,

‖ey(u∗)‖Lp(Ŷε)
≤ C�‖ey(u)‖Lp(Ŷε)

(4.8)

and
‖u∗‖Lp(Ŷε)

≤ C� ρε ‖ey(u)‖Lp(Ŷε)
,

‖ey(u∗)‖Lp(Ŷε)
≤ C�‖ey(u)‖Lp(Ŷε)

,

‖∇yu∗‖Lp(Ŷε)
≤ C�‖ey(u)‖Lp(Ŷε)

.

(4.9)

The constant C� depends only on K0, K1, C0, C1, A, B, c0 and p via the constants introduced in the
previous step and summarised above.
We have

‖ey(u)‖Lp(Ŷε)
= ε1−3/p‖e(u)‖Lp(Ỹε)

. (4.10)
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Denote
F̃ 0
ε (y′) = {y′}×

(
− C0ρε(aε + εy′), C0ρε(aε + εy′)

)
the portion of fiber of Ŷε obtained by scaling from the fiber F 0

ε (x′).
From (4.3) and (4.7) we obtain for a.e. y′ ∈ Y

U(aε + εy′) = U∗(y′) +
1

|F̃ 0
ε (y
′)|

∫
F̃0
ε (y

′)
u∗(y)dy3,

εR(aε + εy′) = −
(∂U∗3
∂y1

(y′)e1 +
∂U∗3
∂y2

(y′)e2
)
+

12

|F̃ 0
ε (y
′)|3

∫
F̃0
ε (y

′)
(u∗1e1 + u∗2e2)(y)y3dy3,

ε∂αU(aε + εy′) =
∂U∗

∂yα
(y′) +

1

|F̃ 0
ε (y
′)|

∫
F̃0
ε (y

′)

∂u∗

∂yα
(y)dy3,

ε2∂αR(aε + εy′) = −
( ∂2U∗3
∂y1∂yα

(y′)e1 +
∂2U∗3
∂y2∂yα

(y′)e2
)
+

12

|F̃ 0
ε (y
′)|3

∫
F̃0
ε (y

′)

∂(u∗1e1 + u∗2e2)

∂yα
(y)y3dy3.

(4.11)

Step 3. We prove inequality (4.4)1.

From equality (4.11)3 we deduce

εeαβ(Um)(aε + εy′) = eαβ,y′(U∗m)(y′) +
1

|F̃ 0
ε (y′)|

∫
F̃ 0
ε (y′)

eαβ,y(u∗)(y)dy3.

We elevate the above equality to the power p, multiply it by ρε(aε+εy′) and then use Hölder inequality.
We obtain

εpρε(aε + εy′)|eαβ(Um)(aε + εy′)|p ≤ 2p−1ρε|eαβ,y′(U∗m)(y′)|p + 2p−1ρε
1

2C0ρε

∫
F̃ 0
ε (y′)

|eαβ,y(u∗)(y)|pdy3.

Now, we integrate with respect to y′ and use (4.5)-(4.8)-(4.10). This yields

εp−2‖ρ1/p
ε eαβ(Um)‖pLp(Yε)

≤ 2p−1ρε‖eαβ,y′(U∗m)‖pLp(Y) +
2p−1

2C0
R‖eαβ,y(u∗)‖p

Lp(Ŷε)

≤ 2p−1(C�)pRεp−3‖e(u)‖p
Lp(Ỹε)

+
2p−1(C�)p

2C0
Rεp−3‖e(u)‖p

Lp(Ỹε)
.

Thus, we obtain

‖ρ1/p
ε eαβ(Um)‖pLp(Yε)

≤
(

1 +
1

2C0

)
(2C�)pRε−1‖e(u)‖p

Lp(Ỹε)
≤ (C2�)pε−1‖e(u)‖p

Lp(Ỹε)
.

The constant C2� depends on C�, C0, R and p. The sum over all the elements of the ω covering leads
to

‖ρ1/p
ε eαβ(Um)‖pLp(ω) ≤ CN (C2�)pε−1‖e(u)‖pLp(Ωε)

.

Step 4. We prove inequality (4.4)2.

From equality (4.11)2,3 we get

ε∂αU3(aε + εy′) + εRα(aε + εy′) =
1

|F̃ 0
ε (y′)|

∫
F̃ 0
ε (y′)

∂u∗3
∂yα

(y)dy3 +
12

|F̃ 0
ε (y′)|3

∫
F̃ 0
ε (y′)

u∗α(y)y3dy3.

We elevate the above equality to the power p, multiply it by ρε(aε+εy′) and then use Hölder inequality
and (4.5). This leads to

ρε(aε+εy
′)εp

∣∣∂αU3(aε+εy
′)+Rα(aε+εy

′)
∣∣p ≤ 2p−1

2C0
R
(∫

F̃ 0
ε (y′)

∣∣∣ ∂u∗
∂yα

(y)
∣∣∣pdy3+

6p

Cp0ρε
p

∫
F̃ 0
ε (y′)

|u∗(y)|pdy3

)
.
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We integrate with respect to y′. This yields

εp−2
∥∥∥ρ1/p

ε

(
∂αU +Rα

)∥∥p
Lp(Yε)

≤ 2p−1

2C0
R
(
‖∇yu∗‖pLp(Ŷε)

+
( 6

C0

)p 1

ρε
p ‖u

∗‖p
Lp(Ŷε)

)
.

Then, with (4.9)-(4.10) we obtain∥∥ρ1/p
ε

(
∂αU +Rα

)∥∥p
Lp(Yε)

≤ (C3�)pε−1‖e(u)‖p
Lp(Ỹε)

.

The constant C3� depends on C�, C0, R and p. The sum over all the elements of the ω covering leads
to ∥∥ρ1/p

ε

(
∂αU +Rα

)∥∥p
Lp(ω)

≤ CN (C3�)pε−1‖e(u)‖pLp(Ωε)
.

Step 5. We prove inequality (4.4)3.

From equality (4.11)4, we have

ε2∂αRβ(aε + εy′) = − ∂2U∗3
∂yβ∂yα

(y′) +
12

|F̃ 0
ε (y′)|3

∫
F̃ 0
ε (y′)

∂u∗β
∂yα

(y)y3dy3.

We elevate the above equality to the power p, multiply it by ρε(aε + εy′)p+1 and then use Hölder
inequality. This gives

ε2pρε(aε + εy′)p+1
∣∣∂αRβ(aε + εy′)

∣∣p ≤ 2p−1ρε
p+1
(∣∣∣ ∂2U∗3
∂yβ∂yα

(y′)
∣∣∣p +

6p

2Cp+1
0 ρε

p+1

∫
F̃ 0
ε (y′)

∣∣∣∂u∗β
∂yα

(y)
∣∣∣pdy3

)
.

We integrate with respect to y′. This yields

ε2p−2
∥∥ρ1+1/p

ε ∂αRβ
∥∥p
Lp(Yε)

≤ 2p−1ρε
p+1∥∥ ∂2U∗3

∂yβ∂yα

∥∥p
Lp(Y)

+
12p

Cp+1
0

ρε
p+1

ρε
p+1

∥∥∂u∗β
∂yα

∥∥p
Lp(Ŷε)

.

Due to (4.5)-(4.8)2-(4.9)2 and (4.10), this implies

ε2p−2
∥∥ρ1+1/p

ε ∂αRβ
∥∥p
Lp(Yε)

≤ 2p−1(C�)pRp+1εp−3‖e(u)‖p
Lp(Ỹε)

+
12p

Cp+1
0

(C�)pRp+1εp−3‖e(u)‖p
Lp(Ỹε)

.

Hence ∥∥ρ1+1/p
ε ∂αRβ

∥∥p
Lp(Yε)

≤ (C4�)pε−p−1‖e(u)‖p
Lp(Ỹε)

.

The constant C4� depends on C�, C0, R and p. The sum over all the elements of the ω covering leads
to ∥∥ρ1+1/p

ε ∂αRβ
∥∥p
Lp(ω)

≤ CN (C4�)pε−p−1‖e(u)‖pLp(Ωε)
.

Step 6. We prove inequality (4.4)4,5.

By proceeding as the above steps and using equalities (4.11) together with estimates (4.9) we obtain

‖U(aε + ε·)− U∗‖pLp(Y) ≤
(C�)p

2C0
ρε
p−1εp−3‖e(u)‖p

Lp(Ỹε)
,∥∥ε∂αU(aε + ε·)− ∂U∗

∂yα

∥∥p
Lp(Y)

≤ (C�)p

2C0ρε
εp−3‖e(u)‖p

Lp(Ỹε)
,

∥∥εRα(aε + ε·) +
∂U∗3
∂yα

∥∥p
Lp(Y)

≤ 6p(C�)p

Cp+1
0

εp−3

ρε
‖e(u)‖p

Lp(Ỹε)
,

∥∥ε2∂αRβ(aε + ε·) +
∂2U∗3
∂yβ∂yα

∥∥p
Lp(Y)

≤ 6p(C�)p

Cp+1
0

εp−3

ρε
p+1 ‖e(u)‖p

Lp(Ỹε)
.

(4.12)
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We have

u(aε + εy) = −
(
U(aε + εy′)− U∗(y′)

)
− y3

(
εRα(aε + εy′) +

∂U∗3
∂yα

(y′)
)
eα + u∗(y) for a.e. y ∈ Ỹε.

Remind that the length of the fibers of Ŷε are less than 2C1ρε.
Now, elevate the above equality to the power p, then divide it by ρε(aε+εy′)p and use Hölder inequality.
Thanks to estimates (4.12)1,3 and (4.9)-(4.10), this gives∥∥∥ u(aε + ε·)

ρε(aε + ε·)

∥∥∥p
Lp(Ŷε)

≤ 3p−1
(

(C�)p
C1

C0

ρε
ρε
εp−3‖e(u)‖p

Lp(Ỹε)

+ 2
(C1ρε
ρε

)p+1 6p(C�)p

Cp+1
0

εp−3‖e(u)‖p
Lp(Ỹε)

+ (C�)pεp−3‖e(u)‖p
Lp(Ỹε)

)
.

Hence, with the help of (4.5) we obtain∥∥∥ u
ρε

∥∥∥p
Lp(Ỹε)

≤ (C5�)pεp‖e(u)‖p
Lp(Ỹε)

.

The constant C5� depends on C�, C0, C1, R and p. The sum over all the elements of the ω covering
leads to ∥∥∥ u

ρε

∥∥∥p
Lp(Ωε)

≤ CN (C5�)pεp‖e(u)‖pLp(Ωε)
.

Now, we estimate the partial derivatives of u. We have

ε∂βu(aε + εy) = −
(
ε∂βU(aε + εy′)− ∂U

∂yβ
(y′)

)
− y3

(
ε2∂βRα(aε + εy) +

∂2U3

∂yβ∂yα
(y)
)
eα +

∂u

∂yβ
(y)

ε∂3u(aε + εy) = −
(
εRα(aε + εy′) +

∂U3

∂yα
(y′)

)
eα +

∂u

∂y3
(y).

Thanks to the estimates (4.12)2,3,4, we obtain

εp−3
∥∥∂αu∥∥pLp(Ỹε)

≤ 3p−1
(

(C�)p
C1

C0

ρε
ρε
εp−3‖e(u)‖p

Lp(Ỹε)

+ 2
(C1ρε
ρε

)p+1 6p(C�)p

Cp+1
0

εp−3‖e(u)‖p
Lp(Ỹε)

+ (C�)pεp−3‖e(u)‖p
Lp(Ỹε)

)
and

εp−3
∥∥∂3u

∥∥p
Lp(Ỹε)

≤ 2p−1 6p(C�)p

Cp+1
0

2C1ρε
ρε

εp−3‖e(u)‖p
Lp(Ỹε)

+ 2p−1(C�)pεp−3‖e(u)‖p
Lp(Ỹε)

.

Thus
‖∇u‖p

Lp(Ỹε)
≤ (C6�)p‖e(u)‖p

Lp(Ỹε)
.

The constant C6� depends on C�, C0, C1, R and p. The sum over all the elements of the ω covering
leads to

‖∇u‖pLp(Ωε)
≤ CN (C6�)p‖e(u)‖pLp(Ωε)

.

This completes the proof of Theorem 4.2.
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5 Korn’s type inequality

Denote

W 1,p
Γ0,ε

(Ωε)
.
=
{
v ∈W 1,p(Ωε) | v = 0 a.e. on Γ0,ε

}
,

W 1,p
γ0 (ω)

.
=
{
V ∈W 1,p(ω) | V = 0 a.e. on γ0

}
.

Let u be a displacement belonging to W 1,p
Γ0,ε

(Ωε)
3 decomposed as (4.1). The boundary conditions imply

U = 0, R = 0 a.e. on γ0 and u = 0 a.e. on Γ0,ε.

Theorem 5.1. For every displacement u ∈W 1,p
Γ0,ε

(Ωε)
3 decomposed as (4.1) we have

‖Um‖Lp(ω) ≤
C

ε1/p
‖e(u)‖Lp(Ωε),∥∥ρ1/p

ε R
∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε),

∥∥ρ1/p
ε ∇U3

∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε),∥∥U3

∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε).

(5.1)

Moreover,

‖ρ1/p
ε ∇Um‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(Ωε) if p ∈ (1, 2),

‖ρ1/q
ε ∇Um‖L2(ω) ≤

C

ε1/2
‖e(u)‖L2(Ωε) if p = 2, q ∈ (1, 2),

‖∇Um‖Lq(ω) ≤
C

ε1/p
‖e(u)‖Lp(Ωε) if p ∈ (2,∞), q ∈ (1, p/2),

(5.2)

In addition, we have

‖u1‖Lp(Ωε) + ‖u2‖Lp(Ωε) + ε‖u3‖Lp(Ωε) ≤ C‖e(u)‖Lp(Ωε),

3∑
i=1

∥∥∂iui∥∥Lp(Ωε)
+

2∑
i=1

ε
(∥∥∂3ui

∥∥
Lp(Ωε)

+
∥∥∂iu3

∥∥
Lp(Ωε)

)
≤ C‖e(u)‖Lp(Ωε)

(5.3)

and ∥∥∂2u1

∥∥
Lp(Ωε)

+
∥∥∂1u2

∥∥
Lp(Ωε)

≤ C‖e(u)‖Lp(Ωε) if p ∈ (1, 2),∥∥∂2u1

∥∥
Lq(Ωε)

+
∥∥∂1u2

∥∥
Lq(Ωε)

≤ C‖e(u)‖Lp(Ωε) if p ∈ [2,∞), q ∈ (1,max{2, p/2}).
(5.4)

The constants do not depend on ε3.

Proof. Step 1. Preliminary estimates.

First of all, since ρε ≥ ε, from (4.4) we obtain

‖eαβ(Um)‖Lp(ω) ≤
C

ε2/p
‖e(u)‖Lp(Ωε),∥∥∇U3 +R

∥∥
Lp(ω)

≤ C

ε2/p
‖e(u)‖Lp(Ωε)

‖ρε∇R‖Lp(ω) ≤
C

ε1+2/p
‖e(u)‖Lp(Ωε).

(5.5)

Then, the above estimate (5.5)1, the 2D-Korn inequality and the fact that Um vanishes on γ0 yield

‖Um‖W 1,p(ω) ≤ C‖e(Um)‖Lp(ω) ≤
C

ε2/p
‖e(u)‖Lp(Ωε). (5.6)

3 The constants of the estimates (5.2) and (5.4) depend on p and q.
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Observe that (1 − ε)ργ = ρε − ε and 0 ≤ ρε − ε ≤ ρε, then from estimate (4.4)3 and the fact that
0 < 1− ε0 ≤ 1− ε ≤ 1 we obtain

(1− ε0)‖ργ ∇R‖Lp(ω) ≤ (1− ε)‖ργ ∇R‖Lp(ω) ≤ ‖ρε∇R‖Lp(ω) ≤
C

ε1+2/p
‖e(u)‖Lp(Ωε).

This above estimate together with (8.16) lead to

‖R‖Lp(ω) ≤ C‖ργ ∇R‖Lp(ω) ≤
C

ε1+2/p
‖e(u)‖Lp(Ωε). (5.7)

Now, from this inequality, (5.5)2 and then the Poincaré inequality we obtain

‖U3‖W 1,p(ω) ≤
C

ε1+2/p
‖e(u)‖Lp(Ωε). (5.8)

Step 2. We prove (5.1)1.

Proceeding as in Step 1 and using the estimate (4.4)1, we obtain

(1− ε0)1/p‖ρ1/p
γ e(Um)‖Lp(ω) ≤ (1− ε)1/p‖ρ1/p

γ e(Um)‖Lp(ω) ≤ ‖ρ1/p
ε e(Um)‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(Ωε).

Then, Corollary 8.9 in Appendix gives

‖Um‖Lp(ω) ≤ C‖ρ1/p
γ e(Um)‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(Ωε). (5.9)

So, (5.1)1 is proved.

Step 3. We prove (5.1)2,3,4.

We have
(1− ε)1+1/p

∥∥ρ1+1/p
γ ∇R

∥∥
Lp(ω)

=
∥∥(ρε − ε)1+1/p∇R

∥∥
Lp(ω)

.

Then, (4.4)3 yields

(1− ε0)1+1/p
∥∥ρ1+1/p

γ ∇R
∥∥
Lp(ω)

≤
∥∥ρ1+1/p

ε ∇R
∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε).

The above estimate and the one below from (8.14) in Appendix∥∥ρ1/p
γ R

∥∥
Lp(ω)

≤ C
∥∥ρ1+1/p

γ ∇R
∥∥
Lp(ω)

(5.10)

lead to ∥∥ρ1/p
γ R

∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε).

Thus ∥∥(ρε − ε)1/pR
∥∥
Lp(ω)

=
∥∥(1− ε)1/pρ1/p

γ R
∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε)

which, in turn, with (5.7) and the fact that ρ
1/p
ε ≤ (ρε − ε)1/p + ε1/p give (5.1)2.

Now, from (4.4)2 and (5.1)2 we get

‖ρ1/p
ε ∇U3‖Lp(ω) ≤

∥∥ρ1/p
ε R

∥∥
Lp(ω)

+
∥∥ρ1/p

ε

(
∇U3 +R

)∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε)

and then

‖ρ1/p
γ ∇U3‖Lp(ω) ≤

C

ε1+1/p
‖e(u)‖Lp(Ωε).
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This estimate, those of (5.8) and (8.16) in Appendix yield

‖ρ1/p
ε ∇U3‖Lp(ω) ≤

C

ε1+1/p
‖e(u)‖Lp(Ωε), ‖U3‖Lp(ω) ≤ C‖ρ1/p

γ ∇U3‖Lp(ω) ≤
C

ε1+1/p
‖e(u)‖Lp(Ωε).

As a consequence, (5.1)3,4 are proved.

Step 4. We prove (5.2).

• if p ∈ (1, 2) we choose s = − 1

p′
then, Lemma 8.8 gives the estimate (5.2)1,

• if p = 2, we choose s =
1

q
− 1 with q ∈ (1, 2). Then we have 2s+ 1 =

2

q
− 1 > 0 and s+ 1 =

1

q
. Due

to (8.18)2 and (5.5)1 we obtain

‖ρ1/q
γ ∇Um‖L2(ω) ≤ C‖ρ1/q

γ e(Um)‖L2(ω),

‖ρ1/q
γ e(Um)‖L2(ω) ≤ ‖ρ1/2

γ e(Um)‖L2(ω) ≤ C‖ρ1/2
ε e(Um)‖L2(ω) ≤

C

ε1/2
‖e(u)‖L2(Ωε)

This proves (5.2)2 with a constant which depends on q.

• if p ∈ (2,∞), Lemma 8.7 with s =
1

p
implies that for any q ∈ (1, p/2) one has

‖eαβ(Um)‖Lq(ω) ≤ C‖ρ1/p
γ e(Um)‖Lp(ω) ≤ C‖ρ1/p

ε e(Um)‖Lp(ω) ≤
C

ε1/p
‖e(u)‖Lp(Ωε).

The constant depends on p and q and is independent of ε. The 2D Korn inequality, the above inequality
and (5.1)1 lead to

‖∇Um‖Lq(ω) ≤ C
(
‖e(Um)‖Lq(ω) + ‖Um‖Lq(ω)

)
≤ C

ε1/p
‖e(u)‖Lp(Ωε).

This proves (5.2)3 with a constant which depends on p and q.

Step 5. We prove (5.3) and (5.4).

Estimates (5.3) (resp. (5.4)) are the consequences of those in (4.4) and (5.1) (resp. (5.2)).

Remark 5.2. See also Remark 8.11. If ω is a polygonal domain and if γ has a finite number of
connected open components then we have

‖ρ1/p
γ ∇Um‖Lp(ω) ≤ C‖ρ1/p

γ e(Um)‖Lp(ω) =⇒ ‖ρ1/p
ε ∇Um‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(Ωε).

Moreover, we have the following Korn type inequalities:

‖u1‖Lp(Ωε) + ‖u2‖Lp(Ωε) + ε‖u3‖Lp(Ωε) ≤ C‖e(u)‖Lp(Ωε),

3∑
i=1

∥∥∂iui∥∥Lp(Ωε)
+

2∑
i=1

ε
(∥∥∂3ui

∥∥
Lp(Ωε)

+
∥∥∂iu3

∥∥
Lp(Ωε)

)
≤ C‖e(u)‖Lp(Ωε),∥∥∂2u1

∥∥
Lp(Ωε)

+
∥∥∂1u2

∥∥
Lp(Ωε)

≤ C‖e(u)‖Lp(Ωε).

The constants do not depend on ε.

Theorem 5.3. If γ = ∂ω then, for every displacement u ∈W 1,p(Ωε)
3 there exits a rigid displacement

r such that

‖u1 − r1‖Lp(Ωε) + ‖u2 − r2‖Lp(Ωε) + ε‖u3 − r3‖Lp(Ωε) ≤ C‖e(u)‖Lp(Ωε),

3∑
i=1

∥∥∂iui∥∥Lp(Ωε)
+
∥∥∂2(u1 − r1)

∥∥
Lp(Ωε)

+
∥∥∂1(u2 − r1)

∥∥
Lp(Ωε)

≤ C‖e(u)‖Lp(Ωε),

2∑
i=1

(∥∥∂3(ui − ri)
∥∥
Lp(Ωε)

+
∥∥∂i(u3 − r3)

∥∥
Lp(Ωε)

)
≤ C

ε
‖e(u)‖Lp(Ωε).
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The constants do not depend on ε.

Proof. First, we decompose u as (4.1). The terms U , R satisfy (4.4). Then, Proposition 8.13 with

s =
1

p
gives a rigid 2D displacement R (R(x′) = (a1 − b3x2)e1 + (a2 + b3x1)e2) such that

‖Um −R‖Lp(ω) ≤ C‖ρ1/p e(Um)‖Lp(ω),

‖ρ1/p∇(Um −R)‖Lp(ω) ≤ C‖ρ1/p e(Um‖Lp(ω).

As in the proof of Theorem 5.1 (see Steps 1-2), we show that

‖Um −R‖Lp(ω) + ‖ρ1/p
ε ∇(Um −R)‖Lp(ω) ≤

C

ε1/p
‖e(u)‖Lp(ω).

The Poincaré-Wirtinger inequality, given in Lemma 8.3, provides two constant b2 and b3 such that∥∥ρ1/p(Rα − bα)
∥∥
Lp(ω)

≤ C‖ρ1+1/p∇Rα‖Lp(ω).

As in the proof of Theorem 5.1 (see Step 3), we obtain∥∥ρ1/p
ε (Rα − bα)

∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε),

∥∥ρ1/p
ε (∂αU3 + bα)

∥∥
Lp(ω)

≤ C

ε1+1/p
‖e(u)‖Lp(Ωε).

The Poincaré-Wirtinger inequality provides a constant a3 such that

‖U3 − (a3 − b1x1 − b2x2)‖Lp(ω) ≤ C‖ρ1/p
γ ∇U3‖Lp(ω) ≤

C

ε1+1/p
‖e(u)‖Lp(Ωε).

Set
r(x) = (a1 − b3x2 + b1x3)e1 + (a2 + b3x1 + b2x3)e1 + (a3 − b1x1 − b2x2)e3.

The estimates above and the last two in (4.4) lead to those of the theorem with the rigid displacement
above.

6 Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator.

Definition 6.1. For φ measurable function on Ωε, the dimension reduction operator Πε(φ) is defined
as follows:

Πε(φ)(x′, X3) = φ(x′, εX3) for a.e. (x′, X3) ∈ Ω.

Πε(φ) is a measurable function on Ω.

Observe that for all (x′, X3) ∈ Ω we have −εργ(x′)ψ(x′) < εX3 < εργ(x′)φ(x′). So, since 0 ≤ ργ ≤
ρε we get (x′, εX3) ∈ Ωε. Therefore, the above definition makes sense.

We easily check that

1. for any Φ ∈ L1(Ωε) such that Φ ≥ 0 a.e. in Ωε, we have∫
Ω

Πε(Φ)dx′dX3 ≤
1

ε

∫
Ωε

Φ dx. (6.1)

2. for any Φ ∈ Lp(Ωε) and φ ∈ Lp(ω), 1 ≤ p ≤ ∞

‖Πε(Φ)‖Lp(Ω) ≤
1

(1− ε0)1/p

1

ε1/p
‖Φ‖Lp(Ωε),

Πε(φ) = φ and (4C0)1/p‖ρ1/p
γ φ‖Lp(ω) ≤ ‖Πε(φ)‖Lp(Ω) ≤ (2C1)1/p‖ρ1/p

γ φ‖Lp(ω),

(6.2)
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3. for any Φ ∈W 1,p(Ωε), 1 ≤ p ≤ ∞

∂αΠε(Φ) = Πε

(
∂αΦ

)
,

∂Πε(Φ)

∂X3
= εΠε

(
∂3Φ

)
. (6.3)

Let u be a displacement belonging to W 1,p(Ωε), decomposed as (4.1).
The strain tensor of u is given by the following 3× 3 symmetric matrix defined a.e. in Ωε by

e(u) =


e11(Um) + x3∂1R1 + e11(u) ∗ ∗

e12(Um) +
x3

2

(
∂2R1 + ∂1R2

)
+ e12(u) e22(Um) + x3∂2R2 + e22(u) ∗

1

2

(
∂1U3 +R1

)
+ e13(u)

1

2

(
∂2U3 +R2

)
+ e23(u) e33(u)

 (6.4)

where Um = U1e1 + U2e2.

First, we introduce the spaces

Warpp(Ω)
.
=
{

Φ̂ ∈ Lp(Ω)3 | ∂Φ̂

∂X3
∈ Lp(Ω)3

}
,

Wp(Ω)
.
=
{

Φ̂ ∈Warpp(Ω) |
∫ ργφ

−ργψ
Φ̂(·, X3)dX3 = 0 a.e. in ω

}
.

We equip Wp(Ω) with the semi-norm

‖Φ̂‖p
.
=
∥∥∥ ∂Φ̂

∂X3

∥∥∥
Lp(Ω)

, ∀Φ̂ ∈Wp(Ω).

This semi-norm is equivalent to the usual norm of Warpp(Ω). Indeed the Poincaré-Wirtinger inequality
implies ∫ ργφ

−ργψ
|Φ̂(·X3)|pdX3 ≤ C|ργ |p

∫ ργφ

−ργψ

∣∣∣ ∂Φ̂

∂X3
(·, X3)

∣∣∣pdX3 a.e. in ω

from which we deduce that

‖Φ̂‖Lp(Ω) ≤
∥∥∥ Φ̂

ργ

∥∥∥
Lp(Ω)

≤ C
∥∥∥ ∂Φ̂

∂X3

∥∥∥
Lp(Ω)

, ∀Φ̂ ∈Wp(Ω).

The above estimate also shows that
Φ̂

ργ
belongs to Lp(Ω)3.

Now, for p ∈ (1,∞) and s ∈ R, we denote

Lps(ω)
.
=
{
φ ∈ Lploc(ω) | ρsγφ ∈ Lp(ω)

}
,

W 1,p
s (ω)

.
=
{
φ ∈W 1,p

loc (ω) | ρsγ∇φ ∈ Lp(ω)2
}
,

M1,p
1/p(ω)

.
=
{

Φ ∈W 1,p
loc (ω)2 | ρ1/p

γ e(Φ) ∈ Lp(ω)4
}
,

W 1,p
1+1/p(ω)

.
=
{
φ ∈ Lp1/p(ω) | ρ1+1/p

γ ∇φ ∈ Lp(ω)2
}
,

W 2,p
1+1/p(ω)

.
=
{
φ ∈ Lp(ω) | ρ1/p

γ ∇φ ∈ Lp(ω)2, ρ1+1/p
γ H(φ) ∈ Lp(ω)4

}
(6.5)
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where H(φ) is the Hessian matrix of φ and

W1,p
s (ω)

.
=
{
φ ∈ Lp(ω) | ρsγ∇φ ∈ Lp(ω)2, φ = 0 a.e. on γ0

}
,

M1,p
1/p(ω)

.
=
{

Φ ∈M1,p
1/p(ω) | Φ = 0 a.e. on γ0

}
,

W1,p
1+1/p(ω)

.
=
{
φ ∈W 1,p

1+1/p(ω) | φ = 0 a.e. on γ0

}
,

W2,p
1+1/p(ω)

.
=
{
φ ∈W 2,p

1+1/p(ω) | φ = 0, ∇φ = 0 a.e. on γ0

}
.

(6.6)

Note that in a neighborhood of γ0 in ω the functions belonging to W 1,p
s (ω) (resp. M1,p

1/p(ω), W 1,p
1+1/p(ω),

W 2,p
1+1/p(ω)) belong to the space W 1,p (resp. (W 1,p)2, W 1,p, W 2,p) of this neighborhood. Concequently,

the spaces introduced in (6.6) make sense.
Note also that if Φ belongs to M1,p

1/p(ω) then, proceeding as in the proof of Theorem 5.1 (Step 4) we

obtain

M1,p
1/p(ω) ⊂


W1,p

1/p(ω)2 if p ∈ (1, 2),

W1,p
1/q(ω)2 if p = 2, q ∈ (1, 2),

W 1,q(ω)2 if p ∈ (2,∞), q ∈ (1, p/2).

Lemma 6.2. We have

Lp1/p(ω) ⊂ Lp(Ω), W 1,p
1/p(ω) ⊂W 1,p(Ω),

W 1,p
1+1/p(ω) ⊂

{
φ ∈ Lp(Ω) | ργ∇φ ∈ Lp(Ω)2

}
,

W 2,p
1+1/p(ω) ⊂

{
φ ∈W 1,p(Ω) | ργH(φ) ∈ Lp(Ω)4

}
.

(6.7)

We also have

M1,p
1/p(ω) ⊂W 1,q(Ω)2 where

{
q = p if p ∈ (1, 2),

q ∈ (1,max{2, p/2}) if p ∈ [2,∞).
(6.8)

Proof. The inclusions given by (6.7) are the consequences of the definition of these spaces and inequal-
ities (6.2).
If p ∈ (1, 2) then, the (6.8)1 comes from the equality M1,p

1/p(ω) = W 1,p
1/p(ω)2 (see Lemma 8.8) and (6.7)2.

If p ∈ [2,∞) then, for any φ in W 1,p
1/q(ω), the Hölder inequality gives

‖ρ1/q
γ ∇φ‖Lq(ω) ≤ |ω|

1
q−

1
p ‖ρ1/q

γ ∇φ‖Lp(ω).

So φ belongs to W 1,q
1/q(ω) and therefore to W 1,q(Ω). This ends the proof of (6.8).

For every
(
Φ, Φ̂

)
∈M1,p

1/p(ω)×W2,p
1+1/p(ω)×Lp(ω;W 1,p(−1, 1))3 we denote

E(Φ, Φ̂
)

=


e11(Φm)−X3∂

2
11Φ3 ∗ ∗

e12(Φm)−X3∂12Φ3 e22(Φm)−X3∂
2
22Φ3 ∗

1

2

∂Φ̂1

∂X3

1

2

∂Φ̂2

∂X3

∂Φ̂3

∂X3

 (6.9)

where Φm = Φ1e1 + Φ2e2, Φ = Φm + Φ3e3 =
(
Φm,Φ3

)
.
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Note that we have

∀
(
Φ, Φ̂

)
∈M1,p

1/p(ω)×W2,p
1+1/p(ω)×Lp(ω;W 1,p(−1, 1))3,

C ′0

(
‖ρ1/p
γ e(Φm)‖Lp(ω) +

∥∥ρ1+1/p
γ ∇Φ3

∥∥
Lp(ω)

+
∥∥∥ ∂Φ̂

∂X3

∥∥∥
Lp(Ω)

)
≤ ‖E(Φ, Φ̂)‖Lp(Ω)

≤ C ′1
(
‖ρ1/p
γ e(Φm)‖Lp(ω) +

∥∥ρ1+1/p
γ ∇Φ3

∥∥
Lp(ω)

+
∥∥∥ ∂Φ̂

∂X3

∥∥∥
Lp(Ω)

)
.

(6.10)

Theorem 6.3. Let {uε}ε be a sequence of displacements belonging to W 1,p
Γ0,ε

(Ωε), decomposed as (4.1)
and satisfying

‖e(uε)‖L2(Ωε) ≤ Cε
2+1/p (6.11)

where the constant does not depend on ε.
Then, there exist a subsequence of {ε}, still denoted {ε} and Um = U1e1 + U2e2 ∈ M1,p

1/p(ω), R ∈
W1,p

1+1/p(ω)2, U3 ∈W2,p
1+1/p(ω) and Û ∈Wp(Ω) such that

1

ε2
Um,ε ⇀ Um weakly in M1,p

1/p(ω),

1

ε
U3,ε ⇀ U3 weakly in W1,p

1/p(ω),

1

ε
Rε ⇀ R weakly in W1,p

1+1/p(ω)2.

(6.12)

U3 and R are linked by the following condition:

∇U3 = −R a.e. in ω. (6.13)

We also have

1

ε2
Πε(uα,ε) ⇀ U1 −X3∂αU3 weakly in W 1,q(Ω), where

{
q = p if p ∈ (1, 2),

q ∈ (1,max{2, p/2}) if p ∈ [2,∞).

1

ε
Πε(u3,ε) ⇀ U3 weakly in W 1,p(Ω)

(6.14)
and

1

ε2
Πε

(
e(uε)

)
⇀ E

(
U , Û

)
weakly in Lp(Ω)3×3 (6.15)

where U = (Um,U3).

Proof. Step 1. We prove (6.12) and (6.13).

First, as mention above we have (1 − ε0)ργ ≤ (1 − ε)ργ ≤ ρε in ω. Hence, estimates (4.4)-(5.1) and
(6.11) give

‖Um,ε‖Lp(ω) + ‖ρ1/p
γ e(Um,ε)‖Lp(ω) ≤

C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

2,

‖U3,ε‖Lp(ω) + ‖ρ1/p
γ ∇U3,ε‖Lp(ω) ≤

C

ε1+1/p
‖e(uε)‖Lp(Ωε) ≤ Cε,

‖ρ1/p
γ Rε‖Lp(ω) + ‖ρ1+1/p

γ ∇Rε‖Lp(ω) ≤
C

ε1+1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

‖ρ1/p
γ (∇U3,ε +Rε)‖Lp(ω) ≤

C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

2.

(6.16)

We also have (see (5.2))

‖ρ1/p
ε ∇Um,ε‖Lp(ω) ≤ Cε2 if p ∈ (1, 2),

‖ρ1/q
ε ∇Um,ε‖L2(ω) ≤ Cε2 if p = 2, q ∈ (1, 2),

‖∇Um,ε‖Lq(ω) ≤ Cε2 if p ∈ (2,∞), q ∈ (1, p/2).

(6.17)
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Then, up to a subsequence of {ε}, still denoted {ε}, we have the convergences (6.12) and ∇U3 = −R
a.e. in ω. So, U3 belongs to W2,p

1+1/p(ω).

From the above estimate (6.16)4, we also deduce that there exists Z ∈ Lp1/p(ω)2 (it also belongs to

Lp(Ω)2) satisfying the following equivalent convergences:

1

ε2
ρ1/p
γ (∇U3,ε +Rε) ⇀ ρ1/p

γ Z weakly in Lp(ω)2,

1

ε2
Πε(∇U3,ε +Rε) ⇀ Z weakly in Lp(Ω)2.

(6.18)

Step 2. We prove (6.14).

From the estimates (4.4)4,5 and the properties (6.2)-(6.3) of the operator Πε, we obtain∥∥∥ 1

ρε
Πε(uε)

∥∥∥
Lp(Ω)

≤ Cε1−1/p‖e(uε)‖Lp(Ωε) ≤ Cε
3,

‖Πε(uε)‖Lp(Ω) ≤ Cε1−1/p‖e(uε)‖Lp(Ωε) ≤ Cε
3,∥∥∂αΠε

(
uε
)∥∥
Lp(Ω)

≤ C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

2,∥∥∥∂Πε(uε)

∂X3

∥∥∥
Lp(Ω)

≤ C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

3.

Then, up to a subsequence of {ε}, still denoted {ε}, there exists U ∈ Lp(ω;W 1,p(−1, 1))3 such that

1

ε3
Πε(uε) ⇀ U weakly in Warpp(Ω),

1

ε2
∂αΠε

(
uε
)
⇀ 0 weakly in Lp(Ω)3.

(6.19)

Since the sequence
{ 1

ρε

1

ε3
Πε(uε)

}
ε

is uniformly bounded in Lp(Ω)3 we also have

1

ρε

1

ε3
Πε(uε) ⇀

1

ργ
U weakly in Lp(Ω)3.

Now, the estimates (5.3) yield ((α, β) ∈ {1, 2}2)

‖Πε(u3,ε)‖Lp(Ω) ≤
C

ε1+1/p
‖e(uε)‖Lp(Ωε) ≤ Cε,∥∥∂αΠε

(
u3,ε

)∥∥
Lp(Ω)

+
∥∥∥∂Πε(uε)

∂X3

∥∥∥
Lp(Ω)

≤ C

ε1+1/p
‖e(uε)‖Lp(Ωε) ≤ Cε.

Then, the above convergences lead to those of (6.14)2.
Besides, from (5.3) and (5.4) we have

‖Πε(uα,ε)‖Lp(Ω) ≤
C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

2,∥∥∂αΠε

(
uβ,ε

)∥∥
Lq(Ω)

+
∥∥∥∂Πε(uβ,ε)

∂X3

∥∥∥
Lp(Ω)

≤ C

ε1/p
‖e(uε)‖Lp(Ωε) ≤ Cε

2.

So the above convergences (6.12), (6.18) and (6.19) lead to that of (6.14)1.
Step 3. We prove (6.15).

1

ε2
Πε

(
e(uε)

)
⇀


e11(Um)−X3∂

2
11U3 ∗ ∗

e12(Um)−X3∂
2
12U3 e22(Um)−X3∂

2
22U3 ∗

1

2

(
Z1 +

∂U1

∂X3

) 1

2

(
Z2 +

∂U2

∂X3

) ∂U3

∂X3

 weakly in Lp(Ω)3×3.
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Set (α ∈ {1, 2})

Ûα(·, X3) = X3Zα + Uα(·, X3)− 1

ργ(φ+ ψ)

∫ ργφ

−ργψ

(
X3Zα + Uα(·, X3)

)
dX3,

Û3(·, X3) = U3(·, X3)− 1

ργ(φ+ ψ)

∫ ργφ

−ργψ
U3(·, X3)dX3,

a.e in Ω.

This gives convergences (6.15) with Û ∈Wp(Ω).

7 The linear elasticity problem in Ωδ

We denote
Dε

.
= H1

Γ0,ε
(Ωε), DM

.
= M1,2

1/2(ω)×W2,2
3/2(ω).

In this section, Dε is the set of admissible displacements of the plate Ωε while DM is the space of
macroscopic limit displacements.

For 1 ≤ i, j, k, l ≤ 3, let aijkl be in L∞(Ω) and satisfy the symmetry conditions

aijkl(x
′, X3) = ajikl(x

′, X3) = aklij(x
′, X3) for a.e. (x′, X3) ∈ Ω,

as well as the coercivity condition

aijklτijτkl ≥ c0 τijτij a.e. in Ω (7.1)

for every symmetric matrix τ = (τij) of order 3, where c0 is a strictly positive constant.
The constitutive law of the materials is the relation between the strain tensor and the stress tensor

σij(v) = aijkl ekl(v), ∀v ∈ Dε. (7.2)

For simplicity, we consider only applied body forces Fε.
The displacement uε ∈ Dε is the solution of the following elasticity problem:

∫
Ωε

σij(uε) eij(v) dx =

∫
Ωε

Fε · v dx

∀v ∈ Dε.
(7.3)

We make the assumption that the applied body forces Fε are of the form

Fε(x) =
(
ε2 fα,ε(x

′) + εx3gα,ε(x
′)
)
eα + ε3 f3,ε(x

′)e3 for a.e. x ∈ Ωε, (7.4)

where

fε =
1

ρε
f, gε =

1

ρ2
ε

g

f = fiei ∈ L2(ω)3 and g = gαeα ∈ L2(ω)2.
Now, for every u ∈ Dε decomposed as (4.1) one has∫

Ωε

Fε · Ue` dx = ε3

∫
ω

fα Uα (φ+ ψ)dx′ +
ε4

3

∫
ω

gαρεRα (φ3 + ψ3)dx′

+
ε3

2

∫
ω

gα Uα (φ2 − ψ2)dx′ +
ε4

2

∫
ω

fαρεRα (φ2 − ψ2)dx′

+ ε4

∫
ω

f3 U3 (φ+ ψ)dx′
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and due to (4.4)4 ∣∣∣ ∫
Ωε

Fε · u dx
∣∣∣ ≤ Cε3

(
‖f‖L2(ω) + ‖g‖L2(ω)

)
‖e(u)‖L2(Ωε). (7.5)

From the estimates (5.1) and the one above, we obtain an upper bound on the right-hand side of (7.3)

∀u ∈ Dε,
∣∣∣ ∫

Ωε

Fε · u dx
∣∣∣ ≤ Cε5/2

(
‖f‖L2(ω) + ‖g‖L2(ω)

)
‖e(u)‖L2(Ωε).

Applying the above estimate with u = uε taken as the test function in (7.3), this gives

‖e(uε)‖L2(Ωε) ≤ Cε
5/2
(
‖f‖L2(ω) + ‖g‖L2(ω)

)
. (7.6)

7.1 The limit problem in Ω

In this subsection, we investigate the asymptotic behavior of the sequence {uε}ε, the solution to
problem (7.3).

Theorem 7.1. Let uε be the solution to problem (7.3). There exist U = (Um, U3) ∈ DM and Û ∈W2(Ω)
such that

1

ε2
Um,ε⇀ Um weakly in M1,2

1/2(ω),

1

ε
U3,ε⇀ U3 weakly in W1,2

1/2(ω),

1

ε
Rε⇀ R = −∇U3 weakly in W1,2

3/2(ω)

(7.7)

and
1

ε2
Πε

(
e(uε)

)
−→ E

(
U , Û

)
strongly in L2(Ω)3×3 (7.8)

The pair (U , Û) ∈ DM×W2(Ω) is the unique solution to

∫
Ω

aijklEij(U , Û)Ekl(V, V̂ ) dx′dX3

=

∫
ω

f · V (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇V3 ργ (φ3 + ψ3)dx′

+
1

2

∫
ω

(
g · Vm + fm · ∇V3 ργ

)
(φ2 − ψ2)dx′

∀(V, V̂ ) ∈ DM×W2(Ω)

(7.9)

where
fm = f1e1 + f2e2.

Proof. Step 1. The convergences (7.7) and (7.8).

Due to the estimate (7.6), there exist a subsequence of {ε}, still denoted {ε}, and Um = U1e1 +U2e2 ∈
M1,2

1/2(ω), U3 ∈ W2,2
3/2(ω) and Û ∈ W2(Ω) such that the convergences (7.7) and (7.8) hold in the weak

sense.

Step 2. The limit problem in Ω.

Let V = (Vm,V3) be in DM and V̂ ∈ H1
(
ω×(−C1, C1)

)3
such that V̂ = 0 a.e. on γ0×(−C1, C1). We

choose as test displacement

vε(x) =
1

ε2

[(
V1(x′)−x3∂1V3(x′)

)
e1+

(
V2(x′)−x3∂2V3(x′)

)
e1+V3(x′)e3+ε3V̂

(
x′,

x3

ε

)]
for a.e. x in Ωε.
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A straightforward calculation gives

ε2Πε

(
e(vε)

)
−→ E(V, V̂ ) strongly in L2(Ω)3×3

and
1

ε

∫
Ωε

Fε · vε dx −→
∫
ω

f · V (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇V3 ργ (φ3 + ψ3)dx′

+
1

2

∫
ω

(
g · Vm + fm · ∇V3 ργ

)
(φ2 − ψ2)dx′.

We take vε as the test displacement in (7.3), then we transform with Πε, divide by ε and pass to the
limit using the convergences (7.7) and (7.8) (in the weak sense) and those above concerning the test

displacement. This leads to (7.9) with the pair (V, V̂ ).

Then, since the space of restrictions to Ω of fields V̂ belonging to H1(ω×(−C1, C1))3 and satisfying

V̂ = 0 on γ0×(−C1, C1) is dense in W2(Ω), problem (7.9) is satisfied for every V̂ in Warp2(Ω) and
thus for every field in W2(Ω).

Step 3. Uniqueness of the solution to the problem (7.9).

The bilinear form over DM×W2(Ω)(
(V, V̂ ), (W, Ŵ )

)
∈
(
DM×W2(Ω)

)2 7−→ ∫
Ω

aijklEij(V, V̂ )Ekl(W, Ŵ ) dx′dX

is coercive and bounded (see (6.10) and (7.1)). So, problem (7.9) admits a unique solution. Hence, the
whole sequences in (7.7) and (7.8) converge to their limits.

Step 4. Strong convergence of the rescaled strain tensor.

Take uε as the test displacement in (7.3), then transform using Πε and divide by ε4.
We first have

lim
ε→0

1

ε5

∫
Ω

Πε(Fε) ·Πε(uε) dx
′dX =

∫
ω

f · U (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇U3 ργ (φ3 + ψ3)dx′

+
1

2

∫
ω

(
g · Um + fm · ∇U3 ργ

)
(φ2 − ψ2)dx′.

Now, the weak lower semi-continuity of the left-hand side of (7.9), the convergences (7.7)-(7.8) (in the
weak sense) together with (6.1) yield∫

Ω

aijklEij(U , Û)Ekl(U , Û) dx′dX3 ≤ lim inf
ε→0

(∫
Ω

aijkl
1

ε2
Πε

(
eij(uε)

) 1

ε2
Πε

(
ekl(uε)

)
dx′dX3

)
≤ lim sup

ε→0

(∫
Ω

aijkl
1

ε2
Πε

(
eij(uε)

) 1

ε2
Πε

(
ekl(uε)

)
dx′dX3

)
≤ lim sup

ε→0

1

ε5

∫
Ωε

σij(uε) eij(uε) dx = lim sup
ε→0

1

ε5

∫
Ωε

Fε · uε dx

=

∫
ω

f · U (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇U3 ργ (φ3 + ψ3)dx′ +
1

2

∫
ω

(
g · Um + fm · ∇U3 ργ

)
(φ2 − ψ2)dx′.

Hence, the above inequalities are equalities. This proves the strong convergence (7.8) of the strain
tensor.

7.2 The correctors

Set

M11 =

1 0 0
0 0 0
0 0 0

 , M12 =

0 1 0
1 0 0
0 0 0

 , M22 =

0 0 0
0 1 0
0 0 0

 .
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Below we introduce the six correctors.

χαβm , χαβb ∈W2(Ω), (α, β) ∈
{

(1, 1), (1, 2), (2, 2)
}
,

defined by∫ ργφ

−ργψ
aijkl

(
Mαβ

ij + Eij(0, χ
αβ
m )
)
Ekl(0, V̂ )dX3 = 0 a.e. in ω,∫ ργφ

−ργψ
aijkl

(
X3M

αβ
ij + Eij(0, χ

αβ
b )
)
Ekl(0, V̂ )dX3 = 0 a.e. in ω,

 ∀V̂ ∈W2(Ω). (7.10)

Using these correctors, Û can be written as follows:

Û = eαβ(Um)χαβm + ∂2
αβ U3χ

αβ
b . (7.11)

7.3 The limit problem posed in the ”mid-surface” ω

Theorem 7.2. The limit displacement U = (Um, U3) ∈ DM is the unique solution to

∫
ω

[
Aαβα′β′eαβ(Um)eα′β′(Vm) +Bαβα′β′

(
eαβ(Um)∂2

α′β′V3 + eα′β′(Vm)∂2
αβU3

)
+ Cαβα′β′∂2

αβU3 ∂
2
α′β′V3

]
dx′

=

∫
ω

f · V (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇V3 ργ (φ3 + ψ3)dx′

+
1

2

∫
ω

(
g · Vm + fm · ∇V3 ργ

)
(φ2 − ψ2)dx′, ∀V ∈ DM

(7.12)

where

Aαβα′β′ =

∫ ργφ

−ργψ
aijkl

(
Mαβ

ij + Eij(0, χ
αβ
m )
)
Mα′β′

kl dX3,

Bαβα′β′ =

∫ ργφ

−ργψ
aijkl

(
X3M

αβ
ij + Eij(0, χ

αβ
b )
)
Mα′β′

kl dX3,

Cαβα′β′ =

∫ ργφ

−ργψ
aijkl

(
X3M

αβ
ij + Eij(0, χ

αβ
b )
)
X3M

α′β′

kl dX3.

Proof. In problem (7.9), we choose V̂ = 0 and we replace Û by its expression given above by (7.11).
Then, as in [9, Theorem 11.21], we prove that the bilinear form over DM×DM

(U ,V) 7−→
∫

Ω

[
Aαβα′β′eαβ(Um)eα′β′(Vm) +Bαβα′β′

(
eαβ(Um)∂2

α′β′V3 + eα′β′(Vm)∂2
αβU3

)
+ Cαβα′β′∂2

αβU3 ∂
2
α′β′V3

]
dx′

is coercive and bounded. Therefore, problem (7.12) admits a unique solution.

7.4 Case of a homogeneous and isotropic material

In this subsection, we consider a plate made of a homogeneous and isotropic material. So, we have

aijkl
.
= λδijδkl + µ

(
δikδjl + δilδjk

)
, {i, j, k, l} ∈ {1, 2, 3}4
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where δij is the Kronecker symbol and λ, µ the Lamé’s constants.

In this case, we can easily obtain Û taking V = 0 in problem (7.9). We find (see also [14])

∂Û1

∂X3
=
∂Û2

∂X3
= 0,

∂Û3

∂X3
=

λ

λ+ 2µ

(
− e11(U)− e22(U) +X3∆U3

)
,

a.e. in Ω. (7.13)

Now, inserting the above value of Û in (7.9) leads to the variational problem satisfied by U .

Theorem 7.3. The field U ∈ DM is the unique solution to

E

1− ν2

∫
ω

[
(1− ν) eαβ(U) eαβ(V) + νeαα(U)eββ(V)

]
(φ+ ψ)ργ dx

′

+
E

2(1− ν2)

∫
ω

(1− ν)
(
eαβ(U) ∂2

αβV3 + eαβ(V) ∂2
αβU3

)
(φ2 − ψ2)ρ2

γ dx
′

+
E

2(1− ν2)

∫
ω

ν
(
eαα(U) ∆V3 + eαα(V) ∆U3

)
(φ2 − ψ2)ρ2

γ dx
′

+
E

3(1− ν2)

∫
ω

[
(1− ν)∂2

αβU3 ∂
2
αβV3 + ν∆U3∆V3

]
(φ3 + ψ3)ρ3

γ dx
′

=

∫
ω

f · V (φ+ ψ)dx′ − 1

3

∫
ω

g · ∇V3 ργ (φ3 + ψ3)dx′

+
1

2

∫
ω

(
g · Vm + fm · ∇V3 ργ

)
(φ2 − ψ2)dx′, ∀V ∈ DM

(7.14)

where E =
µ(3λ+ 2µ)

λ+ µ
is the Young modulus and ν =

λ

2(λ+ µ)
the Poisson constant.

Moreover, we have

1

ε2
Πε

(
σ11(uδ)

)
→ E

1− ν2

[
e11(U)−X3∂

2
11U3 + ν

(
e22(U)−X3∂

2
22U3

)]
strongly in L2(Ω),

1

ε2
Πε

(
σ22(uδ)

)
→ E

1− ν2

[
e22(U)−X3∂

2
22U3 + ν

(
e11(U)−X3∂

2
11U3

)]
strongly in L2(Ω),

1

ε2
Πε

(
σ12(uδ)

)
→ 2µ

[
e12(U)−X3∂

2
12U3

]
strongly in L2(Ω),

1

ε2
Πε

(
σi3(uδ)

)
→ 0 strongly in L2(Ω).

(7.15)

Proof. The strong convergences (7.15) are the consequences of (7.8).

Now, we can reconstruct the solution to problem (7.3). We obtain for a.e. x ∈ Ωε

uε(x) ≈


ε2U1(x′)− εx3∂1U3(x′)

ε2U2(x′)− εx3∂2U3(x′)

εU3(x′)

+
λε2x3

λ+ 2µ

(
− e11(U)(x′)− e22(U)(x′) +

x2
3

2ε2
∆U3(x′)

)
.
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and for the stress tensor, we have

σ(uε)(x) ≈ ε2


E

1− ν2

(
e11(U)(x′) + νe22(U)(x′)

)
2µe12(U)(x′) 0

2µe12(U)(x′)
E

1− ν2

(
e22(U)(x′) + νe11(U)(x′)

)
0

0 0 0



− εx3


E

1− ν2

(
∂2

11U3(x′) + ν∂2
22U3(x′)

)
2µ∂2

12U3(x′) 0

2µ∂2
12U3(x′)

E

1− ν2

(
∂2

22U3(x′) + ν∂2
11U3(x′)

)
0

0 0 0

 .

8 Appendix

8.1 Preliminary lemmas

Lemma 8.1. For any χ ∈ W 1,p(0, d), d > 0 satisfying χ(d) = 0 and any b ≥ 0, if sp+ 1 > 0 then we
have ∫ d

0

(t+ b)sp|χ(t)|p dt ≤
( p

sp+ 1

)p ∫ d

0

(t+ b)(s+1)p|χ′(t)|p dt. (8.1)

Proof. We start with χ ∈ C1([0, d]) satisfying χ(d) = 0. We have

p

∫ d

0

(t+ b)sp+1sign
(
χ(t)

)
|χ(t)|p−1χ′(t) dt =

[
(t+ b)sp+1|χ(t)|p

]d
0
− (sp+ 1)

∫ d

0

(t+ b)sp|χ(t)|p dt.

Then, thanks to the Hölder inequality we obtain

(sp+ 1)

∫ d

0

(t+ b)sp|χ(t)|p dt = −p
∫ d

0

(t+ b)sp+1sign
(
χ(t)

)
|χ(t)|p−1χ′(t) dt− bsp+1|χ(0)|p

= −p
∫ d

0

(t+ b)s(p−1)sign
(
χ(t)

)
|χ(t)|p−1(t+ b)s+1χ′(t) dt− bsp+1|χ(0)|p

≤ p
(∫ d

0

(t+ b)sp|χ(t)|p dt
)1/p′(∫ d

0

(t+ b)(s+1)p|χ′(t)|p dt
)1/p

from which we derive (8.1) for χ ∈ C1([0, d]) satisfying χ(d) = 0. A density argument gives (8.1) for
any χ ∈W 1,p(0, d) satisfying χ(d) = 0.

Lemma 8.2. Let (ϕ , χ) be in L∞(0, d)×W 1,p(0, d), d > 0, satisfying

m(t+ b) ≤ ϕ(t) ≤M(t+ b) for a.e. t ∈ (0, d) and χ(d) = 0

where b ≥ 0 and (m,M) ∈ (0,+∞)2.
Then

‖ϕsχ‖Lp(0,d) ≤ C‖ϕs+1χ′‖Lp(0,d), ∀s ∈ (−1/p,+∞) (8.2)

where

C =


pMs

ms+1(sp+ 1)
if s ∈

[
0,+∞

)
,

p

m(sp+ 1)
if s ∈

(
− 1/p, 0

]
.

(8.3)
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Proof. If s ≥ 0 then we have∫ d

0

ϕ(t)sp|χ(t)|p dt ≤Msp

∫ d

0

(t+ b)sp|χ(t)|p dt

≤ ppMsp

m(s+1)p(sp+ 1)p

∫ d

0

m(s+1)p(t+ b)(s+1)p|χ′(t)|p dt

≤ ppMsp

m(s+1)p(sp+ 1)p

∫ d

0

ϕ(t)(s+1)p|χ′(t)|p dt.

If s ∈ (−1/p, 0] then we have (s+ 1)p ∈ (p− 1, p] ⊂ (0,+∞) and

∫ d

0

ϕ(t)sp|χ(t)|p dt ≤ msp

∫ d

0

(t+ b)sp|χ(t)|p dt

≤ ppmsp

m(s+1)p(sp+ 1)p

∫ d

0

m(s+1)p(t+ b)(s+1)p|χ′(t)|p dt

≤ pp

mp(sp+ 1)p

∫ d

0

ϕ(t)(s+1)p|χ′(t)|p dt.

This ends the proof of the estimate (8.2).

8.2 Preliminary considerations on boundaries

Denote

• C(a, h, θ) the cone with apex O (the origin of R2), axis directed by the unit vector a, height h > 0
and half-angle θ ∈ (0, π/2)

C(a, h, θ) .
=
{
x′ ∈ R2 | |x′|2 cos(θ) < x′ · a < h

}
,

• H(a, h)
.
=
{
x′ ∈ R2 | x′ = ta, t ∈ (0, h)

}
, H(a, h) is the axis of the cone C(a, h, θ),

• D(a, 2h, θ) the diamond

D(a, 2h, θ)
.
=
{
x′ ∈ R2 | |x′|2 cos(θ) < x′·a ≤ h

}
∪
{
x′ ∈ R2 | |2ha−x′|2 cos(θ) ≤ 2h−x′·a < h

}
.

First, since ∂ω is a compact set, there exists a > 0 satisfying a ≤ min
{A

3
,
B

2K1

}
such that

∂ω =

N⋃
n=1

(
∂ω
)′
n
,
(
∂ω
)′
n

.
=
{

(x1n, x2n) ∈ R2 | x2n = fn(x1n), x1n ∈ (a,A− a)
}
. (8.4)

Set

h
′

= aK1 ≤
B

2
, θ

′
∈ (0, π/3]4 such that cos(θ

′
) =

K1√
1 +K2

1

,

e
′′

n =
e1n + 3K1e2n√

1 + 9K2
1

, e
′′′

n =
−e1n + 3K1e2n√

1 + 9K2
1

, n ∈ {1, . . . , N},

θ
′′
∈ (0, π/3) such that cos(θ

′′
) =

1 + 3K2
1√

(1 +K2
1 )(1 + 9K2

1 )
, h

′′
= a

1 + 3K2
1√

1 + 9K2
1

(8.5)

4 Due to the assumption (3.2)2.
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and

B
′

n
.
=
{

(x1n, x2n) ∈ R2 | fn(x1n) < x2n < fn(x1n) + h
′
, x1n ∈ (a,A− a)

}
=

⋃
x′
n∈(∂ω)′n

(
x′n +H(e2n, h

′
)
)
⊂

⋃
x′
n∈(∂ω)′n

(
x′n +H(e2n, 2h

′
)
)
⊂ Bn.

(8.6)

Note that by construction of the two cones

Figure 2: The two cones CAB = A + C(e2n, h
′
, θ

′
) and CAE = A + C(e′′

n, h
′′
, θ

′′
) and the diamond

CABD = A+D(e2n, 2h
′
, θ

′
) whose common apex is A.

CAB = A+ C(e2n, h
′
, θ

′
) and CAE = A+ C(e

′′

n, h
′′
, θ

′′
)

we have (see Figure 2)

• since A belongs to
(
∂ω
)′
n
, the diamond CABD is included in Bn,

•
−→
AF =

−−→
FD = h′e2n,

−−→
BF =

−−→
FC = ae1n, ĈAF = F̂AB = θ

′
,

• AC = AE, ĈAH = ĤAE = θ
′′
,

• the line AH intersects the segment [D,C] at its midpoint J ,

• e
′′

n has the same direction as
−→
AJ ,

•
−−→
GC =

2

3
ae1n, AH = h

′′
=
a(1 + 3K2

1 )√
1 + 9K2

1

> h′,

• dist(G,CABD) = dist(G,AC) =
2

3

h
′√

1 +K2
1

, dist(F,CABD) = dist(F,AC) =
h

′√
1 +K2

1

,
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• thanks to assumption (3.2) we have

0 < θ
′′
< θ′ ≤ 2θ

′′
<
π

2
.

As a consequence the segment AF is included in the cone CAE,

• the cone CAE is included in the diamond CABD.

So, we have

B
′

n ⊂
( ⋃
x′
n∈(∂ω)′n

(
x′n +H(e

′′

n, h
′′
)
))
∪
( ⋃
x′
n∈(∂ω)′n

(
x′n +H(e

′′′

n , h
′′
)
))
⊂ Bn

and
⋃

x′
n∈(∂ω)′n

(
x′n +D(e2n, 2h

′
, θ

′
)
)
⊂ Bn.

(8.7)

Since

N⋃
n=1

(
∂ω
)′
n

= ∂ω (see (8.4)), there exists a strictly positive constant c1 ≤ c0/2 such that

∀δ ∈ (0, 2c1], ω \ ωδ ⊂ ω \ ω2c1 ⊂ ω \ ωc0 ⊂
N⋃
n=1

B′n. (8.8)

Note that 2c1 ≤ h
′
.

8.3 A weighted Poincaré-Wirtinger inequality

We remind that W 1,p
s (ω) is defined by (6.5).

Lemma 8.3. For any φ in W 1,p
s+1(ω) with s ∈ R such that sp+ 1 > 05, there exists as ∈ R such that∥∥ρsγ(φ− as)

∥∥
Lp(ω)

≤ C‖ρs+1
γ ∇φ‖Lp(ω). (8.9)

The constant depends on s, p and ∂ω.

Proof. The proof is based on the result given in Lemma 8.2.

We first prove (8.9) for any φ ∈ C1(ω).

First, observe that for all x′ ∈ ωc1 we have

c1 < ρ(x′) ≤ ργ(x′) ≤ 1.

Now, the Poincaré-Wirtinger inequality applied to the function φ restricted to ωc1 gives ã ∈ R6such
that

‖φ− ã‖Lp(ωc1
) ≤ C‖∇φ‖Lp(ωc1

) ≤
C

cs+1
1

∥∥ρs+1
γ ∇φ

∥∥
Lp(ωc1

)
≤ C

cs+1
1

∥∥ρs+1
γ ∇φ

∥∥
Lp(ω)

,

=⇒ ‖ρsγ(φ− ã)‖Lp(ωc1 ) ≤
(
1 + c

−1/p
1

)
‖φ− ã‖Lp(ωc1 ) ≤

C

cs+1
1

∥∥ρs+1
γ ∇φ

∥∥
Lp(ω)

.

(8.10)

5 Observe that s+ 1 > 1/p′.

6 ã is the mean value of φ in ωc1 , ã =
1

|ωc1 |

∫
ωc1

φ dx′

29



The last constant C depends on ∂ω and p.
Besides, there exists a function ψ0 ∈ C∞c (ω) such that

ψ0(x′) ∈ [0, 1] for all x′ in ω,

ψ0(x′) = 0 for all x′ such that ρ(x′) ≤ c1,

ψ0(x′) = 1 for all x′ such that ρ(x′) ≥ 2c1.

We have
∇
(
(1− ψ0)(φ− ã)

)
= (1− ψ0)∇φ−∇ψ0(φ− ã).

Hence, from (8.10) and the above equality we get

‖ρsγψ0(φ− ã)‖Lp(ω) ≤ ‖ρsγ(φ− ã)‖Lp(ωc1
) ≤ C

∥∥ρs+1
γ ∇φ

∥∥
Lp(ω)

,

‖ρs+1
γ ∇

(
(1− ψ0)(φ− ã)

)
‖Lp(ω) ≤ ‖ρs+1

γ ∇φ‖Lp(ω) + C‖ρsγ(φ− ã)‖Lp(ωc1 )

≤ C‖ρs+1
γ ∇φ‖Lp(ω).

(8.11)

Set φ0 = (1− ψ0)(φ− ã), this function vanishes in ω2c1 . Now, from (8.11)2 we have

‖ρs+1
γ ∇φ0‖Lp(ω) ≤ C‖ρs+1

γ ∇φ‖Lp(ω).

Remind that and ω \ ω2c1 ⊂
N⋃
n=1

B
′

n (see (8.6) and (8.8)).

Now, we consider the open set B′

n, n ∈ {1, . . . , N}, and we define the function ϕ ∈W 1,∞(0, h′) by

ϕ(t) = ργ(x
′

n + te2n), x
′

n =
(
x1n, fn(x1n)

)
, x1n ∈ (a,A− a).

First case: ϕ(0) = ργ(x′n) = 0.

In this case, by considering the cone x
′

n + C
(
e2n, h

′
, θ

′)
, we obtain (see Figure 2)

t√
1 +K2

1

≤ ϕ(t), ∀t ∈ (0, h
′
).

Second case: ϕ(0) = ργ(x′n) ∈ (0, h
′
].

In this case, simple geometrical arguments lead to

ϕ(t) ≥


ϕ(0)√
1 +K2

1

, if t ∈ (0, ϕ(0)),

t√
1 +K2

1

, if t ∈ (ϕ(0), h
′
),

Third case: ϕ(0) = ργ(x′n) ≥ h′
.

In this case
ϕ(0)√
1 +K2

1

≤ ϕ(t), ∀t ∈ (0, h
′
).

Therefore, in these three cases we have

m(t+ b) ≤ ϕ(t) ≤M(t+ b), ∀t ∈ (0, h
′
)

where

m =
1

2
√

1 +K2
1

, b = φ(0), M = 1.
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Lemma 8.2 implies ∫ h
′

0

ϕ(t)sp|ψ(t)|p dt ≤ Cp
∫ h

′

0

ϕ(t)(s+1)p|ψ′(t)|p dt,

where ψ(t) = φ0(x′n + te2n) (remind that φ0(x′n + 2c1e2n) = 0 and 2c1 ≤ h
′
).

So, we have ∫ h
′

0

(
ρspγ |φ0)|p

)
(x′n + te2n) dt ≤ Cp

∫ h
′

0

(
ρ(s+1)p
γ |∇φ0 · e2n|p

)
(x′n + te2n) dt,

=⇒
∫
B′
n

ρspγ |φ0)|p dx′ ≤ Cp
∫
B′
n

ρ(s+1)p
γ |∇φ0|p dx′.

(8.12)

Hence, due to (8.6)-(8.8) and the above inequality (8.12)2, we obtain

∫
ω

ρspγ |φ0|pdx′ =

∫
ω\ω2c1

ρspγ |φ0|pdx′ ≤
N∑
n=1

∫
B′
n

ρspγ |φ0|pdx′

≤
N∑
n=1

Cp
∫
B′
n

ρ(s+1)p
γ

∣∣∇φ0

∣∣pdx′ ≤ Cp ∫
ω

ρ(s+1)p
γ

∣∣∇φ0

∣∣pdx′.
Thus ∥∥ρsγ(1− ψ0)(φ− ã)

∥∥
Lp(ω)

= ‖ρsγφ0‖Lp(ω) ≤ C‖ρs+1
γ ∇φ‖Lp(ω).

From the above inequality and (8.11)1 we obtain∥∥ρsγ(φ− ã)
∥∥
Lp(ω)

≤ C‖ρs+1
γ ∇φ‖Lp(ω)

for any φ in C1(ω).
Then, taking the mean value of ρsγ(φ− ã) leads to∣∣Mω(ρsγφ)− ãMω(ρsγ)

∣∣ ≤ C‖ρs+1
γ ∇φ‖Lp(ω).

Thus, we can replace ã by

as =
Mω(ρsγφ)

Mω(ρsγ)
. (8.13)

Finally, a density argument gives (8.9) for any φ ∈W 1,p

ρs+1
γ

(ω).

Now, since γ0 \ γ is a set with non-null measure, there exist n0 ∈ {1, . . . , N}, c3 > 0 and a closed
interval [c1, c2] ⊂ (0, A) such that

γ>0 =
{

(x1n0 , x2n0) ∈ R2 | x2n0 = fn0(x1n0), x1n0 ∈ (c1, c2)
}
∩ γ0

has a non-null measure and dist(γ>0 , γ) ≥ 2c3.

Lemma 8.4. For any φ in W 1,p
s+1(ω) vanishing on γ>0 and any s ∈ R such that sp+ 1 > 0, we have∥∥ρsγφ∥∥Lp(ω)

≤ C‖ρs+1
γ ∇φ‖Lp(ω) (8.14)

where the constant depends on γ, γ>0 , ∂ω, s and p.
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Proof. As a consequence of the definition of γ>0 , the distance between γ and

B>n0

.
=
{

(x1n0 , x2n0) ∈ R2 | fn0(x1n0) < x2n < fn0(x1n0) + c3, x1n0 ∈ (c1, c2)
}

is greater than c3.
Then, the Poincaré inequality gives

‖φ‖Lp(B>
n0

) ≤ C‖∇φ‖Lp(B>
n0

) ≤ C
( 1

c3

)s+1

‖ρs+1
γ ∇φ‖Lp(B>

n0
) ≤ C

∥∥ρs+1
γ ∇φ

∥∥
Lp(ω)

.

From Lemma 8.3 there exists as ∈ R such that∥∥ρsγ(φ− as)
∥∥
Lp(ω)

≤ C‖ρs+1
γ ∇φ‖Lp(ω) ≤ C‖ρs+1

γ ∇φ‖Lp(ω).

So ∥∥ρsγas∥∥Lp(B>
n0

)
≤
∥∥ρsγ(φ− as)

∥∥
Lp(B>

n0
)

+
∥∥ρsγφ∥∥Lp(B>

n0
)
≤ C‖ρs+1

γ ∇φ‖Lp(ω)

≤
∥∥ρsγ(φ− as)

∥∥
Lp(ω)

+ c
1/p
3

∥∥φ∥∥
Lp(B>

n0
)
≤ C‖ρs+1

γ ∇φ‖Lp(ω).

Therefore
|as| ≤ C‖ρs+1

γ ∇φ‖Lp(ω).

As a consequence (8.14) is proved.

Corollary 8.5. [Poincaré-Wirtinger inequality] For any φ in W 1,p
s (ω), s ∈ [0, 1], we have∥∥φ−Mω(φ)

∥∥
Lp(ω)

≤ C‖ρsγ∇φ‖Lp(ω). (8.15)

Moreover, if φ = 0 a.e. on γ>0 then we have∥∥φ∥∥
Lp(ω)

≤ C‖ρsγ∇φ‖Lp(ω). (8.16)

The constants depend on γ, γ>0 , ∂ω and p.

Proof. As a consequence of Lemma 8.3, we have∥∥φ−Mω(φ)
∥∥
Lp(ω)

≤ C‖ργ∇φ‖Lp(ω) ≤ C‖ρsγ∇φ‖Lp(ω).

Similarly, if φ = 0 a.e. on γ>0 then Lemma 8.4 leads to (8.16).

Lemma 8.6. For any s ∈ [0, 1) we have ∫
ω

ρ−sγ dx′ < +∞. (8.17)

Proof. First, we consider the open set B′

n, n ∈ {1, . . . , N}, and the function

t 7−→ ργ(x
′

n + te2n), x
′

n =
(
x1n, fn(x1n)

)
, x1n ∈ (a,A− a).

From the proof of Lemma 8.3, there exists m > 0 such that

m
(
t+ ργ(x

′

n)
)
≤ ργ(x

′

n + te2n) ∀t ∈ (0, h
′
).

Then, we have∫ h′

0

1

(ργ(x′
n + te2n))s

dt ≤
∫ h′

0

1

ms(t+ ργ(x′
n))s

dt ≤
∫ h′

0

1

msts
dt =

(h
′
)1−s

(1− s)ms
.

Thus ∫
ω

1

(ργ)s
dx′ ≤

N∑
n=1

∫
B′
n

1

(ργ)s
dx′ +

∫
ωc1

1

(ργ)s
dx′ < +∞.
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As a consequence we obtain

Lemma 8.7. For any p ∈ (1,∞), s ∈ (0, 1/p′) with
1

p
+

1

p′
= 1, we have the following continuous

inclusion:
Lq(ω) ⊂ Lps(ω), ∀q ∈

[
1,

p

ps+ 1

)
.

Proof. Let f be in Lps(ω). The Höldder inequality yields∫
ω

|f |qdx′ =

∫
ω

ρ−sqγ (ρsγ |f |)qdx′ ≤
(∫

ω

ρ−sqp/(p−q)γ dx′
)1−q/p(∫

ω

ρspγ |f |)pdx′
)q/p

.

Since pqs < p− q the inclusion is proved.

8.4 A weighted Korn inequality

Denote (p ∈ (1,∞), s ∈ R)

W1,p
s (ω)

.
=
{

Φ ∈W 1,p
loc (ω)2 | ‖ρsγ e(Φ)‖Lp(ω) < +∞

}
.

Lemma 8.8. For any s ∈ R such that sp+ 1 > 0, we have

W1,p
s+1(ω) ⊂ Lps(ω)2.

Moreover, for any displacement Φ ∈W1,p
s+1(ω) we have{

‖ρsγ(Φ− rs)‖Lp(ω) ≤ C‖ρs+1
γ e(Φ)‖Lp(ω),

‖ρs+1
γ ∇(Φ− rs)‖Lp(ω) ≤ C‖ρs+1

γ e(Φ)‖Lp(ω),
(8.18)

where rs is a rigid displacement.

In addition, if Φ belongs to W1,p
s+1(ω) and vanishes on γ>0 then we can choose rs = 0.

The constant depends on s, p, γ, ∂ω and γ>0 .

Proof. Step 1. We prove (8.18)1.

We start with Φ ∈ C1(ω)2.

We apply the 2D-Korn inequality in ωc1 . There exists a rigid displacement r̃ such that

‖ρsγ(Φ− r̃)‖Lp(ωc1 ) ≤
(
1 + c

−1/p
1

)
‖Φ− r̃‖Lp(ωc1 ) ≤ C‖e(Φ)‖Lp(ωc1 ) ≤

C

cs+1
1

‖ρs+1
γ e(Φ)‖Lp(ωc1 )

≤ C

cs+1
1

‖ρs+1
γ e(Φ)‖Lp(ω).

We have

eαβ
(
(1− ψ0)(Φ− r̃)

)
= (1− ψ0)eαβ(Φ)− 1

2

(
∂αψ0(Φα − r̃α) + ∂βψ0(Φβ − r̃β)

)
.

Hence
‖ρsγψ0(Φ− r̃)‖Lp(ω) ≤ ‖ρsγ(Φ− r̃)‖Lp(ωc1

) ≤ C‖ρs+1
γ e(Φ)‖Lp(ω),

‖ρs+1
γ e

(
(1− ψ0)(Φ− r̃)

)
‖Lp(ω) ≤ C

(
‖ρs+1
γ e(Φ)‖Lp(ω) + ‖ρsγ(Φ− r̃)‖Lp(ωc1

)

)
≤ C‖ρs+1

γ e(Φ)‖Lp(ω).

(8.19)

Set Φ0 = (1− ψ0)(Φ− r̃), this displacement vanishes in ω2c1 . Moreover, from (8.19) we have

‖ρs+1
γ e

(
Φ0

)
‖Lp(ω) ≤ C‖ρs+1

γ e(Φ)‖Lp(ω).
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Now, proceeding as in Lemma 8.3 and thanks to Lemma 8.2 and the inclusions (8.6)-(8.7) we obtain∫
(ω\ω2c1

)∩B′
n

ρspγ |Φ0 · e2n|pdx′ ≤ C
∫
Bn
ρ(s+1)p
γ |(∇Φ0 e2n) · e2n|pdx′∫

(ω\ω2c1 )∩B′
n

ρspγ |Φ0 · e1n|pdx′ ≤ C
∫
Bn
ρ(s+1)p
γ |(∇Φ0 e2n) · e2n|pdx′

+ C

∫
Bn
ρ(s+1)p
γ

(
|(∇Φ0 e

′′

n) · e
′′

n|p + |(∇Φ0 e
′′′

n ) · e
′′′

n |p
)
dx′.

From the above two inequalities we deduce that∫
(ω\ω2c1

)∩B′
n

ρspγ |Φ0|pdx′ ≤ C
∫
Bn
ρ(s+1)p
γ |e(Φ0)|pdx′.

Thus∫
ω\ω2c1

ρspγ |Φ0|pdx′ ≤ C
N∑
n=1

∫
(ω\ω2c1 )∩B′

n

ρspγ |Φ0|pdx′ ≤ C
N∑
n=1

∫
Bn
ρ(s+1)p
γ |e(Φ0)|pdx′ ≤ C

∫
ω

ρ(s+1)p
γ |e(Φ0)|pdx′.

Hence
‖ρsγΦ0‖Lp(ω) = ‖ρsγΦ0‖Lp(ω\ω2c1

) ≤ C‖ρs+1
γ e(Φ0)‖Lp(ω). (8.20)

Finally from (8.19)1 and (8.20) we obtain (8.18)1 for any Φ ∈ C1(ω)2.
Then, we replace r̃ by

rs(x
′) =

Mω(ρsγΦ)

Mω(ρsγ)
+ bs

(
−(x2 −A2s)
x1 −A1s

)
∀x′ = (x1, x2) ∈ ω

where As = (A1s,A2s) is the ”relative center of mass” of ω defined by∫
ω

ρsγ(x′ −As)dx
′ = 0

and

bs =
1

Is

∫
ω

ρsγ
(
Φ2(x′)(x1 −A1s)− Φ1(x′)(x2 −A2s)

)
dx′, Is =

∫
ω

ρsγ |x′ −As|22dx′.

A density argument gives the result for every displacement in W1,p
s+1(ω).

Step 2. We prove (8.18)2.

Using (8.18)1 and a straightforward calculation, we obtain∥∥e(ρs+1
γ (Φ− rs)

)∥∥
Lp(ω)

≤ C‖ρs+1
γ e(Φ− rs)‖Lp(ω) = C‖ρs+1

γ e(Φ)‖Lp(ω).

Then, the 2D-Korn inequality yields∥∥∇(ρs+1
γ (Φ− rs)

)∥∥
Lp(ω)

≤ C
(∥∥e(ρs+1

γ (Φ− rs)
)∥∥
Lp(ω)

+
∥∥ρs+1

γ (Φ− rs)
∥∥
Lp(ω)

)
≤ C‖ρs+1

γ e(Φ)‖Lp(ω).

Besides we have
∇
(
ρs+1
γ (Φ− rs)

)
= ρs+1

γ ∇(Φ− rs) + (s+ 1)ρsγ∇ργ · (Φ− rs)

from which thanks to the estimates (8.18)1 and the above we obtain (8.18)2.

Step 3. We prove the last statement of the proposition.

If Φ belongs to W1,p
s+1(ω) and vanishes on γ>0 then proceeding as in the proof of Lemma 8.4 we first

obtain
‖ρsγΦ‖Lp(B>

n0
) ≤ C‖Φ‖Lp(B>

n0
) ≤ C‖ρ

s+1
γ e(Φ)‖Lp(ω)

which allows to estimate rs and then gives (8.18) without rigid displacement.
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Corollary 8.9. For any Φ in W1,p
s (ω), s ∈ [0, 1], we have

W1,p
s (ω) ⊂ Lp(ω)2.

Moreover, for any displacement Φ ∈W1,p
s (ω) we have

‖Φ− r‖Lp(ω) ≤ C‖ρsγ e(Φ)‖Lp(ω) (8.21)

where r is a rigid displacement.

In addition, if Φ belongs to W1,p
s (ω) and vanishes on γ>0 then we can choose r = 0.

The constant depends on p, γ, ∂ω and γ>0 .

Proof. As a consequence of Lemma 8.8, there exists a rigid displacement such that∥∥Φ− r
∥∥
Lp(ω)

≤ C‖ργe(Φ)‖Lp(ω) ≤ C‖ρsγe(Φ)‖Lp(ω).

Similarly, if Φ = 0 a.e. on γ>0 then, again from Lemma 8.8 we can choose r = 0.

8.5 Complements

Lemma 8.10. The domain

O{s}
.
=
{
x = (x′, x3) ∈ ω×R | |x3| < ρs(x′)

}
, s ∈ (0, 1]

has a Lipschitz boundary.

Proof. Step 1. Some recalls.

First, we recall a result shown in [9, Lemma 5.22]: there exists a constant c, c ∈ (0, 1/2), such that for
all δ ∈ [0, c] the open sets ωδ are uniformly Lipschitz.

So, there exists an open covering
{
Vi}i∈{1,...,M} of ∂ω and 2D-cones

{
C(ai, h, θ)}i∈{1,...,M}, h > 0,

θ ∈ (0, π/2), ai a unit vector, such that for all δ ∈ [0, c] and δ1 ∈ (0, c]

•
{
x′ ∈ ωδ | dist(x′, ∂ωδ) < δ1

}
⊂

M⋃
i=1

(
ωδ ∩ Vi

)
,

• for every i ∈ {1, . . . ,M},
⋃

x′∈ωδ∩Vi

(
x′ + C(ai, h, θ)

)
⊂ ωδ.

For any i ∈ {1, . . . ,M}, we denote bi ∈ R2 a unit vector orthogonal to ai.

Step 2. We prove the claim of the lemma.

We fix s ∈ (0, 1] and set

cs = min
{
c, exp

( ln(s)

1− s

)}
< 1.

Note that scs−1
s ≥ 1.

Denote

O{s,i}
.
=
{
x = (x′, x3) ∈ Vi×R | |x3| < ρs(x′), ρ(x′) < cs

}
, i ∈ {1, . . . ,M},

O+
{s}

.
=
{
x = (x′, x3) ∈ ω×R | 0 < x3 < ρs(x′), ρ(x′) > cs/2

}
,

O−{s}
.
=
{
x = (x′, x3) ∈ ω×R | 0 < −x3 < ρs(x′), ρ(x′) > cs/2

}
.

Step 2. We prove that there exists a 3D cone C such that⋃
x∈O{s,i}

(
x+ Ci

)
⊂ O{s}, for every i ∈ {1, . . . ,M}
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where Ci is a cone isometric to a cone C (given below).

Let M =
(
x′, x3

)
be a point in O{s,i}, x′ ∈ Vi and |x3| < ρs(x′). We also have ρ(x′) < cs.

The 2D-cone x′ + C(ai, h, θ) is included ωρ(x′).
Let Pi

.
= OP1P2P3P4 the right pyramid whose apex is O, height h = cs/4 and boundary given by

−−→
OR = z1bi + z2ai + z3e3, R ∈ ∂Pi iff |z3| = sin(θ)z2 − cos(θ)|z1|, 0 ≤ z2 ≤ h.

The other four vertices of the pyramid are

P1 = hai +H3e3, P2 = hai +H1bi, P3 = hai −H3e3, P2 = hai −H1bi,

where
H1 = h tan(θ), H3 = h sin(θ).

The right pyramid M + Pi is included in O{s}.
Indeed, let

−−→
OQ = z1bi + z2ai + z3e3 be a point belonging to the interior of the pyramid M + Pi,−−→

OM = x1bi + x2ai + x3e3. We have

|z3 − x3| < sin(θ)(z2 − x2)− cos(θ)|z1 − x1|
=⇒ |z3| < sin(θ)(z2 − x2)− cos(θ)|z1 − x1|+ |x3|.

Observe that

ρ(x′) + sin(θ)(z2 − x2)− cos(θ)|z1 − x1| ≤ dist(x′, ∂ω) + dist(z′, ∂ωρ(x′)) ≤ dist(z′, ∂ω) = ρ(z′).

Hence
ρ(x′) +H ≤ ρ(z′), H .

= sin(θ)(z2 − x2)− cos(θ)|z1 − x1|.
For any s ∈ (0, 1] we have (remind that 0 < ρ(x′) < cs < 1 and ρ(z′) ≤ 1)

ρs(x′) +H ≤
(
ρ(x′) +H)s if sρs−1(x′) ≥ 1.

Therefore, since scs−1
s ≥ 1 this implies that

|z3| < ρs(x′) +H ≤
(
ρ(x′) +H)s ≤ ρs(z′).

The right pyramid M + Pi contains a cone whose height is h, axis directed by ai and base a disc of
radius h cos(θ). So, we can choose as cone C, the cone whose apex is O (the origin of R3), height h,
axis directed by e3 and base a disc of radius h cos(θ).
Now, for every (x′, y′) ∈ ωcs/4 we have

|ρs(x′)− ρs(y′)| ≤ Ks|x′ − y′|, Ks
.
= s
( 4

cs

)1−s
.

Then, for any x ∈ O±{s} there exists a cone with apex x, half-angle θs ∈ (0, π/2) such that cos(θs) =

Ks√
1 +K2

s

and height hs = cs/4 included in O{s}.

Then, we can easily give the N + 2 cones attached to the cover of the boundary of O{s} and isometric
to a same cone.

Step 3. We prove that for all δ in
(

0,
( cs

2

)s 1√
1 +K2

s

]
we have

{
x ∈ O{s} | dist(x, ∂O{s}) < δ

}
⊂ O+

{s} ∪O−{s} ∪
M⋃
i=1

O{s,i}.

Let x be in O{s} such that dist
(
x, ∂O{s}

)
< δ. If
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• ρ(x′) > cs/2 and ρs(x′) > x3 > 0 then, simple geometrical arguments lead to

ρs(x′)− x3√
1 +K2

s

≤ dist(x, ∂O+
{s}) ≤ ρ

s(x′)− x3.

So, x3 > ρs(x′)− δ
√

1 +K2
s > 0 then x belongs to O{s}.

• ρ(x′) < cs then, there exists i ∈ {1, . . . ,M} such that x′ ∈ Vi, thus x ∈ O{s,i}.

Hence, the claim of this step is proved.

As a consequence of steps 1 and 2, O{s} is a domain with a Lipschitz boundary.

Remark 8.11. Denote
(ωγ)δ

.
=
{
x′ ∈ ω | ργ(x′) < δ

}
.

One can construct open subsets γ of ∂ω (with countable connected components) such that for all k ∈ N∗
the boundary of (ωγ)1/k is not Lipschitz. Consequently, the corresponding 3D open sets

Os =
{
x = (x′, x3) ∈ ω×R | |x3| < ρsγ(x′)

}
, s ∈ (0, 1]

are not Lipschitz.

If ω is a polygonal domain and if γ has a finite number of open connected components then, proceeding
as in the proof of Lemma 8.10, we can show that there exists c4 ∈ (0, 1] such that for all δ ∈ (0, c4] the
sets

(
ωγ
)
δ

are uniformly Lipschitz and therefore Os has a Lipschitz boundary (s ∈ (0, 1]).

We denote (p ∈ (1,∞), s ∈ R)

W1,p
{s}(ω)

.
=
{

Φ ∈W 1,p
loc (ω)2 | ‖ρs e(Φ)‖Lp(ω) < +∞

}
,

Lp{s}(ω)
.
=
{

Φ ∈ Lploc(ω) | ‖ρs Φ‖Lp(ω) < +∞
}
.

Proposition 8.12. We have for any s ∈ R such that sp+ 1 > 0

W1,p
{s+1}(ω) ⊂ Lp{s}(ω)2.

Moreover, for any displacement Φ ∈W1,p
{s+1}(ω) we have{

‖ρs(Φ− rs)‖Lp(ω) ≤ C‖ρs+1 e(Φ)‖Lp(ω),

‖ρs+1∇(Φ− rs)‖Lp(ω) ≤ C‖ρs+1 e(Φ)‖Lp(ω),
(8.22)

where rs is a rigid displacement.
The constants depend on s, p and ∂ω.

Proof. In Lemma 8.8 we replace γ by ∂ω, which gives all the results of the proposition.

Proposition 8.13. We have for any s ∈ (0, 1]

W1,p
{s}(ω) ⊂ Lp(ω)2.

Moreover,

∀Φ ∈W1,p
{s}(ω),

{
‖Φ− r‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω),

‖ρs∇(Φ− r)‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω),
(8.23)

where r is a rigid displacement.
The constants depend on s, p and ∂ω.
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Proof. For any s ∈ (0, 1] and any Φ ∈W1,p
{s}(ω), we have

‖ρs e(Φ)‖Lp(ω) = ‖e(Φ̃)‖Lp(O{s})

where Φ̃ = Φ1e1 + Φ2e2 + 0e3. Hence, Φ̃ is a displacement belonging to W 1,p(O{s})3. The 3D Korn
inequality gives a rigid displacement r̃ such that

‖Φ̃− r̃‖W 1,p(O{s}) ≤ C‖e(Φ̃)‖Lp(O{s})

from which we easily obtain of a 2D rigid displacement r such that

‖ρs(Φ− r)‖Lp(ω) + ‖ρs∇(Φ− r)‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω).

Then, since W1,p
{s}(ω) is included in W1,p

{1}(ω), there exists a rigid displacement r′ such that estimate

(8.22)1 holds. So
‖Φ− r′‖Lp(ω) ≤ C‖ρ e(Φ)‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω).

From the above inequalities we obtain

‖ρs(r′ − r)‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω).

Thus, we can replace r′ by r. This ends the proof of the proposition.

Proposition 8.14. For any Φ in W1,p
s (ω), s ∈ (0, 1], we have

‖Φ− r‖Lp(ω) ≤ C‖ρsγ e(Φ)‖Lp(ω),

‖ρs∇(Φ− r)‖Lp(ω) ≤ C‖ρsγ e(Φ)‖Lp(ω),
(8.24)

where r is a rigid displacement.

If Os has a Lipchitz boundary then we have

∀Φ ∈W1,p
s (ω), ‖ρsγ ∇(Φ− r)‖Lp(ω) ≤ C‖ρsγ e(Φ)‖Lp(ω). (8.25)

In addition, if Φ belongs to W1,p
s (ω) and vanishes on γ>0 then in all cases we can choose r = 0.

The constants depend on s, p, ∂ω, γ and γ>0 .

Proof. First, observe that W1,p
s (ω) is included in W1,p

{s}(ω) since we have

‖ρs e(Φ)‖Lp(ω) ≤ ‖ρsγ e(Φ)‖Lp(ω).

As a consequence we obtain (see Proposition 8.13)

‖Φ− r‖Lp(ω) + ‖ρs∇(Φ− r)‖Lp(ω) ≤ C‖ρs e(Φ)‖Lp(ω) ≤ C‖ρsγ e(Φ)‖Lp(ω).

This gives (8.24).
The proof of (8.25) follows the same lines as the proof of (8.22)2.

All the results of subsections 8.2, 8.3, 8.4 and 8.5 can be extended to
domains ω included in Rk, k ≥ 3, having a Lipschitz boundary.
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