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The Kinetics Observer:
A Tightly Coupled Estimator for Legged Robots

A. Demont, M. Benallegue, A. Benallegue, P. Gergondet, A. Dallard,
R. Cisneros-Limón, M. Murooka, F. Kanehiro

Index Terms—Legged robots, State estimation, Proprioceptive
odometry, Humanoid robots, Contacts estimation.

Abstract—In this paper, we propose the “Kinetics Observer”,
a novel estimator addressing the challenge of state estimation
for legged robots using proprioceptive sensors (encoders, IMU
and force/torque sensors). Based on a Multiplicative Extended
Kalman Filter, the Kinetics Observer allows the real-time simul-
taneous estimation of contact and perturbation forces, and of
the robot’s kinematics, which are accurate enough to perform
proprioceptive odometry. Thanks to a viscoelastic model of the
contacts linking their kinematics to the ones of the centroid of the
robot, the Kinetics Observer ensures a tight coupling between the
whole-body kinematics and dynamics of the robot. This coupling
entails a redundancy of the measurements that enhances the
robustness and the accuracy of the estimation. This estimator
was tested on two humanoid robots walking on flat terrain and
on slippery obstacles, and performing non-coplanar multi-contact
locomotion.

I. INTRODUCTION

The control of legged robots is a highly challenging topic
in robotics. These robots are notably intended to operate in
industrial and personal assistance contexts, and their behavior
must be reliable and thus robust against failures caused by
external disturbances or internal malfunctions. This robustness
is crucial not only for the correct execution of the tasks but,
more importantly, for ensuring the safety of nearby users.
The balance and motion of legged robots are achieved solely
through contact interactions with their environment, whether
intentional or not, and therefore rely on locally applied forces
and torques. This under-actuation implies that, in order to
achieve the desired motion of the robot, the appropriate contact
forces must be applied.

Furthermore, the dynamics and kinematics of legged robots
constrain the admissible robot’s postures and trajectories that
allow them to maintain balance. It is therefore essential to
know the robot’s posture as precisely as possible and a fortiori
its general pose in the environment. This can be done by
estimating the kinematics of its floating base, which is the root
of its kinematic tree. From these kinematics, one can obtain
the pose of any limb and estimate the position of the robot’s
center of mass.
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Fig. 1. Summary of the sensors we use and the estimated state. We highlighted
in bold red the new features compared to our prior works (IJHR2015 [1],
IROS’2015 [2], Humanoids’2015 [3], ICRA’2018 [4]).

Finally, an accurate spatial awareness of the robot is an
inevitable step towards autonomy, allowing it to navigate
independently through the environment. This explains why by
far the most explored estimation field in legged robotics is
the pose estimation for the robot. It can be divided into two
branches: one focusing on a real-time estimation that is, for
instance, necessary for stabilization and high frequency control
purposes, and one focusing on minimizing the estimation
drifts over long distances (accurate localization and odometry),
which generally runs at a lower frequency.

A. Related Work

1) High-frequency pose estimators and proprioceptive
odometry: High-frequency pose estimators typically rely on
proprioceptive sensors, particularly on joints encoders and
IMUs due to their high bandwidth. The integration of the
IMU measurements is enhanced with the successive positions
of the contacts, adding kinematic constraints with no-slip
conditions and greatly improving the tilt estimation [5]. This
method allows for very accurate proprioception, notably on
the tilt estimation, but it is still subject to drifts in the position
and the yaw orientation in the world. These drifts can be
due to various reasons, such as contact slippage, compliance,
uncertain contact detection, etc. To perform odometry, the
contact positions can be added to the estimated state within an
Extended Kalman Filter. They can then be partially corrected,
reducing the drifts [5], [6], [7], [8]. Improvements can be
achieved by better estimating the time a contact is firmly set
and can be used in the estimation. A common method is the
thresholding of the Ground Reaction Force (GRF) [9], [10],
[11], but it is notably affected by the perturbations of the GRF
during impact and by slippage. Lin et al. [12] implemented
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a detection based on a neural network that uses the IMU
measurements and the joint encoders of quadruped robots
to deal with this bouncing problem. Maravgakis et al. [13]
proposed an alternative using IMUs at the end effectors to
robustify contact detection in the presence of slippage. Yoon
et al. [14] introduced a method to detect and handle dynamic
contacts based on the thresholding of the estimated foot veloc-
ity and acceleration. Instead of ignoring contact information
in the case of dynamic contacts, they increase the covariance
associated with the static contact foot assumption. They also
enforce their static contact condition with a dedicated cost
in their invariant smoother when the conditions are met.
Finally, Buchanan et al. [15] addressed the slippage problem
by estimating the sliding displacement with a Convolutional
Neural Network, which uses the IMU’s measurements.

2) Exteroceptive odometry: The most accurate odometry
results are typically achieved by incorporating additional spa-
tial awareness from exteroceptive information (mainly LI-
DARs and cameras) [16], notably adding robustness to contact
slippage, although they are highly dependent on the non-
failure of the exteroceptive source [17]. The most robust
solutions [18], [19], [20], [21] use factor graphs to leverage
the redundancies in exteroceptive and proprioceptive odometry
information and improve their coupling, thereby benefiting
from the advantages of both methods. This better explici-
tation of the coupling between key variables has also been
adopted by some proprioceptive methods, for instance to
account for the robot’s kinematic chain model [22] or the
measured contact forces [23], resulting in more accurate and
robust estimations. In addressing odometry for legged robots,
our approach acknowledges the importance of exteroceptive
sensing for achieving the highest levels of accuracy. However,
we believe that there is significant potential to further improve
proprioceptive odometry itself, and we aim to focus on these
improvements before integrating exteroceptive information.

3) Estimation frameworks for legged robots odometry: To
improve the floating base pose estimation, a more mathemat-
ically accurate representation of orientations within the esti-
mation framework has been widely adopted. Although giving
decent results, the initially used 3D vectorial representation
(e.g., with Euler angles [24], [25]) induces inaccurate additions
and uncertainty propagation due to the use of operators defined
on R3 on orientations belonging to the SO(3) Lie group.
Quaternion Extended Kalman Filters [5] addressed this issue
by using the quaternion representation of orientations and
their multiplication operator for the update. Formalized by
Bourmaud et al. for Extended Kalman Filters (EKF) [26], the
use of the Lie group properties of SO(3) with its appropriate
operators ensures the mathematical consistency of estimators
and has been widely adopted [16], [17], [27], [28]. Invariant
Extended Kalman Filters (InEKF) [29], [30], [31], [32] used
Lie groups to take advantage of the so-called group affine
property on nonlinear systems, guaranteeing the invariance
of the estimation error on the system variables subject to
symmetry. This gives a more robust and accurate linearization
and provides local convergence properties of these variables,
improving the estimation [31]. Phogat et al. [33] proposed an
improvement of the InEKF by bypassing the need to express

the nonlinear error dynamics in the tangent space of the state
through its log operator, allowing for a faster computation.
However, the invariance remains a constraining property that
is difficult to scale up to more complex dynamics, especially
with multiple couplings between the orientation and the dy-
namics of other state variables [34]. Overall, the EKF is the
predominant filter used for floating base estimation, its main
advantage being its superior computational efficiency. Despite
its widespread use, we can find alternative filtering methods
in the literature. For example, Chauchat et. al [35] extended
the use of the group affine property to smoothing frameworks.
This work was then applied to legged robot state estimation by
Yoon et. al [14]. A more common alternative to the EKF is the
Unscented Kalman Filter (UKF) [36], [37]. In [37], Bloesch
et al. justify their use of the UKF by its eased handling of
correlated noise between the prediction and correction steps.
In another paper [38], we proposed the Tilt Estimator based
on a kinematically coupled complementary filter, which to our
knowledge is the only estimator for humanoid robots with a
proof of global convergence.

4) Biases estimation: Another way to improve the global
estimation is to estimate biases in the model or the sensor
measurements alongs with the kinematics of the floating base.
Common biases are related to IMU measurements [37], [39],
[40], or to the kinematics of the robot’s center of mass [41].
The latter is analogous to a constant external force applied to
the robot.

5) External forces estimation: While the estimation of
biases on the IMU measurements is now mainstream, other
variables can be estimated to improve the estimation and the
control of the robot, notably the external forces exerted on
the robot. These forces can be categorized into two types:
disturbance forces and contact forces. Disturbance forces, such
as those caused by unanticipated collisions, must be estimated
and taken into account to ensure the stability of the robot when
interacting with the environment, including interactions with
humans [42]. On the other hand, contact forces are exterted
at a limb of the robot in a fixed contact with the environment
that the robot is aware of. Since contacts are a key element
of the control of legged robots, estimating these contact
forces is crucial not only for maintaining the robot’s balance,
but also for accurately generating the desired motions [43].
We first introduce methods for estimating the resultant of
the disturbance forces, which are more extensively described
by Masuya and Ayusawa [41]. Kaneko et al. [42] used a
simple model to estimate the resultant external disturbance
force exerted on the center of mass from its measured linear
acceleration (assuming that the IMU is located at the center of
mass) and the measured force at the feet. More recent methods
have allowed to estimate the external torque applied to the
robot. To achieve this, Flacco et al. [44] adapted the residual
method, already used for fixed-base robots, to floating-base
robots equipped with joint torque sensors. The introduced
estimators show strong overall performance. However, they
address the estimation of the center of mass kinematics /
external forces independently of the floating base’s kinematics.
The latter must therefore be estimated in another estimator
running in parallel. Piperakis et al. [45] proposed such a two-
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estimator cascade framework that fuses joint encoders, IMU,
feet sensitive resistors and visual odometry measurements.
Overall, the estimation of contact forces appears to be a less
explored topic. We found two estimation methods of these
forces, both based on the joint measurements of their robot.
Xu et al. [46] combine the kinematic model of the leg of
their hexapod robot with a model of the force applied to its
tip, to estimate the latter from the output torque of the three
motors actuating the leg. Cong et al. [47] use a relationship
between the generalized momentum of their robot and the
contact force at the newly created contact of their quadruped
through the Jacobian matrix of the legs. Nevertheless, we
believe that the coupling between the floating-base kinematics
and the contact forces is being underexploited. Indeed, we
have shown in a previous paper that we could estimate both
the contact forces and the floating base kinematics based only
on IMU measurements [2]. To conclude on this section, only
our previous work [4] seems to propose the simultaneous
estimation of the floating base’s kinematics along with the
external forces estimation, by considering contact and distur-
bance forces independently, without needing torque sensors.
This is because the IMU provides the observability of the
resulting wrench from which we can deduct the measured ones
to get the remaining external wrench [48].

B. Contributions

To the best of our knowledge, no existing approach deals
with odometry and the estimation of contact and external
forces, in a single, tightly coupled estimation loop. Our work
aims to address this issue in the case of proprioceptive sensors,
with the following approach: if available, the contact wrench
measurements are not used only for contact detection purposes,
but are directly involved in the correction of the estimated
kinematics. The floating base’s kinematics, the information
from the IMU, contact poses and wrenches are all explicitly
coupled in our dynamical model, providing highly redundant
measurements and a total coherence between our state vari-
ables. This rich coupling allows for a better estimation of
variables with low observability, such as the yaw angle and
the robot’s position in the world, and an improved robustness
to drifts and uncertainties.

Fig. 1 illustrates the main features of the kinetics observer
and the novelties compared to our previous work. In addition,
the main contributions of this work to the state of the art are
summarized below:

• To the best of our knowledge, the Kinetics Observer is
the first estimator to perform proprioceptive odometry
while also estimating the external wrench and the contact
wrenches applied to the robot, simultaneously and in a
tightly coupled manner.

• It is also the only estimator that uses the measurements
of the force and torque sensors to estimate the kinematics
of the robot.

• It can locally reconstruct the characteristics of the en-
vironment, namely the position and orientation of the
ground and obstacles, based on all the proprioceptive sen-
sors, including the IMU. The representation of contacts

can also be extended to point contacts and contacts on
edges.

• The proposed estimator is designed for all kinds of legged
robots. It is notably adaptable to any number of legs,
wrench sensors, and IMUs, and their position on the robot
is not imposed. In the case of legged robots without force
sensors, the Kinetics Observer can still be used to perform
a leg-inertial odometry which can also account for contact
orientations.

• We designed a specifically constrained covariance matrix
for the process noise of the contact positions in the
state of an Extended Kalman Filter for proprioceptive
odometry. We show that this allows for the relaxation of
fixed-contact constraint and thus for a better correction
of the contact positions, while preventing their average
position from drifting.

• The code of the Kinetics Observer is already available as
an open-source framework1

After giving an overview of the notions necessary for the pre-
sentation of this work in Section II, we will define the system
for which we developped the Kinetics Observer in Section III.
In the Section IV, we will then detail the implementation of the
Kinetics Observer before presenting our experimental results
in Section V. Finally, we will discuss these results and the
future improvements.

II. PRELIMINARIES

A. General notations

• Different notations are used to distinguish estimated (◦̂),
predicted (◦̄), and error (◦̃) variables.

• In×n and On×n are, the n× n identity and zero square
matrices, respectively. If the dimension n is not given,
the 3× 3 matrix is implicitely referred to.

• Reference frames are represented by uppercase calligra-
phy variables (e.g., W for the world frame and B for
the frame of the floating base) or uppercase Greek letters
(e.g., Γ for the centroid frame).

• Kinematic variables (position, orientation, velocities and
accelerations) are represented using the notation B⃝A,
which expresses the kinematics of the frame A in the
frame B. To simplify the notation, we omit the world
frame symbol W whenever it can be inferred from the
context: W⃝A = ⃝A.

• The matrix representation of a rotation R is used in the
developed equations, but to keep rigorous notations, we
also use a vector representation Ω when necessary. For
example, BΩA refers to the vector representation of the
rotation BRA (e.g., quaternions, Euler angles, etc.).

The state of our system lies in a high-dimensional Lie group
consisting of components from R3 and components of the
Lie group of 3D rotation matrices SO (3). The corresponding
operators are described below. We also recommend reading
[49] for a more in-depth explanation of Lie groups and their
operators. In the following we denote E an element of a

1https://github.com/jrl-umi3218/state-observation.

https://github.com/jrl-umi3218/state-observation.
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generic Lie group G and e an element of its Lie Algebra
g.

• ⊕ : G×G → G is the sum operator between two elements
of a Lie group.

• ⊖ : G ×G → G is the difference operator between two
elements of a Lie group.

• expG (e) : g → G is the homeomorphism that maps an
element e of the Lie Algebra g to its associated element
E of the Lie group G, such that E is the "integral" of
e over the interval [0, 1]. The nature of the integral is
determined by the inner operator of the Lie group.

• logG (E) : G → g is the homeomorphism that inverts the
exp operator. In other words, it maps an element E ∈
G to its associated element e ∈ g such that e has the
minimal norm and exp(e) = E. This function is usually
well defined in the neighborhood of the neutral element
of the Lie group and is usually homeomorphic to RnG

where nG is the manifold dimension of G.
We note that the Lie Algebra of SO (3) denoted by so (3),
is the group of skew-symmetric matrices, but to represent
elements of so (3) in a more readable way we use the vee
(∨) operator (declined below) which maps so (3) over R3. In
other words,

• [.]× : R3 → so (3) is the skew-symmetric (or anti-
symmetric / cross-product) matrix operator. For v =
(vx vy vz)

T ,

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (1)

• [.]∨ : so (3) → R3 is the vectorization operator of skew-
symmetric matrices: [

[v]×
]
∨ = v . (2)

Table I summarizes the definitions of these operators for R3

and SO (3). From this table, we can see that we can omit the
notations of the Lie group operators for vectors in R3 because
their definitions are straightforward. Furthermore, to simplify
the notations, we introduce the following two operators that
use the homeomorphism between R3 and so (3) to directly
handle vectors instead of skew-symmetric matrices.

• Log : SO (3) → R3 such that R 7→ Log(R) =
[log(R)]∨.

• Exp : R3 → SO (3) such that ω 7→ Exp(ω) =
exp([ω]×).

B. Frames and variables definition

The Kinetics Observer relies on a number of frames, which
we introduce in this section. To help visualize them, they are
represented on Fig. 2 along the main state variables.

We first introduce the centroid frame denoted Γ, which relies
on the centroid definition specific to humanoids [50]. This
frame is attached to the robot and is located at the center of
mass. The conditions that its orientation must satisfy are that
(i) its trajectory in the world frame is twice differentiable and
(ii) knowing the kinematics (pose, velocities, and accelera-
tions) of the centroid in the world frame allows to obtain the

kinematics of all the robot limbs, including the floating-base,
in the world frame using simple frame transformations. In this
paper, we define this orientation as that of the floating base.
Our notation for the variables of the centroid frame kinematics
in the world frame is defined in Table II. Note that besides the
rotations, they are all expressed in the centroid frame and not
in the world frame. To make this specificity clearer throughout
the paper, we add the subscript l to these variables.

The robot is in contact with the environment. The number
of contact points, denoted nc, is arbitrary and time-varying.
A contact frame Ci is attached to the i-th contact point.
Its kinematics

{
pCi

,ΩCi , ṗCi
,ωCi

}
in the world frame are

obtained by forward kinematics from those of the centroid
frame. A reaction wrench is applied to the contact point, which
is composed of a force and a moment. These can be expressed
in the contact frame Ci, and we denote them by CF i and
CT i. A wrench sensor can be associated with the contact.
To avoid introducing additional frames, we consider that the
sensor’s frame is attached to Ci. When referring to the wrench
measured by the sensor, we consider that the wrench has
been preliminarily expressed in Ci. We consider a viscoelastic
contact model, meaning that the contact wrench depends on
the deformation of the contact material. For each contact, we
thus also consider a rest frame Cr,i. This frame denotes the
pose of the contact frame such that the deformation would be
null. It can therefore be seen as the local characteristics of
the environment at the instant the contact is created. Its linear
and angular velocities in the world are zero. Fig. 2 helps to
grasp the difference between the frame of the contact Ci and
its rest frame Cr,i. To simplify the notation, we denote the
position and orientation of the rest frame Cr,i in the world
frame pr,i ≜ pCr,i

and Ωr,i ≜ ΩCr,i
, respectively. We will also

refer to them as the contact’s rest position and rest orientation,
respectively. Note that pr,i and Ωr,i are always attached
to the world frame, since they represent the environment’s
configuration at the contact point. It is important to note that
slippage and moving contacts are not neglected in our model.
They are simply reflected by a change in the position of the
rest frame Cr,i. In summary, at any moment there is a non-fixed
pose

{
pr,i,Ωr,i

}
for the i-th contact, so that if the contact is in

this pose, there would be no reaction wrench. The dynamics of
this model are described in detail in Section III-B3. We define
a contact state denoted by xc,i ≜

{
pr,i,Ωr,i,

CF i,
CT i

}
, a

vector containing the pose of the contact rest frame Cr,i in
the world frame and the forces and moments of this contact
expressed at the contact frame Ci. Finally, we note that a
summary of the notation is available in Appendix A.

III. PROBLEM STATEMENT

The Kinetics Observer estimates the extrinsic state of a hu-
manoid robot in contact with the environment. Below are the
system specifications and the requirements for the observer.

We consider that some of the contacts with the robot may be
equipped with wrench sensors, and some may not. The sensors
may operate at a lower frequency than the control loop, and
thus may not provide a value at each iteration. We denote
the time-varying number of contact wrench sensors by nw.
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TABLE I
DEFINITION OF THE LIE GROUP ELEMENTS AND THEIR OPERATORS FOR R3 AND SO(3)

Lie group G R3 SO(3)

Lie Algebra g R3 (itself) so (3), homeomorphic to R3

Neutral element O3×1 I
Inverse of elem. E −E ET

⊕ x1 ⊕ x2 = x1 + x2 E1 ⊕E2 = E1.E2

⊖ x1 ⊖ x2 = x1 − x2 E1 ⊖E2 = E1.E
T
2

logG (E) : G 7→ g e = logG (E) = E e = log (E)
∆
=

∑∞
k=1 (−1)k+1 (E−In)k

k
=

arccos
(

Tr(E)−1
2

)
√

4−(Tr(E)−1)2

(
E −ET

)
expG (e) : g 7→ G E = expG (e) =

∫ 1
0 e.dt = e E = exp (e) ∆

=
∑∞

n=0
en

n!
= I+ sin ∥[e]∨∥

∥[e]∨∥ e+
1−cos ∥[e]∨∥

∥[e]∨∥2 e2

TABLE II
NOTATIONS FOR THE KINEMATIC VARIABLES OF THE CENTROID FRAME IN

THE WORLD FRAME

Notation Definition

Position pl RT
ΓpΓ

Orientation
R RΓ

Ω ΩΓ

Lin. Velocity vl RT
Γ ṗΓ

Ang. Velocity ωl RT
ΓωΓ

Lin. Acceleration al RT
Γ p̈Γ

Ang. Acceleration ω̇l
d
dt
ωl = RT

Γ ω̇Γ

Fig. 2. Left: Main frames introduced in the Kinetics Observer. W: world
frame, Γ: centroid frame, B: floating base’s frame, Ci: i-th contact’s frame,
Cr,i: i-th contact’s rest frame. The transparent robot corresponds to the state of
the robot at the instant the contact is created and no deformation has occurred
yet, while the non-transparent one represents it after the deformation resulted
from the contact. This is a virtual case with unrealistic and exaggerated
deformations, in order to make the frames clearer. Right: Main state variables
involved in the Kinetics Observer. For more clarity, the forces and torques
are represented using their notation in the state vector.

The robot may also be equipped with none to several IMUs,
consisting of an accelerometer and a gyrometer. We denote
nI as the number of available IMU signals. The number of
signals delivered may vary in time, for example, if the sensors
have different sampling frequencies. The position of the IMUs
on the robot is arbitrary. The observer should then estimate the
following state components:

1) The kinematics of the centroid frame in the world frame
{pl,Ω,vl,ωl} together with the predictions of the linear
and angular acceleration, al and ω̇l, respectively. Thanks
to frame transformations, this allows the framework to
estimate the kinematics of any limb of the robot.

2) A contact state xc,i ≜
{
pr,i,Ωr,i,

CF i,
CT i

}
for each

of the current nc contacts. Our state vector thus has a
dynamic size that changes as the robot creates or breaks
contacts with the environment.

3) The bias bg,j that alters the signals of each gyrometer.
4) Finally, other external forces and torques

{
ΓF e,

ΓT e

}
that are not associated with our model of contacts,
expressed in the centroid frame.

The relationships between the different variables described
in this section are summarized in Fig. 4 in Section IV.

A. Vector state definition

Our state vector is defined as follows:

x ≜
(
pl,Ω,vl,ωl, {bg,j}nI

j=0 ,
ΓF e,

ΓT e, {xc,i}nc

i=0

)T
.
(3)

It includes components from R3 and components of SO (3),
defining a Lie group Gx as the state space.
pl, vl, and ωl are expressed in the centroid frame. These

variables are dynamically linked to each other. Their relations
are modeled with a discrete-time state-transition function that
allows to predict the future state xk+1 of the system based on
the current state xk and the system inputs uk. In other words,

xk+1 = f (xk,uk) . (4)

The measurements vector, defined in R6(nI+nw), is the
following:

y ≜
({

ya,j ,yg,j

}nI

j=0
,
{
yF,i,yT,i

}nw

i=0

)T
, (5)

with ya,j and yg,j the accelerometer and gyrometer measure-
ments of the j-th IMU, respectively. Similarly, yF,i and yT,i
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are the force and torque measurement of the i-th contact’s
wrench sensor. Since the number of IMU signals nI and
wrench sensor signals nw can vary over time, the size of
the measurement vector will evolve accordingly. The measure-
ments can also be predicted using a model:

yk = g (xk,uk) . (6)

The input u is composed of dynamic variables of the system
and information about the considered contacts and IMUs:

u ≜
(
ΓI, Γİ, Γσ, Γσ̇, ΓF res,

ΓT res, {Ξi}nc

i=0 , {Ψj}nI

j=0

)T
,

(7)
with ΓI, Γİ, Γσ and Γσ̇ being the total inertia matrix, the
total angular momentum of the robot expressed at its centroid,
and their derivatives.

{
ΓF res,

Γ T res

}
is the resultant wrench

measured by the sensors not associated with currently set
contacts, expressed in the centroid frame. This allows us to
take advantage of all force sensor measurements, especially
those mounted on limbs that interact with the environment
but not through contacts. For example, this would allow us to
consider the wrench applied to the the robot’s hand in the case
of interaction with humans or objects. This wrench also helps
to ensure the continuity of the total wrench exerted on the
robot even when creating or breaking contacts, since when a
contact is broken, the associated wrench measurement would
simply be added to this input, and vice versa.
Ξi ≜

{
p̌r,i, Ω̌r,i,

ΓpCi
, ΓΩCi

, ΓṗCi
, ΓωCi

}
correspond

to the input variables associated with each contact i.{
ΓpCi

, ΓΩCi
, ΓṗCi

, ΓωCi

}
are the kinematics of the frame

of the i-th contact in the centroid frame and
{
p̌r,i, Ω̌r,i

}
is the initial value of its rest pose in the world frame at
the time it is created, used to initialize the contact in the
state vector. This value is an ’impulsional input’, meaning
that it is given only at the time a new contact is set with
the environment. Ψj ≜

{
ΓpSj

, ΓΩSj
, ΓṗSj

, ΓωSj
, Γp̈Sj

}
are the input variables associated with each IMU j. They
correspond respectively to the pose, the velocities, and the
linear acceleration of the j-th IMU’s frame Sj in the centroid
frame. Since the latter acceleration depends on the joint
accelerations, which are not measurable, we compute it from
the reference joint accelerations used to control the robot.
The other variables can be obtained from the joint encoders
and their time-derivative.

B. State transition model

1) Kinematics of the centroid frame: The prediction of
the kinematic variables of the centroid frame is done by the
discrete integration of the current ones. The latter include the
linear and angular accelerations, al,k and ω̇l,k respectively,
which are considered constant over the integration interval
δT . This integration is allowed by the Lie group properties

of SE(3):

pl,k+1 = Exp(θk)
T
pl,k + V T

k

(
δTvl,k +

δ2T
2
al,k

)
,

Rk+1 = RkExp(θk) ,

vl,k+1 = vl,k + δT

(
− [ωl,k]× vl,k + al,k

)
,

ωl,k+1= ωl,k + δT ω̇l,k,

(8)

(9)

(10)

(11)

With θk = δTωl,k +
δ2T
2 ω̇l,k. The matrix V (θ) is the one

defined in the exponential map of the SE(3) Lie group [51].

V (θ) = I+
(1− cos(∥θ∥))

∥θ∥2
[θ]× +

∥θ∥ − sin (∥θ∥)
∥θ∥3

[θ]
2
×

(12)
This term allows to integrate the linear velocity expressed in
the centroid frame into the position while taking into account
the evolution of the orientation over the integration integral.
The accelerations al,k = fa (xk,uk) and ω̇l,k = fω̇l

(xk,uk),
are obtained from Newton-Euler’s equations (14) and (16).
They are thus expressed as functions of the state, in particular
of the kinematics of the centroid and of the external and
contact wrenches. By integrating these accelerations to obtain
the new state kinematics, we obtain a very tight coupling
between our state kinematics and the wrenches.
This method differs from the usual state-of-the-art ones in that
we don’t directly use the angular velocity and linear acceler-
ation measured by an IMU input to integrate the kinematics.
Also, we ensure the coupling directly in the modeling of our
system.

a) Newton’s equations for multi-body systems: Consid-
ering the robot as a rigid body, the linear acceleration of the
centroid frame in the world frame can be expressed from the
forces F applied to this point by using the Newton’s relation

F = mp̈ , (13)

where m is the total mass of the robot, and p̈ is the linear
acceleration of the centroid frame in the world frame. Note
that considering the centroid frame allows us to eliminate
the inertial effects due to the distance of a point from the
center of mass of a moving object, drastically simplifying the
expressions.

We can then write the linear acceleration of the centroid
frame in the world frame, expressed in the centroid frame:

al = RT p̈ =
ΓF res +

ΓF e +
∑nc

i=0
ΓRCi

CF i

m
− g0R

Tez ,
(14)

where ΓF e corresponds to the estimated unmodeled external
force applied to the centroid and ΓF res is the resulting
force measured by the sensors not associated with contacts,
expressed at the centroid. CF i is the estimated force at the
contact i, and ΓRCi

is the input orientation of the contact in
the centroid frame. Also, g0 is the gravitational acceleration
constant.

b) Euler’s equations for a multi-body system: The rota-
tional dynamics can be expressed by Euler’s relation:

T =
d

dt

(
nb∑
b=1

(
RbIbR

T
b ωb +mb [cb]×ċb

))
, (15)
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where T is the sum of the external torques/moments applied
to the system expressed at the robot’s center of mass, and nb is
the number of bodies composing the robot. Rb and ωb are the
orientation and the angular velocity in the world frame of the
body b. mb and Ib are its mass and its inertia matrix expressed
in its frame, and cb is the translation vector from the robot’s
center of mass to the center of mass of the body b, expressed
in the world frame. This expression can be developed to give
the following angular acceleration of the centroid frame in the
world frame, expressed in the centroid frame:
ω̇l = R

T
ω̇ (16)

=
Γ
I
−1

(
Γ
T res +

Γ
T c +

Γ
T e − Γ

İωl − Γ
σ̇ − [ωl]×

(
Γ
Iωl +

Γ
σ
))

,

where ΓI and Γσ are the input inertia matrix and angular
momentum of the multi-body robot expressed in the centroid
frame, with their respective derivatives Γİ and Γσ̇. ΓT e is
our estimate of the unmodeled external torque applied on
the robot and expressed in the centroid frame, and ΓT res is
the resulting torque measured by the sensors not associated
with contacts, expressed in the centroid frame. Finally, ΓT c is
the total contact torque, expressed in the centroid frame and
defined by

ΓT c =

nc∑
i=0

(
ΓRCi

CT i +
[
ΓpCi

]
×
ΓRCi

CF i

)
, (17)

with
{CF i,

C T i

}
the estimated wrench at the contact i and{

ΓpCi
, ΓRCi

}
the input pose of the contact i in the centroid

frame.
2) Gyrometer bias, external wrench and contacts rest pose:

The bias on each gyrometer is assumed to be unpredictable and
subject to small variations over short periods of time. Simi-
larly, the external wrench and the rest poses of the contacts are
assumed to have slow variations over time. Therefore, the state
transition model is considered constant for all these variables.
This constant prediction is corrected at the sensor-update phase
of the estimation.

3) Viscoelastic model of the contacts : We cannot rely
solely on the force measurements to predict the acceleration
of our system. This is firstly because the measurements may
not be available, but secondly and more importantly, relying
only on force estimates to predict the accelerations leads to
unbounded drifts in the absolute position. This is due to the
uncertainties in the sensor measurements and the robot models.
Nevertheless, we know that the robot has relatively reliable
anchors in the environment: the contacts. However, integrating
kinematically this information would conflict with the Newton-
Euler dynamics. The correction of the drifts must, therefore,
be applied through a wrench at the contact. To this end,
we predict the contact reaction wrench using the viscoelastic
model of the contacts, comparable to the one we defined
in [2], which links the reaction wrench to the estimated contact
poses. A contact is modeled as a {spring + damper} system
between its current estimated frame Ci and its rest frame Cr,i,
which corresponds to the pose of the environment-attached
frame before the contact. The following simplified example
illustrates this contact model. At the exact instant the body
touches the environment, there is no force and no deformation
yet and thus Cr,i = Ci. Afterwards, Cr,i remains constant while

Fig. 3. Viscoelastic model of contacts. (A) Foot before the contact with the
ground. (B) Creation of the contact. No force is applied, the current contact
frame matches the rest frame. (C) Generation of a reaction wrench due to the
deformation.

Ci moves due to the deformation of the environment, which
generates reaction forces2. This is illustrated in Fig. 3.

The rest kinematics
{
pr,i,Rr,i,0,0

}
of the contact in the

world are composed of the rest pose of the contact, which
is part of our state vector, and of zero linear and angular
velocities. The current kinematics

{
pCi

,RCi
, ṗCi

,ωCi

}
of the

contact’s frame Ci in the world frame are obtained by forward
kinematics from the current estimate of the centroid frame’s
kinematics in the world frame:

pCi
= R

(
ΓpCi

+ pl

)
RCi

= RΓRCi

ṗCi
= R

(
ΓṗCi

+ [ωl]×
ΓpCi

+ vl

)
ωCi = R

(
ΓωCi + ωl

)
(18)

(19)

(20)

(21)

with
{
ΓpCi

, ΓRCi

}
and

{
ΓṗCi

, ΓωCi

}
the input pose and

velocity of the contact in the centroid frame, respectively. As a
reminder, {pl,R} and {vl,ωl} are the state pose and velocity
of the centroid frame in the world frame, expressed in the
centroid frame. The discrepancy between the current and the
rest kinematics can be divided into a linear part {p̃i, ṽi} and
an angular part

{
R̃i, ω̃i

}
:{

p̃i = pCi
− pr,i

ṽi = ṗCi
− 0 = ṗCi

(22)

(23){
R̃i = RCi

RT
r,i

ω̃i = ωCi − 0 = ωCi .

(24)

(25)

Using the viscoelastic model of the contacts, the linear discrep-
ancy yields a contact force and the angular discrepancy results
in a contact torque. The contact reaction wrench expressed in
the contact’s frame Ci is thus:

CF i = −RT
Ci
(Kp,tp̃i +Kd,tṽi) (26)

CT i = −RT
Ci

(
1

2
Kp,r

[
R̃i − R̃

T

i

]
∨
+Kd,rω̃i

)
(27)

where Kp,t and Kd,t are the 3 × 3 SPD matrices corre-
sponding to the linear stiffness and damping of the contact.

2In this simplified example, we consider the viscoelastic model represents
only the environment’s flexibility. This simplification intends to make it easier
to apprehend, and ignores the structural flexibility of the robot which also
contributes to the deformation. Moreover, the presence of damping may
produce discontinuous forces at impact.
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Similarly, Kp,r and Kd,r correspond to the angular stiffness
and damping of the contact. Note that the expression of the
contact torque relies on the property that for a rotation matrix
R we have

1
2

[
R−RT

]
∨
=

sin(∥Log(R)∥)
∥Log(R)∥

Log(R) , (28)

which approximates Log(R) (the equivalent rotation vector)
for small angles of R, using the vee operator defined in
Section II.

In the proposed estimator, we use this model for contact
wrench prediction. Therefore, the contact wrench state transi-
tion depends only on the kinematic part of the current state.
This representation of the contacts allows us also to create a
coupling between the centroid frame’s kinematics and the rest
pose of the contacts. A difference between the predicted and
measured wrenches could be either caused by a slip of the
contacts or by an estimation error in the centroid kinematics.
The estimator has to use the measurements to update the
state accordingly, which corrects partially the drifts (due to
slippage) and the robot kinematics estimation error.

In summary, the viscoelastic representation of contacts has
the following strengths:

• It ensures non-divergence of the kinematics of the cen-
troid frame from the contacts by associating their dif-
ference with a proportional reaction. It also provides a
coupling between the centroid kinematics, the forces and
the contact position.

• In the absence of wrench sensors on the contacts, it allows
us to estimate the wrench based on the kinematics.

• By including the pose of the rest frame Cr,i in the state,
we can correct it and thus cope with slippage, moving
contacts and and terrain unevenness.

• It considers contact orientation, not just a position, as
done for point contacts. Nevertheless, point contacts can
still be represented by simply setting the angular stiffness
Kp,r and damping Kd,r to zero.

C. Measurements model

The measurements can be predicted using the current states
and inputs yk = g (xk,uk). The estimated measurements
of the wrench sensor at each contact i correspond to the
associated contact wrench in the state vector:

yF,i =
CF i , (29)

yT,i =
CT i . (30)

We predict the biased gyrometer and the accelerometer
measurements of each IMU j using forward kinematics:

yg,j =
ΓRT

Sj

(
ωl +

Γ ωSj

)
+ bg,j , (31)

ya,j =
ΓRT

Sj

(
al +

Γp̈Sj
+RT g0ez

)
(32)

+ ΓRT
Sj

((
[ωl]

2
× + [ω̇l]×

)
ΓpSj

+ 2 [ωl]×
ΓṗSj

)
,

where ωl is the state angular velocity of the centroid frame
in the world frame, expressed in the centroid frame, and bg,j
is the estimated bias on the gyrometer measurement from the

IMU.
{
ΓpSj

, ΓRSj ,
ΓṗSj

, ΓωSj ,
Γp̈Sj

}
are the pose, linear

and angular velocities, and linear acceleration of the IMU j
in the centroid frame, available in uk. The linear and angular
accelerations {al, ω̇l} of the centroid frame in the world
frame, expressed in the world frame, are obtained from (14)
and (16), respectively. Based on these relations, the prediction
of the accelerometer measurement is therefore a function of
the total wrench exerted on the robot, which is estimated in
our state vector. Our accelerometer is thus comparable to an
additional total force sensor, which embraces the principle of
estimating the kinetics of the robot.

IV. THE KINETICS OBSERVER

The Kinetics Observer is a global estimator designed to si-
multaneously estimate the variables describing the interactions
with the environment. At its core, is a Multiplicative Extended
Kalman Filter (MEKF), where the term multiplicative refers to
the use of matrix Lie groups within an EKF. The structure of
the Kinetics Observer, along with the main variables it relies
on, is summarized in Fig. 4.

Since our state space Gx is a Lie group, we can express in-
terdependence of the state variables by a single tangent space.
This gives us a mathematically consistent model, especially
for the propagation of the state covariance.

The Kalman Filter implementation consists of two main
steps: the prediction and the update/innovation. During the
prediction step, the state-transition model is applied to the
current estimate x̂k of the state and the current system inputs
uk to predict the future state x̄k+1|k, and the measurement
model is used to predict the measurements ȳk+1|k of the
sensors in that predicted state:

A =

(
∂f

∂x
(x,u)

)
x=x̂k,u=uk

, (33)

x̄k+1|k = f (x̂k,uk) , (34)

ȳk+1|k = g
(
x̄k+1|k,uk

)
, (35)

P k+1|k = AP k|kA
T +Q , (36)

C =

(
∂g

∂x
(x,u)

)
x=x̂k,u=uk

. (37)

The matrices A and C are the state-transition and the measure-
ment matrices of the system, respectively, resulting from the
linearization of the model. This linearization can be expressed
analytically or computed by finite differences. The first method
is more tedious to implement, but it allows for a much faster
computation and thus to run the estimator in real-time despite
the large number of variables to estimate. Q and R correspond
to the covariance matrices of the Gaussian noise associated
with the state-transition and measurement models. For simpler
formulations, we will refer to the matrix Q as the process noise
covariance matrix, and the diagonal term associated with each
of the state variables as its process noise variance. Similarly,
we will now refer to the matrix R as the measurement noise
covariance matrix, and its diagonal terms as the measurement
noise variances. P is the covariance matrix associated with the
state estimate, which we will call the state covariance matrix.
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Fig. 4. Summary of the structure of the Kinetics Observer. We present the main elements that make up the Kalman Filter with a focus on the dynamical
model and the origin of each variable involved.

The update step performs the innovation, which weighs
the contribution of the predicted state and the measurements
thanks to the Kalman gain K to obtain the corrected estimated
state x̂k+1, and computes the newly obtained covariance on
the state estimate for the next iteration of the MEKF:

K = P k+1|kC
T
(
CP k+1|kC

T +R
)−1

, (38)

x̂k+1 = x̄k+1|k ⊕ ExpGx

(
K
(
yk+1 − ȳk+1|k

))
, (39)

P k+1|k+1 = (I−KC)P k+1|k (I−KC)
T
+KRKT

(40)

where ⊕ is the Lie group operator defined in Section II. As a
reminder, ExpGx

(·) is the operator that converts the rotation
components of the state’s tangent vector to rotation matrices.

A. Kinetics Observer’s odometry

In order to perform odometry, the Kinetics Observer requires
the ’impulsional’ input

{
p̌r,i, Ω̌r,i

}
, which corresponds to the

initial guess on the rest pose
{
pr,i,Ωr,i

}
in the world of the

successive contacts, which is used to initialize them in the
state vector. As a reminder, the contact’s rest pose is the pose
of the contact’s rest frame, which was the frame attached
to the contact when the contact wrench was zero. Since a
wrench is already applied to the contact when it is detected, its
current pose

{
pCi

,RCi

}
obtained through forward kinematics

with (18) and (19) does not match its rest pose anymore
due to the deformation of the contact material (Fig. 3). To
recover the rest pose, it is necessary to identify and compensate
for this deformation. We get this deformation initial value
by inverting the viscoelastic model from the current wrench
measurement

{
yF,i,yT,i

}
. In other words, from (26) we
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obtain the translational deformation and add it to pCi
to get

the initial guess on the rest position:

p̌r,i = pCi
+RCi

K−1
p,t

(
yF,i +RT

Ci
Kd,tṗCi

)
. (41)

Next, we will explain how we obtain the orientation discrep-
ancy from (27). Let us define the term Di = R̃i−R̃

T

i , where
R̃i = RCiŘ

T

r,i is the discrepancy between the current and the
rest orientation of the contacts as defined in (24). From (27),
we have:

[Di]∨ = −2RCi
K−1

p,r

(
yT,i +RT

Ci
Kd,rωCi

)
. (42)

Di also respects the property (28), which gives

ϕi = arcsin

(
∥[Di]∨∥

2

)
, (43)

ui =
[Di]∨

∥[Di]∨∥
, (44)

where ϕi and ui are the rotation axis and angle corresponding
to R̃i, allowing to compute this latter matrix and to get the
contact rest orientation:

Řr,i = R̃
T

i RCi
. (45){

p̌r,i, Ω̌r,i

}
is finally used to initialize the rest pose of the

contact in the state vector. Note that since the position along
the vertical axis z is not observable, small displacements re-
sulting from the IMU integration and the viscoelastic behavior
of the contacts may accumulate at each step, and cannot be
corrected by the observer. This would lead to significant drifts
over long walks. To solve this problem when walking on a flat
ground, one can constrain the robot to remain on the ground
by initializing the rest position along the vertical axis and the
associated initial state variance of all newly set contacts to
zero.

Finally, it is important to note that this estimator can be
used without odometry. This is useful when we don’t want
the robot estimate to drift from the reference plan, but we still
need to observe the local state of the robot, for example to
control balance and locomotion. In such a case it is sufficient
to set {

p̌r,i, Ω̌r,i

}
=
{
p⋆
c,i,Ω

⋆
c,i

}
, (46)

where p⋆
c,i and Ω⋆

c,i are the reference contact position and
orientation provided by the contact planner.

B. Covariance tuning of the Kinetics Observer

The main challenges in implementing the Kinetics Observer
are tuning the covariances involved in the Kalman filter and
identifying the stiffness and damping of the viscoelastic model.
Here we provide some insight into the process. The covariance
matrices are constructed by combining the covariance sub-
matrices corresponding to each state and measurement vari-
able along the three axes. These submatrices are considered
diagonal, meaning that we define only the variance on each
variable and assume that they are independent of each other.
The measurement variances are obtained from noise models
on the sensors.

In this paragraph, we want to highlight the role of the covari-
ances associated with contacts, since they play a crucial role
in the behavior of our estimator, especially of our odometry.
Taking into account the expected discrepancy between our
model and the reality, we have determined the initial variance
associated with the contact rest pose. This allows for the
correction of the rest pose upon the creation of the contact.
The process noise covariance submatrix associated with the
contact rest poses is designed to respect specific constraints,
as we further develop in Section IV-C. The state-transition
model associated with the contact wrenches is our viscoelastic
model defined in Section III-B3. Since this model analytically
relates the contact wrench to the current state variables, its
corresponding process noise variances directly correspond to
the confidence in the viscoelastic model. While the viscoelastic
model is a useful approximation, it is evident that the wrench
sensors are more reliable, which explains why the process
noise variances on the contact wrenches are higher than their
measurement noise variances. All the parameters that we tuned
for our experiments are summarized up in Table III. Note that
the parameters used are the same for both robots involved
in our experiments (HRP-5P [52] and RHP Friends [53]) in
three very different scenarios to show the robustness of the
estimation with respect to these parameters.

Finally, as an important note, the covariances of new contact
poses are initialized with a fixed value even in odometry
mode. This is not consistent with reality since the position of
every step is supposed to be more uncertain than the previous
one, and thus, the covariances should add up. This imprecise
choice has been made to prevent the covariance from building
up and causing instability problems during long experiments.
However, this care can be dropped if an additional absolute
pose measurement (e.g., GPS or SLAM) is added to the
estimator, since in this case the system would be observable,
and the covariance would remain bounded.

C. Constrained process noise covariance sub-matrix for the
contact poses

The initial variance on the contact’s rest pose in the state
covariance matrix upon its creation allows for its immediate
correction by the Kalman Filter. However, the possibility of
this correction decreases as the uncertainty on these variables
converges, and is thus insufficient in the presence of slippage
even shortly after the contact is created. Associating a process
noise covariance to our model of fixed contact rest poses
(Section III-B2) would help address this issue. However, this
would allow these poses to drift freely over time, hindering
the main anchor purpose of the contacts. For this reason, in
the case of simultaneous multiple contacts, we introduce a
specially constrained process noise covariance matrix for the
sub-state of contact rest positions and another for the sub-state
of contact rest orientations. These matrices are designed so that
the process noise on the average rest position and yaw of the
contacts (the unobservable part of the rest pose) is zero. Thus,
they allow for the correction of the contact’s rest pose over
its entire lifetime (in the presence of other contacts), while
ensuring that the process noise cannot cause the average rest
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TABLE III
TUNED PARAMETERS OF THE KINETICS OBSERVER (UNITS OMITTED)

Initial Process noise
state variances variances

Position pl O 10−10.I
Orientation R diag

(
1.10−2, 1.10−2, 0

)
(1) 10−12.I

Lin. Velocity vl O 10−10.I
Ang. Velocity ωl O 10−12.I
Gyrometer bias bg,j 10−8.I 10−18.I
Unmodeled force F e O 9.10−2.I
Unmodeled torque T e O 5.10−2.I
Contact rest pos. pr,i 10−6.I 1.10−10.I
Contact rest ori. Rr,i 10−6.I diag

(
0, 0, 1.10−8

)
Contact force CF i 400.I 100.I
Contact torque CT i 360.I 25.I

Measurement noise variances
(HRP-5P | RHP Friends)

Gyrometer 25.10−8.I 16.10−6.I
Accelerometer 25.10−4.I 36.10−4.I
Force sensors 1.I 1.I
Torque sensors 9.10−4.I 1.10−2.I

Contact flexibilities
(HRP-5P | RHP Friends)

Linear stiffness
3.105.I 3.104.I

Kp,t [N/m]
Linear damping

150.I 150.I
Kd,t [N.s/m]
Angular stiffness

1000.I 727.I
Kp,r [N.m/rad]
Angular damping

17.I 17.I
Kd,r [N.m.s/rad]

(1) diag() is the operator that transforms a Rn vector into a Rn×n diagonal matrix

whose diagonal terms correspond to the vector components.

pose to drift. We will refer to this feature as the constrained
contact process covariances.

Let us first consider the substate consisting only of the
rest positions X of the n contacts currently set with the
environment: X1

...
Xn


k+1

=

 X1

...
Xn


k

+Mv , (47)

with Mv the noise on our state-transition model. v is of
dimension 1 × 3n and of rank 1 × 3 (n− 1) with n the
number of contacts and M of dimension 3n × 3n. We want
the covariance of the sum of this noise over each axis to be
zero. This constraint imposes a constant average position of
the contacts in our state-transition model. This constraint can
be written as

cov
(
STMv

)
= 0, (48)

with ST the matrix that computes this sum by multiplication:

ST =
(
I3×3 · · · I3×3

)
∈ R3×3n . (49)

We can write

cov
(
STMv

)
= ST cov (Mv)S , (50)

and
cov (Mv) = Mcov (v)MT . (51)

From (50) and (51), we obtain

cov
(
STMv

)
= STMcov (v)MTS = 0 . (52)

This must be true for any vector v, which is the case only if
STM = 0. We can now express the matrix M ,

M = I3n×3n −
(
ST
)†

ST , (53)

with
(
ST
)†

= 1
nS ∈ R3n×3 .. Note that the matrix M is

symmetric and can be computed offline, since it depends solely
on the number of current contacts. From (51), we finally obtain
the process noise covariance matrix on the state-transition
model of our substate:

cov (Mv) =

 cov (X1,X1) ... cov (X1,Xn)
...

. . .
...

cov (Xn,X1) ... cov (Xn,Xn)

 .

(54)
We then use it to replace the corresponding parts of the process
noise covariance matrix Q on each iteration (if necessary)
before its use in (36).

We apply the same methodology to the rest orientation of
the contacts, but this time we add the constrained process
noise covariance only to the rest yaw, since this variable is
not observable (the process noise covariance associated with
the rest roll and pitch is set to zero). Since the focus is on
a single axis, only the last row of the ST matrix is non-zero
in this case. We note that this feature is independent of the
viscoelastic model of contacts and thus can be used in any
Kalman Filter performing legged odometry.

V. EXPERIMENTAL RESULTS

The Kinetics Observer has been tested in three scenarios on
two different humanoid robots: RHP Friends and HRP-5P.
Both robots are equipped with wrench sensors on the contact
limbs and an IMU located in the upper body. In all the
scenarios, the robots were controlled via the mc_rtc frame-
work3. The first scenario (Section V-A), using the robot RHP
Friends, evaluates the odometry on flat ground. The second
scenario (Section V-B) extends the first scenario by adding
slippery obstacles to the robot’s path, in order to evaluate
its performance in presence of slipping contacts. The third
scenario (Section V-C), using the robot HRP-5P, evaluates
the odometry performed during multi-contact motions. This
scenario is also used in Section V-D to show how we can
use this estimator to get information on the environment, and
in Section V-E to evaluate the external wrench estimation
performed by the Kinetics Observer.

Our estimation is compared across all scenarios with the
right-invariant EKF (RI-EKF) proposed by Hartley et al. [7].

3https://jrl-umi3218.github.io/mc_rtc/

https://jrl-umi3218.github.io/mc_rtc/
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The Kinetics Observer and the RI-EKF were tuned using
identical covariances for the sensor measurement noise and the
process noise associated with the gyrometer bias. This ensures
that both methods utilize the sensor data equally, allowing for
a fair comparison of their performance. To demonstrate the
improvements achieved by the constrained contact process
covariances feature introduced in Section IV-C, we add to
the comparison a variant of the Kinetics Observer that does
not implement it. Using KO as a diminutive for the Kinetics
Observer, this variant is referred to as KO-ZPC (Kinetics Ob-
server with Zero Process Covariance). The Kinetics Observer
is able to estimate the robot’s pose even in the absence of
contact force sensor measurements. To prove this, we add
the evaluation of the trajectory estimated in this case to the
compared results. The information redundancy coming from
the force sensor being lost, we removed the external force from
the state and reduced the covariance of the gyrometer bias
estimation. All other parameters were kept identical4. To the
trajectory plots, we also include the robot-modeled trajectory,
resulting from the integration of the commands at the output
of the controller. This trajectory assumes perfect tracking of
the references, and can thus be compared with the ground truth
trajectory in order to assess the discrepancy between our ideal
model of the system {robot + environment} and the actual
system. We refer to this modeled trajectory as the “control”
trajectory. Note that none of the estimators has access to
the control trajectory; they rely solely on measurements.
The estimated trajectories are compared to ground truth data
obtained by motion capture (Opti Track system with 16 PrimeX

13 cameras). Finally, we note that the Kinetics Observer and
the RI-EKF are designed to receive the contact states from
any contact detection framework. For a fair comparison, all
the estimators receive the same information from a Schmitt
Trigger on the forces measured by the sensors. We set the
lower threshold of the Schmitt Trigger to 10% of the weight
and its upper threshold to 15% of the robot’s weight.

Note that the Kinetics Observer estimates the pose of the
centroid frame, while the RI-EKF estimates the pose of the
IMU and the motion capture measures the pose of the floating
base in the world. Thus, we apply a simple transformation
on the estimated trajectories to obtain trajectory estimates
of the floating base. These estimates are evaluated against
the ground truth using the Absolute Trajectory Error (ATE)
and the Relative Error (RE) from [54]. Lateral (along the x
and y axes) and vertical (along the z axis) translations are
evaluated independently, as their errors originate from different
sources and they can represent distinct targets for odometries.
Indeed, the accurate estimation of lateral translations relies on
both accurate estimates of local displacements and the robot’s
orientation in the world relative to the vertical axis (yaw
angle). In contrast, the quality of vertical translation estimation
depends on accurate roll and pitch angle estimates, as well as
the estimator’s ability to account for potential errors in new
contact heights, notably due to material deformations. Accord-

4Note that there was no adaptation of this force-sensor-free variant besides
removing external forces and reducing bias variability. This means that
we may expect better results with extensive tuning, especially in terms of
covariance of the viscoelastic model.

ingly, the errors in yaw, and in roll and pitch angle estimations
are also distinguished. We use the formulation of the Absolute
Trajectory Error (ATE) for “Visual(-inertial)” systems. This
metrics first realigns the estimated trajectory with the ground
truth in order to minimize the squared error between both
trajectories overall. It thus helps to evaluate how closely the
estimated trajectory matched the actual one overall. Since they
are observable, the roll and pitch angles remain unchanged, the
realignment will thus shift the trajectory up/down to minimize
the error along the vertical axis. This explains why its mean
is zero in the results we present. The standard deviation of
this error will thus help to evaluate the good tracking of the
robot’s elevation. Similarly, the yaw is part of the minimization
goals for the translation part, so we will focus on its standard
deviation.

The linear velocity estimation performed by the compared
estimators is also evaluated. The velocities are expressed in
the IMU’s frame such that they are independent of the robot’s
orientation. To avoid confusion, the velocity error is denoted
as SVel, consistent with the notation S for the IMU frame
used in SectionIII-A. The ground truth velocity is obtained by
finite differences from the ground truth position, filtered with
a zero-phase low pass filter.

A. Odometry on flat ground

The test of the odometry on flat ground was performed on the
humanoid robot RHP Friends (Fig. 5a) over five sequences,
using a LIPM walking controller with reference footstep
generation. The experiment involved making the robot walk
and turn over about 18 meters (approximately 200 steps).
Fig. 5b shows the trajectories followed by the robot over all
the trials. First, we note that in each experiment, the estimators
all consistently underestimated the forward translations, as can
be seen in Figure 5b. This is also noticeable in the control
trajectory, suggesting that this drift is not due to measurements,
but rather to the geometric model of the robot involved in the
direct kinematics.

Figure 6 shows the pose and linear velocity of RHP Friends
estimated by the Kinetics Observer and the RI-EKF over the
first walk, compared to their ground truth obtained by motion
capture. We focus first on the estimate of translation along
the vertical axis z, which is not observable by proprioceptive
odometries. The Kinetics Observer was able to track the
vertical position with a satisfactory drift of about 5 cm.
Meanwhile, we see that at about 140 seconds after the start, the
RI-EKF’s estimate of this position suddenly and erroneously
decreased, to then increase greatly at about 190 seconds after
the start. This temporally coincides with the positive and then
negative discrepancy between the estimated pitch angle and
the actual one. We verify that this pitch error is indeed the
cause of the descent with the following approach. Between
140 seconds and 180 seconds, the average error between the
pitch estimated by the RI-EKF and the ground truth is 1°.
During this interval, the robot walked 7.4 meters along the
x and y axes. The error in elevation ∆z that angular error
causes over this distance (∆z = tan(1) × 7.4), would be
over -13 cm, which roughly corresponds to the -19 cm drift
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Fig. 5. (a) RHP-Friends. (b) Top view of the ground truth and estimated trajectories of the robot during the walk on flat ground. The robot starts at the
point (0,0) and walks towards the x direction. The trajectory of the first trial is shown with opaque lines, while the trajectories of the subsequent trials are
transparent. The ground truth trajectories of the subsequent trajectories are also shown with dashed lines to highlight the proximity between all trajectories.

we can see in Figure 6. This drift also partly explains the
underestimated forward translations of RI-EKF. Interestingly,
this phenomenon occurred in the five trials of this experiment.

The second variable we focus on is the yaw, which is
also unobservable and significantly influences the quality of
the lateral translation estimation. We observe, notably in the
focused areas, that although the trajectory estimates from
both estimators drifted progressively, the Kinetics Observer
demonstrated a better tracking of the yaw angle. Finally, we
note that both estimators were able to satisfactorily estimate
the robot’s linear velocity. However, the Kinetics Observer
tended to overestimate this velocity, particularly along the
forward axis x (we remind that the velocity is expressed in
the frame of the IMU attached to the robot). Table IV provides
more insight into the estimation results with the Absolute
Trajectory Error (ATE) and the Relative Error (RE) computed
over the five trials. The results of the 1 meter Relative Error
in yaw corroborates our earlier observation that the Kinetics
Observer was able to track the yaw more accurately than the
RI-EKF, with an average error of 0.4° per meter walked for
the Kinetics Observer versus 0.9° per meter. The standard
deviation of the Absolute Trajectory Error ATEyaw is nearly 6
times lower for the Kinetics Observer, demonstrating its better
closeness over the entire trajectory. The Kinetics Observer was
also able to estimate the lateral translations better with an
average error of 2.5 cm over 1 meter versus 4,6 cm. Also, the
significant drift on the estimated vertical position is reflected in
the standard deviation of the ATEz computed for the RI-EKF,
which is 10 times higher than that computed for the Kinetics
Observer. Finally, the error statistics for the lateral linear
velocity estimation indicate that both estimators achieve an
accuracy on the order of centimeters per second. However, as
expected from the previous observations, the RI-EKF showed
better accuracy compared to the Kinetics Observer.

B. Odometry with slippage

The purpose of this scenario is to assess the robustness of
our estimation against slipping contacts. To this end, tiles
with dimensions 7.5 (l) × 7.5 (w) × 1 (h) cm, which have
low friction coefficients with both the robot’s feet and the
ground, are placed along the robot’s path, as shown in Fig. 7a.
Over three experiments and over a distance of about 5 meters,
the robot walks and turns on the tiles, causing slippage in
translation and rotation.

Looking at the evaluation metrics in Table V, we first note
that as observed in the regular flat odometry in Section V-A,
the Kinetics Observer was able to track the robot’s position and
yaw more accurately than the RI-EKF. We also observe that
although the estimation error on the position and the yaw in-
creased when adding slippery contacts for both estimators, the
estimation made by the Kinetics Observer was less degraded
than that of the RI-EKF. Indeed, the average Relative Error on
the lateral translation estimate over a 1 m translation increased
by about 1 cm for the Kinetics Observer, against almost 2 cm
for the RI-EKF. The small standard deviation of this error also
proves the consistency of the translation estimate. Similarly,
the mean Relative Error on the yaw estimate increased only
slightly (0.1°) for the Kinetics Observer, while the estimation
error for the RI-EKF increased by more than 1°, reaching
a significant drift of 2.3° per meter walked. These results
highlight the increased robustness of the proposed method to
slipping contacts.

Note that we did not increase the slippage further because
we firstly needed the robot to keep balance which would
have been challenging, and secondly the drift caused by more
significant slippage is not observable and would have increased
the resulting variability across experiments.
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Fig. 6. Pose and linear velocity of RHP-Friends estimated by the Kinetics Observer and the RI-EKF during the first walk on flat ground, compared to the
ground truth obtained by motion capture.

C. Multi-contact motion with tilted obstacles

To evaluate the contact pose estimation and the odometry per-
formance of the Kinetics Observer over multi-contact motion,
it was also tested within a non-coplanar contact scenario using
a multi-contact controller5. This trajectory involves stepping,
and pushing with the left hand on oriented and elevated
obstacles, over a distance of about 2 meters. This experiment
was performed four times on the humanoid robot HRP-5P.

In this experiment as well, the Kinetics Observer was able
to estimate the pose more accurately. But this experiment is
particularly interesting because it showcases the improvements
brought by the constrained contact process covariances fea-
ture implemented in the Kinetics Observer, and introduced
in Section IV-C. As a reminder, in the case of simultaneous
multiple contacts, the covariance of the process noise on the
contact rest poses is no longer zero (to avoid free drift), which
allows for the correction of the contacts over their entire
lifetime, while respecting a constraint such that the average
pose of the robot cannot drift due to this process noise. During
the experiments of flat odometry with slippage (Section V-B),
the effects of this feature could not be highlighted. Indeed,

5https://github.com/isri-aist/MultiContactController

the difference between the Kinetics Observer and its variant
KO-ZPC, which does not implement this feature, was not
significant. This is actually normal, since this experiment only
involved contact on both feet, and the duration of simultane-
ous contact was very brief—approximately half a second on
average. During this short period, only a negligible amount
of process noise covariance on the contact rest poses could
be introduced into the Kinetics Observer, as it is only added
in the case of simultaneous contacts. Thus, both estimators
were performing a similar correction due to their identical
initial state variance on the contact rest pose. Since this
experiment involves multiple simultaneous contacts for much
longer durations, the significant improvements brought by this
feature are clearly observed. This is presented in Fig. 9, which
shows the evolution of the foot’s yaw in the world and its
estimates, at the beginning of the experiment.

For each estimate and the ground truth, this yaw is obtained
by forward kinematics from the pose of the floating base,
allowing to visualize how accurately the robot’s yaw estimate
reflects the actual behavior of the contacts. About 2.5 seconds
after the start of the experiment, it can be observed that the
yaw estimates of both the KO-ZPC and the RI-EKF start
to decrease and follow a similar pattern that quickly differs

https://github.com/isri-aist/MultiContactController
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TABLE IV
MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF ERRORS COMPUTED DURING WALK ON FLAT GROUND. THE 1 M RELATIVE ERROR IS

REPRESENTED. THE BEST RESULTS FOR EACH METRIC ARE HIGHLIGHTED IN BOLD.

Translation [m] Orientation [◦]
Linear velocity

[m.s−1]

Lateral {x,y} Vertical z {roll, pitch} yaw Lateral {x,y} Vertical z
ATE{x,y} RE{x,y} ATEz REz ATE{r, p} RE{r, p} ATEyaw REyaw

SVel{x,y}
SVelz

Kinetics Observer
0.2008 0.0250 7.1e-16 0.0148 1.0859 0.9966 0.5183 0.3980 0.0234 0.0011

(0.0832) (0.0184) (0.0178) (0.0442) (0.4202) (1.9868) (2.2926) (0.4276) (0.0269) (0.0180)

Kinetics Observer 0.5680 0.0210 -1.7e-14 0.0226 1.1225 0.9884 4.5233 0.5732 0.0223 -0.0013
without wrench meas (0.3696) (0.0166) (0.1658) (0.0460) (0.4718) (1.9665) (9.8563) (0.5391) (0.0241) (0.0220)

KO-ZPC
0.2034 0.0258 3.3e-15 0.0138 0.9921 1.0334 0.4969 0.4185 0.0240 0.0007

(0.0876) (0.0185) (0.0120) (0.0442) (0.4236) (1.9814) (2.3089) (0.4522) (0.0266) (0.0190)

RI-EKF [7]
0.2597 0.0462 -2.4e-15 0.0215 1.2156 1.0035 -1.0298 0.9601 0.0134 0.0029

(0.1146) (0.0562) (0.1781) (0.0507) (0.3989) (1.8407) (6.1223) (0.9159) (0.0147) (0.0124)
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Fig. 7. (a) Slippery tiles RHP-Friends walked over during the experiment. (b) Top view of the ground truth and estimated trajectories of the robot during the
walk with slippage. The robot starts at the point (0,0) and walks towards the x direction. The trajectory of the first trial is shown with opaque lines, while the
trajectories of the subsequent trials are transparent. The ground truth trajectories of the subsequent trajectories are also shown with dashed lines to highlight
the proximity between all trajectories.

TABLE V
MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF ERRORS COMPUTED DURING WALK WITH SLIPPAGE. THE 1 M RELATIVE ERROR IS

REPRESENTED. THE BEST RESULTS FOR EACH METRIC ARE HIGHLIGHTED IN BOLD.

Translation [m] Orientation [◦]
Linear velocity

[m.s−1]

Lateral {x,y} Vertical z {roll, pitch} yaw Lateral {x,y} Vertical z
ATE{x,y} RE{x,y} ATEz REz ATE{r, p} RE{r, p} ATEyaw REyaw

SVel{x,y}
SVelz

Kinetics Observer
0.0606 0.0341 -4.1e-16 0.0108 1.1223 1.3287 0.7865 0.5644 0.0363 0.0005

(0.0331) (0.0121) (0.0322) (0.0086) (0.9255) (1.1682) (1.0020) (0.5414) (0.0364) (0.0257)

Kinetics Observer 0.0690 0.0267 7.1e-17 0.0250 1.0010 1.2516 0.4235 0.8940 0.0343 0.0038
without wrench meas (0.0362) (0.0132) (0.1091) (0.0087) (0.8540) (1.1596) (4.3569) (0.7064) (0.0361) (0.0214)

KO-ZPC
0.0626 0.0345 1.8e-16 0.0100 1.1425 1.3489 0.8233 0.5836 0.0366 -0.0002

(0.0342) (0.0124) (0.0292) (0.0089) (0.9170) (1.1793) (1.1007) (0.5611) (0.0363) (0.0267)

RI-EKF [7]
0.1134 0.0645 2.4e-15 0.0104 0.8973 1.2623 -0.1044 2.8321 0.0227 0.0021

(0.0498) (0.0451) (0.0573) (0.0130) (0.8022) (1.0998) (5.8003) (2.2962) (0.0305) (0.0188)
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Fig. 8. (a) HRP-5P walking over tilted obstacles during the multi-contact experiment. The successive imprints of the main contacts of the motion are
represented by colored trapezoids. In red: Right foot. In green: Left foot. In blue: Left hand. (b) Top view of the ground truth and estimated trajectories of
the robot during the multi-contact motion. The robot starts at the point (0,0) and walks towards the x direction. The trajectory of the first trial is shown with
opaque lines, while the trajectories of the subsequent trials are transparent. The ground truth trajectories of the subsequent trajectories are also shown with
dashed lines to highlight the proximity between all trajectories.

TABLE VI
MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF ERRORS COMPUTED DURING MULTI-CONTACT MOTIONS. THE 0.5 M RELATIVE ERROR IS

REPRESENTED. THE BEST RESULTS FOR EACH METRIC ARE HIGHLIGHTED IN BOLD.

Translation [m] Orientation [◦]
Linear velocity

[m.s−1]

Lateral {x,y} Vertical z {roll, pitch} yaw Lateral {x,y} Vertical z
ATE{x,y} RE{x,y} ATEz REz ATE{r, p} RE{r, p} ATEyaw REyaw

SVel{x,y}
SVelz

Kinetics Observer
0.0043 0.0089 3.9e-16 -0.0005 0.4885 0.2916 -0.8007 0.1419 0.0110 -2.5e-05

(0.0029) (0.0049) (0.0038) (0.0029) (0.1788) (0.1837) (0.3593) (0.1228) (0.0120) (0.0060)

Kinetics Observer 0.0044 0.0098 4.2e-15 -0.0008 0.6419 0.3828 -0.9644 0.3084 0.0111 7.9e-05
without wrench meas (0.0029) (0.0052) (0.0027) (0.0033) (0.3157) (0.2074) (0.5703) (0.2108) (0.0115) (0.0066)

KO-ZPC
0.0067 0.0100 2.5e-15 -0.0018 0.8125 0.5343 -0.7980 0.5818 0.0111 -7.6e-05

(0.0042) (0.0061) (0.0031) (0.0037) (0.4741) (0.2440) (0.8842) (0.3063) (0.0119) (0.0061)

RI-EKF [7]
0.0062 0.0193 2.2e-16 0.0005 0.6880 0.9278 -1.2823 0.5916 0.0094 0.0008

(0.0032) (0.0213) (0.0038) (0.0111) (0.2619) (1.4890) (0.6982) (0.8105) (0.0087) (0.0081)

from the actual one. This mis-estimation is actually due to the
slippage of the left foot and the right foot, that occurred at
that time along the x axis, causing a change in their relative
position to each other. In the absence of covariance on the
process noise for the contact positions, both the KO-ZPC and
the RI-EKF were unable to correct them, and thus explained
the change in relative position as a rotation of the floating base
around the yaw axis. We observe similar behaviors when the
left hand is in contact and the left foot is repositioned about 10
and 12 seconds after the start of the experiment, respectively.
The information coming from the additional contact seems
to improve the estimation, but as the state covariance on the
contact pose converges again, the quality of the estimation
decreases again. On the contrary, we observe that the Kinetics
Observer succeeded in accurately tracking the yaw of the
contact over the entire motion. Thanks to the constrained
contact process covariances, it was able to correct the rest

pose of the contacts upon slippage over their entire lifetime,
thus preventing the estimate of the yaw of the floating base
from being erroneously corrected.

This experiment highlights also that our estimator seam-
lessly handles any number of contacts without any structural
changes.

D. Environment reconstruction through contacts

As introduced in Section III-B3, the Kinetics Observer is able
to reconstruct the local characteristics of the environment it
is in contact with through the contact rest pose estimation.
The latter is more accurate than the orientation obtained by
forward kinematics from the orientation of the floating base,
since it is affected by the robot’s internal flexibilities. To
evaluate this reconstruction, we virtually highly degraded the
initial orientation Ω̌r,i of the contacts (excluding the first
two contacts to allow the Kalman Filter to converge) at their
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Fig. 9. Yaw of the right foot of HRP-5P at the beginning of the multi-contact
experiment. The colored areas represent the times that the left foot and / or
the right foot are in contact with the environment.

Fig. 10. Right foot roll estimated by the Kinetics Observer during the multi-
contact experiment, compared to the measured ground truth and the roll
obtained by forward kinematics from the ground truth pose of the floating
base (motion capture). The plot is discontinuous since the rest pose is not
associated with the foot itself, but only exists when the foot is in contact with
the environment. The contact happens to be detected over very short periods
of time due to the bouncing of the foot when it touches the ground.

creation during the multi-contact experiment. The goal is to
show that the Kinetics Observer is able to correct this error
and accurately estimate the orientation of the contact. The
degraded orientation is obtained by generating a 30° rotation
around a random axis, and applying this rotation to the initial
orientation. Fig. 10 shows the estimation results of the roll
angle of the right foot during the walk. During the motion,
the right foot steps on the flat ground, and on an inclined
obstacle. Using a precision instrument, we measured this tilt
to be -19.7°, which we use as a ground truth. We also compare
our estimate to the roll obtained by forward kinematics from
the ground truth orientation of the floating base, which we
use as the best estimate we could get from a floating base
estimator. We observe that despite the considerable initial
error, the estimated roll quickly converges within a range of

TABLE VII
MEAN ERROR AND STANDARD DEVIATION OF THE ESTIMATED EXTERNAL

WRENCH FROM THE GROUND TRUTH.

ΓF e,x
ΓF e,y

ΓF e,z
ΓT e,x

ΓT e,y
ΓT e,z

Mean Absolute Error -17 N 15 N 15 N 13 N.m 9 N.m 8 N.m

Standard Deviation 11 N 12 N 19 N 9 N.m 5 N.m 6 N.m

±1° when walking on the flat ground. More interestingly, it
converges to an angle of -20.1° when walking on the tilted
obstacle, which is only 0.4° error to the ground truth. The roll
obtained by forward kinematics from the ground truth of the
floating base’s pose remains within a range of [-20.7°, -18.9°]
over the entire step which is generally a worse error than our
estimation, and might be caused by flexibilties. Note that we
didn’t modify the tuning of the Kalman Filter’s covariances
which greatly underestimate the introduced initial error.

E. External wrench estimation

This section aims to evaluate the estimation of the external
wrench applied to the robot, made by the Kinetics Observer.
For this purpose, the scenario used to evaluate the odometry
over multi-contact motions (Section V-C) was adapted through
the following change. The Kinetics Observer was made blind
to all the information coming from the robot’s left hand.
This contact is not detected and therefore its state is not
estimated. Accordingly, the measurements of its force sensor
are not used. Doing so, the contact at the left hand becomes
an external disturbance for the Kinetics Observer. We then
evaluate how closely this external wrench is estimated, using
the force sensor measurements as a ground truth. Fig.11 shows
the wrench estimates on the axes with the highest variations.
We can see that the estimator can provide an accurate and
reactive estimation of the left hand’s wrench. However, we
also observe an offset of the order of 10N ∼ 20N (N.m for
the torque estimates) between the estimates and the ground
truth. This offset shows that this estimate also serves as a slack
variable to compensate for modeling errors and uncertainties
in our state-transition and measurement models (e.g., an error
in the mass or in the CoM position). This slack variable
cannot be separated from the estimation of actual external
unmodeled perturbations. We observe this offset also in the
mean absolute error values in Table VII. Despite this offset,
the Kinetics Observer is able to estimate the forces relatively
well: for wrenches which can reach more than 150N and
100N.m, respectively, we get an average error of about 15N
for forces and about 10N.m for torques. The reasonable
standard deviation of the error from its mean also reflects the
consistency of our estimate.

The estimation of external wrenches was already partially
addressed in a previous paper [4], but only for static cases.
Here, the Kinetics Observer was able to estimate them during
dynamic motions.

F. Computation speed evaluation

The computation speed was evaluated on a laptop with an Intel
Core i7, 7th Generation CPU, and 16 GB of RAM. During the
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Fig. 11. Estimated external force along the z axis and torque along the x
axis compared to the ground truth.

multi-contact experiment with HRP-5P, each iteration of the
Kinetics Observer ran under 0.45 ms, which makes it usable
for real-time feedback in most control loops.

VI. CONCLUSIONS

In this paper, we presented the Kinetics Observer, a framework
able to estimate accurately, simultaneously, and with tight
coupling, the kinematics of the robot, the contact location,
and external forces applied on the robot, with the ability to
perform precise real-time proprioceptive odometry. Thanks
to the tight coupling, the estimator can correct the contact
location estimation even during the contact. Overall, this
estimator exploits all available data and models in a single
loop, producing a unique state consistent with these models,
the measurements, and the respective beliefs we put in them.

The only estimate showing a relatively lower accuracy
than the SoA was the forward velocity during walking, still
being within cms/s of error. This could be improved by more
extensive tuning of the Covariances, but it is interesting to
note that improving the estimation of a variable often results
in decreasing accuracy for another one. This is because of
the modeling “tension” that we create by integrating all these
models: the kinematic, the dynamic and the viscoelastic one,
within a single prediction loop.

Of course, this work requires further improvements, includ-
ing to: (i) study ways to better identify environment stiffness
and damping, (ii) to include additional proprioceptive sensors
such as joint torque sensors or contact located IMUs, (iii) to
simplify the tuning of the Kalman Filter, (iv) to allow for the
addition of exteroceptive sensors to ensure observability, and
(v) to improve contact and slippage detection.

APPENDIX A
FIRST APPENDIX : SUMMARY OF NOTATION

General notations:
• ◦̂ : estimated variable, ◦̄ : predicted variable, ◦̃ : error variable.
• nc : number of current contacts.
• nw : number of contact wrench sensors.
• nI : number of IMUs.

• nb : number of bodies composing the robot.
Main frames 2:

• W : world frame.
• B : frame of the floating base.
• Γ : centroid frame.
• Ci : frame of the i-th contact.
• Cr,i : rest frame of the i-th contact.

State variables III-A:
• pl : position of the centroid frame in the world frame, expressed

in the centroid frame.
• Ω : vector representation (e.g. quaternion) of the orientation of

the centroid frame in the world frame.
• vl : linear velocity of the centroid frame in the world frame,

expressed in the centroid frame.
• ωl : angular of the centroid frame in the world frame, expressed

in the centroid frame.
• bg,j : bias on the j-th gyrometer’s measurement.
• ΓF e : unmodeled external force exerted on the robot, expressed

in the centroid frame.
• ΓT e : unmodeled external torque exerted and expressed in the

centroid frame.
• xc,i : contact variable regrouping

{
pr,i,Ωr,i,

CF i,
CT i

}
.

• pr,i : i-th contact rest position.
• Ωr,i : i-th contact rest orientation.
• CF i : i-th contact force.
• CT i : i-th contact torque.

Centroid frame’s accelerations II:
• al : linear acceleration of the centroid frame in the world frame,

expressed in the centroid frame.
• ω̇l : angular acceleration of the centroid frame in the world

frame, expressed in the centroid frame.
Measurements:

• ya,j : measurement of the j-th accelerometer.
• yg,j : measurement of the j-th gyrometer.
• yF,i : measurement of the force sensor at the i-th contact.
• yT,i: measurement of the torque sensor at the i-th contact.

Inputs:
•

{
ΓI, Γİ

}
: total inertia matrix of the robot expressed in the

centroid frame and its derivative.
•

{
Γσ, Γσ̇

}
: total angular momentum of the robot expressed in

the centroid frame and its derivative.
•

{
ΓF res,

Γ T res

}
: resultant wrench measured by the sensors not

associated with currently set contacts, expressed in the centroid
frame.

• Ξi : input variables related to the contact i.
•

{
p̌r,i, Ω̌r,i

}
: initial guess on the rest pose of the newly created

contact i in the world frame.
•

{
ΓpCi

, ΓΩCi ,
ΓṗCi

, ΓωCi

}
: kinematics of the i-th contact

frame in the centroid frame.
• Ψj : input variables related to the j-th IMU.
•

{
ΓpSj

, ΓΩSj ,
ΓṗSj

, ΓωSj ,
Γp̈Sj

}
: kinematics of the j-th

IMU frame in the centroid frame.
• Γp̈Sj

: linear acceleration of the j-th IMU in the centroid frame.
Section III-A: Vector state definition:

• Sj : frame of the j-th IMU.
Section III-B3: Viscoelastic model:

•
{
pCi

,RCi,ṗCi
,ωCi

}
: kinematics of the i-th contact’s frame

in the world frame obtained by forward kinematics from the
centroid frame.

• {Kp,t,Kd,t} : linear stiffness and damping of the contacts.
• {Kp,r,Kd,r} : angular stiffness and damping of the contacts.
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