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Abstract—Cardano is a blockchain protocol based on proof-
of-stake and an extended UTXO model which also supports
arbitrary smart contracts. Its primary currency, Ada, is cur-
rently one of the global top ten cryptocurrencies with a
market cap of more than 16 billion USD. In Cardano, new
blocks are produced by stake pools. Any holder of Ada can
delegate their stake to a pool. The underlying proof-of-stake
consensus protocol is Ouroboros Praos, which divides time into
a number of epochs and each epoch into a number of slots, each
corresponding to one second. In each slot, leaders are randomly
selected to produce and add new blocks to the blockchain, with
their selection probability being proportional to their stake.
Each block can contain a sequence of transactions and block
production is rewarded in two ways: (i) transaction fees and
(ii) monetary expansion. The producers have no control over
(ii), but can optimize (i) by choosing which transactions to
include in their blocks. Thus, they are incentivized to maximize
the total transaction fees.

In this work, we consider the natural optimization problem
of forming a block with maximum transaction fees given
a set of unmined Cardano transactions. We show that by
exploiting the sparsity of interrelations between transactions,
i.e. the small treedepth of dependency-conflict graphs, it is
possible to obtain a polynomial-time algorithm that outputs
optimal blocks. We implemented our algorithm in a free
and open-source tool called Pixiu. Using Pixiu, we provide
extensive experimental results over real-world transaction data
on the Cardano blockchain demonstrating that our approach
increases the block producers’ revenue by almost 1,357.82
USD/day = 495,604.3 USD/year.

Index Terms—Cardano, Ada, Transaction Fees, Optimization

1. Introduction

Mining. Every blockchain protocol requires a process to
extend the chain by adding new blocks. This process is
often called mining in proof-of-work blockchains such as
Bitcoin [1] and entails finding a solution to a proof-of-work
puzzle which is often based on inverting hash functions.
While proof-of-stake blockchains rely on random leader
election [2]–[11]. They and other alternative consensus

mechanisms such as proof-of-space or hybrid mining [12],
[13] do not require the expensive step of solving a hash
puzzle, they nevertheless need rules for extending the chain.
The nodes that take part in chain extension are known by
various names such as validators, farmers or producers. For
simplicity, in this work, we simply use the words miner
and producer to refer to any node on the network who
tries to add a new block to the blockchain according to
the underlying consensus protocol.

Mining Steps. A miner has to first form a block by choos-
ing a set of unmined transactions. Following Bitcoin [1],
most blockchain protocols have a maximum size limit on
the blocks, thus the miner has to strategically pick the
transactions that are included in her block. The miner then
proposes the block by publicly announcing it. The proposed
block may or may not be adopted by the network, based
on its rules of consensus. For example, in a proof-of-work
cryptocurrency, only blocks that contain a valid solution to
the hash puzzle may be accepted by the network. In this
work, we focus on the Cardano blockchain, which employs
proof-of-stake. However, our main emphasis is on the first
step, i.e. how a block is formed, and our results are quite
independent of the consensus protocol.

Cardano [14]. Cardano is an open and decentralized
blockchain platform that supports many cryptocurrencies
and tokens. Its main currency, Ada, is currently one of the
top 10 cryptocurrencies in terms of market cap and has a
value of more than 16 billion USD [15]. Similar to Bitcoin,
Cardano follows the (extended) UTXO model [16], in which
every transaction has a set of inputs and outputs. Each
input to a transaction should be an output of a previous
transaction and no output may be spent (used as input)
twice. It has two major advantages over Bitcoin: (i) support
for arbitrarily complex smart contracts, i.e. transactions can
invoke executions of programs in an expressive program-
ming language, and (ii) a proof-of-stake consensus proto-
col, namely Ouroboros Praos [17], which avoids the costly
mining process of Bitcoin’s proof-of-work. In this work, we
consider a simplified model of a Cardano transaction that
precisely captures those aspects which are important to our
problem, while ignoring other details which do not affect the
problem at hand. For a more thorough treatment, see [14]



or [18].
Proof-of-Stake [2], [3], [19]. In proof-of-stake protocols,
a miner is randomly chosen to add the next block. Each
miner’s probability of being chosen is proportional to her
stake in the currency, i.e. the number of coins she holds.
Specifically, in Cardano’s implementation of Ouroboros
Praos [17], time is divided into epochs, each consisting
of 432,000 slots. Each slot corresponds to one second.
Thus, each epoch lasts for five days. In each slot, some
miners/producers are randomly selected to propose blocks
of transactions [20].
Stake Pools and Delegation [21]. Any user who holds
Ada can take part in mining (block production) on Cardano.
Users can also delegate their mining rights (stakes) to others,
leading to stake pools which, as the name suggests, pool
together stakes from many different users. The pool operator
can then mine on behalf of all of its users and the probability
that the pool is selected in each slot is proportional to the
total stake of the members. The vast majority of Cardano
blocks are produced by stake pools rather than individual
stake holders.
Rewards. Producing blocks is a costly process. This is of
course evident in proof-of-work blockchains, in which the
miners have to solve hash puzzles requiring vast computa-
tional resources and electricity usage. Thus, Bitcoin rewards
miners for every new block that they successfully add to the
blockchain and also pays them transaction fees [1]. Even in
proof-of-stake blockchains, there are costs associated with
block production, e.g. the miner has to keep track of the
whole history of the chain, constantly listen for new trans-
actions, hold stake or convince others to delegate stakes to
her, form valid blocks of transactions and announce/propose
them on time. Therefore, it is necessary to incentivize block
production by rewarding the miners. In Cardano, the block
producers are rewarded in two ways [22]:

(i) Transaction Fees: Every transaction contains a fixed
fee. After each epoch, the fees of all transactions mined
in that epoch are divided among the block producers.

(ii) Monetary Expansion: For each epoch, a fixed percent-
age of the remaining reserve of Ada is paid to all block
producers of the epoch.

In general, producers have no control over (ii). However,
they can choose which transactions to include in their
blocks. Thus, they have a degree of control over (i) and
are collectively incentivized to maximize the total amount
of transaction fees in their epoch and thus in their block.
Our Problem. In this work, we focus on solving the prob-
lem of forming an optimal block on the Cardano blockchain.
Specifically, given a set of unmined transactions, i.e. trans-
actions that are not yet added to the blockchain, our goal
is to create a valid Cardano block with the maximum
possible amount of transaction fees, thus maximizing the
total revenue of block producers.
Related Work on Bitcoin. A similar problem has been
considered in the context of Bitcoin [23], where it was
shown to be NP-hard and hard-to-approximate unless P=NP.

Since our setting is more general than Bitcoin, as Cardano
transactions support smart contracts and many underlying
tokens/currencies, our problem is also NP-hard and hard-to-
approximate. [23] proposes an approach based on path de-
compositions to find optimal Bitcoin blocks. Unfortunately,
this approach is not efficient enough for Cardano as it often
takes several minutes to find the required decompositions
and optimal blocks, whereas the time between any two
slots/blocks in Cardano is only one second. Thus, while the
problem of optimal block production is well-motivated and
previously considered in the blockchain literature, there are
no approaches that are efficient enough to be applicable to
proof-of-stake programmable blockchains such as Cardano
in which new blocks are added in short timeframes. In this
work, we present the first such approach.
Our Contribution. We consider the problem of forming an
optimal block of transactions, i.e. a block with maximum
total transaction fee, in Cardano. Since the problem is NP-
hard, we exploit the sparsity of interrelations between real-
world Cardano transactions to obtain an algorithm that has
polynomial runtime for real-world instances of the problem.
Formally, we consider a graph of interrelations between
transactions and show that when this graph has bounded
treedepth, i.e. when it is sparse and resembles a shallow
tree, there is a polynomial-time algorithm for finding the
optimal block to mine. We then experimentally show that
the small-treedepth assumption holds for real-world Cardano
instances.

We implemented our algorithm as a free and open-source
tool called Pixiu. Pixiu is a Chinese mythical creature,
resembling a panther, that finds and eats gold and other
jewelry and brings them to its master. Our algorithm does
the same for Cardano block producers.

Figure 1: A Pixiu generated by DALL · E.

With the help of the Cardano Foundation, we performed
a 50-day-long experiment on the Cardano blockchain in
which we ran our algorithm on the same sets of transactions
as those available to real-world Cardano block producers
and compared the blocks produced by our approach with the
ones actually added on Cardano. Our approach increased the
transaction fee revenues by 1,357.82 USD/day = 495,604.3
USD/year. Thus, the benefits of producing optimal blocks



that maximize the transaction fees are highly significant in
practice.

2. Preliminaries

2.1. Cardano’s Transaction Model and Optimal
Block Production

Most modern blockchains either follow the Unspent
Transaction Output (UTXO) model, as in Bitcoin [1], or
the account model, as in Ethereum [24]. To take advan-
tage of the benefits of both models, Cardano proposes the
Extended UTXO (EUTXO) model that allows having more
expressive programs than simple scripts without adopting
the account model. In UTXO, a transaction has a set of
inputs and outputs. An input points to an output of a prior
transaction that provides funds to be spent by this transac-
tion. Moreover, every output can be used by at most one
input. EUTXO follows the same policies except that there
is one more output field called “datum” that carries contract-
specific data. In addition, EUTXO allows the inclusion of
arbitrary logic as scripts and the use of the data fields to
decide if the transaction output can be spent. See [16],
[18] for a more detailed treatment. Unlike Ethereum, in
which gas usage directly affects fees and is subject to
optimization [25]–[28], in the UTXO model each transaction
carries a fixed and known fee which does not depend on its
gas usage.
Block Constraints. In Cardano’s EUTXO model, a block
contains a sequence of valid transactions. The transactions
in each block must satisfy the following requirements, oth-
erwise the block is considered invalid and will be discarded
by all nodes of the network.

• Transaction Dependencies. If a transaction t2 uses
an output of another transaction t1 as one of its
inputs, then t2 depends on t1. If the block producer
decides to include t2 in her new block, then she
must also add t1 in the same block and before t2.
See Figure 2 as an example.
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Figure 2: Alice pays 15 Ada to Bob in t1. In t2 Bob uses
the same funds to pay 10 Ada to Carol and 5 Ada back
to himself. The transaction t2 has an input that is using an
output of t1. Thus, t1 is a dependency of t2.

• Transaction Conflicts. If two transactions t2 and t3
both spend the same output of a transaction t1, since
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Figure 3: In an auction contract, Alice has bid 5 Ada in
t1. Both Bob and Carol are trying to bid right after Alice,
hence using t1’s datum output as input to their transactions
t2 and t3. Since every output can be used only once, t2 and
t3 are in conflict.

every output may be spent at most once, only one
of the conflicting transactions may be selected and
included in the new block. Thus, the block producer
has a choice to include t2, t3 or neither in the new
block, but she cannot include both. See Figure 3 as
an example.

• Block Size Limit. Cardano imposes a block size limit,
i.e. the total size of all transactions included in a new
block must not exceed 90112 bytes = 88 kilobytes.
This is to ensure that the blocks are small enough
to be efficiently propagated within the network with
minimal latency. The block size limit may change in
each epoch, but in practice it has been consistently
kept at 88 kilobytes.

Based on the discussion above, we can now formally
define our problem.
Optimal Block Production. Given a block size limit k ∈ N,
a finite set TX of n unmined Cardano transactions in which
every transaction t ∈ TX has a set of inputs, a set of outputs,
a fee φ(t) ∈ [0,∞) and a size σ(t) ∈ N, find a subset
TX∗ ⊆ TX of transactions such that:

• TX∗ satisfies all the dependency and conflict require-
ments as above;

•
∑

t∈TX∗ σ(t) ≤ k, i.e. all the chosen transactions fit
into the block size limit; and

•
∑

t∈TX∗ φ(t) is maximized, i.e. the block consisting
of the transactions in TX∗ yields the maximum
possible total transaction fee.

In practice, we always have k = 90112.

Dependency-Conflict Graphs (DCGs) [23]. Given an in-
stance of the optimal block production problem above, we



create a graph G = (TX, EC∪ED) in which there is a vertex
corresponding to every transaction in TX and an undirected
edge {t1, t2} ∈ EC whenever the transactions t1 and t2 are
in conflict, as well as a directed edge (t1, t2) ∈ ED when
transaction t2 depends on transaction t1. See Figure 4.

Figure 4: An example dependency-conflict graph. Depen-
dency edges are shown in blue and conflict edges in red.

The work [23] considered DCGs in the context of Bit-
coin mining. It showed that if the DCGs are sparse and
tree-like or path-like, then the optimal block production
problem for Bitcoin is efficiently solvable. The approach
in [23] depends on the concepts of pathwidth [29] and
treewidth [30], which are often used to design efficient
parameterized graph algorithms [31]–[44]. Intuitively, it first
computes a decomposition of the DCG into a path/tree
and then uses a dynamic programming algorithm to obtain
the optimal block. Unfortunately, such an approach is too
slow and not applicable to our use-case in Cardano. This is
because in Cardano, a new block has to be produced every
second, whereas computing the decomposition notion used
in [23] takes minutes. This was not a problem in Bitcoin,
where a new block is added every 10 minutes, but is not
scalable enough for Cardano. Therefore, in this work, we
consider a stronger notion of decomposition, namely the
treedepth decomposition, and provide an algorithm based on
treedepth to solve the optimal block production problem in
Cardano. As we will see in Section 4, our algorithm is highly
scalable in practice and produces optimal blocks in less than
a second, hence enabling its application in Cardano.

2.2. Treedepth

Treedepth Decompositions [45]–[47]. For a graph G =
(V,E), a treedepth decomposition is a rooted tree T =
(V,ET ) on the same set of vertices as G that satisfies the
following requirement:

• For every undirected edge {u, v} ∈ E or directed
edge (u, v) ∈ E of the original graph, either u is an
ancestor of v in T or v is an ancestor of u in T.

We say that a treedepth decomposition T is optimal if it has
the smallest possible depth among all decompositions of G.
This smallest depth is called the treedepth of G. Intuitively,
treedepth is a measure of graph sparsity that captures how

Figure 5: A treedepth decomposition of the DCG graph of
Figure 4. The edges of the decomposition are dashed. Every
edge of the original graph (shown in red and blue) goes
between a vertex and one of its ancestors. The vertices are
numbered in pre-order. This decomposition has a depth of
3, since the path from the root 1 to the farthest leaf 5 has
three edges.

much a graph resembles a shallow tree. Throughout this
work, we always consider the treedepth d of a dependency-
conflict graph G. See Figure 5.
Computing Treedepth. For any small fixed d, there is an
algorithm that decides whether an input graph has treedepth
d in linear time and if so, outputs an optimal treedepth
decomposition [48]. There are also well-optimized tools and
libraries for computing treedepth decompositions [49]. As
we will see in Section 4, DCGs in Cardano have small
treedepth. Thus, in the remainder of this paper we assume,
without loss of generality, that we have access to an optimal
treedepth decomposition of every DCG. In practice, we
use [49] to find such decompositions.
Vertex Numbering. Recall that the vertices in our DCGs are
unmined Cardano transactions. We number the vertices by a
pre-order (left-to-right) traversal of our treedepth decompo-
sition. See Figure 5 as an example. This is also without loss
of generality, but allows us to present our algorithm more
concisely.
Ancestor Sets. Suppose that our treedepth decomposition
T is rooted at vertex 1. For every vertex v ∈ V, we denote
by Av the set of ancestors of v, i.e. the set of vertices that
are on the path from the root 1 to v in T. For two vertices
u, v ∈ V, we define Au,v := Au ∩ Av as the set of their
common ancestors, i.e. vertices that are ancestors of both
u and v. Since we numbered the vertices in pre-order, we
have Ai,i−1 = Ai \ {i} for every vertex i.

3. Our Algorithm

In this section, we present our algorithm for finding an
optimal Cardano block that maximizes the total transaction
fee revenue of the block producers. Our algorithm is a
dynamic programming approach based on the treedepth
decomposition of the conflict-dependency graph of our un-
mined transactions.



Input. Suppose that we are given an optimal block pro-
duction instance, consisting of the block size limit k ∈ N
and a set TX of n unmined Cardano transactions as in-
put. Each transaction t ∈ TX has a fee of φ(t) and a
size of σ(t). Additionally, we have the dependency-conflict
graph G = (TX, EC ∪ ED) and a treedepth decomposition
T = (TX, ET ) of G with depth d. Our goal is to solve the
optimal block production problem.
Canonical Subgraphs. We define n canonical subgraphs of
our DCG G. The i-th canonical subgraph Gi consists of the
first i transactions, as well as any conflicts and dependencies
between them. Formally, we let

Vi = {1, 2, . . . , i}

and
Gi = G[Vi].

Recall that the transactions are numbered by a pre-order
traversal of T. We consider subproblems on each Gi =
(Vi, Ei) and show how to combine the results on these
subproblems to find an optimal block for the entire DCG
G. See Figure 6.
Dynamic Programming Table. For every 1 ≤ i ≤ n, every
partial capacity 0 ≤ c ≤ k and every subset S ⊆ Ai, we
define a subproblem and a dynamic programming variable
as follows:

dp[i, S, c] := The maximum total fees Σt∈TX∗φ(t)
of a set TX∗ ⊆ Vi of transactions in Gi

such that TX∗ ∩Ai = S
and Σt∈TX∗σ(t) ≤ c
and TX∗ satisfies dependencies/conflicts in Ei.

Intuitively, we are considering subproblems in which we
have only the first i vertices/transactions and their depen-
dencies/conflicts, but we also consider the case where our
capacity is c ≤ k, i.e. part of the block is already filled and
we only have c bytes of free space remaining. Finally, the
set S tells us exactly which ancestors of transaction i should
be taken into the solution.
Computing Values for G1. The subgraph G1 consists only
of the root vertex 1 and has no edges. Thus, we have

dp[1, ∅, c] = 0,

and
dp[1, {1}, c] =

{
φ(1) σ(1) ≤ c
−∞ σ(1) > c

.

We use −∞ to show an impossible situation, i.e. when no
possible set TX∗ satisfying the requirements can be found.
Computing Values for Other Gi’s. Suppose i > 1 and
we intend to compute dp[i, S, c]. Moreover, assume that the
dp[j, ·, ·] values are already computed for all j < i.

• We first check if S violates any of the dependency
and conflict requirements in the set Ai, i.e. be-
tween the ancestors of vertex i. Specifically, for
any two vertices u, v ∈ Ai, if {u, v} ∈ EC and
also u, v ∈ S, then they are in conflict but both

taken in S and so we have to set dp[i, S, c] = −∞
since the requirements are impossible to satisfy.
Similarly, if (u, v) ∈ ED and v ∈ S but u 6∈ S,
then the dependency requirement is violated and we
set dp[i, S, c] = −∞. For example, in Figure 6
we set dp[4, {4}, 10] to −∞ since 4 is included
and depends on 2, which is not included. Similarly,
dp[3, {1, 2, 3}, 10] = −∞ since 1 and 3 are in
conflict.

• We then check if all the transactions in S can fit into
c bytes, i.e. whether

∑
t∈S σ(t) ≤ c. If not, we set

dp[i, S, c] = −∞.
• Let S′ ⊆ Ai−1 be a subset of ancestors of vertex

i−1. We say that S′ is compatible with S and write
S′ � S if ∀u ∈ Ai−1,i we have u ∈ S ⇔ u ∈ S′.
In other words, compatible subsets make the same
decisions about the common ancestors of i and i−1.
If all the checks above pass, then we consider two
cases:

(1) If i 6∈ S, then we know that our solution TX∗ can-
not contain the transaction i. Thus, all transactions
in the solution are already present in Gi−1.
Therefore, we set

dp[i, S, c] = max
S′�S

dp[i− 1, S′, c].

(2) If i ∈ S, then we must put the transaction i into
our solution TX∗. This reduces the available space
to c − σ(i) but also gives us a fee of φ(i). We
should then fill out our block using the previous
i− 1 transactions. Thus, we have

dp[i, S, c] = φ(i) + max
S′�S

dp[i− 1, S′, c− σ(i)].

Final Solution. Finally, we know that G = Gn by definition.
In our optimal solution, we might be taking any subset S
of the ancestors of vertex n. Thus, our algorithm outputs

max
S⊆An

dp[n, S, k]

as the maximum possible amount of transaction fees that
can be obtained from a subset of TX that fits into a block of
size k. As is standard in dynamic programming approaches,
the optimal subset TX∗ of transactions can be recovered by
retracing the steps of our algorithm and finding out which
choices led to the maximum values.

Theorem 1. Given a block size limit k, a set TX of n un-
mined Cardano transactions with dependency-conflict graph
G and a treedepth decomposition T of G with depth d, our
algorithm solves the Optimal Block Production problem in
time O(n · k · 2d · d2).

Proof. Correctness was argued in the discussion above. Note
that we always find a valid solution TX∗ since the depen-
dency/conflict requirements between any vertex i and its
ancestors are enforced when we are computing dp[i, ·, ·]. To
bound the runtime, note that we define a total of n·k ·2d dy-
namic programming variables. For each of them, we check
dependency and conflict requirements between elements of



Figure 6: Canonical subgraphs of the graph G of Figure 4 based on the treedepth decomposition of Figure 5. In each Gi,
the set Ai of ancestors of vertex i is shown in blue.

a set Ai which has a size of at most d since they are all
ancestors of a single vertex i in T. Therefore, the total
runtime for the initial checks is O(n · k · 2d · d2). Now
consider the sums computed in parts (1) and (2) above.
Consider any fixed S′ ⊆ Ai−1. Based on the way we
numbered our vertices in pre-order, every ancestor of vertex
i, except i itself, is also an ancestor of vertex i−1. Formally,
Ai,i−1 = Ai\{i}. Thus, each S′ may contribute to the sums
for at most two different compatible S ⊆ Ai sets. Therefore,
the total runtime of all sums in (1) and (2) is O(n·k·2d). The

runtime is polynomial in n and k when d is a constant.

Parallelization. We remark that the computation of dp[i, ·, ·]
in our algorithm only depends on dp[i−1, ·, ·] values. Thus,
for every i, we can perfectly parallelize the computation of
all dp[i, ·, ·] entries. In other words, if we have p < k · 2d

parallel cores, our runtime will be O
(

n·k·2d·d2

p

)
. Therefore,

one can reduce the runtime of our algorithm arbitrarily by
simply adding more computational power. In Section 4 we
do not use parallelization but our runtimes are still much
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Figure 7: Histogram of treedepths of DCGs in real-world
Cardano benchmarks. The y-axis is in logarithmic scale.

less than one second, enabling the direct application of our
approach to Cardano.

4. Implementation and Experimental Results

We implemented our algorithm in C++ as a tool called
Pixiu. Pixiu is free and open-source software donated to the
public domain. We used FlowCutter [49] to find treedepth
decompositions.
Machine. All experimental results were obtained on an Intel
Xeon Gold 5115 CPU (2.40GHz, 16 cores) running Ubuntu
22.04 and 64 GB of RAM. We did not use parallelization
in the runtimes reported below.
Benchmarks. With the help of the Cardano Foundation, we
gathered the sets of unmined transactions before each of
the blocks number 10,044,250 to 10,255,796 of the Cardano
blockchain, corresponding to the timeframe of 2024-03-12
00:00:37 UTC to 2024-04-30 23:59:41 UTC (50 days). For
each of the 211,547 blocks mined in this period, we ran our
algorithm to obtain an optimal selection of transactions and
compared the resulting total transaction fees with the fee
revenue obtained by the block producers on Cardano.
Treedepth. We observed that the vast majority of bench-
mark DCGs had small treedepth. Figure 7 shows a histogram
of the obtained treedepths. The average treedepth was 1.45.
Thus, our algorithm is applicable to real-world Cardano
block production and runs in polynomial time O(n · k) on
these instances.
Increases in Revenue. Limiting the runtime to 1s, our
algorithm improved the total transaction fees in 56,053
of the 211,547 blocks considered in our experiment. This
suggests that many of the blocks produced on the Cardano
blockchain were already optimal. This is not surprising since
when the transaction load in the network is low, the miners
can often include all the available transactions in their
block, which would of course be optimal. Our algorithm’s
advantage is most pronounced when the number of available
unmined transactions is much more than the capacity of
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Figure 8: Histogram of the transaction fee improvements
obtained over each block (in percentages). The y-axis is in
logarithmic scale.
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Figure 9: Histogram of the transaction fee improvements ob-
tained over each block (in Ada). The y-axis is in logarithmic
scale.

a block. Over these 56,053 blocks, the average per-block
improvement was 55.68 percent, corresponding to 1.55 Ada
= 1.21 USD, whereas the maximum improvement was 66.48
Ada = 51.85 USD. We used the exchange rate 1 Ada =
0.78 USD. The overall improvement over the period of the
experiment was 87,040.20 Ada = 67,891.35 USD. Thus,
our algorithm obtains transaction fee revenue increases of
1,357.82 USD/day = 495,604.3 USD/year. Therefore, the
Cardano miners would benefit immensely from applying
our algorithm and ensuring that they will always produce
optimal blocks that maximize their transaction fee revenue.
Figures 8–10 show the histogram of obtained improvements
in percentage, Ada and USD. Our average runtime was 0.31s
per block.

5. Conclusion

In this work, we presented a novel algorithm that ex-
ploits the sparsity of interrelations between Cardano trans-
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Figure 10: Histogram of the transaction fee improvements
obtained over each block (in USD). The y-axis is in loga-
rithmic scale.

actions to help block producers form a block that earns
them the maximum possible revenue in transaction fees.
We implemented our approach in a tool called Pixiu and
performed a 50-day-long experiment over real-world Car-
dano blockchain data. The results showed that our approach
significantly increases the revenues of Cardano block pro-
duction by almost 500,000 USD/year. Thus, our approach
has a clear, significant and measurable economic impact and
the block producers would benefit immensely from adopting
our tool.
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