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A RESULT ON THE EQUATION 2z? +y? =27 USING FREY ABELIAN
VARIETIES

NICOLAS BILLEREY, IMIN CHEN, LUIS DIEULEFAIT, AND NUNO FREITAS

ABSTRACT. We prove a Diophantine result on generalized Fermat equations of the form
2P +yP = 2" which for the first time requires the use of Frey abelian varieties of dimension > 2
in Darmon’s program. More precisely, for r > 5 a regular prime we prove that there exists a
constant C'(r) such that for every prime number p > C(r) the equation zP + 4P = 2" has no
non-trivial primitive integer solutions (a, b, ¢) satisfying r | ab and 2 + ab.

For the proof, we complement Darmon’s ideas in a particular case by providing an ir-
reducibility criterion for the mod p representations attached to certain families of abelian
varieties of GLo-type over totally real fields.

1. INTRODUCTION

Darmon [2] has initiated a remarkable program to study the generalized Fermat equation
(1.1) aP+y?=2z", Ip+1/g+1)r<1, x,y,z €7, xyz 0, ged(z,y,2) =1,

where the exponents p,q,r > 2 are prime numbers. He divides the analysis of this equation
into the three one-parameter families (r,r,p), (p,p,r) and (r,q,p) where in each case the
parameter p is allowed to vary and the other exponents are fixed. A notable feature of his
program is that it uses higher dimensional abelian varieties and their (still mostly conjectural)
modularity instead of just elliptic curves. However, very little is understood about the
relevant abelian varieties and Darmon’s program has not yet produced any Diophantine
result, apart from a few cases where the abelian varieties involved are of dimension one, i.e.
elliptic curves.

Darmon’s program follows the strategy of the ‘modular method’: the Frey abelian variety
A(z,y, z) attached to a non-trivial (i.e. xyz # 0) putative solution (z,y,z) of (1.1) can be
distinguished from the abelian varieties attached to the known trivial solutions (i.e. zyz =
0) through their Galois representations. Indeed, the p-torsion representation attached to
A(z,y, z) should be large in general, while if (x,y,z) is a trivial solution then this image
is usually reducible or contained in the normalizer of a Cartan subgroup. Modularity of
the abelian varieties A(x,y, z) and level lowering results imply a congruence mod p between
eigenforms, which bounds p under the set-up described above. Another interesting feature
of Darmon’s program is the use of classical cyclotomic criteria to eliminate the possibility of
a congruence to an t-Eisenstein Q-form at the lower levels |2, Proposition 3.20].
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The objective of this work is twofold. We first develop an irreducibility criterion for the
p-torsion representations attached to certain families of abelian varieties. Secondly, by fol-
lowing the idea in the previous paragraph and results from [2], we will show how the criterion
can be used to unconditionally establish a Diophantine statement via Darmon’s program that
for the first time requires Frey abelian varieties of dimension > 2.

We recall that an odd prime number r is called regular if it does not divide the class number
of the cyclotomic field Q(¢,). It is an open conjecture due to Siegel that there are infinitely
many regular primes. We will prove the following theorem.

Theorem 1. Let r > 5 be a reqular prime. There exists a constant C(r) such that for every
prime number p > C(r) the equation

(1.2) P +yP=2"

has no non-trivial (i.e. abc # 0) primitive (i.e. gcd(a,b,c) =1) solutions (a,b, c) € Z3 satisfy-
ing r|ab and 2 4 ab.

Acknowledgements. Dieulefait would like to thank Eknath Ghate for several useful con-
versations during an early phase of this project.

2. AN IRREDUCIBILITY CRITERION

The following terminology has been introduced by Ribet.

Definition 2.1. An abelian variety A over a number field K is said to be of GLa-type if its
endomorphism algebra Endg(A) ® Q = F' is a number field satisfying [F': Q] = dim A.

Let A/K be an abelian variety of GLy-type. Set F' = Endg(A) ® Q and let p be a prime
number. Denote by T},(A) the Tate module of A and write V,(A) = T,(A) ® Q,. Then,
for each prime ideal p of F' over p, the absolute Galois group Gk of K acts Fy-linearly on
Vi(A) = V,(A) ®F, F, where F, denotes the completion of F' at p and F, = F @ Q, = [, F-
This gives rise to a strictly compatible system of 2-dimensional p-adic Galois representations

Pap: Gx — GLo(Fy).

The representation p4, can be conjugated to take values in GL2(O,) where O, stands for the
ring of integers in F,. By reduction modulo the maximal ideal, we then get a representation

pap:Gr — GLy(Fy),

with values in the residue field F, of F, which is unique up to semi-simplification and iso-
morphism.

The aim of this section is to provide a uniform bound on the residual characteristic of
prime ideals p for which the corresponding representations p4, is reducible when A runs
through certain families of abelian varieties of GLo-type. For elliptic curves over totally real
fields, such irreducibility criteria were previously known and different variants (for various
families of curves) can be found in the work of Serre [11]|, Kraus [7, 8], Billerey [1], David
[3], Dieulefait-Freitas [4] and Freitas-Siksek [5].

Recently, Larson and Vaintrob [9] have proven general results which classify the so-called as-

sociated mod p characters of abelian varieties A over a number field K for p sufficiently large.
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Their results have consequences to proving irreducibility criteria for the representations py4
which we discuss here with a view towards applications to Frey abelian varieties.

For that purpose, we introduce some useful definitions.

Definition 2.2. Let A/K be an abelian variety with potentially good reduction at a prime g
of a number field K. We say that A has residual degree f at q if f is minimal among the
degrees of the residual extensions corresponding to all extensions L/K, such that A/L has
good reduction.

The following definition is motivated by |9, Lemma 4.6].

Definition 2.3. We say that an abelian variety A/K has inertial exponent c € N if for every
finite prime v of the number field K, there exists a finite Galois extension M /K such that
A/M is semistable at all primes of M lying over v, and the exponent of the inertia subgroup
at v of Gal(M/K) divides c.

We write Z for the ring of integers of Q. Given an ideal q of the ring of integers of a number
field K, we write N(q) for its norm.

Theorem 2. Let K be a totally real number field and fix a prime q of K. Let ¢, f > 1 be
integers with ¢ even. Consider a finite set S¢(q) of elements of the form ay +ay where o; € Z
are (for every embedding 7. — C) of complex absolute value N(q)f/? and aya = N(q)7.

Then there exists a constant ¢, = c1(K, ¢, f,S¢(q)) such that the following holds. Suppose
that p > c; and AJK is an abelian variety satisfying

(1) A is semistable at the primes of K above p,

(i1) A is of GLy-type with multiplications by some totally real field F,
(111) all endomorphisms of A are defined over K, that is Endg(A) = End#(A),
(iv) A over K has inertial exponent c,

(v) A has potentially good reduction at q with residual degree f,
(vi) the trace of Frobg acting on V,(A) lies in S¢(q), where p is a prime of F above p.

Then the representation pa, s irreducible.

Remark 2.4. Let L]/ K, be an extension with residual degree f such that A over L has good
reduction. Let g’ be the maximal ideal of L. Then Froby = Frobg and hence the characteristic
polynomial of p AJJ(Frobg ) is well-defined.

Remark 2.5. In the application to the generalized Fermat equation, we will take S(q) to
be the set of possible traces of Frobg on V,(A(z,y,z)), where A(z,y,z) is a Frey abelian
variety defined over K attached to a primitive solution (x,y, z) € Z3 of xP+yP = 2", A(x,y, 2)

satisfies (i)-(iv), and we impose a collection of g-adic conditions on (x,y,z) € Z? so that
A(z,y, z) satifies (v).

To make this more concrete, let us suppose, for simplicity, there is a fixed finite extension
L/K, with inertia degree f and ring of integers Oy, and some g-adic conditions on (z,y,2) €
73 allow one to give a model over Oy, for A(x,y,z) with good reduction at the prime q’ of

L above q such that the reduction modulo ¢’ is the same for any (z,y, z) € Z3 satisfying the
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g-adic conditions. In particular, the trace of Frobqf on V,(A(z,y,2)) is a single well-defined
value for (x,y, z) € Z3 satisfying these ¢g-adic conditions.

Let Sf(q) be the set of traces of Frobf; on V,(A(z,y,2)) for a collection of ¢g-adic conditions
on (x,y,z) € Z* as above. Applying Theorem 2, we deduce the irreducibility of pa(sy,z), for
(z,y,2) € Z3 a primitive solution of zP + y? = 2" satisfying the collection of ¢g-adic conditions.

Proof of Theorem 2. Let A be an abelian variety satisfying conditions (i)-(v) in the state-
ment. Suppose that pa, is reducible. Let v, : Gx — Fy, for ¢ = 1,2, denote the two diagonal
characters of ps,. Then each 1); is an associated mod p character of A of degree 1 in the
sense of |9, p. 518|. Since A has inertial exponent ¢, then ¢ is unramified at all primes v 4 p
of K by |6, Proposition 3.5 (iv)]. Moreover, since by assumption c is even, ¢ is unramified
at infinity.

We note that in [9] a quantity ¢ = ¢(g) is used, however, the proofs of the results there are
still valid as long as the A in question has inertial exponent ¢ which is even.

We identify ¢; with a character of the ideles using the reciprocity map of global class field
theory. Let 6% be defined as in [9, Definition 2.6] (with L = Q in their notation), where

S € Z[T'k] and T' is the set of embeddings of K into Q.

By [9, Lemma 5.4 and the semistability assumption (i), there exists S; € Z[T'x] such that
Pi(xp)¢ = 0% ()¢ (mod p) for all x € K relatively prime to p, where z; is the prime to p-part
of x regarded as an idéle of K.

We note that the invocation of |9, Lemma 5.4] requires p + A, where Ak is the absolute
discriminant of K, because the proof of this lemma uses |9, Lemma 4.10]. However, the
condition p 4 ¢ is not necessary as we assume semi-stability at p by (i), and hence there is
no need to use |9, Lemma 4.8].

Let Bepar(K, ¢) be as given in [9, §7.2, p. 548]. For p 4+ Bear(K,c¢), 65 is balanced by [9,
Lemma 2.15, Lemma 5.6 and §7.2]. As K is totally real, a balanced character for K means
being a power of the norm character [9, Definition 2.13]. Thus, 6% is a non-negative power
of the norm character.

From (ii) F' is totally real, and from (iii) A has all of its endomorphisms defined over K.
Hence [10, Lemma 4.5.1] says that we have

(2.6) det payp = 11hs = cyc,,

where cyc,, denotes the mod p cyclotomic character. Thus, 05 is either trivial or the norm
character and #510%2 is the norm character. Hence, by relabelling 1 and 1)y if necessary, we
may assume ¢, is unramified at all primes of K.

Let ¢ : Fy - C* be an injective homomorphism. Then ¢ o, is unramified at a prime v of K
if and only if ¢y is unramified at v. The group of continuous characters of Gx with values
in C* which are unramified at all primes of K are dual to the class group of K. Hen9e, we
have that (1o 1¢)"x =1 where h. is the exponent of the class group of K. Thus, w;hK =1.
By (v), (vi), and Remark 2.4, we obtain that

pl ] Res(X“x -1,X%-aX +N(q)¥),

aeSr(q)
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where Res denotes the resultant. Since the polynomials in the resultant have no common
roots (because the absolute value of the roots of X2 —aX + N(q)/ is different from 1) we
conclude that the resultant is non-zero. Therefore, letting c; denote a constant larger than
any prime dividing Bear (K, ¢), Ak, and the above resultant, gives the desired bound. O

Corollary 1. Let K be a totally real field, q a prime of K and g a positive integer. There is
a constant C(K,g,q) such that the following holds: Suppose p > C(K,g,q) is a prime. Then
for all g-dimensional abelian varieties AJK with potentially good reduction at q satisfying
conditions (i)-(iii) in Theorem 2 the representation pa, is irreducible.

Proof. Since A achieves semistable reduction over K(A[12]) by [6, Proposition 4.7|, and
the degree of the Galois extension K(A[12])/K is bounded in terms of g, this bounds the
possible residual degrees of A at q and inertial exponents of A in terms of g.

Let cx 4 be the product of all the possible inertial exponents from the above paragraph.

If A has residual degree f at the prime q of K, then the characteristic polynomial of Frobg

on T,(A) divides the characteristic polynomial of Frobqf on T,(A). If the dimension of A is
fixed, then by [9, Lemma 7.6] there are only finitely many possibilities for the latter. Hence,
for each possible f from the first paragraph, take S;(q) to be the set of traces of the finitely
many possibilities for the characteristic polynomial of Frobglc on T,(A).

For each f apply Theorem 2 with S;(q) and ¢ = cx 4 to get a bound ¢y = c(K, cx g, f,Sr(9q)).
The corollary follows by letting C(K, g,q) be the maximum of the c;. O

Remark 2.7. There is an alternate method to deduce irreducibility which follows more di-
rectly from [9, Corollary 5.19]. We instead picked the proof above for two reasons. On the
one hand, it is more natural as an extension of the proofs known for the case of elliptic
curves and, on the other hand, since it uses properties that are normally satisfied by Frey
abelian varieties, it should be better suited to giving simpler bounds in concrete Diophantine
applications.

3. APPLICATION TO P + P = 2"

In this section we use the irreducibility criterion from the previous section to establish
an unconditional Diophantine statement as an application of Darmon’s program [2] which
requires Frey abelian varieties of dimension > 2.

For an odd prime r, let (, be a primitive r-th root of unity and denote by K the maximal
totally real subfield of Q(¢,). Let (a,b,c) € Z3 be a non-trivial primitive solution of (1.2).
Put t = a?/c" and consider the abelian variety J;f(t) defined in Section 1.3 of [2]. According
to Eq. (5) in loc. cit., one has

Endg (J; (1)) = O
In particular, J(¢) becomes of GLy-type over K with real multiplication by K (see also
[12]). Let J;(a,b,c) be the Q-model of J;(aP/c") defined in |2, p.18].

The following two results follow from (the proof of) Proposition 1.15, Theorem 3.22 and
Definition 3.6 of [2].
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Lemma 1. Let (a,b,c) € Z3 be a non-trivial primitive solution to xP + yP = 2". Suppose
r | ab. Then the abelian variety J;(a,b,c)]/K is semistable. Moreover, if 2 + ab it has good
reduction at all primes q above 2 and its reduction mod q is well-defined on the congruence

class of (a,b,¢) (mod 2).

Theorem 3. Let r be a reqular prime. Then there exists a constant co(r) such that, for
all p > co(r), and non-trivial primitive solutions (a,b,c) € Z3 to (1.2) with r | ab, the mod p
representation p;, associated to J}(a,b,c) is reducible.

As a consequence of these results and our irreducibility criterion in Theorem 2 we can now
prove our main Diophantine application.

Proof of Theorem 1. Let (a,b,c) € Z* be a non-trivial primitive solution to aP + y? = 2"
satisfying r | ab and 2 + ab. Write J = J}(a,b,c)/K. From Lemma 1, we have that J is
semistable with good reduction at all q | 2 and where the reduction mod ¢ is well-defined on
the congruence class of (a,b,c) (mod 2). In particular, for J we have even inertial exponent
¢ =2 and residual degree f =1 at all q|2. Recalling Remark 2.5 with the 2-adic condition
2 + ab, we take S¢(q) to be the singleton set consisting of the trace of Frob, acting on the
p-torsion of J¥(1,-1,0).

From Theorem 2 we obtain a constant ¢;(r) such that if p > ¢;(r) and p | p in K then the
mod p representation p;, is irreducible.

From Theorem 3 we obtain a constant cy(r) such that if p > co(r) and p | p in K then pf, is
reducible.

Letting C'(r) be the maximum of ¢;(r) and ¢(7), we obtain a contradiction for all exponents

p>C(r). O

REFERENCES

[1] Nicolas Billerey. Critéres d’irréductibilité pour les représentations des courbes elliptiques. Int. J. Number
Theory, 7(4):1001-1032, 2011. 2

[2] Henri Darmon. Rigid local systems, Hilbert modular forms, and Fermat’s last theorem. Duke Math. J.,
102(3):413-449, 2000. 1, 1, 3

[3] Agnés David. Caractére d’isogénie et critéres d’irréductibilité. arXiv:1103.3892, 2012. 2

[4] Luis Dieulefait and Nuno Freitas. Fermat-type equations of signature (13,13,p) via Hilbert cuspforms.
Math. Ann., 357(3):987-1004, 2013. 2

[5] Nuno Freitas and Samir Siksek. Criteria for irreducibility of mod p representations of Frey curves. J.
Théor. Nombres Bordeauz, 27(1):67-76, 2015. 2

[6] Alexander Grothendieck. Modéles de Néron et monodromie. In Séminaire de Géométrie Algébrique, 7,
Exposé 9, 1967-1969. 2, 2

[7] Alain Kraus. Courbes elliptiques semi-stables et corps quadratiques. J. Number Theory, 60(2):245-253,
1996. 2

[8] Alain Kraus. Courbes elliptiques semi-stables sur les corps de nombres. Int. J. Number Theory, 3(4):611—
633, 2007. 2

[9] Eric Larson and Dmitry Vaintrob. Determinants of subquotients of Galois representations associated
with abelian varieties. J. Inst. Math. Jussieu, 13(3):517-559, 2014. With an appendix by Brian Conrad.
2,2,2,2, 2.7

[10] Kenneth A. Ribet. Galois action on division points of Abelian varieties with real multiplications. Amer.
J. Math., 98(3):751-804, 1976. 2
6



[11] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math.,
15(4):259-331, 1972. 2

[12] Walter Tautz, Jaap Top, and Alain Verberkmoes. Explicit hyperelliptic curves with real multiplication
and permutation polynomials. Canad. J. Math., 43(5):1055-1064, 1991. 3

(1) UNIVERSITE CLERMONT AUVERGNE, UNIVERSITE BLAISE PASCAL, LABORATOIRE DE MATHEMA-
TIQUES, BP 10448, F-63000 CLERMONT-FERRAND, FRANCE. (2) CNRS, UMR 6620, LM, F-63171
AUBIERE, FRANCE

E-mail address: Nicolas.Billerey@math.univ-bpclermont.fr

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, BC V5A 156, CANADA
E-mail address: ichen@sfu.ca

DEPARTAMENT D’ ALGEBRA I GEOMETRIA, UNIVERSITAT DE BARCELONA, G.V. DE LES CORTS CATALANES
585, 08007 BARCELONA, SPAIN

E-mail address: 1dieulefait@ub.edu

UNIVERSITY OF BRITISH COLUMBIA, DEPARTMENT OF MATHEMATICS, VANCOUVER, BC V6T 1Z2 CANADA

E-mail address: nunobfreitas@gmail.com



	1. Introduction
	2. An irreducibility criterion
	3. Application to xp + yp = zr
	References

