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2 Université Paris Nanterre (now at EPITA, LRE), 92000 Nanterre, France
Souheib.Baarir@lip6.fr

3 KU Leuven, Department of Computer Science, Celestijnenlaan 200A,
3001 Heverlee, Belgium

jo.devriendt@kuleuven.be

Abstract. Many satisfiability problems exhibit symmetry properties.
Thus, the development of symmetry exploitation techniques seems a nat-
ural way to try to improve the efficiency of solvers by preventing them
from exploring isomorphic parts of the search space. These techniques
can be classified into two categories: dynamic and static symmetry break-
ing. Static approaches have often appeared to be more effective than
dynamic ones. But although these approaches can be considered as com-
plementary, very few works have tried to combine them.

In this paper, we present a new tool, CosySEL, that implements
a composition of the static Effective Symmetry Breaking Predicates
(esbp) technique with the dynamic Symmetric Explanation Learning
(sel). esbp exploits symmetries to prune the search tree and sel uses
symmetries to speed up the tree traversal. These two accelerations are
complementary and their combination was made possible by the intro-
duction of Local symmetries.

We conduct our experiments on instances issued from the last ten sat
competitions and the results show that our tool outperforms the existing
tools on highly symmetrical problems.

Keywords: Boolean satisfiability · Symmetry · Dynamic symmetry
breaking · Static symmetry breaking · Local symmetries

1 Introduction

The Boolean satisfiability (sat) problem is the problem of determining whether
or not a solution that satisfies a Boolean formula exists, i.e., by assigning true
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or false values to the variables of a given Boolean formula, the latter can be
evaluated as true. If such a solution exists, it is called a model.

Boolean satisfiability is a research area with application in fields such as
cryptology [22], modal logic [15], decision planning [19], and hardware and soft-
ware verification. Actually, sat-based verification techniques have been widely
explored [7,26–28,31].

Since sat problems often exhibit symmetries, developing techniques to han-
dle them prevents solving algorithms from needlessly exploring isomorphic parts
of the search space. One common method to exploit symmetries is the static
symmetry breaking method [1,10]. It consists in precomputing Symmetry Break-
ing Predicates (sbps) and adding them to the original problem before starting
the search process. These sbps invalidate symmetrical solutions, so that the
solver avoids exploring branches of the search tree symmetrical to the already
explored ones. This method has been implemented in tools such as Shatter [2]
and Breakid [12]. Even though these approaches are the most efficient on many
symmetrical problems, highly symmetrical problems generate a large number of
sbps and this can affect the performance of the used solver.

Dynamic symmetry breaking techniques operate during the search process.
Most of them are based on learning symmetric images of already learned clauses.
The main such approaches are Symmetric Learning Scheme ( sls) [6], Symmetry
Propagation ( sp) [13] and Symmetric Explanation Learning ( sel) [11]. Even if
these techniques are less effective than the static ones in general, they perform
very well on some problems that static approaches fail to solve.

Hence the question of combining both approaches arises naturally, and has
already been tackled in some studies: Effective Symmetry Breaking Predicates
method (esbp) [23], that uses the same principle as static methods, but operates
dynamically, has been combined with sp in [24]. In [29], the authors generate
sbps in the preprocessing phase and apply the sel method afterwards.

The tool we present in this paper combines esbp with sel. Our experiments
show that it improves the capacity of the conflict-driven clause learning (cdcl)
like algorithm to handle some classes of symmetrical sat problems.

The paper is structured as follows: Sect. 2 gives the basic definitions relevant
to this work. Section 3 recalls the notion of local symmetries and presents the
combo algorithm. In Sect. 4, we discuss the implementation of the tool and the
experimental results.

2 State of the Art and Some Definitions

We recall here some basic definitions and the main ideas of esbp and sel.

2.1 Basics on Boolean Satisfiability

Boolean satisfiability aims at checking whether a Boolean formula ϕ is satisfiable
or not, i.e., whether there exists an assignment α of the Boolean variables for
which the formula is true. If so, ϕ is said to be satisfiable (sat), otherwise ϕ is
unsatisfiable (unsat).
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A formula ϕ in Conjunctive Normal Form (cnf) is a finite conjunction of
clauses, each clause being a disjunction of (possibly negated) variables. The set
of variables of a formula ϕ is denoted by Vϕ.

An assignment α is a function α : Vϕ → {�,⊥} and can be represented by the
subset of its true literals. We call a true literal x if α(x) = � or ¬x if α(x) = ⊥.
An extension of α is any α′ such that α ⊂ α′. Assignment α is said to be complete
if it contains one literal over each variable in Vϕ; it is partial otherwise. The set
of all (possibly partial) assignments to Vϕ is denoted Ass(Vϕ).

An assignment α satisfies a clause ω, denoted α |= ω, if α contains at least
one true literal from ω. An assignment α satisfies a formula ϕ, denoted α |= ϕ,
if α satisfies all the clauses in ϕ. Such an assignment α is said to be a model
of ϕ. The formula ϕ is unsatisfiable (unsat) otherwise. For more details, the
interested reader can refer to the very complete handbook [8].

Example. Let ϕ = {{x1, x2, x3}, {x1, x2}, {¬x1, x3}} be a formula. The partial
assignments {¬x1, x2} and {x1, x3} satisfy ϕ, so ϕ is satisfiable. Extending ϕ
with the unit clauses {¬x2} and {¬x3} would make it unsatisfiable.

2.2 Symmetry Group of a Formula

Let ϕ be a formula and let S(Vϕ) be the group of permutations of Vϕ under
composition. We say that g ∈ S(Vϕ) is a symmetry of ϕ if and only if for every
complete assignment α such that α |= ϕ, g.α |= ϕ, with g.α = {g(x) | x ∈
α} ∪ {¬g(x) | ¬x ∈ α}. We denote S(ϕ) ⊆ S(Vϕ) the symmetry group of ϕ and
we call generator the elements of a generating set of S(ϕ). A variable x is said
to appear in a generator g if g(x) 	= x.

Let G be a subgroup of S(Vϕ). The orbit of α under G is the set [α]G =
{g.α | g ∈ G}. The set of orbits {[α]G | α ∈ Ass(Vϕ)} partitions Ass(Vϕ) into
equivalence classes, called symmetry classes of ϕ when G = S(ϕ). We introduce
an ordering relation between assignments in order to identify a unique represen-
tative for each symmetry class.

Definition 1. [23] We assume a total order ≺ on Vϕ. Given two assignments
α, β ∈ Ass(Vϕ), α ≺ β, if there exists a variable v ∈ Vϕ such that:

– for all v′ ≺ v, either v′ ∈ α ∩ β or ¬v′ ∈ α ∩ β,
– ¬v ∈ α and v ∈ β.

Moreover, ≺ is a total order on complete assignments. For a complete assign-
ment α we define the lexicographic leader (lex-leader) of an orbit [α]G as the
minimum of [α]G w.r.t. ≺.

2.3 (Effective) Symmetry Breaking

From the above presentation, it is clear that either all the assignments within
the same symmetry class satisfy the formula, or none do. Adding a Symmetry
Breaking Predicate (sbp) to a symmetric sat formula aims at limiting the search
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tree exploration to only one assignment per symmetry class, e.g., the lex-leader.
However, finding the lex-leader of a class is computationally hard [20] and best-
effort approaches are commonly used [2,12].

sbps were first introduced as pre-generated predicates (i.e., in a static app-
roach) but they required auxiliary variables, making the size of the formulas often
intractable in practice. Effective sbps (esbps) were then proposed to tackle the
problem with a dynamic approach [23], where the solver detects on-the-fly when
the current assignment cannot be extended to a lex-leader. Actually, assignment
ordering is monotonic, i.e., whenever α < β, any extension α′ of α (resp. β′ of β)
are such that α′ < β′. Hence, if g.α < α, any possible extension α′ of α is such
that g.α′ < α′, because g.α′ is an extension of g.α. In this case, we can define
a predicate contradicting α that still preserves the satisfiability of the formula.
Such a predicate will be used to discard α and all its extensions from further
exploration, thus pruning the search tree.

Definition 2. [23] Let α ∈ Ass(Vϕ), and g ∈ S(Vϕ). We say that the formula
ψ is an Effective Symmetry Breaking Predicate (esbp) for α under g if:

α 	|= ψ and for all β ∈ Ass(Vϕ), β 	|= ψ ⇒ g.β < β

.

The equi-satisfiability of ϕ and ϕ ∪ ψ is guaranteed by the fact that ψ will
not prune the branch of the lex-leader. This approach avoids the pre-generation
of a large sbp that could have a negative effect on the overall performance of the
classical static symmetry breaking approaches. The extensive experiments con-
ducted in [23] show that it outperforms other state-of-the-art symmetry break-
ing techniques, both dynamic and static, when considering the total number of
solved instances. However, this technique fails to solve some problems that have
been trivially solved by other dynamic symmetry breaking techniques such as
sel developed in [13]. We give an overview of sel in the following section.

2.4 Symmetric (Explanation) Learning

An orthogonal approach to symmetry breaking is symmetric learning. The idea
here is not to remove the symmetric assignments by posting extra constraints,
but to add implied symmetric clauses to a sat solver’s internal learned clause
database. Symmetric learning hinges on the following theorem:

Theorem 1. [6] Let ϕ be a formula, g ∈ S(ϕ) a symmetry for the formula,
and ω a clause. Then, ϕ |= ω implies ϕ |= g.ω.

As a result, for any implied clause derived by a sat solver, any of its sym-
metric images can safely be derived as well, which, through unit propagation,
discourages the solver from visiting symmetric search branches [13].

The crucial question when implementing symmetric learning is how to avoid
overloading the solver with exponentially many symmetric clauses, while retain-
ing effective pruning of the search tree. One answer is symmetric explanation
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learning (sel), which was shown to be competitive to (but not better than)
state-of-the-art static symmetry breaking [11]. The idea behind sel, given a
small set1 of symmetries G, is to keep track of all clauses {g.ω | g ∈ G} sym-
metric to the clauses ω that triggered a currently propagated literal. Only the
symmetric clauses that propagate in turn will be added to the learned clause
database. When they propagate, all their symmetric images will be tracked, in
effect composing the symmetries in G. If the propagation explained by a clause is
cancelled (when backtracking the search), sel will quickly forget the symmetric
images that did not propagate.

3 The Proposed Technique

Our first attempt to combine static and dynamic approaches was proposed in
[24], where we combined esbp with sp. However, as it appears that sel is theoret-
ically more effective than sp, we decided to investigate the integration of esbp
with sel. This work can also be considered as a generalization of [29], where
the combination was purely static and did not take advantage of the upcoming
notion of local symmetries [24].

The idea of the sel approach is to derive and efficiently use symmetrical
clauses using a subset of S(ϕ), the symmetry group of ϕ (the correctness is thus
guaranteed by Theorem 1). If ϕ is extended by a set of clauses ψ, preserving equi-
satisfiability, then sel can be applied, as long as S(ϕ ∪ ψ) is known. Therefore,
the effectiveness of the composition of sel and esbp strongly depends on how
hard it is to compute the elements of S(ϕ ∪ ψ).

The notion of local symmetries was introduced as the theoretical framework
materializing the computation of the aforementioned elements in [24]. In this
section, we recall the definition and properties of local symmetries and invite
the interested reader to consult the original work [24] for more details.

3.1 Theoretical Foundations and Practical Considerations

Local symmetries of a clause of a formula are defined as follows.

Definition 3. Let ϕ be a formula. We define Lω,ϕ, the set of local symmetries
for a clause ω with respect to a formula ϕ, as follows:

Lω,ϕ = {g ∈ S(V) | ϕ |= g.ω}

Through this definition, it is straightforward to derive the next proposition.

Proposition 1. Let ϕ be a formula. Then,
⋂

ω∈ϕ
Lω,ϕ ⊆ S(ϕ).

1 Such a small set typically does not form a group, i.e., is not closed under composi-
tion, but closing it under composition generates a detected symmetry group for the
formula.
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Fig. 1. Workflow of the esbp sel algorithm.

A direct consequence is that the intersection of the sets of local symmetries
of all the clauses of a formula ϕ are symmetries of S(ϕ). Hence, when adding a
symmetry breaking predicate ω to ϕ, a set of valid symmetries for ϕ ∪ {ω} can
be computed on-the-fly as the intersection of Lω,ϕ and

⋂

ω′∈ϕ

Lω′,ϕ.

However, full Lω,ϕ sets are hard to compute in general, hence our tool only
computes subsets based on the following considerations. While solving a formula
based on a symmetry breaking approach, three sets of clauses are manipulated:
the original formula ϕ, the set of SBP clauses ϕe and the set ϕd of clauses derived
from ϕ ∪ ϕe. Our computation of the local symmetries of a clause ω takes into
account the fact that symmetries S(ϕ) of ϕ are already known, and depends on
which of the three sets ϕ,ϕe, or ϕd, ω belongs to.

Let ϕ′ = ϕ ∪ ϕe ∪ ϕd. There are three cases:

1. if ω ∈ ϕ, then by definition S(ϕ) ⊆ Lω,ϕ′ , so we take S(ϕ) as a representative
for Lω,ϕ′ .

2. if ω ∈ ϕe, this is an esbp clause, and we choose the set of stabilizing symme-
tries: Stab(ω) = {g ∈ S(V) | ω = g.ω} ⊆ Lω,ϕ′ .

3. if ω ∈ ϕd, this is a derived clause, and we choose the set (
⋂

ω′∈ϕ1

Lω′,ϕ′), where

ϕ1 is the set of clauses that derived ω.

3.2 Algorithm

In this section, we describe how we combined sel and esbp.
Figure 1 gives an overview of the integration of esbp and sel in the cdcl

algorithm.



258 S. Saouli et al.

1 function ESBP SEL(ϕ: cnf formula, symCtrl: symmetry controller)
2

3 dl ← 0 ; // Current decision level

4 while not all variables are assigned do
5 isConflict ← unitPropagation() ∧ selPropagation();
6 symCtrl.updateAssign(crtAssignment());
7 isReduced ← symCtrl.isNotLexLeader(crtAssignment());
8 if isConflict ∨ isReduced then
9 if dl = 0 then

10 return unsat; // ϕ is unsat

11 if isConflict then

12 〈ω, L =
⋂

ω′∈ϕ1

Lω′,ϕ1

⋃
Stab(ω)〉 ← analyzeConflictEsbpSel();

13 else

14 〈ω, L = Stab(ω)〉 ← symCtrl.genEsbpSel(crtAssignment());

15 dl ← backjumpOrRestart();
16 ϕ ← ϕ ∪ {ω} ;
17 symCtrl.updateCancel(crtAssignment());

18 else
19 assignDecisionLiteral();
20 dl ← dl + 1;

21 return sat; // ϕ is sat

Algorithm 1: The esbp sel algorithm. Instructions derived from esbp
and sel algorithms are reported in blue and red (respectively). Instructions
derived from the combination are reported with a grey background.

The integration of sel in the cdcl algorithm operates the same way as a
basic cdcl, except for the unit propagation function (sel in Fig. 1). With sel,
the algorithm keeps symmetrical versions of propagated literals’ explanation
clauses in a different database and in addition to regular unit propagation over
the regular clauses, when a symmetrical clause is asserting, sel adds it to the
learnt clauses and the asserting symmetrical literal is propagated.

The integration of esbp then consists in controlling the behaviour of the
previous algorithm by introducing a symmetry controller component that oper-
ates all symmetry-based actions. It inspects all partial assignments and detects
non-minimal ones as soon as possible. In this case, it generates an esbp clause
and injects it into the original problem (see esbp in Fig. 1).

The details of the aforementioned approach are given in Algorithm 1. The
algorithm first executes the unitPropagation() and selPropagation functions (line
5). In propagation phase, regular and symmetrical unit clauses are propagated
until a conflict is detected or fixed point is reached. Next, the symmetry con-
troller updates the current assignment and checks if it can still be extended
to a lex-leader (lines 6 − 7). When a conflict is detected, function analyzeCon-
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flictEsbpSel() (line 12) analyses the conflict and generates a learnt clause ω.
With respect to a classical analysis function of a basic cdcl algorithm, analyze-
ConflictEsbpSel() will generate the set of local symmetries associated with ω.
This is done by computing the intersection of the sets of symmetries of all the
clauses used to derive ω (as explained in Sect. 3.1), augmented with the stabi-
lizers set. If the current assignment is conflict free but can not be extended to a
lex-leader, function genEsbpSel() (line14) is called. It generates the esbp clause
to inject, along with its set of stabilizers. Function updateCancel() (line17) is
the counterpart of function backjumpOrRestart but for symCtrl, the symmetry
controller.

4 Tooling and Evaluation

In this section, we first present the tooling support of our combined approach
esbp sel combining esbp and sel. Then, we compare it to the vanilla sat solver
Glucose2 [5] and to the implementations of esbp, sel on top of Glucose and
discuss the results.

4.1 Tool Usage

Cosy3 is a C++ library offering all the functionalities necessary for the imple-
mentation of the esbp method. This library can easily be integrated to any
cdcl-like solver.

The implementation of esbp approach on top of Glucose is available at
https://github.com/lip6/cosy/tree/master/solvers/glucose-3.0. In the remain-
ing of this paper, this implementation is simply called Cosy. The implementation
of sel approach on top of Glucose is available at https://bitbucket.org/krr/
glucose-sel. Our implementation, CosySEL, of the combined approach esbp sel
is available at https://github.com/sabrinesaouli/CosySEL. It integrates Cosy in
the already mentioned implementation of sel according to Algorithm 1.

CosySEL can be used with two symmetry generator tools: Bliss [17] or
Saucy [18]. These are two of the best graph automorphism tools, that compute
a set of symmetries for a given graph.

In our tool-chain, a given cnf formula is first encoded as a colored graph into
a file that is given to Bliss or Saucy to obtain the set of symmetry generators as
a file in the corresponding format (.bliss or .sym respectively). The obtained
file is then given along with the .cnf file to the CosySEL solver (Fig. 2).

This workflow is encapsulated in a script cosysel.sh that we can execute
with bliss or saucy options.

$./cosysel.sh bliss <\cnf>
$./cosysel.sh saucy <\cnf>

2 https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz.
3 Cosy library is released under GPL v3 license at https://github.com/lip6/cosy.

https://github.com/lip6/cosy/tree/master/solvers/glucose-3.0
https://bitbucket.org/krr/glucose-sel
https://bitbucket.org/krr/glucose-sel
https://github.com/sabrinesaouli/CosySEL
https://www.labri.fr/perso/lsimon/downloads/softwares/glucose-syrup.tgz
https://github.com/lip6/cosy
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Fig. 2. Workflow of the CosySEL tool.

4.2 Evaluation

Among all the instances from the last ten sat competitions (from 2012 to
2021) [16], we selected the 1362 for which Bliss detects at least one symme-
try generator in at most 1000 s of CPU time.

All experiments were conducted using the following settings: each solver ran
once on each problem, with a memory limit of 15 GB and a time-out of 7200 s
seconds (this time limit includes symmetry detection time for all the solvers
except for Glucose which does not compute symmetries). Experiments were
executed on a computer with an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz
and 1500 GB of memory, running Linux 5.0.16.

All the approaches dealing with symmetries are built on top of a cdcl-like
solver. Therefore, for a fair comparison, the solver must not introduce side effects.
As our tool combines sel and esbp, we must at least prove that it outperforms
both. sel is built on top of Glucose, and there is also a version of esbp on
Glucose, so we chose Glucose [5] to avoid solver-induced side effects.

To be complete in our study, it seems natural to compare our new approach
with the combination of esbp and sp presented in [24] and implemented on top of
MiniSAT (in a tool referred here as CosySP). However, although it was shown in
[11] that sel approach is theoretically more efficient than sp, no available imple-
mentation supports this claim. Nevertheless, as sp is built on top of MiniSAT,
we decided to implement sel on top of MiniSAT and compare the approaches on
the whole benchmark. The results are given in Table 1 and confirm that sel is
by far better than sp. Therefore, considering that implementing a combination
of esbp and sp on top of Glucose is not simple and would require a great effort,
we relied on these results to consider it is not relevant.

We computed the symmetries of each instance with Bliss and Saucy. Bliss

is known to compute a larger number of generators for the symmetry group
compared to Saucy. As shown in [23], in an sbp-like approach, this influences
the results since it allows to cut branches of the search tree early.

Table 2 compares the use of Saucy and Bliss for computing symmetry gen-
erators. The values represent the number of sat, unsat, and the total number

Table 1. Comparison of the number of instances solved by MiniSAT-sel and Min-
iSAT-sp using Bliss.

MiniSAT-sel MiniSAT-sp

sat 304 271

unsat 402 378

TOTAL(1362) 706 649
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Table 2. Comparison of different approaches when using Saucy and Bliss.

None Saucy Bliss
Glucose Cosy sel CosySEL Cosy sel CosySEL

sat 238 227 255 229 235 253 240

unsat 473 452 505 474 497 503 553

TOTAL(1362) 711 679 760 703 732 756 793

Table 3. Comparison of instances solved by each approach according to the percent-
age of the variables in the symmetries, using Bliss to detect symmetry (the table is
restricted to instances solved by at least one solver).

(a) sat instances

% sym vars Glucose Cosy sel CosySEL

0% - 25% (195) 152 149 174 165

25% - 50% (28) 19 23 19 16

50% - 75% (14) 14 14 13 12

75% - 100% (62) 53 49 47 47

Total (299) 238 235 253 240

(b) unsat instances

% sym vars Glucose Cosy sel CosySEL

0% - 25% (250) 242 211 233 218

25% - 50% (21) 20 19 21 20

50% - 75% (11) 8 7 9 9

75% - 100% (330) 203 260 240 306

Total (612) 473 497 503 553

of instances solved. It shows that our tool performs poorly with Saucy. Actually
it computes too few symmetries to allow CosySEL to detect early non-lex-leader
assignments, hence the overhead of keeping track of local symmetries is not coun-
terbalanced. The effectiveness of Cosy, and thus the combined tool, is largely
relying on the number of observed (tracked) literals while solving the problem
and because of the reduced number of generators given by Saucy, this can be
an issue for these approaches.

The results in Table 2 confirm that CosySEL is more effective using Bliss

than Saucy. Globally, we notice that CosySEL, when used with Bliss, is the
most effective, especially when considering unsat instances. It solves 50 more
unsat and 13 fewer sat instances than the second-best method (sel).

After establishing that our tool works better with Bliss, we compared its
effectiveness against the three others in each class of problems. In Table 3, results
are split according to the percentage of variables appearing in at least one gen-
erator computed by Bliss, with the first column giving the intervals of percent-
ages. Table 3a (respectively 3b) shows the number of sat (respectively unsat)
instances solved by each approach in each interval.

unsat problems are exceptionally difficult to solve as they require traversing
the entire search space, but our tool is particularly effective for highly sym-
metrical unsat problems. As far as sat problems are concerned, the loss of
performance can be explained by the fact that Cosy can stop the exploration of
a satisfying branch of the search space because it is not a lex-leader, even though
this branch could still contain a non-lex-leader solution.

It is essential to mention that (as shown in Table 4a), CosySEL increased the
VBS(Virtual Best Solver)—which represents the best performances combined,
i.e. the number of instances that at least one solver can solve—with 35 problems
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Table 4. Virtual Best Solver (VBS) results with and without CosySEL.

(a) Comparing the VBS when using Glucose,
Cosy and sel only and when adding CosySEL to
the set of solvers.

without CosySEL with CosySEL

sat 297 299 (+2)

unsat 579 612 (+33)

TOTAL(1362) 876 911 (+35)

(b) Comparing the VBS when using Kissat-MAB only
and when adding CosySEL.

Kissat-MAB Kissat-MAB+CosySEL

sat 436 443 (+7)

unsat 570 680 (+110)

TOTAL(1362) 1006 1123 (+117)

that the other methods failed to solve. We also compared it to the best solver of
the sat contest 2021 Kissat-MAB [9] (see Table 4b). We noted that even though
our CosySEL tool is overall less effective, it managed to solve 117 problems
(mainly unsat) that Kissat-MAB could not handle. Upon taking a closer look
into the classes of problems exclusively solved by CosySEL, we further confirm
that our tool is more effective at handling highly symmetrical unsat problems:

– unsat and fully symmetrical: 40/117 are several variations of the pigeon hole
problem, 30/117 are Tseitin formulas [30], and 2/117 belong to the class of
n-queens problem.

– unsat with more than 90% of the variables being in the symmetry generators:
17/117 from the clique colouring class.

– The remaining 25/117 instances are of diverse classes of problems including
6 from the sat-based Bitcoin mining problems (Satcoin4 [21] which are sat
with ∼ 0.15% of variables being in the symmetry generators.

Out of those 117 instances and according to the publicly available sat com-
petition results, our proposal is the only tool having succeeded at solving some
problems that were previously unsolved: 29 Tseitin formulas (28 from sat 2016
and 1 from sat 2019), 4 relativised pigeonhole problems [3,4,14] from sat com-
petition 2016 and 2 classic pigeonhole problems from sat competition 2021.

To push our experiments even further, we compared our tool to the previ-
ously mentioned solvers (including CosySP)5 on fully symmetrical problems (all
the variables are involved in symmetries). We collected 282 problems (Table 5)
from the last sat competitions, from [11] and from [25]. The instances represent
different classes of problems like the pigeon hole, the clique colouring and the
channel routing problems. We plotted the results in Figs. 3a and 3b for sat and
unsat instances respectively.

Figure 3a shows that Kissat-MAB is more effective on sat problems com-
pared to the other tools, which solve more or less the same number of instances.
However, Fig. 3b shows that CosySEL stands out when it comes to unsat
instances and even Kissat-MAB cannot compete with the tools exploiting sym-
metries except for CosySP that solves two fewer instances.

4 github.com/jheusser/satcoin.
5 We recall that CosySP is based of MiniSAT, and the comparison with the other

tools is not totally fair!.
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Fig. 3. Comparison of different approaches on fully symmetrical instances.

Table 5. Comparison of approaches on fully symmetrical instances using Bliss.

Glucose Cosy sel CosySEL CosySP Kissat-MAB

sat 64 63 62 65 66 72

unsat 100 155 129 184 118 120

TOTAL(282) 164 218 191 249 184 192

In Table 5, we observe that CosySP is slightly more effective than the other
solvers exploiting symmetries on sat instances. Nevertheless, on unsat prob-
lems, it solves fewer instances than almost all the other solvers. It is hard to
identify whether this relatively low performance is due to the fact that sp is over-
loading the solver by keeping track of the status of all symmetries, or because
it is embedded in an older cdcl solver (MiniSAT). Either ways, it is clear that
our implementation of CosySEL outperforms the publicly available version of
CosySP by solving 65 more instances. This is consistent with previously made
observation regarding sel and sp (see Table 1).

5 Conclusion

We presented in this paper CosySEL: a tool that combines esbp, which dynam-
ically adds symmetry breaking predicates to the formula, with sel, which is
based on learning symmetrical clauses only when they are useful.

This combination relies on the definition of local symmetries for a clause,
which makes it possible to efficiently compute a subset of the symmetries of the
formula each time symmetry breaking predicates are added to it. Our experi-
ments investigate the effectiveness of the combined approach.

They show that CosySEL can solve a significant number of highly symmet-
rical problems that state-of-the-art solvers fail to handle. We believe that Cosy-

SEL works better with Bliss than Saucy because Bliss detects a more significant
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number of symmetries, which helps esbp cut symmetrical branches earlier. It is
also more efficient when the problem is unsat and highly symmetrical because
esbp allows the solver to visit only few (partial) assignments per symmetrical
class. Moreover, the more symmetries, the more branches esbp cuts, and the
more symmetrical clauses sel learns. However, CosySEL seems to be less effec-
tive on sat problems. This may be due to esbp stopping the exploration of a
sat branch of the search tree just because it is not a lex-leader.

As a future work, we plan to implement esbp sel in a more recent and effec-
tive sat solver than Glucose, such as the winner of the 2021 sat competition
Kissat-MAB [9], or the best scoring Maple-like solver [32], which derives most
of its code-base from Glucose and hence may be easier to port CosySEL to.
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