Effective Faraday interaction between light and nuclear spins of Helium-3 in its ground state: a semiclassical study

Matteo Fadel, Philipp Treutlein, Alice Sinatra

- To cite this version:

Matteo Fadel, Philipp Treutlein, Alice Sinatra. Effective Faraday interaction between light and nuclear spins of Helium-3 in its ground state: a semiclassical study. 2024. hal-04616423

HAL Id: hal-04616423

https://hal.science/hal-04616423

Preprint submitted on 18 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Effective Faraday interaction between light and nuclear spins of Helium-3 in its ground state: a semiclassical study

Matteo Fadel, ${ }^{1,2, *}$ Philipp Treutlein, ${ }^{2, \dagger}$ and Alice Sinatra ${ }^{3, \ddagger}$
${ }^{1}$ Department of Physics ETH Zürich - 8093 Zürich - Switzerland
${ }^{2}$ Department of Physics University of Basel - Klingelbergstrasse 824056 Basel - Switzerland
${ }^{3}$ Laboratoire Kastler Brossel ENS-Université PSL CNRS Université de la
Sorbonne et Collège de France - 24 rue Lhomond 75231 Paris - France

Abstract

We derive the semiclassical evolution equations for a system consisting of helium-3 atoms in the $2^{3} S$ metastable state interacting with a light field far-detuned from the $2^{3} S-2^{3} P$ transition, in the presence of metastability exchange collisions with ground state helium atoms and a static magnetic field. For two configurations, each corresponding to a particular choice of atom-light detuning in which the contribution of either the metastable level $F=1 / 2$ or $F=3 / 2$ is dominant, we derive a simple model of three coupled collective spins from which we can analytically extract an effective coupling constant between the collective nuclear spin and light. In these two configurations, we compare the predictions of our simplified model with the full model.

[^0]
Contents

I. Introduction 3
II. Light-matter interaction for metastable helium atoms 3
A. Effective atom-light interaction in the metastable state 4
B. Metastable atomic variables evolution due to the interaction with the light 6
III. External magnetic field 6
A. Metastable atomic variables evolution due to an external magnetic field 7
IV. Metastability exchange collisions 7
A. Evolution of the one-body density matrix 7
B. Atomic variables evolution due to metastability exchange 8
V. Semiclassical equations of motion 9
A. Semiclassical equations for the atomic and field variables 9
B. Stationary solution 9
C. Linearised equations of motion 10
VI. Effective coupling between the nuclear spin and the light in two configurations 12
A. Configuration 1: Exploiting the interaction with the $F=1 / 2$ manifold 12
B. Configuration 2: Exploiting the interaction with the $F=3 / 2$ manifold 13
C. Effective coupling in the two configurations and comparison with the full model 15
VII. Conclusions 16
A. Transition frequencies between the metastable and the excited states 17
B. Effective Hamiltonian in a state F in the large detuning limit 17
C. Commutation relations for the atomic operators 18
D. Derivation of metastability exchange equations 18
E. Coefficients of the linearized equations of the simplified models 20
F. Adiabatic elimination in Configuration 2 21
References 22

I. INTRODUCTION

Helium-3 in its ground state has a purely nuclear spin $1 / 2$. Protected by a complete electronic shell and separated from the first excited state by 20 eV , the nuclear spin of helium is a two-level quantum system that offers exceptionally long coherence times of hundreds of hours [1]. The possibility of effectively interfacing it with light, which transports information over long distances and can be measured at the quantum noise level, offers interesting application prospects for quantum technologies [2-7]. The Faraday interaction between the collective spin of an ensemble of atoms and the Stokes spin of light provides a light-matter quantum interface that has already been demonstrated in the laboratory in the case of alkaline atoms [8-10]. In the case of the purely nuclear spin of rare gases in their ground state, interaction with light requires an intermediate system. For helium-3, it is a small fraction of atoms brought into a metastable state that offers near-infrared transitions and interacts with atoms in the ground state via metastability exchange collisions [1]. In this paper we study in detail the interaction of light with a set of helium-3 atoms, a fraction of which is brought into the metastable state. At the semiclassical level, we explore the validity of the simplified model used in $[6,7]$, taking into account the full atomic structure in the metastable $3^{3} S$ and the excited $2^{3} P$ states. Moreover, we propose another possible configuration that should allow for a larger effective coupling between the nuclear spins and the light.

II. LIGHT-MATTER INTERACTION FOR METASTABLE HELIUM ATOMS

While the ground state $1^{1} S_{0}$ of helium- 3 is purely nuclear, the metastable state $2^{3} S_{1}$ has an electronic component and is the starting level for transitions at 1083 nm to the excited states $2^{3} P$. Figure 1 (Left) shows the hyperfine structure of the metastable and excited levels. The accessible transitions between levels are shown in Figure 1(Right), and the relative frequencies in Table A of Appendix A.

Figure 1: Left: hyperfine structure of states $2^{3} \mathrm{~S}_{1}$ and $2^{3} \mathrm{P}$ in ${ }^{3} \mathrm{He}$. Right: allowed transitions at 1083 nm .
For light propagating along the z-axis, we introduce the components of the Stokes spin in terms of the creation and annihilation operators of a photon polarised in the x or y direction, and in term of the circularly polarized photons creation and annihilation operators $a_{1}=\left(a_{x}-i a_{y}\right) / \sqrt{2}, a_{2}=\left(a_{x}+i a_{y}\right) / \sqrt{2}$

$$
\begin{align*}
& S_{0}=\left(a_{x}^{\dagger} a_{x}+a_{y}^{\dagger} a_{y}\right) / 2=\left(a_{1}^{\dagger} a_{2}+a_{2}^{\dagger} a_{1}\right) / 2 \tag{1}\\
& S_{x}=\left(a_{x}^{\dagger} a_{x}-a_{y}^{\dagger} a_{y}\right) / 2=\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}\right) / 2 \tag{2}\\
& S_{y}=\left(a_{x}^{\dagger} a_{y}+a_{y}^{\dagger} a_{x}\right) / 2=\left(a_{1}^{\dagger} a_{2}-a_{2}^{\dagger} a_{1}\right) / 2 i \tag{3}\\
& S_{z}=\left(a_{x}^{\dagger} a_{y}-a_{y}^{\dagger} a_{x}\right) / 2 i=\left(a_{2}^{\dagger} a_{2}-a_{1}^{\dagger} a_{1}\right) / 2 \tag{4}
\end{align*}
$$

In the weak saturation regime, the interaction of light with atoms in either one of the two states $F=1 / 2$ or $F=3 / 2$ of metastable helium can be described by an effective Hamiltonian obtained by adiabatically eliminating the optical coherences and the populations of the excited state [11-13]. The general form of the effective Hamiltonian for one atom of spin F with light a is recalled in Appendix B.

A. Effective atom-light interaction in the metastable state

Using the $F=3 / 2$ state

Using the $F=1 / 2$ state

Figure 2: Top: Coupling constants χ Eq. (8) (blue line), η Eq. (9) (orange line) and μ Eq. (10) (green line) for the $F=1 / 2$ and $F=3 / 2$ levels of the ${ }^{3} \mathrm{He}$ metatable, as a function of the light frequency detuning Δ_{p} taking the C_{8} transition as the origin. All the constants are divided by the constant $4 A /\left(\sigma_{2} \Gamma\right)$. The grey line shows the absorption spectrum taking into account the Doppler broadening for $T=300 \mathrm{~K}$ for a non polarized sample [14]. Two possible operating point marked as "Config.2" at $\Delta_{p} /(2 \pi)=-31 \mathrm{GHz}$ and "Config. 1 " at $\Delta_{p} /(2 \pi)=-2 \mathrm{GHz}$ are discussed in the text. Bottom: Level scheme depicting the two possible operating point marked as "Config.2" and "Config.1", respectively.

In the case of the metastable state $2^{3} S$ of helium- 3 , we first introduce the collective operators \vec{K}, \vec{J} and T_{m}^{l}, respectively obtained by summing the single atom spin operators in the $F=1 / 2$, and spin and tensor operators in the $F=3 / 2$ manifolds of the metastable state. Considering the transitions to the excited states $2^{3} P$, in the case of large detuning, the effective light-atoms hamiltonian for the ensemble then takes the form

$$
\begin{equation*}
H_{L A}=H_{1 / 2}+H_{3 / 2}^{V}+H_{3 / 2}^{T} \tag{5}
\end{equation*}
$$

where the two vectorial contributions, of the $F=1 / 2$ metastable state (\vec{K}) and of the $F=3 / 2$ metastable state (\vec{J}) take the Faraday form

$$
\begin{equation*}
H_{1 / 2}=\hbar \chi K_{z} S_{z} \quad H_{3 / 2}^{V}=\hbar \eta J_{z} S_{z} \tag{6}
\end{equation*}
$$

and the tensorial contribution of the $F=3 / 2$ metastable state takes the form

$$
\begin{align*}
H_{3 / 2}^{T} & =\sum_{i=1}^{n} \hbar \mu\left[\left(\frac{F_{i}\left(F_{i}+1\right)}{3}-F_{i, z}^{2}\right) S_{0}+\left(F_{i, x}^{2}-F_{i, y}^{2}\right) S_{x}+\left(F_{i, x} F_{i, y}+F_{i, y} F_{i, x}\right) S_{y}\right] \\
& =\hbar \mu\left[-2 T_{0}^{2} S_{0}+\sqrt{12}\left(\Re T_{2}^{2} S_{x}+\Im T_{2}^{2} S_{y}\right)\right] \tag{7}
\end{align*}
$$

In the above, we used the collective irreducible tensor operators $T_{0}^{2}, \mathfrak{R} T_{2}^{2}$ and $\Im T_{2}^{2}$, that are obtained by summing the single-atom tensor operators defined in Appendix B.

The constants χ, η and μ representing the strength of the different contributions have the form

$$
\begin{align*}
\chi & =\frac{\sigma_{2}}{4 A} \Gamma\left(\frac{2}{9\left(\Delta_{p}-\Delta_{1}\right)}-\frac{8}{9\left(\Delta_{p}-\Delta_{2}\right)}+\frac{10}{9\left(\Delta_{p}-\Delta_{4}\right)}-\frac{4}{9 \Delta_{p}}\right) \tag{8}\\
\eta & =\frac{\sigma_{2}}{4 A} \Gamma\left(\frac{3}{5\left(\Delta_{p}-\Delta_{3}\right)}-\frac{2}{9\left(\Delta_{p}-\Delta_{5}\right)}-\frac{1}{9\left(\Delta_{p}-\Delta_{6}\right)}-\frac{2}{45\left(\Delta_{p}-\Delta_{7}\right)}-\frac{2}{9\left(\Delta_{p}-\Delta_{9}\right)}\right) \tag{9}\\
\mu & =\frac{\sigma_{2}}{10 A} \Gamma\left(-\frac{1}{4\left(\Delta_{p}-\Delta_{3}\right)}+\frac{5}{9\left(\Delta_{p}-\Delta_{5}\right)}-\frac{5}{36\left(\Delta_{p}-\Delta_{6}\right)}+\frac{1}{9\left(\Delta_{p}-\Delta_{7}\right)}-\frac{5}{18\left(\Delta_{p}-\Delta_{9}\right)}\right) \tag{10}
\end{align*}
$$

In these equations, $\sigma_{2}=3 \lambda^{2} / 2 \pi, A$ is the cross sectional area of the light mode, $\Gamma \approx 10^{7} \mathrm{~s}^{-1}$ is the excitedstate spontaneous decay rate, and taking the C_{8} transition as a reference, we have defined $\Delta_{p}=\omega_{\text {probe }}-\omega_{C_{8}}$ and $\Delta_{i}=\omega_{F F^{\prime}}-\omega_{C_{8}}$. In Figure 2 we represent the three coupling constants χ (8), $\eta(9)$ and $\mu(10)$, all divided by the constant $4 A /\left(\sigma_{2} \Gamma\right)$, as a function of light frequency. For $\Delta_{p} /(2 \pi)=-2 \mathrm{GHZ}$, which is the operating point considered in $[6,7]$ and marked as "Config. 1 " in Fig. 2, the vector contribution of $F=1 / 2$ is dominant. A second interesting operating point, marked as "Config. 2 " in Fig. 2, is for $\Delta_{p} /(2 \pi)=-31$ GHZ, around the local minimum of the grey absorption curve where the tensor part of $F=3 / 2$ is relatively small. The main advantage of this configuration is that one could work with a highly polarized state, $M \simeq 1$, for which the $F=1 / 2$ spin manifold is empty and the initial state is effectively a spin coherent state [15].

B. Metastable atomic variables evolution due to the interaction with the light

Due to the Hamilonian (5), we find from $d O / d t=i[H, O] / \hbar$ that the Stokes operators of the light and the collective atomic variable obey the following equation of motion

$$
\begin{align*}
& \left.\frac{\mathrm{d} S_{x}}{\mathrm{~d} t}\right|_{\mathrm{L}}=-\chi K_{z} S_{y}-\eta J_{z} S_{y}+\sqrt{12} \mu \mathfrak{I} T_{2}^{2} S_{z} \tag{11}\\
& \left.\frac{\mathrm{~d} S_{y}}{\mathrm{~d} t}\right|_{\mathrm{L}}=\chi K_{z} S_{x}+\eta J_{z} S_{x}-\sqrt{12} \mu \mathfrak{R} T_{2}^{2} S_{z} \tag{12}\\
& \left.\frac{\mathrm{~d} S_{z}}{\mathrm{~d} t}\right|_{\mathrm{L}}=\sqrt{12} \mu\left(\mathfrak{R} T_{2}^{2} S_{y}-\Im T_{2}^{2} S_{x}\right) \tag{13}\\
& \left.\frac{\mathrm{d} K_{x}}{\mathrm{~d} t}\right|_{\mathrm{L}}=-\chi K_{y} S_{z} \tag{14}\\
& \left.\frac{\mathrm{~d} K_{y}}{\mathrm{~d} t}\right|_{\mathrm{L}}=\chi K_{x} S_{z} \tag{15}\\
& \left.\frac{\mathrm{~d} K_{z}}{\mathrm{~d} t}\right|_{\mathrm{L}}=0 \tag{16}\\
& \left.\frac{\mathrm{~d} J_{x}}{\mathrm{~d} t}\right|_{\mathrm{L}}=-\eta J_{y} S_{z}+\sqrt{12} \mu\left(\Im T_{1}^{2}\left(S_{x}-S_{0}\right)-\mathfrak{R} T_{1}^{2} S_{y}\right) \tag{17}\\
& \left.\frac{\mathrm{d} J_{y}}{\mathrm{~d} t}\right|_{\mathrm{L}}=\eta J_{x} S_{z}+\sqrt{12} \mu\left(\mathfrak{\Re} T_{1}^{2}\left(S_{x}+S_{0}\right)+\mathfrak{\Im} T_{1}^{2} S_{y}\right) \tag{18}\\
& \left.\frac{\mathrm{d} J_{z}}{\mathrm{~d} t}\right|_{\mathrm{L}}=2 \sqrt{12} \mu\left(\mathfrak{I} T_{2}^{2} S_{x}-\mathfrak{R} T_{2}^{2} S_{y}\right) \tag{19}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \Re T_{2}^{2}\right|_{\mathrm{L}}=-2 \eta S_{z} \mathfrak{J} T_{2}^{2}+\sqrt{12} \mu\left(\frac{1}{\sqrt{5}} S_{y}\left(2 T_{0}^{1}-T_{0}^{3}\right)+\frac{1}{\sqrt{3}} S_{0} \mathfrak{I} T_{2}^{3}\right) \tag{20}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \Im T_{2}^{2}\right|_{\mathrm{L}}=2 \eta S_{z} \Re T_{2}^{2}-\sqrt{12} \mu\left(\frac{1}{\sqrt{5}} S_{x}\left(2 T_{0}^{1}-T_{0}^{3}\right)+\frac{1}{\sqrt{3}} S_{0} \Re T_{2}^{3}\right) \tag{21}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{\Re} T_{1}^{2}\right|_{\mathrm{L}}=-\eta S_{z} \mathfrak{\Im} T_{1}^{2}+\sqrt{6} \mu\left(S_{x}\left(-\sqrt{\frac{3}{5}} \mathfrak{J} T_{1}^{3}-\frac{\sqrt{2}}{5} J_{y}+\mathfrak{I} T_{3}^{3}\right)+S_{0}\left(\frac{2}{\sqrt{15}} \mathfrak{J} T_{1}^{2}-\frac{\sqrt{2}}{5} J_{y}\right)+S_{y}\left(\sqrt{\frac{3}{5}} \mathfrak{\Re} T_{1}^{3}+\frac{\sqrt{2}}{5} J_{x}-\mathfrak{R} T_{3}^{3}\right)\right) \tag{22}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{\Im} T_{1}^{2}\right|_{\mathrm{L}}=\eta S_{z} \Re T_{1}^{2}+\sqrt{6} \mu\left(S_{x}\left(\sqrt{\frac{3}{5}} \mathfrak{\Re} T_{1}^{3}+\frac{\sqrt{2}}{5} J_{x}+\mathfrak{\Re} T_{3}^{3}\right)+S_{0}\left(\frac{2}{\sqrt{15}} \mathfrak{\Re} T_{1}^{2}-\frac{\sqrt{2}}{5} J_{x}\right)+S_{y}\left(\sqrt{\frac{3}{5}} \mathfrak{\Im} T_{1}^{3}+\frac{\sqrt{2}}{5} J_{y}+\mathfrak{\Im} T_{3}^{3}\right)\right) \tag{23}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{0}^{2}\right|_{\mathrm{L}}=\sqrt{12} \mu\left(S_{x} \mathfrak{J} T_{2}^{3}-S_{y} \Re T_{2}^{3}\right) \tag{24}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{R} T_{3}^{3}\right|_{\mathrm{L}}=-3 \eta S_{z} \mathfrak{J T _ { 3 } ^ { 3 } + \sqrt { 6 } \mu (S _ { x } \mathfrak { T } T _ { 1 } ^ { 2 } + S _ { y } \Re T _ { 1 } ^ { 2 })} \tag{25}\\
& \left.\frac{\mathrm{~d}}{\mathrm{~d} t} \mathfrak{I} T_{3}^{3}\right|_{\mathrm{L}}=3 \eta S_{z} \mathfrak{R} T_{3}^{3}-\sqrt{6} \mu\left(S_{x} \Re T_{1}^{2}-S_{y} \mathfrak{J} T_{1}^{2}\right) \tag{26}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{N} T_{2}^{3}\right|_{\mathrm{L}}=-2 \eta S_{z} \mathfrak{J} T_{2}^{3}+2 \mu\left(\sqrt{3} S_{y} T_{0}^{2}+S_{0} \mathfrak{\Im} T_{2}^{2}\right) \tag{27}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{J} T_{2}^{3}\right|_{\mathrm{L}}=2 \eta S_{z} \Re T_{2}^{3}-2 \mu\left(\sqrt{3} S_{x} T_{0}^{2}+S_{0} \Re T_{2}^{2}\right) \tag{28}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{R} T_{1}^{3}\right|_{\mathrm{L}}=-\eta S_{z} \mathfrak{J} T_{1}^{3}+\sqrt{\frac{2}{5}} \mu\left(\left(2 S_{0}+3 S_{x}\right) \mathfrak{I} T_{1}^{2}-3 S_{y} \Re T_{1}^{2}\right) \tag{29}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{J} T_{1}^{3}\right|_{\mathrm{L}}=\eta S_{z} \mathfrak{R} T_{1}^{3}-\sqrt{\frac{2}{5}} \mu\left(\left(2 S_{0}-3 S_{x}\right) \mathfrak{\Re} T_{1}^{2}-3 S_{y} \mathfrak{T} T_{1}^{2}\right) \tag{30}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{0}^{3}\right|_{\mathrm{L}}=-\frac{2}{5} \sqrt{15} \mu\left(S_{x} \mathfrak{I} T_{2}^{2}-S_{y} \Re T_{2}^{2}\right) \tag{31}
\end{align*}
$$

III. EXTERNAL MAGNETIC FIELD

In the presence of a static magnetic field \vec{B}, the system evolves according to the Hamiltonian

$$
\begin{align*}
& H_{B}=-\hbar\left(\gamma_{1 / 2} \vec{B} \cdot \vec{K}+\gamma_{3 / 2} \vec{B} \cdot \vec{J}+\gamma_{n u c} \vec{B} \cdot \vec{I}\right), \quad \text { where } \tag{32}\\
& \gamma_{1 / 2}=\frac{4}{3} \gamma_{m s} ; \quad \gamma_{3 / 2}=\frac{2}{3} \gamma_{m s} ; \quad \gamma_{m s}=-2 \pi 2.802 \mathrm{MHz} / \mathrm{G} ; \quad \gamma_{n u c}=-2 \pi 3.243 \mathrm{kHz} / \mathrm{G} \tag{33}
\end{align*}
$$

are the gyromagnetic ratios [16].

A. Metastable atomic variables evolution due to an external magnetic field

The corresponding equations of motion for atomic variables are given by

$$
\begin{align*}
& \left.\frac{\mathrm{d} \vec{I}}{\mathrm{~d} t}\right|_{B}=\gamma_{n u c} \vec{I} \times \vec{B} \tag{34}\\
& \left.\frac{\mathrm{~d} \vec{K}}{\mathrm{~d} t}\right|_{B}=\gamma_{1 / 2} \vec{K} \times \vec{B} \tag{35}\\
& \left.\frac{\mathrm{~d} \vec{J}}{\mathrm{~d} t}\right|_{B}=\gamma_{3 / 2} \vec{J} \times \vec{B} \tag{36}\\
& \left.\frac{\mathrm{~d}}{\mathrm{~d} t} \mathfrak{\Re} T_{2}^{2}\right|_{B}=\gamma_{3 / 2}\left(B_{x} \mathfrak{I} T_{1}^{2}+B_{y} \Re T_{1}^{2}+2 B_{z} \mathfrak{J} T_{2}^{2}\right) \tag{37}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{J} T_{2}^{2}\right|_{B}=\gamma_{3 / 2}\left(-B_{x} \mathfrak{R} T_{1}^{2}+B_{y} \mathfrak{J} T_{1}^{2}-2 B_{z} \mathfrak{R} T_{2}^{2}\right) \tag{38}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{\Re} T_{1}^{2}\right|_{B}=\gamma_{3 / 2}\left(B_{x} \mathfrak{\Im} T_{2}^{2}+B_{y}\left(\sqrt{3} T_{0}^{2}-\mathfrak{R} T_{2}^{2}\right)+B_{z} \mathfrak{\Im} T_{1}^{2}\right) \tag{39}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{J} T_{1}^{2}\right|_{B}=\gamma_{3 / 2}\left(-B_{x}\left(\sqrt{3} T_{0}^{2}+\mathfrak{\Re} T_{2}^{2}\right)-B_{y} \mathfrak{J} T_{2}^{2}-B_{z} \Re T_{1}^{2}\right) \tag{40}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{0}^{2}\right|_{B}=\gamma_{3 / 2} \sqrt{3}\left(B_{x} \mathfrak{\Im} T_{1}^{2}-B_{y} \Re T_{1}^{2}\right) \tag{41}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \Re T_{3}^{3}\right|_{B}=\gamma_{3 / 2}\left(B_{x} \sqrt{\frac{3}{2}} \mathfrak{\Im} T_{2}^{3}+B_{y} \sqrt{\frac{3}{2}} \mathfrak{R} T_{2}^{3}+B_{z} 3 \Im T_{3}^{3}\right) \tag{42}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{T} T_{3}^{3}\right|_{B}=\gamma_{3 / 2}\left(-B_{x} \sqrt{\frac{3}{2}} \mathfrak{R} T_{2}^{3}+B_{y} \sqrt{\frac{3}{2}} \mathfrak{T} T_{2}^{3}-B_{z} 3 \mathfrak{R} T_{3}^{3}\right) \tag{43}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{\Re} T_{2}^{3}\right|_{B}=\gamma_{3 / 2}\left(B_{x}\left(\sqrt{\frac{10}{4}} \mathfrak{\Im} T_{1}^{3}+\sqrt{\frac{3}{2}} \mathfrak{J} T_{3}^{3}\right)+B_{y}\left(\sqrt{\frac{10}{4}} \mathfrak{\Re} T_{1}^{3}-\sqrt{\frac{3}{2}} \mathfrak{\Re} T_{3}^{3}\right)+B_{z} 2 \mathfrak{I} T_{2}^{3}\right) \tag{44}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{I} T_{2}^{3}\right|_{B}=\gamma_{3 / 2}\left(B_{x}\left(-\sqrt{\frac{10}{4}} \mathfrak{R} T_{1}^{3}-\sqrt{\frac{3}{2}} \mathfrak{R} T_{3}^{3}\right)+B_{y}\left(\sqrt{\frac{10}{4}} \mathfrak{I} T_{1}^{3}-\sqrt{\frac{3}{2}} \mathfrak{J} T_{3}^{3}\right)-B_{z} 2 \mathfrak{R} T_{2}^{3}\right) \tag{45}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \Re T_{1}^{3}\right|_{B}=\gamma_{3 / 2}\left(B_{x} \sqrt{\frac{5}{2}} \mathfrak{J} T_{2}^{3}+B_{y}\left(\sqrt{6} T_{0}^{3}-\sqrt{\frac{5}{2}} \mathfrak{\Re} T_{2}^{3}\right)+B_{z} \mathfrak{J} T_{1}^{3}\right) \tag{46}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathfrak{\Im} T_{1}^{3}\right|_{B}=\gamma_{3 / 2}\left(-B_{x}\left(\sqrt{6} T_{0}^{3}-\sqrt{\frac{5}{2}} \mathfrak{R} T_{2}^{3}\right)-B_{y} \sqrt{\frac{5}{2}} \mathfrak{\Im} T_{2}^{3}-B_{z} \mathfrak{R} T_{1}^{3}\right) \tag{47}\\
& \left.\frac{\mathrm{d}}{\mathrm{~d} t} T_{0}^{3}\right|_{B}=\gamma_{3 / 2} \sqrt{6}\left(B_{x} \mathfrak{\Im} T_{1}^{2}-B_{y} \mathfrak{R} T_{1}^{2}\right) \tag{48}
\end{align*}
$$

IV. METASTABILITY EXCHANGE COLLISIONS

A. Evolution of the one-body density matrix

Metastability exchange collisions (MEC) couple the metastable state to the ground state of helium. They are usually described in terms of the one-body density matrix ρ which is assumed to be block-diagonal, with the 2×2 matrix ρ_{f} describing the ground state and the 6×6 matrix ρ_{m} describing the metastable state. Following a collision, ρ transforms according to $\rho \xrightarrow{\text { MEC }} \rho^{\prime}$ with $[3,16]$

$$
\begin{align*}
\rho_{\mathrm{f}}^{\prime} & =\operatorname{Tr}_{\mathrm{e}}\left[\rho_{\mathrm{m}}\right] \tag{49}\\
\rho_{\mathrm{m}}^{\prime} & =\rho_{\mathrm{f}} \otimes \operatorname{Tr}_{\mathrm{n}}\left[\rho_{\mathrm{m}}\right] \tag{50}
\end{align*}
$$

where $\operatorname{Tr}_{\mathrm{e}}$ and $\operatorname{Tr}_{\mathrm{n}}$ denote the trace on the electronic and nuclear degrees of freedom respectively. Note that the electronic degrees of freedom do not appear in ρ_{f} since the ground state is a singlet state, i.e. $S=0$.

Considering a set of $N_{\text {cell }}$ atoms in the ground state and $n_{\text {cell }}$ in the metastable state, the equations of motion of the one-body density matrix are written

$$
\begin{align*}
\frac{d}{d t} \rho_{\mathrm{f}} & =\frac{1}{T}\left(-\rho_{\mathrm{f}}+\operatorname{Tr}_{\mathrm{e}}\left[\rho_{\mathrm{m}}\right]\right) \tag{51}\\
\frac{d}{d t} \rho_{\mathrm{m}} & =\frac{1}{\tau}\left(-\rho_{\mathrm{m}}+\rho_{\mathrm{f}} \otimes \operatorname{Tr}_{\mathrm{n}}\left[\rho_{\mathrm{m}}\right]\right) \tag{52}
\end{align*}
$$

where the two collision rates $\gamma_{f}=1 / T$ et $\gamma_{m}=1 / \tau$ for an atom in the ground and metastable states, respectively, satisfy the relation

$$
\begin{equation*}
\frac{\gamma_{m}}{\gamma_{f}}=\frac{T}{\tau}=\frac{N_{\mathrm{cell}}}{n_{\mathrm{cell}}} \tag{53}
\end{equation*}
$$

Such equations of motion, expressed in the $\{|i\rangle\}$ basis of the Zeeman sublevels of helium-3, are found in [3]. They allow us to calculate the evolution due to the exchange of any one-body atomic operator O

$$
\begin{equation*}
\left.\frac{d\langle O\rangle}{d t}\right|_{\mathrm{MEC}}=\operatorname{Tr}\left[\left.O \frac{d \rho}{d t}\right|_{\mathrm{MEC}}\right] \tag{54}
\end{equation*}
$$

A detailed example explaining how we proceed to obtain the equations in given in Appendix D.

B. Atomic variables evolution due to metastability exchange

For the three spins: ground I, metastable $(F=1 / 2) K$ and metastable $(F=3 / 2) J$, we obtain the semi-classical equations

$$
\begin{align*}
\left.\frac{\mathrm{d}\langle\vec{I}\rangle}{\mathrm{d} t}\right|_{\mathrm{MEC}} & =-\frac{1}{T}\langle\vec{I}\rangle+\frac{1}{3 T} \frac{N}{n}(\langle\vec{J}\rangle-\langle\vec{K}\rangle) \tag{55}\\
\left.\frac{\mathrm{d}\langle\vec{K}\rangle}{\mathrm{d} t}\right|_{\mathrm{MEC}} & =-\frac{7}{9 \tau}\langle\vec{K}\rangle+\frac{1}{9 \tau}\langle\vec{J}\rangle-\frac{1}{9 \tau} \frac{n}{N}\langle\vec{I}\rangle-\frac{4}{3 \tau} \frac{1}{N}\langle\overrightarrow{\vec{Q}}\rangle \cdot\langle\vec{I}\rangle \tag{56}\\
\left.\frac{\mathrm{d}\langle\vec{J}\rangle}{\mathrm{d} t}\right|_{\mathrm{MEC}} & =-\frac{4}{9 \tau}\langle\vec{J}\rangle+\frac{10}{9 \tau}\langle\vec{K}\rangle+\frac{10}{9 \tau} \frac{n}{N}\langle\vec{I}\rangle+\frac{4}{3 \tau} \frac{1}{N}\langle\overrightarrow{\vec{Q}}\rangle \cdot\langle\vec{I}\rangle \tag{57}
\end{align*}
$$

where we have introduced the collective alignment tensor $\left\langle Q_{\alpha \beta}\right\rangle=\sum_{i=1}^{N} \frac{1}{3} \frac{1}{6}\left(\frac{3}{2}\left\langle F_{i, \alpha} F_{i, \beta}+F_{i, \beta} F_{i, \alpha}\right\rangle-2 \delta_{\alpha \beta}\right)[16]$

$$
\begin{align*}
Q_{x x} & =\frac{1}{6}\left(\sqrt{3} \Re T_{2}^{2}-T_{0}^{2}\right) \tag{58a}\\
Q_{y y} & =-\frac{1}{6}\left(\sqrt{3} \Re T_{2}^{2}+T_{0}^{2}\right) \tag{58b}\\
Q_{z z} & =\frac{1}{3} T_{0}^{2} \tag{58c}\\
Q_{x y} & =\frac{1}{2 \sqrt{3}} \Im T_{2}^{2} \tag{58d}\\
Q_{x z} & =-\frac{1}{2 \sqrt{3}} \mathfrak{R} T_{1}^{2} \tag{58e}\\
Q_{y z} & =-\frac{1}{2 \sqrt{3}} \Im T_{1}^{2} \tag{58f}
\end{align*}
$$

The rank- 2 tensors of state $F=3 / 2$ evolve according to equations

$$
\begin{align*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{R} T_{2}^{2}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{2}{3 \tau}\left\langle\mathfrak{\Re} T_{2}^{2}\right\rangle+\frac{1}{\sqrt{3} \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\Sigma_{x}\right\rangle-\left\langle I_{y}\right\rangle\left\langle\Sigma_{y}\right\rangle\right) \tag{59}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{I} T_{2}^{2}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{2}{3 \tau}\left\langle\mathfrak{I} T_{2}^{2}\right\rangle+\frac{1}{\sqrt{3} \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\Sigma_{y}\right\rangle+\left\langle I_{y}\right\rangle\left\langle\Sigma_{x}\right\rangle\right) \tag{60}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{R} T_{1}^{2}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{2}{3 \tau}\left\langle\mathfrak{\Re} T_{1}^{2}\right\rangle+\frac{1}{\sqrt{3} \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\Sigma_{z}\right\rangle+\left\langle I_{z}\right\rangle\left\langle\Sigma_{x}\right\rangle\right) \tag{61}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{I} T_{1}^{2}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{2}{3 \tau}\left\langle\mathfrak{I} T_{1}^{2}\right\rangle+\frac{1}{\sqrt{3} \tau} \frac{1}{N}\left(\left\langle I_{y}\right\rangle\left\langle\Sigma_{z}\right\rangle+\left\langle I_{z}\right\rangle\left\langle\Sigma_{y}\right\rangle\right) \tag{62}\\
\left.\frac{\mathrm{d}\left\langle T_{0}^{2}\right\rangle}{\mathrm{d} t}\right|_{\mathrm{MEC}} & =-\frac{2}{3 \tau}\left\langle T_{0}^{2}\right\rangle+\frac{1}{3 \tau} \frac{1}{N}\left(3\left\langle I_{z}\right\rangle\left\langle\Sigma_{z}\right\rangle-\langle\vec{I}\rangle \cdot\langle\vec{\Sigma}\rangle\right) \tag{63}
\end{align*}
$$

where we defined the electron spin operator expectation value in the metastable state $\langle\vec{\Sigma}\rangle=\frac{2}{3}(\langle\vec{J}\rangle+2\langle\vec{K}\rangle)$.
The rank- 3 tensors of state $F=3 / 2$ evolve according to equations

$$
\begin{align*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{\Re} T_{3}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{\Re} T_{3}^{3}\right\rangle-\frac{\sqrt{6}}{3 \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{\Re} T_{2}^{2}\right\rangle-\left\langle I_{y}\right\rangle\left\langle\mathfrak{I} T_{2}^{2}\right\rangle\right) \tag{64}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{I} T_{3}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{I} T_{3}^{3}\right\rangle-\frac{\sqrt{6}}{3 \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{I} T_{2}^{2}\right\rangle-\left\langle I_{y}\right\rangle\left\langle\mathfrak{\Re} T_{2}^{2}\right\rangle\right) \tag{65}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{\Re} T_{2}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{R} T_{2}^{3}\right\rangle-\frac{2}{3 \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{R} T_{1}^{2}\right\rangle-\left\langle I_{y}\right\rangle\left\langle\mathfrak{I} T_{1}^{2}\right\rangle-\left\langle I_{z}\right\rangle\left\langle\mathfrak{R} T_{2}^{2}\right\rangle\right) \tag{66}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{I} T_{2}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{I} T_{2}^{3}\right\rangle-\frac{2}{3 \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{I} T_{1}^{2}\right\rangle+\left\langle I_{y}\right\rangle\left\langle\mathfrak{R} T_{1}^{2}\right\rangle-\left\langle I_{z}\right\rangle\left\langle\mathfrak{I} T_{2}^{2}\right\rangle\right) \tag{67}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{\Re} T_{1}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{R} T_{1}^{3}\right\rangle+\frac{2}{3 \sqrt{10} \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left(\left\langle\mathfrak{R} T_{2}^{2}\right\rangle-2 \sqrt{3}\left\langle T_{0}^{2}\right\rangle\right)+\left\langle I_{y}\right\rangle\left\langle\mathfrak{I} T_{2}^{2}\right\rangle+4\left\langle I_{z}\right\rangle\left\langle\mathfrak{R} T_{1}^{2}\right\rangle\right) \tag{68}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\mathfrak{I} T_{1}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle\mathfrak{I} T_{1}^{3}\right\rangle+\frac{2}{3 \sqrt{10} \tau} \frac{1}{N}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{I} T_{2}^{2}\right\rangle-\left\langle I_{y}\right\rangle\left(\left\langle\mathfrak{R} T_{2}^{2}\right\rangle-2 \sqrt{3}\left\langle T_{0}^{2}\right\rangle\right)+4\left\langle I_{z}\right\rangle\left\langle\mathfrak{I} T_{1}^{2}\right\rangle\right) \tag{69}\\
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle T_{0}^{3}\right\rangle\right|_{\mathrm{MEC}} & =-\frac{1}{\tau}\left\langle T_{0}^{3}\right\rangle+\frac{2}{\sqrt{5} \tau} \frac{1}{N}\left(\frac{2 \sqrt{3}}{6}\left(\left\langle I_{x}\right\rangle\left\langle\mathfrak{R} T_{1}^{2}\right\rangle+\left\langle I_{y}\right\rangle\left\langle\mathfrak{I} T_{1}^{2}\right\rangle\right)+\left\langle I_{z}\right\rangle\left\langle T_{0}^{2}\right\rangle\right) \tag{70}
\end{align*}
$$

V. SEMICLASSICAL EQUATIONS OF MOTION

A. Semiclassical equations for the atomic and field variables

Using the results of sections II B, III and IV B, we can write the semiclassical equations of motion for the averages of the Stokes and atomic collective spin components operators, under the influence of (i) the light-atom interaction in the metastable state, (ii) a uniform external magnetic field, and (iii) metastability exchange collisions. The term "semiclassical" means here that all the operators, including those in equations of sections II B and III, are replaced by their expectation values. The time derivative of a semiclassical variable $\langle O\rangle$ has three contributions:

$$
\begin{equation*}
\frac{\mathrm{d}\langle O\rangle}{\mathrm{d} t}=\left.\frac{\mathrm{d}\langle O\rangle}{\mathrm{d} t}\right|_{\mathrm{L}}+\left.\frac{\mathrm{d}\langle O\rangle}{\mathrm{d} t}\right|_{\mathrm{B}}+\left.\frac{\mathrm{d}\langle O\rangle}{\mathrm{d} t}\right|_{\mathrm{MEC}} \tag{71}
\end{equation*}
$$

B. Stationary solution

For a nuclear polarisation $M \in[-1,1]$, a fixed magnetic field along the x-direction, $\vec{B}=B_{x} \vec{e}_{x}$, and a fixed light intensity and polarisation, the semi-classical equations of motion have a stationary solution that is found by setting the time derivatives to zero. Here we consider the Stokes spin and the nuclear spin polarised along the static magnetic field in the x-direction,

$$
\begin{equation*}
\left\langle S_{x}\right\rangle_{s}=\frac{n_{p h}}{2}, \quad\left\langle S_{y}\right\rangle_{s}=\left\langle S_{z}\right\rangle_{s}=0, \quad\left\langle I_{x}\right\rangle_{s}=M \frac{N}{2}, \quad\left\langle I_{y}\right\rangle_{s}=\left\langle I_{z}\right\rangle_{s}=0 \tag{72}
\end{equation*}
$$

The stationary solution for the atomic variables in the metastable state and its small polarization expansion is then:

$$
\begin{align*}
\left\langle K_{x}\right\rangle_{s} & =\frac{M}{2}\left(\frac{1-M^{2}}{3+M^{2}}\right) n_{\text {cell }} \stackrel{M \rightarrow 0}{\simeq}\left(\frac{M}{6}-\frac{2 M^{3}}{9}+\mathcal{O}\left(M^{5}\right)\right) n_{\text {cell }} \tag{73a}\\
\left\langle J_{x}\right\rangle_{s} & =M\left(\frac{5+M^{2}}{3+M^{2}}\right) n_{\text {cell }} \stackrel{M \rightarrow 0}{\simeq}\left(\frac{5 M}{3}-\frac{2 M^{3}}{9}+\mathcal{O}\left(M^{5}\right)\right) n_{\text {cell }} \tag{73b}\\
\left\langle T_{0}^{2}\right\rangle_{s} & =-\left(\frac{M^{2}}{3+M^{2}}\right) n_{\text {cell }} \stackrel{M \rightarrow 0}{\simeq}\left(-\frac{M^{2}}{3}+\mathcal{O}\left(M^{4}\right)\right) n_{\text {cell }} \tag{73c}\\
\left\langle\Re T_{2}^{2}\right\rangle_{s} & =\sqrt{3}\left(\frac{M^{2}}{3+M^{2}}\right) n_{\text {cell }} \stackrel{M \rightarrow 0}{\simeq}\left(\frac{M^{2}}{\sqrt{3}}+\mathcal{O}\left(M^{4}\right)\right) n_{\text {cell }} \tag{73~d}\\
\left\langle\mathfrak{R} T_{1}^{3}\right\rangle_{s} & =\sqrt{\frac{3}{10}\left(\frac{M^{3}}{3+M^{2}}\right) n_{\text {cell }} \xrightarrow{M \rightarrow 0}\left(\frac{M^{3}}{\sqrt{30}}+\mathcal{O}\left(M^{5}\right)\right) n_{\text {cell }}} \tag{73e}\\
\left\langle\Re T_{3}^{3}\right\rangle_{s} & =-\frac{1}{\sqrt{2}}\left(\frac{M^{3}}{3+M^{2}}\right) n_{\text {cell }} \stackrel{M \rightarrow 0}{\simeq}\left(-\frac{M^{3}}{3 \sqrt{2}}+\mathcal{O}\left(M^{5}\right)\right) n_{\text {cell }} . \tag{73f}
\end{align*}
$$

For $M \rightarrow 0$, the quantities $(73 \mathrm{a}, \mathrm{b}),(73 \mathrm{c}, \mathrm{d})$ and ($73 \mathrm{e}, \mathrm{f}$) are respectively of order one, two and three in M, indicating that the tensor contributions can be neglected for a small polarisation.

Moreover, we note that the stationary solutions Eqs. (73a-d) are identical to those found in Ref. [6], although the light-matter interaction for the $F=3 / 2$ level of the metastable state was not included in that work.

C. Linearised equations of motion

The linearised semiclassical equations around the stationary solution (73) are obtained by substituting $\langle O\rangle \rightarrow$ $\langle O\rangle_{s}+\delta O$, where δO is the small variation of $\langle O\rangle$ from its steady state value, and keeping only linear terms in the variations. Introducing the fluctuation vector $\vec{c}=(\vec{a}, \vec{b})$ with

$$
\begin{align*}
\vec{a} & =\left(\delta S_{y}, \delta S_{z}, \delta I_{y}, \delta I_{z}, \delta K_{y}, \delta K_{z}, \delta J_{y}, \delta J_{z}, \delta \Re T_{1}^{2}, \delta \mathfrak{I} T_{2}^{2}, \delta T_{0}^{3}, \delta \Im T_{1}^{3}, \delta \Re T_{2}^{3}, \delta \Im T_{3}^{3}\right) \tag{74}\\
\vec{b} & =\left(\delta S_{0}, \delta S_{x}, \delta I_{x}, \delta K_{x}, \delta J_{x}, \delta T_{0}^{2}, \delta \Im T_{1}^{2}, \mathfrak{R} T_{2}^{2}, \delta \Re T_{1}^{3}, \delta \Im T_{2}^{3}, \delta \Re T_{3}^{3}\right) \tag{75}
\end{align*}
$$

the linearised equations of motion take the block-diagonal form

$$
\dot{\vec{c}}=\left[\begin{array}{c|c}
A & 0 \tag{76}\\
\hline 0 & B
\end{array}\right] \vec{c},
$$

where the first block represents fluctuations in the $y z$-plane, namely the plane perpendicular to the spin polarisation. In the expression of the matrices A and B given below, the lines isolate the sub-blocks for the light, nuclear and metastable states respectively.

VI. EFFECTIVE COUPLING BETWEEN THE NUCLEAR SPIN AND THE LIGHT IN TWO CONFIGURATIONS

A simplified model involving only three coupled spins (one for the light field, one for the metastable state and one for the fundamental state) can be derived when focusing on one of the two choices of the light frequency detuning shown in figure 2: "Config.1" or "Config.2", where the vector Hamiltonian of the metastable level $F=1 / 2$ or the metastable level $F=3 / 2$ dominates. For this purpose, for a given light detuning, we set the non-dominant interaction terms in $H_{L A}$ Eq. (5) to zero and, among the degrees of freedom of the metastable state, we adiabatically eliminate those that evolve only under the influence of the magnetic field and the metastable exchange collisions.

A. Configuration 1: Exploiting the interaction with the $F=1 / 2$ manifold

We start from the linearized equations (76), and neglect the coupling of the light with the $F=3 / 2$ manifold by setting $\eta=\mu=0$. Then, we adiabatically eliminate the δJ_{α} and $\delta Q_{\alpha x}$ degrees of freedom by solving the algebraic equations $d\left(\delta J_{\alpha}\right) / d t=0$ and $d\left(\delta Q_{\alpha x}\right) / d t=0$, and inserting the solution in the equations of motion for the remaining variables. In terms of the complex variables

$$
\begin{equation*}
I_{+}=I_{y}+i I_{z}, \quad K_{+}=K_{y}+i K_{z} \tag{79}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\frac{d}{d t} \delta S_{y} & =\left\langle S_{x}\right\rangle \chi \delta K_{z} \tag{80a}\\
\frac{d}{d t} \delta S_{z} & =0 \tag{80b}\\
\frac{d}{d t} \delta I_{+} & =-\gamma_{f}^{(1 / 2)}\left(\frac{a_{1}^{(1 / 2)}}{c^{(1 / 2)}}+i \frac{B_{x} \gamma_{n u c}}{\gamma_{f}^{(1 / 2)}}\right) \delta I_{+}+\gamma_{m}^{(1 / 2)} \frac{a_{2}^{(1 / 2)}}{c^{(1 / 2)}} \delta K_{+} \tag{80c}\\
\frac{d}{d t} \delta K_{+} & =-\gamma_{m}^{(1 / 2)}\left(\frac{b_{1}^{(1 / 2)}}{c^{(1 / 2)}}+i \frac{B_{x} \gamma_{1 / 2}}{\gamma_{f}^{(1 / 2)}}\right) \delta K_{+}+\gamma_{f}^{(1 / 2)} \frac{b_{2}^{(1 / 2)}}{c^{(1 / 2)}} \delta I_{+}+\left\langle K_{x}\right\rangle \chi \delta S_{z} \tag{80d}
\end{align*}
$$

where we introduced the rescaled polarization-dependent metastability exchange rates

$$
\begin{equation*}
\gamma_{f}^{(1 / 2)}=\frac{1}{T} \frac{\left(4+M^{2}\right)\left(1-M^{2}\right)}{\left(8-M^{2}\right)\left(3+M^{2}\right)}, \quad \gamma_{m}^{(1 / 2)}=\frac{1}{\tau} \frac{\left(4+M^{2}\right)}{\left(8-M^{2}\right)} \tag{81}
\end{equation*}
$$

and the dimensionless coefficients $a_{i}^{(1 / 2)}, b_{i}^{(1 / 2)}$ and $c^{(1 / 2)}$, that can be found in Appendix E. To first order in the product $B_{x} \gamma_{\mathrm{ms}} / \gamma_{m}$, where γ_{ms} Eq. (33) is the gyromagnetic factor in the metastable state and γ_{m} (53) is the metastability exchange rate for a metastable atom, one has

$$
\begin{align*}
& \frac{a_{1}^{(1 / 2)}}{c^{(1 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1-i \frac{6\left(M^{4}+37 M^{2}+60\right)}{\left(M^{2}-8\right)^{2}\left(M^{2}-1\right)} \frac{B_{x} \gamma_{3 / 2}}{\gamma_{m}} \tag{82}\\
& \frac{a_{2}^{(1 / 2)}}{c^{(1 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1-i \frac{30\left(M^{2}+4\right)}{\left(M^{2}-8\right)^{2}} \frac{B_{x} \gamma_{3 / 2}}{\gamma_{m}} \tag{83}\\
& \frac{b_{1}^{(1 / 2)}}{c^{(1 / 2)}} \stackrel{B_{x \rightarrow 0}}{\simeq} 1-i \frac{2\left(M^{4}+17 M^{2}-20\right)}{\left(M^{2}-8\right)^{2}} \frac{B_{x} \gamma_{3 / 2}}{\gamma_{m}} \tag{84}\\
& \frac{b_{2}^{(1 / 2)}}{c^{(1 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1-i \frac{30\left(M^{2}+4\right)}{\left(M^{2}-8\right)^{2}} \frac{B_{x} \gamma_{3 / 2}}{\gamma_{m}} \tag{85}
\end{align*}
$$

We show in Fig. (3) the comparison between the numerical solution of Eqs. (80) and the full systems of equations Eq. (71) for two values of the nuclear spin polarization, $M=0.02$ and $M=0.1$. While these two models are in good agreement for the atomic variables, which shows the validity of adiabatic elimination there is a discrepancy for the variables S_{y} and S_{z} representing the light field. Such a discrepancy is due to the fact that the interaction of light with the $F=3 / 2$ level, although detuned, is never completely negligible. This is especially visible for the larger
polarizations, where the $F=3 / 2$ manifold is more populated, and for the evolution of the S_{z} quadrature Eq. (13), which depends exclusively on the tensorial interaction.

In the spirit of Refs. [6, 7], we are now interested in extracting the effective coupling constant between light and nuclear spin in the limit $B_{x} \rightarrow 0$. This can be done by adiabatically eliminating also the equations for δK, and then introducing the bosonic quadratures

$$
\begin{array}{ll}
\frac{\delta S_{y}}{\sqrt{\left\langle S_{x}\right\rangle_{s}}} \simeq X_{S} & \frac{\delta I_{y}}{\sqrt{\left\langle I_{x}\right\rangle_{s}}} \simeq X_{I} \\
\frac{\delta S_{z}}{\sqrt{\left\langle S_{x}\right\rangle_{s}}} \simeq P_{S} & \frac{\delta I_{z}}{\sqrt{\left\langle I_{x}\right\rangle_{s}}} \simeq P_{I} \tag{86b}
\end{array}
$$

satisfying the canonical commutation relations $\left[X_{S}, P_{S}\right]=\left[X_{I}, P_{I}\right]=i \hbar$. The resulting equation of motion for the light field is

$$
\begin{equation*}
\frac{d}{d t} X_{S}=\chi \frac{\left\langle K_{x}\right\rangle_{s}}{\left\langle I_{x}\right\rangle_{s}} \sqrt{\left\langle S_{x}\right\rangle_{s}\left\langle I_{x}\right\rangle_{s}} P_{S} \tag{87}
\end{equation*}
$$

from which we obtain the effective Hamiltonian describing an interaction between light and nuclear spin

$$
\begin{equation*}
H_{\mathrm{eff}}=\hbar \Omega^{(1 / 2)} P_{S} P_{I} \tag{88}
\end{equation*}
$$

with the effective coupling rate

$$
\begin{align*}
\Omega^{(1 / 2)} & =\chi \frac{\left\langle K_{x}\right\rangle_{s}}{\left\langle I_{x}\right\rangle_{s}} \sqrt{\left\langle S_{x}\right\rangle_{s}\left\langle I_{x}\right\rangle_{s}} \tag{89}\\
& =\chi \frac{n_{\mathrm{cell}}}{N_{\mathrm{cell}}} \sqrt{n_{\mathrm{ph}} N_{\mathrm{cell}}} f^{(1 / 2)}(M) \tag{90}
\end{align*}
$$

where the second line is obtained by inserting the stationary values Eqs. $(72,73)$, and in the last line we defined the polarization-dependent function

$$
\begin{equation*}
f^{(1 / 2)}(M)=\left(\frac{1-M^{2}}{3+M^{2}}\right) \sqrt{M} \tag{91}
\end{equation*}
$$

B. Configuration 2: Exploiting the interaction with the $F=3 / 2$ manifold

For this configuration we want to exploit the interaction of the light with the $F=3 / 2$ metastable manifold. Therefore, for a large nuclear spin polarization, we neglect the coupling of the light with the $F=1 / 2$ manifold by setting $\chi=0$ in the linearized equations (76). In addition, we see from Fig. 2 that in "Config. 2 " the tensor polarizability is small, which motivates us to set $\mu=0$ as well. Then we adiabatically eliminate the δK_{α} and $\delta Q_{\alpha x}$ degrees of freedom by solving the algebraic equations $d\left(\delta K_{\alpha}\right) / d t=0$ and $d\left(\delta Q_{\alpha x}\right) / d t=0$ and inserting the solution into the equations of motion for the remaining variables. In terms of the complex variables

$$
\begin{equation*}
I_{+}=I_{y}+i I_{z}, \quad J_{+}=J_{y}+i J_{z} \tag{92}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\frac{d}{d t} \delta S_{y} & =\left\langle S_{x}\right\rangle \eta \delta J_{z} \tag{93a}\\
\frac{d}{d t} \delta S_{z} & =0 \tag{93b}\\
\frac{d}{d t} \delta I_{+} & =-\gamma_{f}^{(3 / 2)}\left(\frac{a_{1}^{(3 / 2)}}{c^{(3 / 2)}}+i \frac{B_{x} \gamma_{n u c}}{\gamma_{f}^{(3 / 2)}}\right) \delta I_{+}+\gamma_{m}^{(3 / 2)} \frac{a_{2}^{(3 / 2)}}{c^{(3 / 2)}} \delta J_{+}+\frac{a_{3}^{(3 / 2)}}{c^{(3 / 2)}}\left\langle J_{x}\right\rangle \eta \delta S_{z} \tag{93c}\\
\frac{d}{d t} \delta J_{+} & =-\gamma_{m}^{(3 / 2)}\left(\frac{b_{1}^{(3 / 2)}}{c^{(3 / 2)}}+i \frac{B_{x} \gamma_{3 / 2}}{\gamma_{f}^{(3 / 2)}}\right) \delta J_{+}+\gamma_{f}^{(3 / 2)} \frac{b_{2}^{(3 / 2)}}{c^{(3 / 2)}} \delta I_{+}+\left(\frac{b_{3}^{(3 / 2)}}{c^{(3 / 2)}}+1\right)\left\langle J_{x}\right\rangle \eta \delta S_{z} \tag{93d}
\end{align*}
$$

Figure 3: Comparison between the full model Eq. (71) and the simplified model Eq. (80) in "Config.1". Top row is for a nuclear magnetization of $M=2 \%$, while the bottom row is for $M=10 \%$. Blue indicates the y spin component, while yellow the z spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of Eq. (80). Simulation parameters: $n_{\mathrm{ph}} / N_{\text {cell }}=10^{-3}, N_{\text {cell }} / n_{\text {cell }}=T / \tau=10^{6} \mathrm{~s}$, and an initial state resulting from tilting the nuclear spin by 0.01 rad . Time is in units of the nuclear spin Larmor frequency.
where we introduced the rescaled polarization-dependent metastability exchange rates

$$
\begin{equation*}
\gamma_{f}^{(3 / 2)}=\frac{1}{T} \frac{\left(4+M^{2}\right)\left(5+M^{2}\right)}{\left(7+M^{2}\right)\left(3+M^{2}\right)}, \quad \gamma_{m}^{(3 / 2)}=\frac{1}{\tau} \frac{\left(4+M^{2}\right)}{2\left(7+M^{2}\right)} \tag{94}
\end{equation*}
$$

and the dimensionless coefficients $a_{i}^{(3 / 2)}, b_{i}^{(3 / 2)}$ and $c^{(3 / 2)}$, that can be found in Appendix E. To first order in the product $B_{x} \gamma_{\mathrm{ms}} \tau$, where γ_{ms} Eq. (33) is the gyromagnetic factor in the metastable state and τ is the inverse of the metastability exchange rate, one has

$$
\begin{align*}
& \frac{a_{1}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1+i \frac{3 B_{x}\left(6\left(M^{2}+1\right) \gamma_{1 / 2}+\left(M^{2}+13\right) M^{2} \gamma_{3 / 2}\right)}{4\left(M^{2}+5\right)\left(M^{2}+7\right)^{2} \gamma_{m}} \tag{95}\\
& \frac{a_{2}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1-i \frac{3 B_{x}\left(2\left(M^{2}-2\right) \gamma_{1 / 2}+3 M^{2} \gamma_{3 / 2}\right)}{4\left(M^{2}+7\right)^{2} \gamma_{m}} \tag{96}\\
& \frac{a_{3}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} \frac{3 M^{2}}{4\left(M^{2}+5\right)\left(M^{2}+7\right)^{3}}\left(4\left(M^{2}+7\right)^{2}-3 i\left(M^{2}+4\right) \frac{B_{x}}{\gamma_{m}}\left(6 \gamma_{1 / 2}+7 \gamma_{3 / 2}\right)\right) \tag{97}\\
& \frac{b_{1}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1-i \frac{B_{x}\left(2\left(M^{4}+8 M^{2}-20\right) \gamma_{1 / 2}+9 M^{2} \gamma_{3 / 2}\right)}{4\left(M^{2}+7\right)^{2} \gamma_{m}} \tag{98}\\
& \frac{b_{2}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} 1+i \frac{3 B_{x}\left(2\left(M^{2}+1\right)\left(M^{2}+10\right) \gamma_{1 / 2}+\left(M^{2}+13\right) M^{2} \gamma_{3 / 2}\right)}{4\left(M^{2}+5\right)\left(M^{2}+7\right)^{2} \gamma_{m}} \tag{99}\\
& \frac{b_{3}^{(3 / 2)}}{c^{(3 / 2)}} \stackrel{B_{x} \rightarrow 0}{\simeq} \frac{3 M^{2}}{4\left(M^{2}+5\right)\left(M^{2}+7\right)^{3}}\left(i 3\left(M^{2}+4\right) \frac{B_{x}}{\gamma_{m}}\left(2\left(M^{2}+10\right) \gamma_{1 / 2}+7 \gamma_{3 / 2}\right)-4\left(M^{2}+7\right)^{2}\right) \tag{100}
\end{align*}
$$

We show in Fig. (4) the comparison between the numerical solution of Eqs. (93) and the full systems of equations Eq. (71) for a nuclear spin polarization of $M=0.98 \%$. While these two models are in good agreement for the atomic and S_{y} variables, there is a discrepancy for the light S_{z} variable. As in the previous case, such a discrepancy is due to the residual tensor interaction, as it can be noted by the oscillation of S_{z} at twice the Larmor frequency and it is more pronounced for large nuclear polarisations due to the M^{3} scaling of the tensor components (73). On the other hand, the adiabatic elimination of the $F=1 / 2$ and tensor degrees of freedom (without setting μ and χ to zero) gives a very good approximation of the dynamics, as we show numerically in Appendix F.

Figure 4: Comparison between the full model Eq. (71) and the simplified model Eq. (93) in "Config.2". The nuclear magnetization is set to $M=98 \%$. Blue indicates the y spin component, while yellow the z spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of Eq. (93). Simulation parameters: $n_{\mathrm{ph}} / N_{\text {cell }}=10^{-3}$, $N_{\text {cell }} / n_{\text {cell }}=T / \tau=10^{6} \mathrm{~s}$, and an initial state resulting from tilting the nuclear spin by 0.01 rad . Time is in units of the nuclear spin Larmor frequency.

The effective coupling constant between light and nuclear spin in the $B_{x}=0$ limit can be extracted similarly to the previous case, now adiabatically eliminating also the equations for δJ. The effective Hamiltonian is then

$$
\begin{equation*}
H_{\mathrm{eff}}=\hbar \Omega^{(3 / 2)} P_{S} P_{I} \tag{101}
\end{equation*}
$$

with the effective coupling rate between the light field and the nuclear spin given by

$$
\begin{align*}
\Omega^{(3 / 2)} & =\eta \frac{\left\langle J_{x}\right\rangle_{s}}{\left\langle I_{x}\right\rangle_{s}} \sqrt{\left\langle S_{x}\right\rangle_{s}\left\langle I_{x}\right\rangle_{s}} \tag{102}\\
& =\eta \frac{n_{\text {cell }}}{N_{\text {cell }}} \sqrt{n_{p h} N_{\text {cell }}} f^{(3 / 2)}(M) . \tag{103}
\end{align*}
$$

Here we used $T / \tau=N_{\text {cell }} / n_{\text {cell }}$, together with the stationary solution for the spins Eqs. $(72,73)$, and we defined the polarization-dependent scaling function

$$
\begin{equation*}
f^{(3 / 2)}(M)=2\left(\frac{5+M^{2}}{3+M^{2}}\right) \sqrt{M} \tag{104}
\end{equation*}
$$

In the next section we will compare this result with the one obtained for "Config.1".

C. Effective coupling in the two configurations and comparison with the full model

Equations (89) and (102) for the rates $\Omega^{(1 / 2)}$ and $\Omega^{(3 / 2)}$ describing the effective coupling between the collective nuclear spin and the light in "Config. 1 " and "Config. 2 " respectively, were obtained from approximate models. In this section, we extract such coupling constants from numerical simulations of the full semiclassical equations, and compare the results with the analytical expressions.

From the evolution of the Stokes spin fluctuation X_{S}, Eqs. (86-87), we see that an oscillation of the collective nuclear spin fluctuation $P_{I}=P_{I}(0) \cos \left(\omega_{I} t+\phi\right)$ results in a light signal $X_{S}=\left(\Omega P_{I}(0) / \omega_{I}\right) \sin \left(\omega_{I} t+\phi\right)$. Computing the ratio between the oscillation amplitude of the light and nuclear spin gives us Ω / ω_{I}, from which we extract the effective coupling for different nuclear polarizations.

We plot in Figure 5 the polarization dependent part of the coupling as obtained from the solution of the full set equations of motions (71), for a small initial tilt of the collective nuclear spin in the linear response regime in the two configurations (solid lines), and from the solution of the simplified models (80) in "Config.1" (circles) and (93) in "Config.2" (squares). On the same plot, we show the analytic expressions of the functions (91) and (104). Overall, the results in "Config.2" show good agreement, while the results in "Config. 1 " have a larger discrepancy especially for large polarizations. This is expected, as the effects of the $F=3 / 2$ manifold have been completely neglected.

Even accounting for the difference in the coupling constants in the two configurations, η being approximately 0.48 times χ, due to the large difference in the the scaling factors $f^{(3 / 2)}$ and $f^{(1 / 2)}$ the effective coupling between nuclear spin and light is significantly larger in "Config. 2 " than in "Config.1".

Figure 5: Comparison between the effective light-nuclear spin coupling factor in "Config.1" and "Config.2" as a function of the nuclear spin magnetization M. Blue indicates "Config.1", while yellow "Config.2". Solid lines refer to the coupling extracted from the full model, while round and square markers refer to the coupling extracted from Eq. (80) and Eq. (93), respectively. Red and green lines are the analytical expressions obtained for $B_{x}=0$, namely Eq. (91) and Eq. (104) respectively. Simulation parameters: $n_{\text {ph }} / N_{\text {cell }}=10^{-3}$ and $N_{\text {cell }} / n_{\text {cell }}=T / \tau=10^{6} \mathrm{~s}$.

VII. CONCLUSIONS

In conclusion, we have derived the full set of semiclassical equation of motion describing the interaction between light and metastable helium-3, taking into account metastability-exchange collisions with helium- 3 atoms in the ground state as well as a static external magnetic field. We then explored interesting choices of detunings between light and metastable helium-3 $2^{3} S-2^{3} P$ transition, and found two configurations that are dominated by the interaction with the atomic $F=1 / 2$ or $F=3 / 2$ manifolds. At these configurations we were able to write linearised equations of motion that describe an effective Faraday interaction between light and helium-3 nuclear spin. We provide an expression for the effective coupling rate as a function of the experimental parameters, and conclude that for large nuclear spin polarization this quantity is considerably larger in the configuration dominated by the $F=3 / 2$ manifold. A comparison between the numerical solution of the full set of equations of motion and the linearised model show that for large spin polarizations the light field evolution contains contributions from the coupling with tensor spin components. In the future, it will be important to explore how the presence of these tensor contributions might affect squeezing of the nuclear spin in a fully quantum treatment $[6,7]$.

Acknowledgments: MF was supported by the Swiss National Science Foundation Ambizione Grant No. 208886, and The Branco Weiss Fellowship - Society in Science, administered by the ETH Zürich.

Appendix A: Transition frequencies between the metastable and the excited states

Frequencies of transitions $C_{1}-C_{9}$ shown in Fig.1, and calculated with respect to transition $C_{8}=2 \pi 276726257 \mathrm{MHz}$ are reported in the following table [17]

	Freq. offset (GHz)	F	J	F^{\prime}	J^{\prime}
$\Delta_{1} / 2 \pi$	-32.6045	$1 / 2$	1	$3 / 2$	1
$\Delta_{2} / 2 \pi$	-28.0929	$1 / 2$	1	$1 / 2$	1
$\Delta_{3} / 2 \pi$	-27.6453	$3 / 2$	1	$5 / 2$	2
$\Delta_{4} / 2 \pi$	-27.4238	$1 / 2$	1	$3 / 2$	2
$\Delta_{5} / 2 \pi$	-25.8648	$3 / 2$	1	$3 / 2$	1
$\Delta_{6} / 2 \pi$	-21.3532	$3 / 2$	1	$1 / 2$	1
$\Delta_{7} / 2 \pi$	-20.6841	$3 / 2$	1	$3 / 2$	2
$\Delta_{8} / 2 \pi$	0	$1 / 2$	1	$1 / 2$	0
$\Delta_{9} / 2 \pi$	+6.7397	$3 / 2$	1	$1 / 2$	0

Appendix B: Effective Hamiltonian in a state F in the large detuning limit

The Hamiltonian for a single-atom interacting with a light field is

$$
\begin{align*}
h_{F}= & \sum_{F^{\prime}} \hbar \frac{\sigma_{F^{\prime}}}{2 A} \frac{\Gamma / 2}{\Delta_{F^{\prime}}+i \Gamma / 2}\left\{\alpha_{F^{\prime}}^{V} F_{z} S_{z}+\right. \tag{B1}\\
& \left.+\frac{\alpha_{F^{\prime}}^{T}}{(F+1)}\left[\left(\frac{F(F+1)}{3}-F_{z}^{2}\right) S_{0}+\left(F_{x}^{2}-F_{y}^{2}\right) S_{x}+\left(F_{x} F_{y}+F_{y} F_{x}\right) S_{y}\right]\right\}
\end{align*}
$$

In Eq. B1, $F\left(F^{\prime}\right)$ is the total angular momentum of the starting (target) state of the transition, $\sigma_{F^{\prime}}$ is the resonant effective cross section of the transition $F \rightarrow F^{\prime}$, and $\Delta_{F^{\prime}}=\omega_{\text {probe }}-\omega_{F F^{\prime}}$ is the detuning with respect to the resonance. In the expression $\Delta_{F^{\prime}}+i \Gamma / 2$ in the denominator, the imaginary part can be neglected for $\Delta_{F^{\prime}} \gg \Gamma / 2$.

The vector and tensor components of the polarisation have the form [11, 18]

$$
\begin{align*}
\alpha_{F^{\prime}}^{V} & =\frac{3\left(2 J^{\prime}+1\right)}{2\left(2 F^{\prime}+1\right)(2 J+1)}\left(-\frac{2 F-1}{F} \delta_{F-1}^{F^{\prime}}-\frac{2 F+1}{F(F+1)} \delta_{F}^{F^{\prime}}+\frac{2 F+3}{F+1} \delta_{F+1}^{F^{\prime}}\right) \tag{B2}\\
\alpha_{F^{\prime}}^{T} & =-\frac{3(F+1)\left(2 J^{\prime}+1\right)}{2\left(2 F^{\prime}+1\right)(2 J+1)}\left(\frac{1}{F} \delta_{F-1}^{F^{\prime}}-\frac{2 F+1}{F(F+1)} \delta_{F}^{F^{\prime}}+\frac{1}{F+1} \delta_{F+1}^{F^{\prime}}\right) . \tag{B3}
\end{align*}
$$

Introducing $\sigma_{2}=3 \lambda^{2} / 2 \pi$ and Wigner's $6 j$ symbols $\left\}\right.$, the resonant effective cross section $\sigma_{F^{\prime}}$ between two levels F, J, I and $F^{\prime}, J^{\prime}, I$ is given by

$$
\sigma_{F^{\prime}}=\sigma_{2} \frac{2(2 J+1)\left(2 F^{\prime}+1\right)}{3}\left\{\begin{array}{lll}
J^{\prime} & 1 & J \tag{B4}\\
F & I & F^{\prime}
\end{array}\right\}^{2}
$$

For a spin greater than $F=1 / 2$, the irreducible tensor basis t_{m}^{l} should be used, with $l=0,1, . ., 2 F$ and $m=-l, \ldots, l$ defined as a function of the ladder operators $F_{ \pm}=F_{x} \pm i F_{y}$, and given below for $l \leq 3$.

$$
\begin{align*}
t_{0}^{0} & =n_{0}^{0} \mathbb{I} \tag{B5a}\\
t_{0}^{1} & =n_{0}^{1} F_{z} \tag{B5b}\\
t_{ \pm 1}^{1} & =n_{ \pm 1}^{1} F_{ \pm} \tag{B5c}\\
t_{0}^{2} & =n_{0}^{2}\left(3 F_{z}^{2}-\mathbf{F}^{2}\right) \tag{B5d}\\
t_{ \pm 1}^{2} & =n_{ \pm 1}^{2}\left(F_{ \pm} F_{z}+F_{z} F_{ \pm}\right) \tag{B5e}\\
t_{ \pm 2}^{2} & =n_{ \pm 2}^{2} F_{ \pm}^{2} \tag{B5f}\\
t_{0}^{3} & =n_{0}^{3}\left(5 F_{z}^{2}-3 \mathbf{F}^{2}+1\right) F_{z} \tag{B5g}\\
t_{ \pm 1}^{3} & =n_{ \pm 1}^{3}\left[\left(5 F_{z}^{2}-\mathbf{F}^{2}-1 / 2\right) F_{ \pm}+F_{ \pm}\left(5 F_{z}^{2}-\mathbf{F}^{2}-1 / 2\right)\right] \tag{B5h}\\
t_{ \pm 2}^{3} & =n_{ \pm 2}^{3}\left(F_{ \pm}^{2} F_{z}+F_{ \pm} F_{z} F_{ \pm}+F_{z} F_{ \pm}^{2}\right) \tag{B5i}\\
t_{ \pm 3}^{3} & =n_{ \pm 3}^{3} F_{ \pm}^{3} \tag{B5j}
\end{align*}
$$

As expected, for a spin F operators of rank $l>2 F$ are null. The operators t_{m}^{l} satisfy property $\left(t_{m}^{l}\right)^{\dagger}=(-1)^{m} t_{-m}^{l}$ and are of null trace except $t_{0}^{l=0}$. Other properties and commutation relations are given in Appendix C. Prefactors n_{m}^{l} are chosen to ensure the normalisation condition $\operatorname{Tr}\left[t_{m}^{l}\left(t_{m}^{l}\right)^{\dagger}\right]=1$, and for a spin $F=3 / 2$ they read

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c}
n_{0}^{0} & n_{0}^{1} & n_{ \pm 1}^{1} & n_{0}^{2} & n_{ \pm 1}^{2} & n_{ \pm 2}^{2} & n_{0}^{3} & n_{ \pm 1}^{3} & n_{ \pm 2}^{3} & n_{ \pm 3}^{3} \\
\hline \frac{1}{2} & \frac{1}{\sqrt{5}} & \mp \frac{1}{\sqrt{10}} & \frac{1}{6} & \mp \frac{1}{2 \sqrt{6}} & \frac{1}{2 \sqrt{6}} & \frac{1}{3 \sqrt{5}} & \mp \frac{1}{4 \sqrt{15}} & \frac{1}{3 \sqrt{6}} & \mp \frac{1}{6}
\end{array}
$$

Finally, we introduce the symmetric and antisymmetric combinations

$$
\begin{equation*}
\mathfrak{R} t_{m}^{l} \equiv \frac{t_{m}^{l}+\left(t_{m}^{l}\right)^{\dagger}}{\sqrt{2}} \quad \Im t_{m}^{l} \equiv \frac{t_{m}^{l}-\left(t_{m}^{l}\right)^{\dagger}}{i \sqrt{2}} \tag{B6}
\end{equation*}
$$

The associated collective operators are then defined by summing over all particles as e.g. $\mathfrak{R} T_{m}^{l}=\sum_{i=1}^{N}\left(\mathfrak{R} t_{m}^{l}\right)_{i}$. We note that T_{0}^{1} is proportional to the longitudinal magnetisation, $\mathfrak{R} T_{1}^{1}$ and $\mathfrak{I} T_{1}^{1}$ to the magnetisations according to x and y, T_{0}^{2} is the quadrupolar spin polarisation (called alignment), $\mathfrak{R} T_{1}^{2}$ and $\Im T_{1}^{2}$ imply coherences between levels $\Delta m=1, \mathfrak{R} T_{2}^{2}$ and $\mathfrak{I} T_{2}^{2}$ between levels $\Delta m=2, T_{0}^{3}$ is the octopolar spin polarisation, etc.

Assuming $\Delta \gg \Gamma$, and summing over all atoms, we can rewrite the collective Hamiltonian

$$
\begin{equation*}
H_{F}=\sum_{F^{\prime}} \hbar \frac{\sigma_{F^{\prime}}}{4 A} \frac{\Gamma}{\Delta_{F^{\prime}}}\left\{\alpha_{F^{\prime}}^{V} F_{z} S_{z}+\frac{\alpha_{F^{\prime}}^{T}}{(F+1)}\left[-2 T_{0}^{2} S_{0}+\sqrt{12}\left(\Re T_{2}^{2} S_{x}+\Im T_{2}^{2} S_{y}\right)\right]\right\} \tag{B7}
\end{equation*}
$$

where we have preferred the notation F_{z} rather than T_{0}^{1}.

Appendix C: Commutation relations for the atomic operators

Let $\vec{F}=\left\{F_{x}, F_{y}, F_{z}\right\}$ be the components of a spin operator, $F_{ \pm}=F_{x} \pm i F_{y}$ the corresponding ladder operators, and t_{m}^{l} the irreducible tensors explicit in (B5) for $l \leq 3$. The operators satisfy the following commutator rules [11, 19]:

$$
\begin{gather*}
{\left[F_{x}, F_{y}\right]=i F_{z} \quad \text { (and cyclic permutations) }} \tag{C1}\\
{\left[F_{z}, F_{ \pm}\right]= \pm F_{ \pm}} \tag{C2}\\
{\left[F_{+}, F_{-}\right]=2 F_{z}} \tag{C3}\\
{\left[F_{z}, t_{m}^{l}\right]=m t_{m}^{l}} \tag{C4}\\
{\left[F_{ \pm}, t_{m}^{l}\right]=\sqrt{(l \pm m+1)(l \mp m)} t_{m \pm 1}^{l}} \tag{C5}\\
{\left[t_{m_{1}}^{l_{1}}, t_{m_{2}}^{l_{2}}\right]=\sum_{L, M}(-1)^{L+2 F} \sqrt{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)}\left\{\begin{array}{lll}
l_{1} & l_{2} & L \\
F & F & F
\end{array}\right\}\left\langle l_{1} m_{1} l_{2} m_{2}, L M\right\rangle\left[1-(-1)^{l_{1}+l_{2}+L}\right] t_{M}^{L}} \tag{C6}
\end{gather*}
$$

where $\}$ denotes Wigner's 6 j symbols, and \langle,$\rangle the Clebsch-Gordan coefficients.$

Appendix D: Derivation of metastability exchange equations

In this appendix we explain how the metastability exchange equations presented in section IV B can be derived in practice. First, the density matrix ρ can be written as $\rho=\sum_{i, j} \rho_{i, j}|i\rangle\langle j|$, where the indices i, j label the basis states

$$
\begin{align*}
|5\rangle & =\sqrt{\frac{1}{3}}\left|0,-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|-1, \frac{1}{2}\right\rangle|6\rangle \tag{D1a}
\end{align*}=-\sqrt{\frac{1}{3}}\left|0, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|1,-\frac{1}{2}\right\rangle .
$$

Here, note that $|9\rangle$ and $|0\rangle$ are purely nuclear states, while the others are hyperfine states of total spin $F=3 / 2$ and $F=1 / 2$ expressed in the decoupled basis of the electronic and nuclear spin. In practice, we neglect coherences between metastable and ground states, as well as coherences between the $3 / 2$ and $1 / 2$ states. This gives us

$$
\rho=\left[\begin{array}{c|c}
\rho_{m} & 0 \tag{D2}\\
\hline 0 & \rho_{f}
\end{array}\right]=\left[\begin{array}{cccccc|cc}
\rho_{1,1} & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} & 0 & 0 & 0 & 0 \\
\rho_{2,1} & \rho_{2,2} & \rho_{2,3} & \rho_{2,4} & 0 & 0 & 0 & 0 \\
\rho_{3,1} & \rho_{3,2} & \rho_{3,3} & \rho_{3,4} & 0 & 0 & 0 & 0 \\
\rho_{4,1} & \rho_{4,2} & \rho_{4,3} & \rho_{4,4} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \rho_{5,5} & \rho_{5,6} & 0 & 0 \\
0 & 0 & 0 & 0 & \rho_{6,5} & \rho_{6,6} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & \rho_{9,9} & \rho_{9,0} \\
0 & 0 & 0 & 0 & 0 & 0 & \rho_{0,9} & \rho_{0,0}
\end{array}\right] .
$$

Using now Eqs. $(51,52)$, with Eqs. $(49,50)$, allows us to derive the equations of motion of ρ due to metastability exchange collisions. These can be found in the appendix of Ref. [3]. Finally, the evolution due to metastability exchange collisions of any one-body atomic operator O can be calculated using Eq. (54). To this end, it is convenient to express the spin operators in the basis Eq. (D1). For the $F=1 / 2$ metastable state and the nuclear ground state, the spin operators in the relevant 2×2 subspace are proportional to the Pauli matrices, e.g. $k_{z}=\frac{1}{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. For the $F=3 / 2$ metastable state the spin operators in the relevant 4×4 subspace are

$$
\begin{align*}
& j_{x}=\left(\begin{array}{cccc}
0 & \frac{\sqrt{3}}{2} & 0 & 0 \\
\frac{\sqrt{3}}{2} & 0 & 1 & 0 \\
0 & 1 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & \frac{\sqrt{3}}{2} & 0
\end{array}\right), \quad j_{y}=\left(\begin{array}{cccc}
0 & \frac{i \sqrt{3}}{2} & 0 & 0 \\
-\frac{i \sqrt{3}}{2} & 0 & i & 0 \\
0 & -i & 0 & \frac{i \sqrt{3}}{2} \\
0 & 0 & -\frac{i \sqrt{3}}{2} & 0
\end{array}\right), \quad j_{z}=\left(\begin{array}{cccc}
-\frac{3}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{3}{2}
\end{array}\right), \tag{D3}\\
& t_{0}^{2}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right), \quad \Re t_{1}^{2}=\left(\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} \\
0 & 0 & -\frac{1}{2} & 0
\end{array}\right), \quad \Re t_{2}^{2}=\left(\begin{array}{cccc}
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0
\end{array}\right), \tag{D4}\\
& \Im t_{1}^{2}=\left(\begin{array}{cccc}
0 & \frac{i}{2} & 0 & 0 \\
-\frac{i}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{i}{2} \\
0 & 0 & \frac{i}{2} & 0
\end{array}\right), \quad \Im t_{2}^{2}=\left(\begin{array}{cccc}
0 & 0 & \frac{i}{2} & 0 \\
0 & 0 & 0 & \frac{i}{2} \\
-\frac{i}{2} & 0 & 0 & 0 \\
0 & -\frac{i}{2} & 0 & 0
\end{array}\right), \quad t_{0}^{3}=\left(\begin{array}{cccc}
-\frac{1}{2 \sqrt{5}} & 0 & 0 & 0 \\
0 & \frac{3}{2 \sqrt{5}} & 0 & 0 \\
0 & 0 & -\frac{3}{2 \sqrt{5}} & 0 \\
0 & 0 & 0 & \frac{1}{2 \sqrt{5}}
\end{array}\right) \tag{D5}\\
& \Re t_{1}^{3}=\left(\begin{array}{cccc}
0 & -\frac{1}{\sqrt{10}} & 0 & 0 \\
-\frac{1}{\sqrt{10}} & 0 & \sqrt{\frac{3}{10}} & 0 \\
0 & \sqrt{\frac{3}{10}} & 0 & -\frac{1}{\sqrt{10}} \\
0 & 0 & -\frac{1}{\sqrt{10}} & 0
\end{array}\right), \quad \Re t_{2}^{3}=\left(\begin{array}{cccc}
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} \\
-\frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0
\end{array}\right), \quad \Re t_{3}^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & -\frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & 0 & 0
\end{array}\right), \tag{D6}\\
& \Im t_{1}^{3}=\left(\begin{array}{cccc}
0 & -\frac{i}{\sqrt{10}} & 0 & 0 \\
\frac{i}{\sqrt{10}} & 0 & i \sqrt{\frac{3}{10}} & 0 \\
0 & -i \sqrt{\frac{3}{10}} & 0 & -\frac{i}{\sqrt{10}} \\
0 & 0 & \frac{i}{\sqrt{10}} & 0
\end{array}\right), \quad \Im t_{2}^{3}=\left(\begin{array}{cccc}
0 & 0 & -\frac{i}{2} & 0 \\
0 & 0 & 0 & \frac{i}{2} \\
\frac{i}{2} & 0 & 0 & 0 \\
0 & -\frac{i}{2} & 0 & 0
\end{array}\right), \quad \Im t_{3}^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & -\frac{i}{\sqrt{2}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{i}{\sqrt{2}} & 0 & 0 & 0
\end{array}\right) . \tag{D7}
\end{align*}
$$

The equations of motion for the collective spin operators are then readily found by taking

$$
\begin{equation*}
\langle\vec{I}\rangle=N\langle\vec{i}\rangle, \quad\langle\vec{K}\rangle=n\langle\vec{k}\rangle, \quad\langle\vec{J}\rangle=n\langle\vec{j}\rangle, \quad\left\langle\mathfrak{R} T_{2}^{2}\right\rangle=n\left\langle\mathfrak{R} t_{2}^{2}\right\rangle, \quad \text { etc. } \tag{D8}
\end{equation*}
$$

and are the one presented in Section IV B.

Appendix E: Coefficients of the linearized equations of the simplified models

In this appendix we give the expression of the coefficients appearing in the linearized equations of the simplified models of section VI.

The coefficients appearing in Eqs. (80) read

$$
\begin{align*}
& c^{(1 / 2)}=\left(\frac{30 i\left(M^{2}+4\right) \gamma_{3 / 2} B_{x}}{\gamma_{m}}+\frac{27\left(M^{2}+4\right)^{2} \gamma_{3 / 2\left(M^{2}-8\right)}^{2} B_{x}^{2}}{\gamma_{m}^{2}}+\left(M^{2}-8\right)^{2}\right) \tag{E1}\\
& a_{1}^{(1 / 2)}=\frac{\left(M^{2}-8\right)}{\left(M^{2}+4\right)\left(M^{2}-1\right)}\left(\left(M^{2}+3\right) c^{(1 / 2)}+4\left(\left(M^{2}-8\right)\left(2 M^{2}+5\right)-\frac{3 i\left(M^{2}+4\right)\left(M^{2}+5\right) \gamma_{3 / 2} B_{x}}{2 \gamma_{m}}\right)\right) \tag{E2}\\
& a_{2}^{(1 / 2)}=\left(\frac{9\left(M^{2}+4\right) \gamma_{3 / 2}^{2} B_{x}^{2}}{\gamma_{m}^{2}}+\left(M^{2}-8\right)^{2}\right) \tag{E3}\\
& b_{1}^{(1 / 2)}=\left(-\frac{21\left(M^{2}+4\right) \gamma_{3 / 2}^{2} B_{x}^{2}}{\gamma_{m}^{2}}-\frac{2 i\left(M^{4}+2 M^{2}-80\right) \gamma_{3 / 2} B_{x}}{\gamma_{m}}+\left(M^{2}-8\right)^{2}\right) \tag{E4}\\
& b_{2}^{(1 / 2)}=\left(\frac{9\left(M^{2}+4\right) \gamma_{3 / 2}^{2} B_{x}^{2}}{\gamma_{m}^{2}}+\left(M^{2}-8\right)^{2}\right) \tag{E5}
\end{align*}
$$

The coefficients appearing in Eqs. (93) read

$$
\begin{align*}
& c^{(3 / 2)}=\frac{6 i\left(M^{2}+4\right) B_{x}\left(6 \gamma_{1 / 2}+7 \gamma_{3 / 2}\right)}{\gamma_{m}}-\frac{27\left(M^{2}+4\right)^{2} \gamma_{1 / 2} \gamma_{3 / 2} B_{x}^{2}}{\left(M^{2}+7\right) \gamma_{m}^{2}}+8\left(M^{2}+7\right)^{2} \tag{E6}\\
& a_{1}^{(3 / 2)}=\frac{\left(M^{2}+7\right)}{\left(M^{2}+4\right)\left(M^{2}+5\right)}\left(\left(M^{2}+3\right) c^{(3 / 2)}-8\left(\left(M^{2}+1\right)\left(M^{2}+7\right)-\frac{3 i\left(M^{2}-1\right)\left(M^{2}+4\right) \gamma_{3 / 2} B_{x}}{4 \gamma_{m}}\right)\right) \tag{E7}\\
& a_{2}^{(3 / 2)}=2\left(\frac{12 i\left(M^{2}+7\right) B_{x}\left(\gamma_{1 / 2}+\gamma_{3 / 2}\right)}{\gamma_{m}}-\frac{9\left(M^{2}+4\right) \gamma_{1 / 2} \gamma_{3 / 2} B_{x}^{2}}{\gamma_{m}^{2}}+4\left(M^{2}+7\right)^{2}\right) \tag{E8}\\
& a_{3}^{(3 / 2)}=\frac{24 M^{2}\left(M^{2}+7\right)}{\left(M^{2}+5\right)} \tag{E9}\\
& b_{1}^{(3 / 2)}=-4\left(\frac{i\left(M^{2}+7\right) B_{x}\left(\left(M^{2}-8\right) \gamma_{1 / 2}-6 \gamma_{3 / 2}\right)}{\gamma_{m}}+\frac{6\left(M^{2}+4\right) \gamma_{1 / 2} \gamma_{3 / 2} B_{x}^{2}}{\gamma_{m}^{2}}-2\left(M^{2}+7\right)^{2}\right) \tag{E10}\\
& \left.b_{2}^{(3 / 2)}=a_{2}^{(3 / 2)}+a_{3}^{(3 / 2)} \frac{i B_{x}\left(\gamma_{1 / 2}+\gamma_{3 / 2}\right)}{\gamma_{m}}\right) \tag{E11}\\
& b_{3}^{(3 / 2)}=\frac{12 M^{2}}{\left(M^{2}+5\right)}\left(-2\left(M^{2}+7\right)+\frac{3 i\left(M^{2}+4\right) \gamma_{1 / 2} B_{x}}{\gamma_{m}}\right) \tag{E12}
\end{align*}
$$

Figure 6: Comparison between the full model Eq. (71) and the same model after adiabatic elimination of the $F=1 / 2$ and tensor degrees of freedom in "Config. 2 ". The nuclear magnetization is set to $M=98 \%$. Blue indicates the y spin component, while yellow the z spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of the same model after adiabatic elimination of the $F=1 / 2$ and tensor degrees of freedom (without setting $\mu=\chi=0$, as done in Fig. (4)). Simulation parameters: $n_{\mathrm{ph}} / N_{\text {cell }}=10^{-3}, N_{\text {cell }} / n_{\text {cell }}=T / \tau=10^{6} \mathrm{~s}$, and an initial state resulting from tilting the nuclear spin by 0.01 rad . Time is in units of the nuclear spin Larmor frequency.

Appendix F: Adiabatic elimination in Configuration 2

In Section VIB we obtain for Configuration 2 a set of simple equations of motion for the variables S, I and J by first setting the coupling coefficients $\chi=\mu=0$ in Eqs. (76), and then adiabatically eliminating the δK_{α} and $\delta Q_{\alpha x}$ degrees of freedom.

Here, we perform instead the adiabatic elimination of δK_{α} and $\delta Q_{\alpha x}$ directly on Eqs. (76), keeping all the coupling coefficients. This lead to a set of expressions that are too complex to be treated analytically, but can be solved numerically showing good agreement with the full model, see Fig. 6.
[1] T. R. Gentile, P. J. Nacher, B. Saam, and T. G. Walker; Optically polarized ${ }^{3} \mathrm{He}$, Rev Mod Phys. 89, 045004 (2017)
[2] A. Dantan, G. Reinaudi, A. Sinatra, F. Laloe, E. Giacobino, and M. Pinard; Long-lived quantum memory with nuclear atomic spins, Phys. Rev. Lett. 95, 123002 (2005)
[3] G. Reinaudi, A. Sinatra, A. Dantan, and M. Pinard; Squeezing and entangling nuclear spins in helium 3, J. Mod. Opt. 54, 675 (2007)
[4] O. Katz, R. Shaham, E. S. Polzik, and O. Firstenberg, Long-lived entanglement generation of nuclear spins using coherent light, Phys. Rev. Lett. 124, 043602 (2020)
[5] O. Katz, R. Shaham, E. Reches, A. V. Gorshkov, and O. Firstenberg, Optimal control of an optical quantum memory based on noble-gas spins, Phys. Rev. A 105, 042606 (2022)
[6] A. Serafin, Y. Castin, M. Fadel, P. Treutlein and A. Sinatra, Nuclear spin squeezing by continuous quantum non-demolition measurement: a theoretical study, Comptes Rendus Physique 22, 1 (2021)
[7] A. Serafin, M. Fadel, P. Treutlein and A. Sinatra, Nuclear spin squeezing in Helium-3 by continuous quantum nondemolition measurement, Phys. Rev. Lett. 127, 013601 (2021)
[8] A. Kuzmich, N. P. Bigelow and L. Mandel, Atomic quantum non-demolition measurements and squeezing, Europhys. Lett. 42, 481 (1998)
[9] K. Hammerer, A. Sorensen, and E. Polzik, Quantum interface between light and atomic ensembles, Rev. Mod. Phys. 82, 1041 (2010)
[10] G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen and E. S. Polzik, Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement, Nature Physics 11, 389 (2015)
[11] J. Cviklinski, A. Dantan, J. Ortalo, and M. Pinard, Conditional squeezing of an atomic alignment, Phys. Rev. A 76, 033830 (2007)
[12] A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejnisman, and N. P. Bigelow, Quantum nondemolition measurements of collective atomic spin, Phys. Rev. A 60, 2346 (1999)
[13] Note that in [11] there is an additional $1 / 2$ factor, that in our case has been included in the definition of the Stokes operators.
[14] M. Batz; Metastability exchange optical pumping in ${ }^{3} \mathrm{He}$ gas up to 30 mT : Efficiency measurements and evidence of laser-induced nuclear relaxation, PhD thesis at Université Pierre et Marie Curie - Paris VI (2011)
[15] Due to frequent metastability exchange collisions, the populations of the metastable levels follow a spin temperature distribution dictated by the nuclear polarization [1].
[16] J. Dupont-Roc, M. Leduc, F. Laloë, Contribution à l'étude du pompage optique par échange de métastabilité dans 3He, Journal de Physique 34, 961 (1973)
[17] E. Courtade, F. Marion, P.J. Nacher, G. Tastevin, K. Kiersnowski, and T. Dohnalik; Magnetic field effects on the 1083 nm atomic line of helium: Optical pumping of helium and optical polarisation measurement in high magnetic field, Eur. Phys. J. D 21, 25-55 (2002)
[18] J. M. Geremia, J. K. Stockton, and H. Mabuchi, Tensor polarizability and dispersive quantum measurement of multilevel atoms, Phys. Rev. A 73, 042112 (2006)
[19] D. J. Siminovitch; Spin precession: A spin-1 case study using irreducible tensor operators, Concepts in Magnetic Resonance Part A 45A, e21411 (2016)

[^0]: *fadelm@phys.ethz.ch
 ${ }^{\dagger}$ philipp.treutlein@unibas.ch
 \ddagger alice.sinatra@lkb.ens.fr

