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Effective Faraday interaction between light and nuclear spins of Helium-3 in its
ground state: a semiclassical study
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We derive the semiclassical evolution equations for a system consisting of helium-3 atoms in the
23S metastable state interacting with a light field far-detuned from the 23S− 23P transition, in the
presence of metastability exchange collisions with ground state helium atoms and a static magnetic
field. For two configurations, each corresponding to a particular choice of atom-light detuning in
which the contribution of either the metastable level F = 1/2 or F = 3/2 is dominant, we derive
a simple model of three coupled collective spins from which we can analytically extract an effective
coupling constant between the collective nuclear spin and light. In these two configurations, we
compare the predictions of our simplified model with the full model.
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I. INTRODUCTION

Helium-3 in its ground state has a purely nuclear spin 1/2. Protected by a complete electronic shell and separated
from the first excited state by 20 eV, the nuclear spin of helium is a two-level quantum system that offers exceptionally
long coherence times of hundreds of hours [1]. The possibility of effectively interfacing it with light, which transports
information over long distances and can be measured at the quantum noise level, offers interesting application prospects
for quantum technologies [2–7]. The Faraday interaction between the collective spin of an ensemble of atoms and the
Stokes spin of light provides a light-matter quantum interface that has already been demonstrated in the laboratory in
the case of alkaline atoms [8–10]. In the case of the purely nuclear spin of rare gases in their ground state, interaction
with light requires an intermediate system. For helium-3, it is a small fraction of atoms brought into a metastable
state that offers near-infrared transitions and interacts with atoms in the ground state via metastability exchange
collisions [1]. In this paper we study in detail the interaction of light with a set of helium-3 atoms, a fraction of which
is brought into the metastable state. At the semiclassical level, we explore the validity of the simplified model used
in [6, 7], taking into account the full atomic structure in the metastable 33S and the excited 23P states. Moreover,
we propose another possible configuration that should allow for a larger effective coupling between the nuclear spins
and the light.

II. LIGHT-MATTER INTERACTION FOR METASTABLE HELIUM ATOMS

While the ground state 11S0 of helium-3 is purely nuclear, the metastable state 23S1 has an electronic component
and is the starting level for transitions at 1083 nm to the excited states 23P . Figure 1(Left) shows the hyperfine
structure of the metastable and excited levels. The accessible transitions between levels are shown in Figure 1(Right),
and the relative frequencies in Table A of Appendix A.

J=0

J=2
J=1

J=1
J=2

J=1

J=1

2  S3
1

2  P3

Figure 1: Left: hyperfine structure of states 23S1 and 23P in 3He. Right: allowed transitions at 1083 nm.

For light propagating along the z-axis, we introduce the components of the Stokes spin in terms of the creation and
annihilation operators of a photon polarised in the x or y direction, and in term of the circularly polarized photons
creation and annihilation operators a1 = (ax − iay)/

√
2, a2 = (ax + iay)/

√
2

S0 = (a†xax + a†yay)/2 = (a†1a2 + a†2a1)/2 (1)

Sx = (a†xax − a†yay)/2 = (a†1a1 + a†2a2)/2 (2)

Sy = (a†xay + a†yax)/2 = (a†1a2 − a†2a1)/2i (3)

Sz = (a†xay − a†yax)/2i = (a†2a2 − a†1a1)/2 (4)

In the weak saturation regime, the interaction of light with atoms in either one of the two states F = 1/2 or F = 3/2
of metastable helium can be described by an effective Hamiltonian obtained by adiabatically eliminating the optical
coherences and the populations of the excited state [11–13]. The general form of the effective Hamiltonian for one
atom of spin F with light a is recalled in Appendix B.
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A. Effective atom-light interaction in the metastable state

χ, vec 1/2
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μ, tens 3/2
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Figure 2: Top: Coupling constants χ Eq. (8) (blue line), η Eq. (9) (orange line) and µ Eq. (10) (green line) for the F = 1/2 and
F = 3/2 levels of the 3He metatable, as a function of the light frequency detuning ∆p taking the C8 transition as the origin.
All the constants are divided by the constant 4A/(σ2Γ). The grey line shows the absorption spectrum taking into account the
Doppler broadening for T = 300 K for a non polarized sample [14]. Two possible operating point marked as “Config.2” at
∆p/(2π) = −31 GHz and “Config.1” at ∆p/(2π) = −2 GHz are discussed in the text. Bottom: Level scheme depicting the two
possible operating point marked as “Config.2” and “Config.1”, respectively.

In the case of the metastable state 23S of helium-3, we first introduce the collective operators K⃗, J⃗ and T l
m,

respectively obtained by summing the single atom spin operators in the F = 1/2, and spin and tensor operators in
the F = 3/2 manifolds of the metastable state. Considering the transitions to the excited states 23P , in the case of
large detuning, the effective light-atoms hamiltonian for the ensemble then takes the form

HLA = H1/2 +HV
3/2 +HT

3/2 . (5)

where the two vectorial contributions, of the F = 1/2 metastable state (K⃗) and of the F = 3/2 metastable state (J⃗)
take the Faraday form

H1/2 = ℏχKzSz HV
3/2 = ℏηJzSz , (6)
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and the tensorial contribution of the F = 3/2 metastable state takes the form

HT
3/2 =

n∑
i=1

ℏµ
[(

Fi(Fi + 1)

3
− F 2

i,z

)
S0 + (F 2

i,x − F 2
i,y)Sx + (Fi,xFi,y + Fi,yFi,x)Sy

]
= ℏµ

[
−2T 2

0 S0 +
√
12
(
RT 2

2 Sx + IT 2
2 Sy

)]
. (7)

In the above, we used the collective irreducible tensor operators T 2
0 , RT 2

2 and IT 2
2 , that are obtained by summing the

single-atom tensor operators defined in Appendix B.
The constants χ, η and µ representing the strength of the different contributions have the form

χ =
σ2

4A
Γ

(
2

9(∆p −∆1)
− 8

9(∆p −∆2)
+

10

9(∆p −∆4)
− 4

9∆p

)
(8)

η =
σ2

4A
Γ

(
3

5(∆p −∆3)
− 2

9(∆p −∆5)
− 1

9(∆p −∆6)
− 2

45(∆p −∆7)
− 2

9(∆p −∆9)

)
(9)

µ =
σ2

10A
Γ

(
− 1

4(∆p −∆3)
+

5

9(∆p −∆5)
− 5

36(∆p −∆6)
+

1

9(∆p −∆7)
− 5

18(∆p −∆9)

)
. (10)

In these equations, σ2 = 3λ2/2π, A is the cross sectional area of the light mode, Γ ≈ 107 s−1 is the excited-
state spontaneous decay rate, and taking the C8 transition as a reference, we have defined ∆p = ωprobe − ωC8

and
∆i = ωFF ′ − ωC8

. In Figure 2 we represent the three coupling constants χ (8), η (9) and µ (10), all divided by the
constant 4A/(σ2Γ), as a function of light frequency. For ∆p/(2π) = −2 GHZ, which is the operating point considered
in [6, 7] and marked as “Config.1” in Fig. 2, the vector contribution of F = 1/2 is dominant. A second interesting
operating point, marked as “Config.2” in Fig. 2, is for ∆p/(2π) = −31 GHZ, around the local minimum of the grey
absorption curve where the tensor part of F = 3/2 is relatively small. The main advantage of this configuration is
that one could work with a highly polarized state, M ≃ 1, for which the F = 1/2 spin manifold is empty and the
initial state is effectively a spin coherent state [15].
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B. Metastable atomic variables evolution due to the interaction with the light

Due to the Hamilonian (5), we find from dO/dt = i[H,O]/ℏ that the Stokes operators of the light and the collective
atomic variable obey the following equation of motion

dSx

dt

∣∣∣∣
L

= −χKzSy − ηJzSy +
√
12µIT

2
2 Sz (11)

dSy

dt

∣∣∣∣
L

= χKzSx + ηJzSx −
√
12µRT

2
2 Sz (12)

dSz

dt

∣∣∣∣
L

=
√
12µ

(
RT

2
2 Sy − IT

2
2 Sx

)
(13)

dKx

dt

∣∣∣∣
L

= −χKySz (14)

dKy

dt

∣∣∣∣
L

= χKxSz (15)

dKz

dt

∣∣∣∣
L

= 0 (16)

dJx

dt

∣∣∣∣
L

= −ηJySz +
√
12µ

(
IT

2
1 (Sx − S0) − RT

2
1 Sy

)
(17)

dJy

dt

∣∣∣∣
L

= ηJxSz +
√
12µ

(
RT

2
1 (Sx + S0) + IT

2
1 Sy

)
(18)

dJz

dt

∣∣∣∣
L

= 2
√
12µ

(
IT

2
2 Sx − RT

2
2 Sy

)
(19)

d

dt
RT

2
2

∣∣∣∣
L

= −2ηSzIT
2
2 +

√
12µ

(
1
√
5
Sy(2T

1
0 − T

3
0 ) +

1
√
3
S0IT

3
2

)
(20)

d

dt
IT

2
2

∣∣∣∣
L

= 2ηSzRT
2
2 −

√
12µ

(
1
√
5
Sx(2T

1
0 − T

3
0 ) +

1
√
3
S0RT

3
2

)
(21)

d

dt
RT

2
1

∣∣∣∣
L

= −ηSzIT
2
1 +

√
6µ

(
Sx

(
−
√

3

5
IT

3
1 −

√
2

5
Jy + IT

3
3

)
+ S0

(
2

√
15

IT
2
1 −

√
2

5
Jy

)
+ Sy

(√
3

5
RT

3
1 +

√
2

5
Jx − RT

3
3

))
(22)

d

dt
IT

2
1

∣∣∣∣
L

= ηSzRT
2
1 +

√
6µ

(
Sx

(√
3

5
RT

3
1 +

√
2

5
Jx + RT

3
3

)
+ S0

(
2

√
15

RT
2
1 −

√
2

5
Jx

)
+ Sy

(√
3

5
IT

3
1 +

√
2

5
Jy + IT

3
3

))
(23)

d

dt
T

2
0

∣∣∣∣
L

=
√
12µ

(
SxIT

3
2 − SyRT

3
2

)
(24)

d

dt
RT

3
3

∣∣∣∣
L

= −3ηSzIT
3
3 +

√
6µ
(
SxIT

2
1 + SyRT

2
1

)
(25)

d

dt
IT

3
3

∣∣∣∣
L

= 3ηSzRT
3
3 −

√
6µ
(
SxRT

2
1 − SyIT

2
1

)
(26)

d

dt
RT

3
2

∣∣∣∣
L

= −2ηSzIT
3
2 + 2µ

(√
3SyT

2
0 + S0IT

2
2

)
(27)

d

dt
IT

3
2

∣∣∣∣
L

= 2ηSzRT
3
2 − 2µ

(√
3SxT

2
0 + S0RT

2
2

)
(28)

d

dt
RT

3
1

∣∣∣∣
L

= −ηSzIT
3
1 +

√
2

5
µ
(
(2S0 + 3Sx)IT

2
1 − 3SyRT

2
1

)
(29)

d

dt
IT

3
1

∣∣∣∣
L

= ηSzRT
3
1 −

√
2

5
µ
(
(2S0 − 3Sx)RT

2
1 − 3SyIT

2
1

)
(30)

d

dt
T

3
0

∣∣∣∣
L

= −
2

5

√
15µ

(
SxIT

2
2 − SyRT

2
2

)
(31)

III. EXTERNAL MAGNETIC FIELD

In the presence of a static magnetic field B⃗, the system evolves according to the Hamiltonian

HB = −ℏ
(
γ1/2B⃗ · K⃗ + γ3/2B⃗ · J⃗ + γnucB⃗ · I⃗

)
, where (32)

γ1/2 =
4

3
γms ; γ3/2 =

2

3
γms ; γms = −2π 2.802 MHz/G ; γnuc = −2π 3.243 kHz/G ; (33)

are the gyromagnetic ratios [16].
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A. Metastable atomic variables evolution due to an external magnetic field

The corresponding equations of motion for atomic variables are given by

dI⃗

dt

∣∣∣∣
B

= γnuc I⃗ × B⃗ (34)

dK⃗

dt

∣∣∣∣
B

= γ1/2 K⃗ × B⃗ (35)

dJ⃗

dt

∣∣∣∣
B

= γ3/2 J⃗ × B⃗ (36)

d

dt
RT

2
2

∣∣∣∣
B

= γ3/2

(
BxIT

2
1 + ByRT

2
1 + 2BzIT

2
2

)
(37)

d

dt
IT

2
2

∣∣∣∣
B

= γ3/2

(
−BxRT

2
1 + ByIT

2
1 − 2BzRT

2
2

)
(38)

d

dt
RT

2
1

∣∣∣∣
B

= γ3/2

(
BxIT

2
2 + By

(√
3T

2
0 − RT

2
2

)
+ BzIT

2
1

)
(39)

d

dt
IT

2
1

∣∣∣∣
B

= γ3/2

(
−Bx

(√
3T

2
0 + RT

2
2

)
− ByIT

2
2 − BzRT

2
1

)
(40)

d

dt
T

2
0

∣∣∣∣
B

= γ3/2

√
3
(
BxIT

2
1 − ByRT

2
1

)
(41)

d

dt
RT

3
3

∣∣∣∣
B

= γ3/2

(
Bx

√
3

2
IT

3
2 + By

√
3

2
RT

3
2 + Bz3IT

3
3

)
(42)

d

dt
IT

3
3

∣∣∣∣
B

= γ3/2

(
−Bx

√
3

2
RT

3
2 + By

√
3

2
IT

3
2 − Bz3RT

3
3

)
(43)

d

dt
RT

3
2

∣∣∣∣
B

= γ3/2

(
Bx

(√
10

4
IT

3
1 +

√
3

2
IT

3
3

)
+ By

(√
10

4
RT

3
1 −

√
3

2
RT

3
3

)
+ Bz2IT

3
2

)
(44)

d

dt
IT

3
2

∣∣∣∣
B

= γ3/2

(
Bx

(
−
√

10

4
RT

3
1 −

√
3

2
RT

3
3

)
+ By

(√
10

4
IT

3
1 −

√
3

2
IT

3
3

)
− Bz2RT

3
2

)
(45)

d

dt
RT

3
1

∣∣∣∣
B

= γ3/2

(
Bx

√
5

2
IT

3
2 + By

(
√
6T

3
0 −

√
5

2
RT

3
2

)
+ BzIT

3
1

)
(46)

d

dt
IT

3
1

∣∣∣∣
B

= γ3/2

(
−Bx

(
√
6T

3
0 −

√
5

2
RT

3
2

)
− By

√
5

2
IT

3
2 − BzRT

3
1

)
(47)

d

dt
T

3
0

∣∣∣∣
B

= γ3/2

√
6
(
BxIT

2
1 − ByRT

2
1

)
(48)

IV. METASTABILITY EXCHANGE COLLISIONS

A. Evolution of the one-body density matrix

Metastability exchange collisions (MEC) couple the metastable state to the ground state of helium. They are
usually described in terms of the one-body density matrix ρ which is assumed to be block-diagonal, with the 2 × 2
matrix ρf describing the ground state and the 6× 6 matrix ρm describing the metastable state. Following a collision,

ρ transforms according to ρ
MEC−−−→ ρ′ with [3, 16]

ρ′f = Tre[ρm] (49)

ρ′m = ρf ⊗ Trn[ρm] (50)

where Tre and Trn denote the trace on the electronic and nuclear degrees of freedom respectively. Note that the
electronic degrees of freedom do not appear in ρf since the ground state is a singlet state, i.e. S = 0.
Considering a set of Ncell atoms in the ground state and ncell in the metastable state, the equations of motion of

the one-body density matrix are written

d

dt
ρf =

1

T
(−ρf +Tre[ρm]) (51)

d

dt
ρm =

1

τ
(−ρm + ρf ⊗ Trn[ρm]) (52)
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where the two collision rates γf = 1/T et γm = 1/τ for an atom in the ground and metastable states, respectively,
satisfy the relation

γm
γf

=
T

τ
=

Ncell

ncell
. (53)

Such equations of motion, expressed in the {|i⟩} basis of the Zeeman sublevels of helium-3, are found in [3]. They
allow us to calculate the evolution due to the exchange of any one-body atomic operator O

d ⟨O⟩
dt

∣∣∣∣
MEC

= Tr

[
O
dρ

dt

∣∣∣∣
MEC

]
. (54)

A detailed example explaining how we proceed to obtain the equations in given in Appendix D.

B. Atomic variables evolution due to metastability exchange

For the three spins: ground I, metastable (F = 1/2) K and metastable (F = 3/2) J , we obtain the semi-classical
equations

d
〈
I⃗
〉

dt

∣∣∣∣
MEC

= − 1

T

〈
I⃗
〉
+

1

3T

N

n

(〈
J⃗
〉
−
〈
K⃗
〉)

(55)

d
〈
K⃗
〉

dt

∣∣∣∣
MEC

= − 7

9τ

〈
K⃗
〉
+

1

9τ

〈
J⃗
〉
− 1

9τ

n

N

〈
I⃗
〉
− 4

3τ

1

N

〈
⃗⃗
Q

〉
·
〈
I⃗
〉

(56)

d
〈
J⃗
〉

dt

∣∣∣∣
MEC

= − 4

9τ

〈
J⃗
〉
+

10

9τ

〈
K⃗
〉
+

10

9τ

n

N

〈
I⃗
〉
+

4

3τ

1

N

〈
⃗⃗
Q

〉
·
〈
I⃗
〉

, (57)

where we have introduced the collective alignment tensor ⟨Qαβ⟩ =
∑N

i=1
1
3
1
6

(
3
2 ⟨Fi,αFi,β + Fi,βFi,α⟩ − 2δαβ

)
[16]

Qxx =
1

6

(√
3RT 2

2 − T 2
0

)
(58a)

Qyy = −1

6

(√
3RT 2

2 + T 2
0

)
(58b)

Qzz =
1

3
T 2
0 (58c)

Qxy =
1

2
√
3
IT 2

2 (58d)

Qxz = − 1

2
√
3
RT 2

1 (58e)

Qyz = − 1

2
√
3
IT 2

1 . (58f)

The rank-2 tensors of state F = 3/2 evolve according to equations

d

dt

〈
RT 2

2

〉 ∣∣∣∣
MEC

= − 2

3τ

〈
RT 2

2

〉
+

1√
3τ

1

N
(⟨Ix⟩ ⟨Σx⟩ − ⟨Iy⟩ ⟨Σy⟩) (59)

d

dt

〈
IT 2

2

〉 ∣∣∣∣
MEC

= − 2

3τ

〈
IT 2

2

〉
+

1√
3τ

1

N
(⟨Ix⟩ ⟨Σy⟩+ ⟨Iy⟩ ⟨Σx⟩) (60)

d

dt

〈
RT 2

1

〉 ∣∣∣∣
MEC

= − 2

3τ

〈
RT 2

1

〉
+

1√
3τ

1

N
(⟨Ix⟩ ⟨Σz⟩+ ⟨Iz⟩ ⟨Σx⟩) (61)

d

dt

〈
IT 2

1

〉 ∣∣∣∣
MEC

= − 2

3τ

〈
IT 2

1

〉
+

1√
3τ

1

N
(⟨Iy⟩ ⟨Σz⟩+ ⟨Iz⟩ ⟨Σy⟩) (62)

d
〈
T 2
0

〉
dt

∣∣∣∣
MEC

= − 2

3τ

〈
T 2
0

〉
+

1

3τ

1

N

(
3 ⟨Iz⟩ ⟨Σz⟩ −

〈
I⃗
〉

·
〈
Σ⃗
〉)

(63)
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where we defined the electron spin operator expectation value in the metastable state
〈
Σ⃗
〉
= 2

3

(〈
J⃗
〉
+ 2

〈
K⃗
〉)

.

The rank-3 tensors of state F = 3/2 evolve according to equations

d

dt

〈
RT 3

3

〉 ∣∣∣∣
MEC

= −1

τ

〈
RT 3

3

〉
−

√
6

3τ

1

N

(
⟨Ix⟩

〈
RT 2

2

〉
− ⟨Iy⟩

〈
IT 2

2

〉)
(64)

d

dt

〈
IT 3

3

〉 ∣∣∣∣
MEC

= −1

τ

〈
IT 3

3

〉
−

√
6

3τ

1

N

(
⟨Ix⟩

〈
IT 2

2

〉
− ⟨Iy⟩

〈
RT 2

2

〉)
(65)

d

dt

〈
RT 3

2

〉 ∣∣∣∣
MEC

= −1

τ

〈
RT 3

2

〉
− 2

3τ

1

N

(
⟨Ix⟩

〈
RT 2

1

〉
− ⟨Iy⟩

〈
IT 2

1

〉
− ⟨Iz⟩

〈
RT 2

2

〉)
(66)

d

dt

〈
IT 3

2

〉 ∣∣∣∣
MEC

= −1

τ

〈
IT 3

2

〉
− 2

3τ

1

N

(
⟨Ix⟩

〈
IT 2

1

〉
+ ⟨Iy⟩

〈
RT 2

1

〉
− ⟨Iz⟩

〈
IT 2

2

〉)
(67)

d

dt

〈
RT 3

1

〉 ∣∣∣∣
MEC

= −1

τ

〈
RT 3

1

〉
+

2

3
√
10τ

1

N

(
⟨Ix⟩

(〈
RT 2

2

〉
− 2

√
3
〈
T 2
0

〉)
+ ⟨Iy⟩

〈
IT 2

2

〉
+ 4 ⟨Iz⟩

〈
RT 2

1

〉)
(68)

d

dt

〈
IT 3

1

〉 ∣∣∣∣
MEC

= −1

τ

〈
IT 3

1

〉
+

2

3
√
10τ

1

N

(
⟨Ix⟩

〈
IT 2

2

〉
− ⟨Iy⟩

(〈
RT 2

2

〉
− 2

√
3
〈
T 2
0

〉)
+ 4 ⟨Iz⟩

〈
IT 2

1

〉)
(69)

d

dt

〈
T 3
0

〉 ∣∣∣∣
MEC

= −1

τ

〈
T 3
0

〉
+

2√
5τ

1

N

(
2
√
3

6

(
⟨Ix⟩

〈
RT 2

1

〉
+ ⟨Iy⟩

〈
IT 2

1

〉)
+ ⟨Iz⟩

〈
T 2
0

〉)
(70)

V. SEMICLASSICAL EQUATIONS OF MOTION

A. Semiclassical equations for the atomic and field variables

Using the results of sections II B, III and IVB, we can write the semiclassical equations of motion for the averages
of the Stokes and atomic collective spin components operators, under the influence of (i) the light-atom interaction
in the metastable state, (ii) a uniform external magnetic field, and (iii) metastability exchange collisions. The term
“semiclassical” means here that all the operators, including those in equations of sections II B and III, are replaced
by their expectation values. The time derivative of a semiclassical variable ⟨O⟩ has three contributions:

d⟨O⟩
dt

=
d⟨O⟩
dt

∣∣∣∣
L

+
d⟨O⟩
dt

∣∣∣∣
B

+
d⟨O⟩
dt

∣∣∣∣
MEC

. (71)

B. Stationary solution

For a nuclear polarisation M ∈ [−1, 1], a fixed magnetic field along the x-direction, B⃗ = Bxe⃗x, and a fixed light
intensity and polarisation, the semi-classical equations of motion have a stationary solution that is found by setting
the time derivatives to zero. Here we consider the Stokes spin and the nuclear spin polarised along the static magnetic
field in the x-direction,

⟨Sx⟩s =
nph

2
, ⟨Sy⟩s = ⟨Sz⟩s = 0 , ⟨Ix⟩s = M

N

2
, ⟨Iy⟩s = ⟨Iz⟩s = 0 , (72)
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The stationary solution for the atomic variables in the metastable state and its small polarization expansion is then:

⟨Kx⟩s =
M

2

(
1−M2

3 +M2

)
ncell

M→0≃
(
M

6
− 2M3

9
+O(M5)

)
ncell (73a)

⟨Jx⟩s = M

(
5 +M2

3 +M2

)
ncell

M→0≃
(
5M

3
− 2M3

9
+O(M5)

)
ncell (73b)

〈
T 2
0

〉
s
= −

(
M2

3 +M2

)
ncell

M→0≃
(
−M2

3
+O(M4)

)
ncell (73c)

〈
RT 2

2

〉
s
=

√
3

(
M2

3 +M2

)
ncell

M→0≃
(
M2

√
3
+O(M4)

)
ncell (73d)

〈
RT 3

1

〉
s
=

√
3

10

(
M3

3 +M2

)
ncell

M→0≃
(

M3

√
30

+O(M5)

)
ncell (73e)

〈
RT 3

3

〉
s
= − 1√

2

(
M3

3 +M2

)
ncell

M→0≃
(
− M3

3
√
2
+O(M5)

)
ncell . (73f)

For M → 0, the quantities (73a,b), (73c,d) and (73e,f) are respectively of order one, two and three in M , indicating
that the tensor contributions can be neglected for a small polarisation.

Moreover, we note that the stationary solutions Eqs. (73a-d) are identical to those found in Ref. [6], although the
light-matter interaction for the F = 3/2 level of the metastable state was not included in that work.

C. Linearised equations of motion

The linearised semiclassical equations around the stationary solution (73) are obtained by substituting ⟨O⟩ →
⟨O⟩s + δO, where δO is the small variation of ⟨O⟩ from its steady state value, and keeping only linear terms in the

variations. Introducing the fluctuation vector c⃗ = (⃗a, b⃗) with

a⃗ = (δSy, δSz, δIy, δIz, δKy, δKz, δJy, δJz, δRT 2
1 , δIT

2
2 , δT

3
0 , δIT

3
1 , δRT 3

2 , δIT
3
3 ) (74)

b⃗ = (δS0, δSx, δIx, δKx, δJx, δT
2
0 , δIT

2
1 ,RT 2

2 , δRT 3
1 , δIT

3
2 , δRT 3

3 ) , (75)

the linearised equations of motion take the block-diagonal form

˙⃗c =

[
A 0
0 B

]
c⃗ , (76)

where the first block represents fluctuations in the yz-plane, namely the plane perpendicular to the spin polarisation.
In the expression of the matrices A and B given below, the lines isolate the sub-blocks for the light, nuclear and
metastable states respectively.
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A
=

                                                                     

0
−

6
µ
M

2
n

M
2
+

3
0

0
0

χ
n
p
h

2
0

η
n
p
h

2
0

0
0

0
0

0

6
µ
M

2
n

M
2
+

3
0

0
0

0
0

0
0

0
−

√
3
µ
n
p
h

0
0

0
0

0
0

−
1 T

B
x
γ
n
u
c

−
N

3
n
T

0
N

3
n
T

0
0

0
0

0
0

0

0
0

−
B

x
γ
n
u
c

−
1 T

0
−

N
3
n
T

0
N

3
n
T

0
0

0
0

0
0

0
1 2
M

(
4

M
2
+

3
−

1

) n
χ

−
n
−

M
2
n

3
M

2
N

τ
+

9
N

τ
0

−
7 9
τ

γ
1
/
2
B

x
1 9
τ

0
0

−
M

3
√

3
τ

0
0

0
0

0
0

0
−

n
−

M
2
n

3
M

2
N

τ
+

9
N

τ
γ
1
/
2

(
−

B
x
)

−
7 9
τ

0
1 9
τ

M
3
√

3
τ

0
0

0
0

0

0
η
M
( M

2
+

5
) n

M
2
+

3

2
( M

2
+

5
) n

3
( M

2
+

3
) N

τ
0

1
0

9
τ

0
−

4 9
τ

γ
3
/
2
B

x
2
√

3
µ
n
p
h

M
3
√

3
τ

0
0

0
0

−
1
2
µ
M

2
n

M
2
+

3
0

0
2
( M

2
+

5
) n

3
( M

2
+

3
) N

τ
0

1
0

9
τ

γ
3
/
2

(
−

B
x
)

−
4 9
τ

−
M

3
√

3
τ

2
√

3
µ
n
p
h

0
0

0
0

2
√

3
µ
M
( M

2
+

1
) n

M
2
+

3
0

0
−

4
M

n
√

3
( M

2
N

τ
+

3
N

τ
)

0
−

2
M

3
√

3
τ

−
2 5

√
3
µ
n
p
h

−
M

3
√

3
τ

−
2 3
τ

γ
3
/
2
B

x
0

−
µ
n
p
h

√
1
0

0
√ 3 2

µ
n
p
h

0
2
√

3
η
M

2
n

M
2
+

3
4
M

n
√

3
( M

2
N

τ
+

3
N

τ
)

0
2
M

3
√

3
τ

0
M

3
√

3
τ

−
2 5

√
3
µ
n
p
h

γ
3
/
2

(
−

B
x
)

−
2 3
τ

√ 3 5
µ
n
p
h

0
−

µ
n
p
h

0

6
µ
M

2
n

√
5
( M

2
+

3
)

0
0

−
2
M

2
n

√
5
( M

2
N

τ
+

3
N

τ
)

0
0

0
0

M
√

1
5
τ

−
√ 3 5

µ
n
p
h

−
1 τ

√
6
γ
3
/
2
B

x
0

0

0

√ 3 1
0
η
M

3
n

M
2
+

3

√ 2 1
5
M

2
n

M
2
N

τ
+

3
N

τ
0

0
0

0
0

µ
n
p
h

√
1
0

M
3
√

1
0
τ

−
√

6
γ
3
/
2
B

x
−

1 τ
−
√ 5 2

γ
3
/
2
B

x
0

−
2
√

3
µ
M

2
n

M
2
+

3
0

0
2
M

2
n

√
3
( M

2
N

τ
+

3
N

τ
)

0
0

0
0

−
M 3
τ

µ
n
p
h

0
√ 5 2

γ
3
/
2
B

x
−

1 τ

√ 3 2
γ
3
/
2
B

x

0
−

3
η
M

3
n

√
2
( M

2
+

3
)

−
√

2
M

2
n

M
2
N

τ
+

3
N

τ
0

0
0

0
0

−
√ 3 2

µ
n
p
h

−
M √
6
τ

0
0

−
√ 3 2

γ
3
/
2
B

x
−

1 τ
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(
7
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√
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−
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−
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−
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√
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√ 3 2

γ
3
/
2
B

x
−

1 τ
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(
7
8
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VI. EFFECTIVE COUPLING BETWEEN THE NUCLEAR SPIN AND THE LIGHT IN TWO
CONFIGURATIONS

A simplified model involving only three coupled spins (one for the light field, one for the metastable state and one
for the fundamental state) can be derived when focusing on one of the two choices of the light frequency detuning
shown in figure 2: “Config.1” or “Config.2”, where the vector Hamiltonian of the metastable level F = 1/2 or the
metastable level F = 3/2 dominates. For this purpose, for a given light detuning, we set the non-dominant interaction
terms in HLA Eq. (5) to zero and, among the degrees of freedom of the metastable state, we adiabatically eliminate
those that evolve only under the influence of the magnetic field and the metastable exchange collisions.

A. Configuration 1: Exploiting the interaction with the F = 1/2 manifold

We start from the linearized equations (76), and neglect the coupling of the light with the F = 3/2 manifold by
setting η = µ = 0. Then, we adiabatically eliminate the δJα and δQαx degrees of freedom by solving the algebraic
equations d(δJα)/dt = 0 and d(δQαx)/dt = 0, and inserting the solution in the equations of motion for the remaining
variables. In terms of the complex variables

I+ = Iy + iIz , K+ = Ky + iKz , (79)

we obtain

d

dt
δSy = ⟨Sx⟩χδKz (80a)

d

dt
δSz = 0 (80b)

d

dt
δI+ = −γ

(1/2)
f

(
a
(1/2)
1

c(1/2)
+ i

Bxγnuc

γ
(1/2)
f

)
δI+ + γ(1/2)

m

a
(1/2)
2

c(1/2)
δK+ (80c)

d

dt
δK+ = −γ(1/2)

m

(
b
(1/2)
1

c(1/2)
+ i

Bxγ1/2

γ
(1/2)
f

)
δK+ + γ

(1/2)
f

b
(1/2)
2

c(1/2)
δI+ + ⟨Kx⟩χδSz (80d)

where we introduced the rescaled polarization-dependent metastability exchange rates

γ
(1/2)
f =

1

T

(4 +M2)(1−M2)

(8−M2)(3 +M2)
, γ(1/2)

m =
1

τ

(4 +M2)

(8−M2)
, (81)

and the dimensionless coefficients a
(1/2)
i , b

(1/2)
i and c(1/2), that can be found in Appendix E. To first order in the product

Bxγms/γm, where γms Eq. (33) is the gyromagnetic factor in the metastable state and γm (53) is the metastability
exchange rate for a metastable atom, one has

a
(1/2)
1

c(1/2)
Bx→0≃ 1− i

6
(
M4 + 37M2 + 60

)
(M2 − 8)

2
(M2 − 1)

Bxγ3/2

γm
(82)

a
(1/2)
2

c(1/2)
Bx→0≃ 1− i

30
(
M2 + 4

)
(M2 − 8)

2

Bxγ3/2

γm
(83)

b
(1/2)
1

c(1/2)
Bx→0≃ 1− i

2
(
M4 + 17M2 − 20

)
(M2 − 8)

2

Bxγ3/2

γm
(84)

b
(1/2)
2

c(1/2)
Bx→0≃ 1− i

30
(
M2 + 4

)
(M2 − 8)

2

Bxγ3/2

γm
. (85)

We show in Fig. (3) the comparison between the numerical solution of Eqs. (80) and the full systems of equations
Eq. (71) for two values of the nuclear spin polarization, M = 0.02 and M = 0.1. While these two models are in good
agreement for the atomic variables, which shows the validity of adiabatic elimination there is a discrepancy for the
variables Sy and Sz representing the light field. Such a discrepancy is due to the fact that the interaction of light
with the F = 3/2 level, although detuned, is never completely negligible. This is especially visible for the larger
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polarizations, where the F = 3/2 manifold is more populated, and for the evolution of the Sz quadrature Eq. (13),
which depends exclusively on the tensorial interaction.

In the spirit of Refs. [6, 7], we are now interested in extracting the effective coupling constant between light and
nuclear spin in the limit Bx → 0. This can be done by adiabatically eliminating also the equations for δK, and then
introducing the bosonic quadratures

δSy√
⟨Sx⟩s

≃ XS
δIy√
⟨Ix⟩s

≃ XI (86a)

δSz√
⟨Sx⟩s

≃ PS
δIz√
⟨Ix⟩s

≃ PI , (86b)

satisfying the canonical commutation relations [XS , PS ] = [XI , PI ] = iℏ. The resulting equation of motion for the
light field is

d

dt
XS = χ

⟨Kx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩sPS , (87)

from which we obtain the effective Hamiltonian describing an interaction between light and nuclear spin

Heff = ℏΩ(1/2)PSPI , (88)

with the effective coupling rate

Ω(1/2) = χ
⟨Kx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩s (89)

= χ
ncell

Ncell

√
nphNcellf

(1/2)(M) , (90)

where the second line is obtained by inserting the stationary values Eqs. (72,73), and in the last line we defined the
polarization-dependent function

f (1/2)(M) =

(
1−M2

3 +M2

)√
M . (91)

B. Configuration 2: Exploiting the interaction with the F = 3/2 manifold

For this configuration we want to exploit the interaction of the light with the F = 3/2 metastable manifold.
Therefore, for a large nuclear spin polarization, we neglect the coupling of the light with the F = 1/2 manifold
by setting χ = 0 in the linearized equations (76). In addition, we see from Fig. 2 that in “Config.2” the tensor
polarizability is small, which motivates us to set µ = 0 as well. Then we adiabatically eliminate the δKα and δQαx

degrees of freedom by solving the algebraic equations d(δKα)/dt = 0 and d(δQαx)/dt = 0 and inserting the solution
into the equations of motion for the remaining variables. In terms of the complex variables

I+ = Iy + iIz , J+ = Jy + iJz , (92)

we obtain

d

dt
δSy = ⟨Sx⟩ ηδJz (93a)

d

dt
δSz = 0 (93b)

d

dt
δI+ = −γ

(3/2)
f

(
a
(3/2)
1

c(3/2)
+ i

Bxγnuc

γ
(3/2)
f

)
δI+ + γ(3/2)

m

a
(3/2)
2

c(3/2)
δJ+ +

a
(3/2)
3

c(3/2)
⟨Jx⟩ ηδSz (93c)

d

dt
δJ+ = −γ(3/2)

m

(
b
(3/2)
1

c(3/2)
+ i

Bxγ3/2

γ
(3/2)
f

)
δJ+ + γ

(3/2)
f

b
(3/2)
2

c(3/2)
δI+ +

(
b
(3/2)
3

c(3/2)
+ 1

)
⟨Jx⟩ ηδSz (93d)
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Figure 3: Comparison between the full model Eq. (71) and the simplified model Eq. (80) in “Config.1”. Top row is for a nuclear
magnetization of M = 2%, while the bottom row is for M = 10%. Blue indicates the y spin component, while yellow the z
spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of Eq. (80).
Simulation parameters: nph/Ncell = 10−3, Ncell/ncell = T/τ = 106 s, and an initial state resulting from tilting the nuclear spin
by 0.01 rad. Time is in units of the nuclear spin Larmor frequency.

where we introduced the rescaled polarization-dependent metastability exchange rates

γ
(3/2)
f =

1

T

(4 +M2)(5 +M2)

(7 +M2)(3 +M2)
, γ(3/2)

m =
1

τ

(4 +M2)

2(7 +M2)
. (94)

and the dimensionless coefficients a
(3/2)
i , b

(3/2)
i and c(3/2), that can be found in Appendix E. To first order in the

product Bxγmsτ , where γms Eq. (33) is the gyromagnetic factor in the metastable state and τ is the inverse of the
metastability exchange rate, one has

a
(3/2)
1

c(3/2)
Bx→0≃ 1 + i

3Bx

(
6
(
M2 + 1

)
γ1/2 +

(
M2 + 13

)
M2γ3/2

)
4 (M2 + 5) (M2 + 7)

2
γm

(95)

a
(3/2)
2

c(3/2)
Bx→0≃ 1− i

3Bx

(
2
(
M2 − 2

)
γ1/2 + 3M2γ3/2

)
4 (M2 + 7)

2
γm

(96)

a
(3/2)
3

c(3/2)
Bx→0≃ 3M2

4 (M2 + 5) (M2 + 7)
3

(
4
(
M2 + 7

)2 − 3i
(
M2 + 4

) Bx

γm

(
6γ1/2 + 7γ3/2

))
(97)

b
(3/2)
1

c(3/2)
Bx→0≃ 1− i

Bx

(
2
(
M4 + 8M2 − 20

)
γ1/2 + 9M2γ3/2

)
4 (M2 + 7)

2
γm

(98)

b
(3/2)
2

c(3/2)
Bx→0≃ 1 + i

3Bx

(
2
(
M2 + 1

) (
M2 + 10

)
γ1/2 +

(
M2 + 13

)
M2γ3/2

)
4 (M2 + 5) (M2 + 7)

2
γm

(99)

b
(3/2)
3

c(3/2)
Bx→0≃ 3M2

4 (M2 + 5) (M2 + 7)
3

(
i3
(
M2 + 4

) Bx

γm

(
2
(
M2 + 10

)
γ1/2 + 7γ3/2

)
− 4

(
M2 + 7

)2)
. (100)

We show in Fig. (4) the comparison between the numerical solution of Eqs. (93) and the full systems of equations
Eq. (71) for a nuclear spin polarization of M = 0.98%. While these two models are in good agreement for the atomic
and Sy variables, there is a discrepancy for the light Sz variable. As in the previous case, such a discrepancy is due
to the residual tensor interaction, as it can be noted by the oscillation of Sz at twice the Larmor frequency and it is
more pronounced for large nuclear polarisations due to the M3 scaling of the tensor components (73). On the other
hand, the adiabatic elimination of the F = 1/2 and tensor degrees of freedom (without setting µ and χ to zero) gives
a very good approximation of the dynamics, as we show numerically in Appendix F.
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Figure 4: Comparison between the full model Eq. (71) and the simplified model Eq. (93) in “Config.2”. The nuclear magne-
tization is set to M = 98%. Blue indicates the y spin component, while yellow the z spin component. Solid lines are the full
model, while round and square markers indicate the numerical solution of Eq. (93). Simulation parameters: nph/Ncell = 10−3,
Ncell/ncell = T/τ = 106 s, and an initial state resulting from tilting the nuclear spin by 0.01 rad. Time is in units of the nuclear
spin Larmor frequency.

The effective coupling constant between light and nuclear spin in the Bx = 0 limit can be extracted similarly to
the previous case, now adiabatically eliminating also the equations for δJ . The effective Hamiltonian is then

Heff = ℏΩ(3/2)PSPI , (101)

with the effective coupling rate between the light field and the nuclear spin given by

Ω(3/2) = η
⟨Jx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩s (102)

= η
ncell

Ncell

√
nphNcellf

(3/2)(M) . (103)

Here we used T/τ = Ncell/ncell, together with the stationary solution for the spins Eqs. (72,73), and we defined the
polarization-dependent scaling function

f (3/2)(M) = 2

(
5 +M2

3 +M2

)√
M . (104)

In the next section we will compare this result with the one obtained for “Config.1”.

C. Effective coupling in the two configurations and comparison with the full model

Equations (89) and (102) for the rates Ω(1/2) and Ω(3/2) describing the effective coupling between the collective
nuclear spin and the light in “Config.1” and “Config.2” respectively, were obtained from approximate models. In
this section, we extract such coupling constants from numerical simulations of the full semiclassical equations, and
compare the results with the analytical expressions.

From the evolution of the Stokes spin fluctuation XS , Eqs. (86-87), we see that an oscillation of the collective
nuclear spin fluctuation PI = PI(0) cos(ωIt+ ϕ) results in a light signal XS = (ΩPI(0)/ωI) sin(ωIt+ ϕ). Computing
the ratio between the oscillation amplitude of the light and nuclear spin gives us Ω/ωI , from which we extract the
effective coupling for different nuclear polarizations.

We plot in Figure 5 the polarization dependent part of the coupling as obtained from the solution of the full set
equations of motions (71), for a small initial tilt of the collective nuclear spin in the linear response regime in the
two configurations (solid lines), and from the solution of the simplified models (80) in “Config.1” (circles) and (93) in
“Config.2” (squares). On the same plot, we show the analytic expressions of the functions (91) and (104). Overall,
the results in “Config.2” show good agreement, while the results in “Config.1” have a larger discrepancy especially
for large polarizations. This is expected, as the effects of the F = 3/2 manifold have been completely neglected.

Even accounting for the difference in the coupling constants in the two configurations, η being approximately 0.48
times χ, due to the large difference in the the scaling factors f (3/2) and f (1/2) the effective coupling between nuclear
spin and light is significantly larger in “Config.2” than in “Config.1”.
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Figure 5: Comparison between the effective light-nuclear spin coupling factor in “Config.1” and “Config.2” as
a function of the nuclear spin magnetization M. Blue indicates “Config.1”, while yellow “Config.2”. Solid lines refer to
the coupling extracted from the full model, while round and square markers refer to the coupling extracted from Eq. (80) and
Eq. (93), respectively. Red and green lines are the analytical expressions obtained for Bx = 0, namely Eq. (91) and Eq. (104)
respectively. Simulation parameters: nph/Ncell = 10−3 and Ncell/ncell = T/τ = 106 s.

VII. CONCLUSIONS

In conclusion, we have derived the full set of semiclassical equation of motion describing the interaction between light
and metastable helium-3, taking into account metastability-exchange collisions with helium-3 atoms in the ground
state as well as a static external magnetic field. We then explored interesting choices of detunings between light
and metastable helium-3 23S − 23P transition, and found two configurations that are dominated by the interaction
with the atomic F = 1/2 or F = 3/2 manifolds. At these configurations we were able to write linearised equations
of motion that describe an effective Faraday interaction between light and helium-3 nuclear spin. We provide an
expression for the effective coupling rate as a function of the experimental parameters, and conclude that for large
nuclear spin polarization this quantity is considerably larger in the configuration dominated by the F = 3/2 manifold.
A comparison between the numerical solution of the full set of equations of motion and the linearised model show
that for large spin polarizations the light field evolution contains contributions from the coupling with tensor spin
components. In the future, it will be important to explore how the presence of these tensor contributions might affect
squeezing of the nuclear spin in a fully quantum treatment [6, 7].

Acknowledgments: MF was supported by the Swiss National Science Foundation Ambizione Grant No. 208886,
and The Branco Weiss Fellowship – Society in Science, administered by the ETH Zürich.
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Appendix A: Transition frequencies between the metastable and the excited states

Frequencies of transitions C1−C9 shown in Fig.1, and calculated with respect to transition C8 = 2π 276 726 257 MHz
are reported in the following table [17]

Freq. offset (GHz) F J F ′ J ′

∆1/2π -32.6045 1/2 1 3/2 1
∆2/2π -28.0929 1/2 1 1/2 1
∆3/2π -27.6453 3/2 1 5/2 2
∆4/2π -27.4238 1/2 1 3/2 2
∆5/2π -25.8648 3/2 1 3/2 1
∆6/2π -21.3532 3/2 1 1/2 1
∆7/2π -20.6841 3/2 1 3/2 2
∆8/2π 0 1/2 1 1/2 0
∆9/2π +6.7397 3/2 1 1/2 0

Appendix B: Effective Hamiltonian in a state F in the large detuning limit

The Hamiltonian for a single-atom interacting with a light field is

hF =
∑
F ′

ℏ
σF ′

2A

Γ/2

∆F ′ + iΓ/2

{
αV
F ′FzSz+ (B1)

+
αT
F ′

(F + 1)

[(
F (F + 1)

3
− F 2

z

)
S0 + (F 2

x − F 2
y )Sx + (FxFy + FyFx)Sy

]}
.

In Eq. B1, F (F ′) is the total angular momentum of the starting (target) state of the transition, σF ′ is the resonant
effective cross section of the transition F → F ′, and ∆F ′ = ωprobe−ωFF ′ is the detuning with respect to the resonance.
In the expression ∆F ′ + iΓ/2 in the denominator, the imaginary part can be neglected for ∆F ′ ≫ Γ/2.
The vector and tensor components of the polarisation have the form [11, 18]

αV
F ′ =

3(2J ′ + 1)

2(2F ′ + 1)(2J + 1)

(
−2F − 1

F
δF

′

F−1 −
2F + 1

F (F + 1)
δF

′

F +
2F + 3

F + 1
δF

′

F+1

)
(B2)

αT
F ′ = − 3(F + 1)(2J ′ + 1)

2(2F ′ + 1)(2J + 1)

(
1

F
δF

′

F−1 −
2F + 1

F (F + 1)
δF

′

F +
1

F + 1
δF

′

F+1

)
. (B3)

Introducing σ2 = 3λ2/2π and Wigner’s 6j symbols {}, the resonant effective cross section σF ′ between two levels
F, J, I and F ′, J ′, I is given by

σF ′ = σ2
2(2J + 1)(2F ′ + 1)

3

{
J ′ 1 J
F I F ′

}2

. (B4)

For a spin greater than F = 1/2, the irreducible tensor basis tlm should be used, with l = 0, 1, .., 2F and m = −l, ..., l
defined as a function of the ladder operators F± = Fx ± iFy, and given below for l ≤ 3.

t00 = n0
0 I (B5a)

t10 = n1
0 Fz (B5b)

t1±1 = n1
±1 F± (B5c)

t20 = n2
0 (3F 2

z − F2) (B5d)

t2±1 = n2
±1 (F±Fz + FzF±) (B5e)

t2±2 = n2
±2 F 2

± (B5f)

t30 = n3
0 (5F 2

z − 3F2 + 1)Fz (B5g)

t3±1 = n3
±1

[
(5F 2

z − F2 − 1/2)F± + F±(5F
2
z − F2 − 1/2)

]
(B5h)

t3±2 = n3
±2 (F 2

±Fz + F±FzF± + FzF
2
±) (B5i)

t3±3 = n3
±3 F 3

± (B5j)
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As expected, for a spin F operators of rank l > 2F are null. The operators tlm satisfy property (tlm)† = (−1)mtl−m

and are of null trace except tl=0
0 . Other properties and commutation relations are given in Appendix C. Prefactors

nl
m are chosen to ensure the normalisation condition Tr[tlm(tlm)†] = 1, and for a spin F = 3/2 they read

n0
0 n1

0 n1
±1 n2

0 n2
±1 n2

±2 n3
0 n3

±1 n3
±2 n3

±3
1
2

1√
5

∓ 1√
10

1
6

∓ 1

2
√
6

1

2
√
6

1

3
√
5

∓ 1

4
√
15

1

3
√
6

∓ 1
6

Finally, we introduce the symmetric and antisymmetric combinations

Rtlm ≡ tlm + (tlm)†√
2

Itlm ≡ tlm − (tlm)†

i
√
2

. (B6)

The associated collective operators are then defined by summing over all particles as e.g. RT l
m =

∑N
i=1(Rtlm)i.

We note that T 1
0 is proportional to the longitudinal magnetisation, RT 1

1 and IT 1
1 to the magnetisations according to

x and y, T 2
0 is the quadrupolar spin polarisation (called alignment), RT 2

1 and IT 2
1 imply coherences between levels

∆m = 1, RT 2
2 and IT 2

2 between levels ∆m = 2, T 3
0 is the octopolar spin polarisation, etc.

Assuming ∆ ≫ Γ, and summing over all atoms, we can rewrite the collective Hamiltonian

HF =
∑
F ′

ℏ
σF ′

4A

Γ

∆F ′

{
αV
F ′FzSz +

αT
F ′

(F + 1)

[
−2T 2

0 S0 +
√
12
(
RT 2

2 Sx + IT 2
2 Sy

)]}
, (B7)

where we have preferred the notation Fz rather than T 1
0 .

Appendix C: Commutation relations for the atomic operators

Let F⃗ = {Fx, Fy, Fz} be the components of a spin operator, F± = Fx± iFy the corresponding ladder operators, and
tlm the irreducible tensors explicit in (B5) for l ≤ 3. The operators satisfy the following commutator rules [11, 19] :

[Fx, Fy] = iFz (and cyclic permutations) (C1)

[Fz, F±] = ±F± (C2)

[F+, F−] = 2Fz (C3)

[Fz, t
l
m] = mtlm (C4)

[F±, t
l
m] =

√
(l ±m+ 1)(l ∓m)tlm±1 (C5)

[tl1m1
, tl2m2

] =
∑
L,M

(−1)L+2F
√
(2l1 + 1)(2l2 + 1)

{
l1 l2 L
F F F

}
⟨l1m1l2m2, LM⟩[1− (−1)l1+l2+L] tLM , (C6)

where {} denotes Wigner’s 6j symbols, and ⟨, ⟩ the Clebsch-Gordan coefficients.

Appendix D: Derivation of metastability exchange equations

In this appendix we explain how the metastability exchange equations presented in section IVB can be derived in
practice. First, the density matrix ρ can be written as ρ =

∑
i,j ρi,j |i⟩ ⟨j|, where the indices i, j label the basis states

|5⟩ =
√

1

3

∣∣∣∣0,−1

2

〉
−
√

2

3

∣∣∣∣−1,
1

2

〉
|6⟩ = −

√
1

3

∣∣∣∣0, 12
〉
+

√
2

3

∣∣∣∣1,−1

2

〉
(D1a)

|1⟩ =
∣∣∣∣−1,−1

2

〉
|2⟩ =

√
2

3

∣∣∣∣0,−1

2

〉
+

√
1

3

∣∣∣∣−1,
1

2

〉
|3⟩ =

√
2

3

∣∣∣∣0, 12
〉
+

√
1

3

∣∣∣∣1,−1

2

〉
|4⟩ =

∣∣∣∣1, 12
〉

(D1b)

|9⟩ =
∣∣∣∣−1

2

〉
|0⟩ =

∣∣∣∣12
〉

. (D1c)



19

Here, note that |9⟩ and |0⟩ are purely nuclear states, while the others are hyperfine states of total spin F = 3/2
and F = 1/2 expressed in the decoupled basis of the electronic and nuclear spin. In practice, we neglect coherences
between metastable and ground states, as well as coherences between the 3/2 and 1/2 states. This gives us

ρ =

[
ρm 0
0 ρf

]
=



ρ1,1 ρ1,2 ρ1,3 ρ1,4 0 0 0 0
ρ2,1 ρ2,2 ρ2,3 ρ2,4 0 0 0 0
ρ3,1 ρ3,2 ρ3,3 ρ3,4 0 0 0 0
ρ4,1 ρ4,2 ρ4,3 ρ4,4 0 0 0 0
0 0 0 0 ρ5,5 ρ5,6 0 0
0 0 0 0 ρ6,5 ρ6,6 0 0
0 0 0 0 0 0 ρ9,9 ρ9,0
0 0 0 0 0 0 ρ0,9 ρ0,0


. (D2)

Using now Eqs. (51,52), with Eqs. (49,50), allows us to derive the equations of motion of ρ due to metastability
exchange collisions. These can be found in the appendix of Ref. [3]. Finally, the evolution due to metastability
exchange collisions of any one-body atomic operator O can be calculated using Eq. (54). To this end, it is convenient
to express the spin operators in the basis Eq. (D1). For the F = 1/2 metastable state and the nuclear ground state,
the spin operators in the relevant 2× 2 subspace are proportional to the Pauli matrices, e.g. kz = 1

2

(−1 0
0 1

)
. For the

F = 3/2 metastable state the spin operators in the relevant 4× 4 subspace are

jx =


0

√
3
2 0 0√

3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

 , jy =


0 i

√
3

2 0 0

− i
√
3

2 0 i 0

0 −i 0 i
√
3

2

0 0 − i
√
3

2 0

 , jz =


− 3

2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 3

2

 , (D3)

t20 =


1
2 0 0 0
0 − 1

2 0 0
0 0 − 1

2 0
0 0 0 1

2

 , Rt21 =


0 1

2 0 0
1
2 0 0 0
0 0 0 − 1

2
0 0 − 1

2 0

 , Rt22 =


0 0 1

2 0
0 0 0 1

2
1
2 0 0 0
0 1

2 0 0

 , (D4)

It21 =


0 i

2 0 0
− i

2 0 0 0
0 0 0 − i

2
0 0 i

2 0

 , It22 =


0 0 i

2 0
0 0 0 i

2
− i

2 0 0 0
0 − i

2 0 0

 , t30 =


− 1

2
√
5

0 0 0

0 3
2
√
5

0 0

0 0 − 3
2
√
5

0

0 0 0 1
2
√
5

 , (D5)

Rt31 =


0 − 1√

10
0 0

− 1√
10

0
√

3
10 0

0
√

3
10 0 − 1√

10

0 0 − 1√
10

0

 , Rt32 =


0 0 − 1

2 0
0 0 0 1

2
− 1

2 0 0 0
0 1

2 0 0

 , Rt33 =


0 0 0 − 1√

2

0 0 0 0
0 0 0 0

− 1√
2

0 0 0

 , (D6)

It31 =


0 − i√

10
0 0

i√
10

0 i
√

3
10 0

0 −i
√

3
10 0 − i√

10

0 0 i√
10

0
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The equations of motion for the collective spin operators are then readily found by taking〈
I⃗
〉
= N

〈⃗
i
〉

,
〈
K⃗
〉
= n

〈
k⃗
〉

,
〈
J⃗
〉
= n

〈⃗
j
〉

,
〈
RT 2

2

〉
= n

〈
Rt22

〉
, etc. (D8)

and are the one presented in Section IVB.
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Appendix E: Coefficients of the linearized equations of the simplified models

In this appendix we give the expression of the coefficients appearing in the linearized equations of the simplified
models of section VI.

The coefficients appearing in Eqs. (80) read
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The coefficients appearing in Eqs. (93) read
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Figure 6: Comparison between the full model Eq. (71) and the same model after adiabatic elimination of the F = 1/2 and tensor
degrees of freedom in “Config.2”. The nuclear magnetization is set to M = 98%. Blue indicates the y spin component, while
yellow the z spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of
the same model after adiabatic elimination of the F = 1/2 and tensor degrees of freedom (without setting µ = χ = 0, as done
in Fig. (4)). Simulation parameters: nph/Ncell = 10−3, Ncell/ncell = T/τ = 106 s, and an initial state resulting from tilting the
nuclear spin by 0.01 rad. Time is in units of the nuclear spin Larmor frequency.

Appendix F: Adiabatic elimination in Configuration 2

In Section VIB we obtain for Configuration 2 a set of simple equations of motion for the variables S, I and J by
first setting the coupling coefficients χ = µ = 0 in Eqs. (76), and then adiabatically eliminating the δKα and δQαx

degrees of freedom.
Here, we perform instead the adiabatic elimination of δKα and δQαx directly on Eqs. (76), keeping all the coupling

coefficients. This lead to a set of expressions that are too complex to be treated analytically, but can be solved
numerically showing good agreement with the full model, see Fig. 6.
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