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Abstract
Over the recent decades, Europe has experienced a significant decline in common birdspecies, particularly farmland species, due to anthropic pressures like agricultural inten-sification. Protected areas, such as the Écrins National Park in France, play a crucial rolein mitigating these impacts. In this study, we utilized an opportunistic presence-onlydataset of passerine occurrences to evaluate the impact of protected areas on passer-ine trends. The data, gathered by trained rangers from Écrins National Park, were usedfor spatio-temporal modeling to assess the relative abundance of 76 passerine specieson a regular grid, with aggregated occurrences per spatio-temporal cell serving as aproxy for sampling effort. The model demonstrated good calibration for most species,with AUC values from different cross-validation schemes exceeding 0.8 in most cases.The model also effectively distinguished habitat preferences and migratory status. Ad-ditionally, we compared trends in relative abundance over 2001—2019 in the ÉcrinsNational Park with the trends in abundance across France using the French BreedingBird Survey (STOC program) for 59 common species. Our analysis revealed that forestspecialist species benefited themost fromprotected areas, farmland species decreasedmore slowly, and high-elevation specialist species generally decreased. Though, someresults should be interpreted with care since our assumption of a homogeneous re-porting rate across target group species may be too strong for some very commonspecies. Our findings illustrate that the high spatio-temporal resolution provided byopportunistic presence-only data offers valuable insights into biological phenomenaand their trends while reducing the need for other data sources to determine samplingeffort proxies. Similar datasets from other protected areas could serve as powerfultools for assessing the effectiveness of conservation policies.
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2 Florian Lasgorceux et al.
Introduction2

Over the recent decades, Europe has experienced a significant decline in the populations of3

common bird species (Inger et al., 2015), particularly those inhabiting agricultural landscapes4

(Donald et al., 2001). This sharp decline in farmland bird species has led to extensive research5

across various countries (Heldbjerg et al., 2018; Kamp et al., 2021; Newton, 2004; Reif et al.,6

2008b; Sanderson et al., 2013; Traba and Morales, 2019; Wretenberg et al., 2006). The conclu-7

sions regarding the health status of forest species in Europe are however less consistent. Gre-8

gory et al., 2007 estimated a decline of 13% in common forest birds and 18% in specialists9

from 1980 to 2003. In contrast, by considering a different indicator over the period 1980–2015,10

Gregory et al., 2019 found a relative stability in common European forest bird populations. Mi-11

gratory status may explain these differences, with non-migratory birds benefiting from improved12

forest management and migratory species declining (Schulze et al., 2019). Habitat preferences13

also play a role; species in lowland broad-leaved forests fare better than those in montane and14

coniferous forests (Reif et al., 2008a). This has been confirmed by the study of Lehikoinen et15

al., 2019 affirming that mountain bird species in Europe have declined by 10% due to climate16

and land use changes, pushing distributions towards mountaintops (Flousek et al., 2015; Zamora17

and Barea-Azcón, 2015). A recent study by Rigal et al., 2023 identified agricultural intensifica-18

tion as the primary factor in the general decline of common bird abundance in Europe, especially19

among invertebrate feeders, with varied responses to forest cover, urbanization, and tempera-20

ture changes.21

Protected areas and conservation efforts therefore play a crucial role in mitigating the de-22

cline of bird populations across Europe. According to the IPBES, 2019, conservation investments23

from 1996 to 2008 have resulted in an average reduction of 29% in the extinction risk for mam-24

mals and birds across 109 countries. Focusing on birds across Europe, the EU’s Natura 200025

protected area network, while not preventing country-wide population declines in some threat-26

ened grassland bird species (Silva et al., 2018), has been effective for bird conservation, notably27

for threatened species (Duckworth and Altwegg, 2018). Studies by Barnes et al., 2023 also indi-28

cate positive associations between protected areas and bird abundance, particularly benefiting29

rare and declining species. Timmers et al., 2022 conducted a comprehensive meta-analysis and30

demonstrated a strong association between strict protection measures (International Union for31

Conservation of Nature [IUCN] categories I–IV) and higher bird occurrence in larger forest frag-32

ments.33

National Parks in France are one of those protected areas. A National Park is formed of two34

geographic zones with different regulatory statuses: the core (regulated area) – the National Park35

guarantees the protection of this area, as per its decrees, and manages all human activities car-36

ried out there, in line with its management objectives – and the surrounding area (projects) – a37

space designed to achieve ecological consistency and solidarity with the National Park core. In38

this area, the National Park plays an advisory role and can act as a partner in projects to preserve39

and promote the natural, historic, cultural and landscape heritage. The Écrins National Park is40

also characterized by significant elevation changes, including multiple peaks exceeding 4000me-41

ters, extensive coniferous forests (particularly larch), and numerous alpine pastures. The park is42

responsible formultiple biodiversitymonitoring programswithin its territory (Bunz, 2022), which43

have led to extensive synthesis and research works (Noël et al., 2023).44

In addition to data from monitoring programs, the Écrins National Park maintains a large45
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Florian Lasgorceux et al. 3
dataset of presence-only records collected opportunistically by rangers. The primary use of these46

data is to ensure ecological surveillance at high spatio-temporal resolution and to serve as a basis47

for knowledge-sharing within the context of development projects. Using these data in statis-48

tical modeling presents a challenge due to sampling variability, which concerns the spatial and49

temporal dimensions, and between species and observers because of their opportunistic nature50

(Van Strien et al., 2013). This sampling variability translates into biases in species distribution51

models that do not account for it. In this study, we propose to harness this extensive dataset52

for modeling species habitat preferences, classifying species migratory status, and studying time53

variations in relative abundance, by which we mean the ratio of the abundance of a species di-54

vided by the cumulated abundance of a pool of species constituting the so-called target group55

of species.56

Various estimation frameworks and algorithms exist for constructing species distribution57

models and calibrating their parameters from presence-only data. Widely used methods include58

Maxent, based on the maximum-entropy principle (Phillips et al., 2006), and various statistical59

regression modeling frameworks (Valavi et al., 2022). These methods are often based on point-60

process representations of data (Renner et al., 2015; Warton and Shepherd, 2010), where each61

observed occurrence of a species is viewed as a point in a cloud of points located in space and62

time. In this context, models such as Maxent and logistic regression are equivalent to a special63

case of the point-process setting (Fithian and Hastie, 2013; Renner and Warton, 2013). Due to64

the uncertainty in reported positions in the Écrins National Park dataset, we rather implement a65

degraded version of these point processmodels by aggregating occurrences into spatio-temporal66

cells, which leads to the use of a generalized additive regression model.67

Models including random effects are often used to capture the complex spatio-temporal68

structures in data and ecological processes, thus allowing for an accurate assessment of vari-69

ous sources of uncertainty. This has led to the widespread adoption of Bayesian inference tech-70

niques such as Markov Chain Monte Carlo (MCMC, (Gilks et al., 1995; Link et al., 2002)) or In-71

tegrated Nested Laplace Approximations (INLA, Illian et al., 2013). We apply the INLA approach72

to perform complex Bayesian spatio-temporal inferences with relatively large datasets by com-73

bining generalized additive regression models with the Stochastic Partial Differential Equation74

(SPDE) approach, the latter used to represent spatial random effects (Lindgren et al., 2011). The75

construction and estimation of complex spatio-temporal ecological models are still recent devel-76

opments (Belmont et al., 2024; Soriano-Redondo et al., 2019), and as far as we know, our study77

represents the first attempt to evaluate management policies of protected areas using solely78

opportunistic presence-only data for this type of model.79

Materials and methods80

Data81

Passerines presence-only data. The dataset comprises 102,513 opportunistically reported events82

of passerine detections between 1994 and 2021, recorded by rangers of the Écrins National Park83

with professional training in naturalistic expertise. We chose to focus our study on the Passeri-84

formes because it is a taxon generally well known by all rangers, ensuring consistent reporting85

rates, unlike more specific taxa. Furthermore, we have excluded three species – Common Raven86

(Corvus corax), Red-billed Chough (Pyrrhocorax pyrrhocorax), and Alpine Chough (Pyrrhocorax grac-87

ulus) – due to the high uncertainty associated with their reported positions compared to the rest88

3



4 Florian Lasgorceux et al.
of the passerines. We narrowed the temporal window to the 1994–2021 period to ensure a89

minimum of 2000 reported events per year (Appendix A, Lasgorceux et al., 2024c).90

The data were collected opportunistically, by sight and/or ear, without a predefined survey91

methodology. Each row of the dataset contains a position, a date, the name of the reported92

species, the ID of the observer(s), and the number of individuals. However, we choose not to93

consider the number of individuals because it can vary greatly due to species behavior, particu-94

larly in gregarious species, and differences in observers’ methods since some observers report95

species abundance, while others only note presence (see the eBird example in Horns et al., 2018).96

Thus, we consider one reported event as the presence of at least one reported individual, result-97

ing in a total of 102,513 passerine occurrences.98

Based on interviews with various rangers, we have gained insight that the reported posi-99

tion could be i) an approximation of the reported individual’s position at detection time, ii) the100

observer’s position at detection time, or iii) another, different position where the observer gath-101

ered several occurrences before adding them jointly to the data records. Though, when multiple102

occurrences are gathered at a station position, rangers ensure that the environment is consis-103

tent between the station position and the bird’s individual position at detection time and that104

the distance between these two positions does not exceed 250m. This distance of 250m is ob-105

tained by considering at most 100m for the difference between the positions of the detected106

individual and the observer by sound recognition (Haupert et al., 2023), plus an additional 150m107

for the distance between the position at detection time and the station position. To account for108

this uncertainty surrounding the reported position, we aggregated the data by assigning each109

reported position to the center of a regular spatial grid with 500m resolution covering the Écrins110

National Park. We excluded boundary cells with an area smaller than 25m2, which corresponds111

to the resolution of the environmental covariates we use for characterizing the spatial habitat112

preferences. This discretization results in dividing the Écrins National Park domain into 11,260113

spatial cells.114

Our objective is not only to infer species habitat preferences but also to analyze temporal115

trends in relative abundance. Therefore, we divided the 28 years of data into seven periods of116

4 years each to capture long-term changes between such periods. Additionally, in order to take117

into account that some studied species are migratory, we further subdivided the data tempo-118

rally by month to investigate intra-annual variations. This spatio-temporal discretization scheme119

results in a total of 7×12×11,260 = 945,840 spatio-temporal cells.120

Passerine population trend synthesis in France. To compare local and national trends in relative121

abundance variations, we also utilized the French Breeding Bird Survey synthesis, known as the122

STOC program, for the period 2001–2019 (Fontaine et al., 2020; Jiguet et al., 2012). These data123

present the long-term abundance variation percentages of common birds in France during this124

period. Comparing trends from opportunistic data and STOC data serves three main purposes:125

(i) assessing the consistency of modeling assumptions, (ii) comparing local indicators within a126

protected area to global indicators across the territory of the entire country, and (iii) providing127

insights into space-time population trends for species specialized in mountainous habitats, for128

which surveys such as STOC are quite limited in terms of spatio-temporal coverage.129

Environmental Data. The Écrins National Park is a high-mountain park where the terrain struc-130

ture plays a predominant role in the ecosystems. We utilized the Digital Elevation Model data131
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Florian Lasgorceux et al. 5
from RGE (IGN, 2018) to extract the elevation (McVicar and Körner, 2013) on a 5m regular grid.132

Subsequently, we calculated the slope at the same resolution using the ‘terrain’ function from133

the R package terra (Hijmans, 2024). Ultimately, we derived two spatial covariates: the mean134

elevation and the mean slope values per spatial cell at 500m resolution.135

Regarding land cover and land use data, wemake use of theOSOdataset (Inglada et al., 2018).136

Originally at a resolution of 10/20m, we applied the nearest neighbor strategy to downscale the137

values to a 5m resolution, for alignment with the RGE data resolution. To avoid statistical issues138

due to uncommon land cover and land use types in the Écrins National Park, we aggregated139

data towards 10 representative categories: Urban, Crops, Meadows, Deciduous forest, Conif-140

erous forest, Grasslands, Woody Heaths, Mineral Surfaces, Glaciers and snow, and Water (see141

Appendix B in Lasgorceux et al., 2024c for further details). We then calculated the percentage142

of coverage of each category in each spatial cell at 500m resolution.143

We also used the Historical Monthly Weather Data from WorldClim (CRU-TS 4.06 (Harris144

et al., 2020) downscaled with WorldClim 2.1 (Fick and Hijmans, 2017)) at 2.5 minutes spatial145

resolution (roughly 5km) between the years 1994 and 2021. The available variables were aver-146

age maximum temperature (°C) and total precipitation (mm). We extracted the corresponding147

values in each spatial cell, for each month, and each year. Since the inter-annual resolution of148

our spatio-temporal cells consists of periods of 4 years, we computed the mean of the extracted149

values of the 4 corresponding years for a given spatial cell and a given month.150

Preprocessing of model covariates. Elevation shows strong variability in the Écrins National Park151

with certain climate and land cover configurations arising predominantly within specific eleva-152

tion ranges. As a result, both land cover and climatic variables are correlated.153

Hence, we began by decomposing the climatic variables into their spatial means and spatio-154

temporal anomalies with respect to those means. We then performed a Principal Component155

Analysis (PCA, Janžekovič and Novak, 2012) using the R package ade4 (Dray and Dufour, 2007).156

The input variables were: the mean elevation, the mean slope, the percentages of coverage com-157

puted for each of the ten representative categories derived from the OSO classification, as well158

as the spatial means of average maximum temperature and total precipitation. The first 6 axes159

of the PCA, accounting for 75% of the information, allow for useful interpretation and have160

therefore been incorporated into the species distribution models (see Appendix C in Lasgorceux161

et al., 2024c for details). The first principal component axis explains a significant 31.1% of the162

variation in habitat types, primarily driven by high-elevation environments. The second axis is163

characterized by vegetation at medium to high altitudes, particularly in coniferous forests, espe-164

cially in steep areas. The third axis is influenced by grasslands, and the fourth axis is primarily165

driven by wetlands and glaciers. However, since we observe a significant predominance of bird166

occurrences in “water” habitats within urbanized valleys (Figure 14 in Appendix C, Lasgorceux et167

al., 2024c) compared to “glaciers and snow” habitats (751 occurrences versus 80), we interpret168

the fourth axis as “urban wetlands”. The interpretation of the fifth axis is also associated with169

high-elevation vegetation, as it is primarily driven by dense, low-growing shrubs and small trees;170

henceforth, we will refer to these environments as “woody heaths”. The sixth axis is driven by171

low-elevation deciduous forests.172

This approach results in the implementation of eight covariates in our statistical model: six173

spatial covariates from the PCA analysis, and two spatio-temporal covariates defined as the174

anomalies of average maximum temperature and anomalies of total precipitation.175
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6 Florian Lasgorceux et al.
Statistical modeling176

We applied the same Bayesian hierarchical model (Wikle, 2003) to each species with more than177

100 occurrences over the period from 1994 to 2021, excluding Bombycilla garrulus for which178

90% of its 146 occurrences were reported in 2005, due to a brief invasion event of this species179

within the Écrins National Park that year. This resulted in a total of 76 species being analyzed.180

Data model. We denote by s a spatial cell, by m a month, and by p a temporal period of 4 years,181

with the triplet (s,m, p) representing the corresponding space-time cell. The response variable,182

denoted as Yi (s,m, p), is the number of occurrences of species i reported for that cell in the op-183

portunistic presence-only dataset. We model Yi (s,m, p) with a hierarchical generalized additive184

mixed model (Knape, 2016; Pedersen et al., 2019) using a Poisson response distribution:185

Yi (s,m, p) | µi (s,m, p) ∼ Poisson(µi (s,m, p)),(1)
where µi (s,m, p) is the average number of reported occurrences of species i in the cell (s,m, p).186

We assume that µi (s,m, p) is obtained through the combination of two factors: (i) the abun-187

dance of species i in the cell (s,m, p), denoted by Λi (s,m, p), and (ii) the sampling effort in cell188

(s,m, p) for species i , denoted by Ei (s,m, p), which we assume to both act in a multiplicative189

way on µi (s,m, p) (Giraud et al., 2016). These relationships lead us to formulate the following190

equation:191

µi (s,m, p) = Λi (s,m, p) × Ei (s,m, p)(2)
Sampling effort. A major challenge is now to quantify or eliminate the term representing the192

sampling effort. Within our spatio-temporal discretized framework, the first step is to obtain in-193

formation about where andwhen no observations occurred. This helps distinguish between cells194

with zero occurrences due to the absence of observer presence and those with zero occurrences195

due to the absence of the species. The strategy involves utilizing the extensive opportunistic196

presence-only dataset, using reported occurrences of certain species as indicators of observer197

presence, as proposed by Botella et al., 2020. However, it is necessary to assume that these198

species are uniformly sampled by all the observers, corresponding to homogeneity in reporting199

rates across the species pool, as well as in the probability of detection. This explains one of our200

reasons to primarily restrict our study to passerines (see the subsection Passerine data). Following201

existing literature, we refer to this set of chosen species with homogeneous sampling conditions202

as the target group (TG) of species. Therefore, we denote the sampling effort term as E instead203

of Ei , and we write ΛTG (s,m, p) for the cumulative abundance of all species in the target group204

in cell (s,m, p). We can then reformulate the average number of occurrences in terms of the205

ratio of the abundance of species i to the cumulative abundance of the target group, and the206

product of the sampling effort with the cumulative abundance of the target group.(Equation 4):207

µi (s,m, p) = Λi (s,m, p) × E (s,m, p)(3)
=

Λi (s,m, p)

ΛTG (s,m, p)
× ΛTG (s,m, p)E (s,m, p).(4)

To statistically identify the first term that indicates the abundance of species i relative to208

the cumulative abundance of the target group of species –hereafter referred to as relative209

abundance– we need a proxy for the second term ΛTG (s,m, p)E (s,m, p). The most natural ap-210

proach is to use the number of target-group reported occurrences, denoted as yTG (s,m, p). We211
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Florian Lasgorceux et al. 7
chose to use the combined occurrences of all passerine species, which was consistent with al-212

gorithms similar to that of Botella et al., 2020 since they were all selected except for 4 species213

observed only once. We kept only the cells with at least one target-group occurrence, reducing214

the number of studied cells to 32,486.215

Relative abundance. Employing a spatio-temporal distribution model enables the implementa-216

tion of various spatio-temporally structured latent fixed or random effects within the linear struc-217

ture that we will assume for the predictor log(µi (s,m, p)). We opted to use only one generic218

model for each of the 76 species to automate model fitting and facilitate inter-species compar-219

isons. In Poisson models, it is common practice to represent the Poisson intensity, denoted here220

as µi (s,m, p), using a log-link function to ensure that µi (s,m, p) remains positive. Focusing on221

the parameter of interest, the relative abundance Λi (s,m,p)
ΛTG (s,m,p) , we constructed our linear regressor222

by incorporating the proxy of the sampling effort, yTG (s,m, p), as a fixed offset (Equation 5).223

By studying the abundance of a passerine species compared to all others, we compare species224

with different biological characteristics, such as habitats and migratory status, which need to be225

taken into account in the linear regression. We therefore allowed for a linear effect of the spatial226

covariates X(PCA)(s) (PCA components) and the spatio-temporal covariates X(anomalies)(s,m, p)227

(anomalies of climatic covariates) to estimate habitat preferences of species i , relative to other228

passerines. We denoted αi as the intercept. The term W
(m)
i (s), m = 1, ... , 12, represents a229

monthly latent spatio-temporal Gaussian field. Concretely, this field aims to model intra-annual230

spatial variations not captured by the covariates, typically variations in relative abundance due231

to the migration of certain passerines within the territory of the Écrins National Park. Lastly, we232

denote by fi (p) a non-spatialized inter-annual effect, aiming to capture the variations in relative233

abundance across each period p of 4 years.234

log(µi (s,m, p)) = log(yTG (s,m, p)) + log

(
Λi (s,m, p)

ΛTG (s,m, p)

)(5)
= log(yTG (s,m, p)) + αi + X(PCA)(s)βi + X(anomalies)(s,m, p)γi +W

(m)
i (s) + fi (p).(6)

Statistical inference. We employed the R-INLA package for the statistical inference of our models235

(Rue et al., 2009). INLA is a fast but accurate estimation method based on deterministic Laplace236

approximations –by contrast with approaches based on stochastic simulation, such as MCMC–237

and requires that the latent layer (log(µi (s,m, p)) in our model) follows a multivariate Gaussian238

distribution, possibly in very high dimension, as with our space-time fields. In this setting, INLA239

enables the implementation of a wide range of Gaussian random effects, including spatial fields240

implemented through the SPDE approach, which provides a numerically convenient representa-241

tion of the Matérn covariance function used routinely in spatial statistics (Lindgren et al., 2011),242

and of priors for hyperparameters such as variances or correlation ranges. In Appendix D, we243

precisely describe the prior distributions of all parts of log(µi (s,m, p)), i.e., the structure of the244

model components before updating themwith information from observation data to obtain their245

posterior distributions (Lasgorceux et al., 2024c).246

Validation and post-processing247

The model presented previously is quite comprehensive, allowing for a thorough examination248

of information on a species-by-species basis. In the following sections, we delineate the post-249

processing phase undertaken to synthesize this information. We address questions pertaining250
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8 Florian Lasgorceux et al.
to the model’s validation and also delve into the three components of the linear predictor (Equa-251

tion 6): those concerning the fixed effects – specifically, habitat preferences compared to the252

target group denoted by βi and γi ; the spatial intra-annual component, characterized by the253

month-dependent Gaussian field Wm
i , which is associated with migratory status; and the inter-254

annual component, represented by the random i.i.d. Gaussian effect fi (p), which captures long-255

term trends in relative abundance.256

Computational cost. For each species, the model comprises 32,486 space-time cells with obser-257

vations and a total of 7,676 latent variables to estimate across the prediction cells.We conducted258

analyses using the R programming language (R Core Team, 2024) and utilized version 24.02.09259

of R-INLA (Rue et al., 2009), leveraging the PARDISO 8.2 library to accelerate computations260

(Eftekhari et al., 2021; Gaedke-Merzhäuser et al., 2023; Pasadakis et al., 2023). This configu-261

ration typically yields computation times averaging around one minute for each model fit on a262

standard workstation with 2.80GHz processor.263

Validation. We evaluated whether our model effectively extracted meaningful insights from the264

opportunistic presence-only data by comparing its predictive performance against a baseline265

that considered only the sampling effort proxy, i.e. the target-group occurrences as an offset.We266

focus on the prediction of the binary event of the reported presence or non-reported presence of267

a species in a given cell andmonth and compute theArea-Under-the-Curve (AUC, Fawcett, 2006;268

Jin Huang and Ling, 2005) (where the curve is the so-called Receiver Operating Characteristic269

curve) to obtain a simple scalar prediction score for each species, where we compare results for270

two predictors: (i) the sampling effort proxy offset and (ii) the full linear predictor (Equation 6).271

Next, we assessed themodel’s generalization skill for predicting newdata using k-fold, spatial,272

and temporal cross-validation scenarios. In k-fold cross-validation, the dataset is divided into k273

equal parts, with one part used for validation while the rest is used for training (Jung, 2018). This274

approach yields k + 1 AUC scores per species: k scores from predicting each part separately,275

and one from predicting the entire dataset. We selected k = 10 to ensure comparability with276

temporal and spatial scenarios, where the training data represented between 3.9% and 13.7% of277

the total volume. This choice aimed to maintain consistency in the quantity of test data across278

scenarios, ensuring equitable evaluation conditions. In the spatial scenario, we assessed model279

robustness by alternately removing all spatio-temporal cells within a given municipality of the280

Écrins National Park. Seven municipalities were selected based on geographic zones and data281

availability, resulting in seven AUC scores per species. For the temporal scenario, we alternately282

randomly removed half of the data for a given period, resulting in seven AUC scores per species.283

Further details on the size of the training datasets are given in Appendix E in Lasgorceux et al.,284

2024c.285

Fixed effects. We estimated the a posteriori distribution of coefficients βi and γi separately for286

each species i (Equation 6). The posterior mean of each parameter and its sign quantify the287

importance of the covariates in explaining occurrences of species i relative to the occurrences288

of all the passerines taken together. The credibility interval of each parameter helps determine289

how strongly the corresponding covariate influences the species; if the interval does not contain290

zero, we can consider the covariate as being “significant” (by analogy with the frequentist notion291

of significance). To synthesize the estimated mean coefficients and assess parameter similarities292

across species occupying comparable ecological habitats, we conducted Principal Component293
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Florian Lasgorceux et al. 9
Analysis (PCA) on estimated parameters followed by species clustering based on the estimated294

mean effects. This clustering was performed using a hierarchical agglomerative clustering (HAC)295

algorithm implemented through the hclust function, employing the ward.D2 method (Murtagh296

and Legendre, 2014).297

Month-based spatio-temporal Gaussian field. The month-based spatio-temporal Gaussian field298

W
(m)
i adds flexibility to the model but is challenging to summarize graphically since we have299

12 maps per species. Therefore, we opted to reduce dimensionality by spatially averaging each300

field. For each species, this yields a curve of 12 points depicting the intra-annual variations in oc-301

currences relative to the target group. Instead of plotting all 76 curves on a single graph, we con-302

ducted a Functional Principal Component Analysis (FPCA, Ramsay and Silverman, 2005). In our303

case, FPCA decomposes the intra-annual mean effect of a given species into (i) the mean intra-304

annual effect across all species plus (ii) the remaining signal represented by scores associated305

with empirically identified harmonics. In a functional principal component analysis, harmonics306

represent the most significant modes of variation in the observed functions. These harmonics307

are akin to principal components in traditional PCA but are applied to functions rather than308

conventional variables, where the difference is that functions are represented as vectors with a309

very large number of components (larger than the sample size of functions), and typically show310

correlation for components at near positions within the vector. We utilized the fda package to311

conduct these analyses (Ramsay et al., 2009).312

Inter-annual effects. Ourmotivation for introducing the inter-annual effect in the linear predictor313

(Equation 6) lies in comparing the relative abundance trends of passerines in the Écrins National314

Park with theabundance trends of common birds in the STOC. If we denote by λ
(STOC)
i (y) the315

estimated abundance of species i in year y from the STOC, then the percentage variation in316

abundance computed by the STOC (Fontaine et al., 2020) can be expressed as317 (
λ̂
(STOC)
i (2019) − λ̂

(STOC)
i (2001)

)
× 100

λ̂
(STOC)
i (2001)

.

In the model presented in Equation 6, the term capturing the effect of the period p on the318

relative abundance of species i is exp(fi (p)). The INLA method allows us to estimate a posterior319

distribution of each exp(fi (p)). To mimic the STOC period of study, we assume the relative abun-320

dance to be constant in each period p. This allows us to attribute an estimated relative effect321

fi (y) to each year y between 2001 and 2019. We then calculated a regression line using a linear322

model with the fi (y) as the response variable and y the explanatory variable. If we denote by323

f̂
(ENP)
i (y) the fitted value of this linear regression, we could calculate the percentage variations324

in relative abundance of species i as325 (
f̂
(ENP)
i (2019) − f̂

(ENP)
i (2001)

)
× 100

f̂
(ENP)
i (2001)

.

To enhance robustness and take into account statistical uncertainty, we generated 1000 pos-326

terior distributions for each relative abundance trend parameter and repeated this procedure.327

Then, we used the median percentage variation in relative abundance as a reference for each328

species and compared it to the STOC.329
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Results330

Validation331

Figure 1 displays the boxplots of AUC values computed species-by-species as described in sec-332

tion Validation and post-processing. There is a clear improvement in AUC when using the full333

linear predictor compared to using only the sampling-effort proxy as offset. This confirms that334

sampling methods do not solely constrain opportunistic presence-only data and that valuable335

information can be extracted from them.336

The AUC values of models with cross-validation (with one value for each hold-out dataset)337

are typically slightly lower than those without cross-validation. This is expected due to the re-338

duction in training data and the more challenging prediction setting with new data not used339

during training. Despite this slight decrease, the AUC values generally stay high, with approxi-340

mately 75% of values above 0.8 across all scenarios. Consequently, the model demonstrates a341

very good fit to the data, except for two species: Cinclus cinclus andMotacilla cinerea, which are342

consistent outliers in all scenarios. These two species with poor AUC values relative to others343

are stream specialist species, for which covariates do not capture the habitat well so we have344

excluded them from further analysis.345

Fixed Effects346

The mean estimated effects of each covariate and their significance are detailed in Tables 5-7347

in Appendix F (Lasgorceux et al., 2024c). To summarize the information on habitat spatial co-348

variates, we provide a classification into three clusters based on Principal Component Analysis349

conducted on the estimated mean coefficients for each habitat spatial covariate (see subsection350

‘Materials and Methods – Validation and Post-processing – Fixed Effects’). We did not include351

any species with less than two significant covariates since we consider that the model does not352

provide enough information on them. These species are generally those with very few occur-353

rences, as 10 out of these 11 species have fewer than 551 occurrences over the 28 years of354

data, where the value 551 is below the 25th-percentile of species occurrences. The list of re-355

moved species is given in Table 8 in Appendix F (Lasgorceux et al., 2024c). The PCA reveals two356

principal axes explaining 62.2% of the classification: the first axis distinguishes vegetated habi-357

tat (coniferous and deciduous forests VS urban wetlands), while the second axis highlights an358

altitudinal gradient.359

The three clusters are presented in Figure 2. We interpret them as follows. Cluster 1: Species360

mostly found in closed habitats such as coniferous and deciduous forests (green); Cluster 2:361

Species mostly found in high-elevation environments (orange); Cluster 3: Species mostly found362

in open habitats and valleys (violet). These results are coherent when comparing a map of eleva-363

tion with a map of clusters with the highest occurrences on a 500m×500m regular grid in the364

Écrins National Park (see Figure 15 in Appendix F in Lasgorceux et al., 2024c).365

The ellipse associated with forest species represents an altitudinal gradient, with species366

found in low-elevation forests (e.g. Pyrrhula pyrrhula), to medium (e.g. Anthus trivialis) and high-367

elevation forests (e.g. Turdus torquatus). We also observe this altitudinal gradient in the cluster368

associated with species from open habitats and valleys, with rocky habitat species such as Ti-369

chodroma muraria and Phoenicurus ochruros, at the boundary of the high-elevation species clus-370

ter. The cluster associated with species specialized to high-elevation habitats is smaller but well-371

defined, with typical species such as Prunella collaris andMontifringilla nivalis.372
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Without cross−validation With cross−validation
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Motacilla cinerea
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C

Figure 1 – AUC values calculated for various linear-predictor and cross-validation scenar-ios. Boxplots summarize the set of AUC values for all species, and in the case of cross-validation for each combination of species and hold-out dataset. Notations are as fol-lows: “Offset” – model where linear predictor contains only the offset; “Linear predictor”– model with full linear predictor; “K-folds” – model fitted by randomly removing 10%of the cells, ten times; “Concatenation of K-folds” – AUC values computed by concate-nating the predictions of the K-folds scenarios; “Temporal” – model fitted by randomlyremoving half of the data in a given time period, for each time period; “Spatial” – modelfitted by removing all the data which occurred in a given city, for seven cities. The specieswith multiple outlier AUC values in “K-folds”, “Temporal” and “Spatial” scenarios are onlynoted once. Details on the four cross-validation scenarios (where models always havethe full linear predictor) can be found in the ‘Materials and Methods – Post-processingand Validation – Validation’ section.

To compare the contribution of spatio-temporal covariates with spatial ones in the linear pre-373

dictor, we computed the percentage of explained variance for each covariate with respect to374

the overall variance of the linear part (αi +X(PCA)(s)βi +X(anomalies)(s,m, p)γi ) for each species.375

The results are presented in Figure 3. Our analysis revealed that, for most species, PCA Axis 1,376

interpreted as being related to high-elevation environments, explains the majority of the vari-377

ance (Median=54%). Axis 2 and 3, interpreted as environments with medium to high altitude378

vegetation and grasslands, respectively, explain a substantial portion of the variance for about379

twenty species (Q3=27% and 15%).380

Regarding spatio-temporal covariates, precipitation anomalies had the smallest percentage381

of explained variance, with amedian below 10−5%. This is further supported by only 12 out of 76382
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Figure 2 – Classification of 63 species in three clusters based on the estimated mean ef-fects of spatial covariates. A Principal Component Analysis was conducted on the specieswith at least two credibility intervals that do not include 0. The two main axes explain62.2% of the variance. Cluster 1: Species mostly found in closed habitats such as conif-erous and deciduous forests (green); Cluster 2: Species mostly found in high-elevationenvironments (orange); Cluster 3: Species mostly found in open habitats and valleys (vi-olet).
species showing a significant parameter associatedwith precipitation anomalies. Similarly, the ex-383

plained variance for maximum temperature anomalies is low for most species (Median < 10−3%);384

however, 45 species showed a significant parameter. It notably explained a significant amount385

of information for five species: Coccothraustes coccothraustes, Fringilla montifringilla, Lanius col-386

lurio, Spinus spinus, and Turdus pilaris. These results align with the ecological characteristics of387

these species, confirming that the model effectively correlates temperature anomalies with the388

presence of thermophilic and cold-resistant species.389

Intra-annual effect390

The first two extracted harmonics capture a significant portion of the intra-annual variability,391

explaining 83% of the variance. The primary harmonic shows a stronger positive effect in392

winter months compared to summer months, while the second harmonic has a positive effect in393

spring and summer and a negative effect in winter (see Figure 16 in Appendix G in Lasgorceux394

et al., 2024c). Thus, species with positive scores on the first harmonic, referred to as the winter395

harmonic, are predominantly overrepresented in winter. Conversely, species with positive396

scores on the second harmonic, now termed the warm months harmonic, are more likely to be397

12



Florian Lasgorceux et al. 13

Elevation

Coniferous forests

Grasslands

Deciduous forests

Urban wetlands

Tmax_anomaly

Woody heaths

Precipitation_anomaly

0 25 50 75 100

Percentage of explained variance

C
ov

ar
ia

te

Figure 3 – Percentage of explained variance of each covariate for 74 species. The co-variates include six spatial factors derived from PCA analysis and two spatio-temporalclimatic factors. The interpretation of the PCA axes is detailed in the ‘Materials andMeth-ods – Data – Preprocessing of model covariates’. Covariate boxplots are ordered by theirmedian values.

overrepresented in spring and summer, suggesting a potential link with migratory status.398

399

Figure 4 displays the harmonic scores for each species, categorized bymigratory statuswithin400

the territory of the Écrins National Park, as provided by experts from the park. This analysis con-401

firms that species overrepresented in winter are mainly sedentary, while those overrepresented402

in warmmonths are migratory. Detailed scores for each species are provided in Table 9 in Appen-403

dix G (Lasgorceux et al., 2024c). These harmonics effectively distinguish between sedentary and404

migratory species in the Écrins National Park, affirming that the month-based spatio-temporal405

Gaussian field W
(m)
i accurately accounts for spatial and intra-annual species variations not ex-406

plained by physical covariates across the territory.407

Inter-annual variability and STOC comparison408

The estimated percentage variations in relative abundance in the Écrins National Park between409

2001 and 2019, based on 1000 a posteriori samples, are illustrated in Figure 5. Species associ-410

ated with the high-elevation habitats cluster (Figure 2) exhibit a mean decline of −16.5% in rel-411

ative abundance during 2001–2019. This is mainly due to the strong decrease of three species:412
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Figure 4 – Point plot of scores associated with the first two harmonics of the FPCAcomputed on the month-based spatio-temporal Gaussian fieldW
(m)
i estimated for eachspecies. The two first harmonics explain 83%of the variance. The species are categorizedby their main migratory status within the territory of the Écrins National Park (ENP), asprovided by experts from the park: breeding migratory (red); resident (green); wintering(blue).

Monticola saxatilis (−53.5%), Prunella collaris (−26.4%) and Montifringilla nivalis (−23.4%). Con-413

versely, species affiliated with the forest cluster experienced a growth of 12.4% over the same414

period. Figure 5 shows that, out of the 19 forest species, 6 exhibited a positive trendwhile only 2415

showed a negative trend based on the 95% credibility interval. For comparison, it is noteworthy416

that the STOC reported a decrease of 9.7% in abundance for specialist forest species in France.417

When focusing specifically on the passerines considered as forest specialists by the STOC, the418

difference becomes even more pronounced, with a growth of 23.2% in the Écrins National Park,419

while the STOC observed a growth of 2% for these species during the same period in France.420

It is important to note that this percentage is nevertheless skewed by Regulus ignicapilla, which421

shows a growth of 168% in relative abundance over the period.422

Species linked to the valleys cluster experienced a mean decrease of -3.2% in relative abun-423

dance. However, comparing this figure with STOC trends is challenging due to the mix of gener-424

alist species with specialists of built and agricultural environments within this cluster. To address425

this, we compare below the trends of passerines in the Écrins National Park, classified by the426

STOC as generalist species or species specialized in built and agricultural environments, with427

our estimated trends in relative abundance. Built-environment passerines demonstrate stability428
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in the Écrins National Park (0.26%) compared to a slight decrease in France (-5.68%). General-429

ist passerines show an increase of 7.4% in relative abundance in the park, aligning with the 7%430

growth reported by the STOC for these species (and 19.4% for generalist common birds, not431

only passerines). For farmland species, both show a decrease, but at a slower rate of −16.5%432

compared to −22.6% (and −29.5% for farmland common birds, not only passerines).433
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Figure 5 – Illustration of the estimated median percentage variations in relative abun-dance and credibility intervals for 74 retained species in the Écrins National Park span-ning the period 2001–2019. These trends are derived from 1000 samples of the a posteri-ori distribution of the inter-annual effect exp(fi (p)). Details can be found in the ‘Materialsand Methods – Post-processing and Validation – Inter-annual effects’ section. Credibil-ity intervals shown in red (respectively blue) correspond to intervals below (respectivelyabove) zero, while yellow intervals include zero. Species names are color-coded accordingto their cluster affiliation in Figure 2. Species with fewer than two significant covariateswere not classified and are shown in black.
Figure 6 displays more precisely the percentage variations of relative abundance in the Écrins434

National Park against the percentage variations of abundance in France computed by the STOC,435

between 2001 and 2019. More details on the trends are given in Table 10, Appendix H (Las-436

gorceux et al., 2024c). Each species lies in one of the four quadrants. Quadrants (ii) and (iii)437

correspond to species whose trends locally within the Écrins National Park align with those in438

France: increasing for quadrant (ii) and decreasing for quadrant (iii). Quadrant (i) corresponds to439

species trending upward nationally but downward in the Écrins National Park, whereas quad-440

rant (iv) represents species increasing in the Écrins National Park but decreasing nationally. The441

number of species in each quadrant is as follows: 8 for (i), 14 for (ii), 24 for (iii) and 13 for (iv).442
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Quadrant (iv) is primarily composed of forest species, while quadrant (i) consists mainly of gen-443

eralist species, particularly common ones.444

Furthermore, while the national park status does not prevent the decline of certain species,445

it is noteworthy that for 38 species out of 59, trends are more favorable within the national park446

compared to national trends for all of France. The names of these species are represented under447

the diagonal in Figure 6. However, some species for which this is not the case are very common448

(quadrant (i)) and may be subject to reporting bias (see Discussion).449
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Figure 6–Point plot of the estimatedmedian percentage variations of relative abundancein the Écrins National Park between 2001 and 2019, against the percentage variationsof abundance in France between 2001 and 2019 computed by the STOC for 59 species.The names of species with less than 0.1% variation in relative abundance are not plottedfor readability.

Discussion450

In our study, we demonstrated that under the assumption of sampling homogeneity across451

species (but where sampling effort is still allowed to vary in space and time), opportunistic452

presence-only data could be leveraged to estimate habitat preferences, migratory status, and453

relative abundance trends of passerine species. This finding is not novel per se, as numerous454

studies have utilized such data to model species distributions or abundance trends (Botella455

et al., 2020; Bradter et al., 2018; Kéry et al., 2010; Phillips et al., 2009; Valavi et al., 2022;456

Van Strien et al., 2013). However, it is one of only a few approaches achieving this within a457

unique spatio-temporal model. To our knowledge, the most similar work has been done by458
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Giraud et al., 2016 and Coron et al., 2018 modeling spatial relative abundance (abundance459

divided by the abundance of an arbitrarily chosen site) of passerines using a Poisson distribution.460

Their work provides theoretical results regarding parameter identifiability, as well as scenarios461

for data simulation and parameter estimation. However, the use of their models requires462

access to appropriate survey data based on a standardized sampling protocol, whereas our463

study relied solely on a single set of opportunistic data. We also found the inclusion of the464

month-based spatio-temporal latent Gaussian field W
(m)
i and the use of Functional Principal465

Component Analysis to be pertinent for assessing phenological effects when modeling relative466

abundances of species with different migratory statuses. Another potential application of such467

Gaussian fields and FPCA could involve implementing a nonlinear additive predictor component468

for altitude to study species’ phenological changes as responses to climate: altitude ascents,469

migrations, etc.470

The STOC has demonstrated the effectiveness of public policies on protected areas. Outside471

of reserves, the average decline of 56 species between 2004 and 2018 was −6.6%, whereas472

within reserves, an increase of 12.5% was observed (Fontaine et al., 2020). Additionally, our473

study offers new insights into the role of protected areas in mitigating the decline of passerine474

populations, though our trends should be interpreted with caution. Indeed, several very475

common species show a negative estimated relative abundance in the park, while the STOC476

indicates positive trends for these same species. Thus, we believe that our assumption of477

homogeneous reporting is overly optimistic and partially inaccurate. Despite this issue affecting478

8 out of 59 species, we can still draw meaningful conclusions.479

Notably, we demonstrate that forest passerines benefit the most in the Écrins National Park.480

While not reversing the trend, the decline of farmland passerines in the park is slower than in481

the rest of France, consistent with findings from previous studies (Palacín and Alonso, 2018;482

Silva et al., 2018). Furthermore, our study provides novel insights into high mountain species483

not previously investigated by the STOC. Our indicator, the relative abundance, shows a global484

decline for species specialist to high-elevation environments. This trend aligns with the global485

decrease of mountain specialist species in Europe (−10% during 2002—2014) as reported by486

Lehikoinen et al., 2019. These findings will be valuable for comparison with upcoming analyses487

of the STOM, a survey analogous to the STOC for mountain species, which has only been488

operational since 2012, with its first results yet to be analyzed.489

We identify three areas for future improvements in our modeling approach using solely490

opportunistic data:491

(i) The assumption of homogeneous sampling of different species, which could be questionable492

due to differences in detectability, species commonness/rarity (Snäll et al., 2011), or agent493

identification skills and reporting prevalence (Bradter et al., 2018), albeit reasonable in practice494

and lacking better options. Heterogeneous detectability remains an issue without data based on495

standardized sampling protocols and seems difficult to correct except for trying to include prior496

expert knowledge into models. Different reporting behavior due to species commonness/rarity497

can introduce bias in estimated intercept terms, such as αi in Equation 6, but would not have498

any impact on the other terms varying in space and/or time, as long as this bias in reporting499

behavior is homogeneous across space, time and physical predictors. Effects related to agent500

identification skills and reporting prevalence could potentially be identified by including random501

effects for the rangers in the model. As a general recommendation to reduce biases and improve502
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the exploitability of opportunistic presence-only data, we suggest that when observers report503

a species, all species of the same taxon should also be reported for better use of opportunistic504

presence-only data in species distribution modeling.505

(ii) The acquired information is relative to a target group of species since we used the target-506

group occurrences as a proxy for the sampling effort (Equation 4). This implies that the potential507

for interpretations of results in terms of absolute abundance and its variation across covariates,508

space, and time remains relatively limited, as long as we do not have additional external509

information on the absolute abundance of the target group as a whole.510

(iii) There are multiple ways to define this target group, which impacts the interpretation of511

abundances relative to it. The composition of this target group primarily relies on available data512

sources, ranging from studies covering a single species (Farr et al., 2021) to those encompassing513

thousands (Botella et al., 2021). Some studies focus exclusively on species within the same514

taxonomic group (Van Strien et al., 2013), while others consider species across different taxa515

(Escamilla Molgora et al., 2022). Botella et al., 2020 recommends choosing a set of species that516

are consistently abundant across a broad range of environmental sub-regions, which is what we517

did in this study.518

We have recognized a pressing need for more comprehensive descriptions of what we refer519

to as “sampling effort” and “observer bias” when dealing with opportunistic presence-only data,520

as well as for methodologies to effectively incorporate it into modeling endeavors. Various521

strategies have been proposed to address sampling efforts and observer bias depending on the522

studied taxa, the available datasets, and model type. These strategies include the use of random523

or target-group pseudo-absences with Maxent (Phillips et al., 2006, 2009), proxy variables524

representing site accessibility (Henckel et al., 2020; Moreira et al., 2024; Warton et al., 2013)525

and refinements (Chauvier et al., 2021), integration of information from detection/nondetection526

data (Dorazio, 2014; Fithian et al., 2015; Giraud et al., 2016), and questionnaires (Bradter et al.,527

2018). In our case study, very large occurrence numbers were available for the target group,528

such that uncertainties about the cumulative abundance of the target group can be expected to529

be relatively small. For modeling more precisely the cumulative abundance of the target group,530

for example in cases with smaller occurrence numbers or when large areas of the study domain531

are only very weakly sampled, we could develop an alternative approach wherein YTG (s,m, p)532

could be initially modeled with a Poisson distribution using a mean parameter µTG (s,m, p),533

fitted to the data to estimate µTG (s,m, p). Subsequently, we would use the estimated Poisson534

mean as a proxy for ΛTG (s,m, p)E (s,m, p), rather than the raw count. This modification could535

potentially enhance robustness and improve the assessment of uncertainties inherent to our536

modeling approach.537

Our findings suggest that, despite the statistical challenges arising from taking sampling538

biases into account, opportunistic presence-only data provide unparalleled spatio-temporal539

coverage, allowing for the depiction of consistent biological indicators that would be challenging540

to obtain using traditional methods. This includes monitoring trends in relative abundance over541

extended periods and developing species distribution models across vast geographical areas.542

Such information can serve as valuable quantitative indicators for assessing the effectiveness543

of conservation policies in protected areas.544

545
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