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Abstract: Many mobile robotics applications require robots to navigate around humans who may
interpret the robot’s motion in terms of social attitudes and intentions. It is essential to understand
which aspects of the robot’s motion are related to such perceptions so that we may design appropriate
navigation algorithms. Current works in social navigation tend to strive towards a single ideal style of
motion defined with respect to concepts such as comfort, naturalness, or legibility. These algorithms
cannot be configured to alter trajectory features to control the social interpretations made by humans.
In this work, we firstly present logistic regression models based on perception experiments linking
human perceptions to a corpus of linear velocity profiles, establishing that various trajectory features
impact human social perception of the robot. Secondly, we formulate a trajectory planning problem
in the form of a constrained optimization, using novel constraints that can be selectively applied to
shape the trajectory such that it generates the desired social perception. We demonstrate the ability of
the proposed algorithm to accurately change each of the features of the generated trajectories based
on the selected constraints, enabling subtle variations in the robot’s motion to be consistently applied.
By controlling the trajectories to induce different social perceptions, we provide a tool to better tailor
the robot’s actions to its role and deployment context to enhance acceptability.

Keywords: trajectory planning; human–robot interaction; perception experiment; logistic regression

1. Introduction

There is an increasing number of application domains for mobile robots operating
in environments alongside humans, both in public spaces (e.g., train stations and shops)
as well as spaces such as hospitals [1], care-homes, or private homes [2]. In the early
days of human–robot interaction research, it was quickly established that using traditional
navigation algorithms that only consider humans as obstacles results in unacceptable robot
behaviour. This led to the emergence of the field of Social Navigation (SN) [3], which aims
to design human-aware navigation algorithms to improve acceptability. The deployment
of mobile robots in human environments requires overcoming both technical challenges
as well as human factors and social perception challenges. An important example of such
perception challenges is the Uncanny Valley phenomenon [4], whereby the appearance of
a robot greatly influences its likability and human affinity with it, which will inevitably
impact robot adoption and integration into society. Another major dimension of the
Uncanny Valley is the role of movement dynamics in changing human perception of the
robot [5] as well as the role of the robot’s attitude [6], although these dimensions have not
received as much attention in studies. Therefore, it is necessary to determine whether a
robot’s movements may impact human social perception of the robot’s attitudes in order to
improve acceptability and interaction quality.

Recent works in robotics have been carried out on the topic of functional expressive
motion generation [7], whereby subtle aspects of a robot’s movement can be modified to
express the robot’s intentions or emotions while simultaneously executing a task. In [8],
it was shown that a humanoid robot arm handing over an object with a rude or gentle
attitude could influence the human interacting with the robot. While algorithms have
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been proposed to generate legged robot movements expressing emotions such as happy
or sad [9], navigation algorithms for mobile robots focus on other dimensions such as
naturalness and comfort [10–13]. These dimensions are different from social attitudes such
as aggressiveness, hesitancy, or politeness, whose impact on human interactions has been
studied, particularly in the field of vocal prosody [14,15]. It is unknown which movement
features may lead to different perceptions of social attitudes in mobile robots, and existing
navigation algorithms are not able to adjust the robot’s motion so that it generates different
perceptions of social attitudes. This lack of understanding of the social perception of
robot motion, and the inability to adjust navigation features, may be partly responsible
for the low acceptance that can be observed when mobile robots are deployed in real
environments [16,17].

In this paper, we explore two questions in order to improve acceptability and integra-
tion of robots in human environments. Firstly, which features of a mobile robot’s motion
may lead a person to interpret its motion in terms of social attitudes such as aggressive,
gentle, authoritative, or polite? Secondly, how may we formalize these features and incor-
porate them into a novel navigation algorithm capable of altering the navigation style to
adjust how the robot is perceived by humans? In order to answer these questions, we make
the following contributions:

• We build a statistical model of human perception of different combinations of trajectory
features capturing a robot’s movement dynamics, bringing new knowledge on human
social perception of robot motion.

• We formalize these trajectory features found to cause different social perceptions
and design a novel optimization-based trajectory planning algorithm that can accu-
rately reproduce the social motion features while performing a navigation task.

Our statistical analysis demonstrates that subtle motion features can strongly shape
perception of the attitudes and physical attributes of mobile robots. Our algorithm enables
control over the robot’s expression of social attitudes through its motion, which was not
possible using existing algorithms focused on comfort and naturalness or on the expression
of emotions.

The structure of the paper is as follows: Section 2 reviews existing approaches for
evaluating and designing social navigation algorithms. Section 3 summarizes the percep-
tion experiment from our prior work and presents our approach to model the relationship
between the robot’s subtle motion features and the participant’s perception of social atti-
tudes and physical characteristics. Section 4 describes our trajectory planning algorithm
formulated as a constrained optimization problem using novel constraints and control
input formulations, which ensure that the robot’s motion always contains the features
relevant for altering human perception of the robot. Section 5 presents the implementation
and validation of our algorithm on a real mobile robot, demonstrating that the plans can be
accurately reproduced by the robot in a way that maintains the key movement features.
Finally, we draw conclusions and present ideas for future work in Section 6.

2. State of the Art
2.1. Design and Evaluation of Social Navigation Algorithms

Works in the field of Social Navigation [18] typically concern themselves with enabling
mobile robots to navigate in complex environments [19], around many (potentially dy-
namic) pedestrians [20], and modeling uncertainty of surrounding pedestrian motion [21].
Social navigation approaches tend to focus on ensuring the robot plans safe, comfortable,
and natural motion, following the definitions in [3]. Questionnaires such as the Godspeed
Questionnaire Series [22], Negative Attitudes towards Robots Scale (NARS) [23], Perceived
Social Intelligence scale (PSI) [24], or Robot Social Attributes Scale (RoSAS) [25] are often
used to assess naturalness, comfort, and likability, aiming to maximize all of them with
a single navigation style. Although these metrics are useful, there are still issues with
the acceptability of mobile robots, particularly when humans attribute social intentions
or attitudes to a mobile robot’s navigation. Vocal prosody (pitch, rhythm, and tone) has
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been widely studied as a means to convey social attitudes and relation information in inter-
actions between both humans and robots [26,27]. In addition to studying vocal prosody,
ref. [28] observed that the changes in a participant’s vocal prosody over the course of an
interaction with a robot were aligned with changes in their spatial behavior, gaze, and voice
quality [29]. We hypothesize that a robot’s navigation movement prosody (i.e., subtle
differences in it’s style of navigation [30]) may play a role in how people perceive different
social attitudes. This is different to existing works that study naturalness and comfort [10]
or the expression of emotions or intent through motion [7].

A typical approach to design a social navigation algorithm is to first develop the algo-
rithm, then subsequently evaluate the impact of the motions it generates. When designing the
algorithm, the social aspects can either be implicitly incorporated through machine-learning
methods that aim to replicate average human navigation [31,32] or explicitly by manually
observing and modeling human behavior [33]. Another approach is to implement existing
models of human behavior such as the Social Force Model [34]. Spatial and proximity factors
are the most commonly addressed in earlier works [35], often being derived from the concept
of proxemics [36]. The algorithm is then used to control a real or simulated robot in order
to conduct experiments to evaluate the algorithm. Participants can be asked to compare
different navigation algorithms [37,38] or the same algorithm with different parameters such
as avoidance distance or speed [39]. Although these approaches enable researchers to evaluate
the whole algorithm in terms of its efficiency, comfort, or naturalness, they do not allow a
precise understanding of exactly which features of the generated motions are responsible for
each aspect of the evaluation.

We propose to first assess which motion variables are important by using hand-crafted
motions built through a systematic combination of different motion features across several
motion variables. To propose the set of variables to be studied, we make analogies to the
variables known to impact voice prosody dynamics, which are known to impact social inter-
action [15,28,29,40]. The selection and range of the variables reflect our robot’s mechanical
constraints and capabilities. Using systematically designed motions aids the understanding
of the dimensions at play by using them in perception experiments. Among the initially
proposed variables, only those that are found to have an impact on the person’s percep-
tion of the robot will be kept, and these will be used to guide the design of our social
navigation algorithm.

2.2. Algorithmic Approaches for Social Navigation

The goal of social navigation and expressive navigation works is to generate motion
that accomplishes a physical task while taking into account a variety of metrics that
account for human presence in the environment, as opposed to traditional navigation,
which aims to minimize time or path length. This is reflected by recent works from social
navigation and functional expressive motion generation turning towards similar methods
by encoding the desired trajectory features into cost functions and/or constraints, followed
by a search or optimization algorithm to generate trajectories that best match the social
or expressive features. These objectives are often in conflict with each other. Formulating
trajectory generation as an optimization problem is a common approach both within social
robotics [41,42] and in other areas such as crowd behavior generation [43]. A typical
solution when faced with conflicting objectives is to adopt a scalarization approach to treat
the multi-objective problem as a single-objective problem, usually by computing a weighted
average of cost terms [18]. This requires tuning the weights to obtain the desired behavior,
balancing the different social and expressive objectives as well as the task objectives such
as making progress towards a navigation goal.

In [44], the authors propose two costs, modeling visibility of the robot by the human
and a proxemics-inspired personal space. They propose either a weighted average or taking
the maximum out of the two costs. This choice depends on the task and balance between
criteria, and the weights should be tuned according to the properties of the task. In a more
recent work, ref. [41] present an approach that jointly plans cooperative trajectories for a



Sensors 2024, 24, 3533 4 of 27

single human and the robot, accounting for metrics such as the expected time to collide
with the person, modulating robot velocity when near the person, and legibility of the
trajectory. Other aspects have been modeled such as preferring deceleration rather than
changing path shape to negotiate crossing a person [45], maintaining a desired position and
velocity while accompanying a person [46], and avoiding intrusion into group formations
and the information processing space in front of people [47]. Similarly, for expressive
motion, ref. [48] uses a weighted sum of costs; however, they also explore the use of learned
weights based on participant perception of emotion in the robot arm’s trajectories, avoiding
the manual tuning process. Some features are shared across several works, with the most
common being personal space around people derived from proxemics [35]; however, most
works consist precisely of proposing their own novel cost or constraint, leading to each
work using different subsets of cost terms.

While trade-offs between traditional task performance metrics and social or expressive
features are inevitable, the issue with these approaches is that there is limited control over
how the trade-off is performed. In some works, this trade-off is enforced more explicitly,
such as in [49], where the expressive features for a robot arm can only be expressed through
degrees of freedom that have absolutely no effect on the practical task. On the contrary,
in [50], the authors first develop a smooth parameterized control law for their autonomous
wheelchair such that it produces graceful motion. Their trajectory planner optimizes over
the parameter space defined by the control law, thus enforcing a given style of motion,
regardless of the impact on task performance.

Formulating the problem as a trajectory optimization provides a general framework
consisting of cost functions and constraints that can be combined to model complex naviga-
tion styles. Machine-learning techniques are also popular in social navigation [31,32,51];
however, they require many demonstrations or large annotated datasets, which would
have to be annotated with the corresponding social perceptions. Currently, such datasets
with annotations of human social perception of the mobile robot do not exist and would
be complex and time-consuming to create. Furthermore, learned navigation models lack
the explainability and controllability given by optimization-based approaches. Hence,
we adopt a trajectory optimization problem formulation. It is crucial that our algorithm
generates motions that are very accurately matched to those we use to construct our model
of human perception of robot motion. For this reason, rather than modeling the desired
motion through the cost function, which would make the desired prosody features subject
to trade-offs with other cost terms modeling the functional task to be achieved, we propose
to design specific prosody constraints to enforce the desired properties of motion. In this
sense, our approach is inspired by [50], since we also restrict the valid trajectory space a
priori according to the desired style of motion. The constraints must take into account
the consistency of the robot’s motion style over time as well as its ability to plan a future
trajectory with appropriate movement prosody.

3. Model of Human Social Perception of Mobile Robot Motion

In this section, we discuss our method for modeling how different variations in a
mobile robot’s motion and appearance influence people’s social and physical perception of
the robot. In our prior work [30], we designed a robot motion corpus that consists of motion
and appearance variables, which are combined to define many different styles of motion.
The corpus was used to conduct perception experiments by asking participants to rate their
perception of a mobile robot by viewing videos of it performing motions from the corpus.
In the prior work, early experimental results using simple chi-square tests suggested that
the variables included in our corpus had significant impacts on people’s perception of the
robot. In this paper, we present experimental results from a larger participant pool as well
as the results of mixed effects logistic regression modeling to determine precisely how each
corpus variable impacts the probability of different social perceptions of the robot. In the
following subsections, we first give the definitions of each of the corpus variables, followed
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by the ten perceptual scales we used to evaluate participant perceptions; lastly, we present
the results of the regression analyses.

3.1. Robot Motion Corpus Background

In this subsection, we briefly present our motion corpus and describe which features
of the robot are manipulated. Firstly, we present the motion variables that impact the
robot’s motion by defining its velocity, acceleration, and style of motion. Secondly, we
present the appearance variables that also contribute to changing a person’s perceptual
experience when interacting with a mobile robot. The corpus is available online at the
following address: https://osf.io/5csrg/ (accessed on 25 March 2024), and an example
video is available at: https://youtu.be/EiH8o1PjlOw (accessed on 25 March 2024).

3.1.1. Motion Variables

The goal of the motion corpus variables is to uniquely define a velocity profile for
the robot’s linear (forward translation) velocity. Each variable affects different features of
the profile determining the robot’s velocity over time in order to perform a point-to-point
straight line motion. The most basic way to achieve such a motion would be to perform
acceleration using the maximal motor acceleration followed by a similar deceleration,
forming a triangular velocity profile. The first variable is the kinematics type, which defines
both the maximum velocity as well as the slope of the profile, i.e., the acceleration value.
This variable has three values (low, medium, and high), enabling comparisons between the
different values listed in Table 1.

Table 1. Kinematics type parameters.

Parameter Low Medium High

a 0.2 m·s−2 0.35 m·s−2 0.5 m·s−2

vmin 0.05 m·s−1 0.15 m·s−1 0.25 m·s−1

vmax 0.25 m·s−1 0.50 m·s−1 0.75 m·s−1

0 to vmax 1.25 s 1.42 s 1.5 s

vmin to vmax 1.0 s 1.0 s 1.0 s

The next motion variable is the motion sequence. This variable affects the overall
shape of the velocity profile by defining the ordering and succession of acceleration and
deceleration phases, shown in Figure 1. The previous example of a single acceleration
followed by a deceleration corresponds to motion sequence B. We introduce two features
that impose variations of this sequence: pauses and hesitations. A pause motion sequence is
defined as always introducing a short, constant velocity phase between an acceleration and
deceleration phase, transforming the profile from a triangular shape to a trapezoidal shape,
as in sequence A. A hesitation motion sequence is defined as introducing a “V” shape
into the profile after an acceleration phase, meaning that the robot decelerates partially
before accelerating back up to its previous velocity peak, as in sequence D. Pauses and
hesitations are combined in sequence C. Sequences E and F are simply extensions of profile
B, representing only the start or end of a robot’s motion as it arrives or leaves.

https://osf.io/5csrg/
https://youtu.be/EiH8o1PjlOw
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Figure 1. Illustrations of the effect of the six motion sequence values on the velocity profiles, shown
in the six subfigures (A–F). The slope and maximum values of the profiles are determined by the
kinematics variable. These profiles use the smooth variant.

The last motion variable is the variant. The previous illustrations represent profiles
using the smooth variant, where each acceleration and deceleration is a linear segment.
In contrast, we define two other variants that alter the overall style of the robot’s motion,
shown in Figure 2. The saccade variant is defined as the velocity profile oscillating peri-
odically to induce stuttering and shaking into the robot’s motion. The increment variant
is defined as dividing the acceleration and deceleration phases into three separate phases
interleaved by short constant velocity phases, creating a stepping or incremental motion.

Figure 2. Velocity profiles resulting from combining the increment (left) or saccade (right) variants
with motion sequence A and medium kinematics.

3.1.2. Appearance Variables

In addition to altering the robot’s velocity profile, we use several variables to alter
the visual appearance of the robot. The first variable is the robot base type, which is
either stable or unstable. When the base is unstable, the robot’s front and back balancing
wheels are loosened making the robot tilt backwards or forwards when accelerating or
decelerating. The robot’s head is also loosened, making it shake and move when using the
shaking motion induced by the saccade variant.

The second appearance variable is the head motion. The robot’s head can be fixed in
different orientations: either straight ahead or 90° to the side. Two other settings involve
the head rotating from the straight to the side orientation or from the side to the straight
orientation while the robot performs its motion. In the videos presented to the participants,
the side orientation directs the robot’s gaze towards the viewer, whereas the straight
orientation directs the gaze towards the direction of travel of the robot—to the right-hand
side of the video frame.

The third appearance variable is the eye shape. The LED eye displays on the robot’s
head are set to three different display settings. The first setting corresponds to white
round eyes, which represent a neutral appearance. The second setting corresponds to
green squinting eyes that represent a colder, unsettling appearance. In general, a robot’s
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appearance has been found to impact interaction in prior studies [52,53]; hence, we include
these variables to be able to distinguish the effect of the appearance from the effect of the
motion variables.

3.2. Perceptual Scales

In Table 2, we present the ten semantic differential scales used in order to gather par-
ticipants’ social and physical impressions of the robot. Part of the scales represent attitudes
towards others, such as Authoritative–Polite, Aggressive–Gentle, Inspires–Doesn’t inspire
confidence, Nice–Disagreeable, and Tender–Insensitive. Evaluating these perceptions in-
volves a directed attitude. Confident–Hesitant is more related to the robot’s own affective
state. The remaining scales capture physical perceptions of the robot, with Sturdy–Frail,
Strong–Weak, Smooth–Abrupt, and Rigid–Supple. The scales were chosen based on words
that participants in prior HRI studies had used to self-annotate their own recorded interac-
tion data after a long experiment with a small butler robot [26,27]. For more details about
the choice of the adjectives in our scales, we refer the reader to [30].

Table 2. Perceptual scales.

Adjective 1 Adjective 2

Aggressive Gentle

Authoritative Polite

Seems Confident Doubtful, Hesitant

Inspires confidence Doesn’t inspire confidence

Nice Disagreeable

Sturdy Frail

Strong Weak

Smooth Abrupt

Rigid Supple

Tender Insensitive

3.3. Logistic Regression Modeling
3.3.1. Method

During the experiment, each participant rated 45 different videos each showing a
unique combination of the corpus variable values along the 10 binary perceptual scales.
A total of n = 100 participants of various ages (M = 33.61, SD = 14.76) and genders
(56 female, 36 male, 6 other, and 2 without response) were recruited through social media,
local university and lab experiment mailing lists, as well as fliers handed out in public
spaces. There was no selection criteria other than fluently speaking the language used
to express the adjectives (in this study, we used French). Participants were instructed to
perform the experiment on a device with a large screen and smooth video playback to
ensure good perception of the robot motions. Each of the 450 videos was rated 10 times;
hence, each participant performs ten binary classifications for each video, where the input
is the set of values for each of the corpus motion variables and the output is a binary
choice between the two adjectives of each scale. We chose to fit a mixed effects logistic
regression model for each scale [54], allowing us to account for dependencies within the
data since participants each provide 45 responses. Each of the corpus variables is treated as
a categorical fixed effect, and the participant id is used as a random effect. The models were
implemented in R using the lme4 package [55]. The logistic models give the probability
of the participant choosing the second (rightmost) adjectives of the scales in Table 2. In R
syntax, the model structure can be given as follows:

scale ∼ kinematics + sequence + variant + eyes + base + head + (1|id) (1)
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We did not include interaction terms in the final model, since pairwise interactions
resulted in a worse model fit on the test data, as measured by the Area Under Curve (AUC)
of the Receiver Operator Characteristic (ROC) curve [56,57] (average 0.798 with interaction
terms, 0.805 without interactions).

The log odds scale used for the logistic regression coefficients is practical for fitting
the models and computing predictions; however, it is not a very intuitive scale to interpret
the results. An alternative way to understand the results of mixed effect logistic regression
is to compute the estimated marginal means (EMM) based on the model predictions [58].
These means represent the average of predicted values of the response variable for each
level of the corpus variables. Averaging is performed across all levels of all other variables.
In order to establish the relative effects of the different levels of the corpus variables on
each scale, we construct contrasts that compare each level’s EMM with the average over all
levels. We perform the EMM and contrast computation using the emmeans R package [59].

3.3.2. Results

Table 3 presents the marginal effects of each value of each corpus variable on the
perceptual scales. The effects are reported as percentage points, indicating the increase
or decrease in the probability of participants selecting the second adjective of the scale
when that level of a corpus variable is used, compared to the overall mean. For example,
using high kinematics is estimated to decrease the probability of gentle being selected over
aggressive, or equivalently, increase the chance of people perceiving the robot as aggressive
by 28 p.p. percentage points compared to the overall mean. The statistical significance of
the difference between the EMM for a given level and the average EMM over all levels
was tested using z-tests. A Holm–Bonferroni correction [60] was applied to the p-values to
adjust for multiple comparisons. The head rotation variable is not represented in the table,
given that the only significant effects were on the sturdy–frail scale, with contrasts 5 p.p.
and −5 p.p. for straight and turn straight values (both p < 0.05), respectively.

The contrast values range from −28 p.p. (high kinematics effect on aggressive–gentle)
to 27 p.p. (sequence D effect on confident–hesitant), with all values in between, including
some null contrasts (sequence C effect on aggressive–gentle). All of the motion corpus
variables have statistically significant effects on how participants perceived the robot. Many
of the corpus variable values alter the average probability of differing perceptions by 10, 20,
or even almost 30 percentage points. In addition to gaining an understanding of the direc-
tion and magnitude of the influence of the corpus variables on human perception, the mixed
effect logistic regression models can be used to perform predictions of combinations of the
corpus variable values that may be perceived.

The kinematics and variant variables both have consistently large effects on every
perceptual scale, mostly greater than 10 p.p., and greater than 20 p.p. for two to three scales.
Kinematics mostly affects the aggressive–gentle and authoritative–polite scales, while
variants mostly affect the confident–hesitant and sturdy–frail scales. These are followed by
the motion sequence variable with effects greater than 10 p.p. on the confident–hesitant,
inspires–doesn’t inspire confidence, and sturdy–frail scales. The base stability and eyes
have effects of more than 10 p.p. on two scales. The head variable has little to no effect
on any of the scales. These perception experiment results show that all of the corpus
variables related to the robot’s linear velocity profiles have strong effects on how the robot
is perceived while navigating. These results can be used to derive how to combine the
robot motion features in order to generate a desired impression. An example is shown
in Figure 3, where the hesitant motion is obtained by combining low kinematics with the
saccade variant and motion sequence D; whereas confident motion is obtained with high
kinematics, smooth variant, and motion sequence B.
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Table 3. Marginal effects of the corpus variables on the perceptual scales in percentage points (p.p.).
* p < 0.05, ** p < 0.01, *** p < 0.001.

− Aggressive Authoritative Confident Inspires Conf. Nice
+ Gentle Polite Hesitant Does Not Disagreeable

Kin. high −28 *** −24 *** −17 *** 7 *** 15 ***
Kin. low 24 *** 22 *** 15 *** −8 *** −15 ***
Kin. medium 4 *** 3 * 2 1 1
Sequence A 2 4 −3 −1 2
Sequence B 2 7 ** 5 * −1 −4
Sequence C 0 2 19 *** 9 *** 1
Sequence D 1 2 27 *** 13 *** 1
Sequence E −6 * −10 *** −28 *** −9 *** 3
Sequence F 1 −5 −21 *** −11 *** −3
Var. increment 8 *** 6 *** −1 −4 ** −3 *
Var. saccade −14 *** −8 *** 22 *** 20 *** 10 ***
Var. smooth 6 *** 3 −21 *** −16 *** −6 ***
Eyes none 1 5 ** 4 3 * 3 *
Eyes round 7 *** 5 ** −1 −7 *** −11 ***
Eyes squint −8 *** −10 *** −3 4 * 8 ***
Stable 3 * −2 −11 *** −6 *** −2
Unstable −3 * 2 11 *** 6 *** 2

− Sturdy Strong Smooth Rigid Tender
+ Frail Weak Abrupt Supple Insensitive

Kin. high −15 *** −20 *** 13 *** −9 *** 13 ***
Kin. low 12 *** 17 *** −14 *** 12 *** −13 ***
Kin. medium 3 * 3 * 1 −2 * 0
Sequence A −3 −3 −4 2 −1
Sequence B 9 *** 7 *** 0 3 −6 *
Sequence C 10 *** 9 *** 4 1 2
Sequence D 20 *** 18 *** 7 ** −5 * 2
Sequence E −22 *** −19 *** −2 −2 6 *
Sequence F −14 *** −12 *** −5 * 1 −2
Var. increment −4 * −2 −4 *** 3 * −4
Var. saccade 27 *** 20 *** 15 *** −9 *** 6 ***
Var. smooth −24 *** −18 *** −10 *** 6 *** −3
Eyes none 3 4 * 1 −1 6 ***
Eyes round 1 1 −7 *** 4 * −14 ***
Eyes squint −3 −6 ** 6 *** −3 8 ***
Stable −16 *** −11 *** −4 *** 0 0
Unstable 16 *** 11 *** 4 *** 0 0

Figure 3. Examples of linear trajectories to approach a person using different velocity, acceleration,
and timing features resulting in confident or hesitant perception.

4. Algorithm for Trajectory Planning with Configurable Movement Styles

In the previous section, we used logistic regression models to determine how different
features of the linear velocity of a mobile robot can impact people’s perception of the robot.
The results of the statistical analysis demonstrated which motion features were important,
namely, the accelerations, velocities, and inclusion of hesitations and pauses in the move-
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ment. In this section, we present our approach to design a trajectory planning algorithm
that can be configured in order to enforce these motion features in the generated trajectories.
We propose to derive constraints that enable control over the features of the robot’s linear
velocity profile to match our model of movement prosody. In this paper, we assume that
the environment is static and that there are no obstacles between the robot and the goal
in order to focus on accurate reproduction of the movement characteristics from our per-
ception experiment. Firstly, we formalize the velocity profile representation. Secondly, we
generalize the profiles to enable trajectories to span different distances. Thirdly, we discuss
how a typical trajectory optimization that only constrains motion based on the motor
limits cannot allow us to configure the robot’s motion according to our desired movement
prosody. Fourthly, we derive a novel set of constraints to enable the trajectory generation
to be configured based on the desired prosody. Lastly, we present the algorithm to perform
the offline trajectory planning and open loop control to realize the planned motion.

4.1. Velocity Profile Representation

In this section, we first introduce the notation that will be used to describe the velocity
profiles and then explain how the robot’s motion is controlled when executing the fixed
distance velocity profiles from the corpus.

The corpus profiles were constructed by selecting the combination of values for three
variables: the motion sequence, kinematics type, and variant. Figure 4 represents how each
of these variables alters the shape of the corpus velocity profile.

Figure 4. Illustration of the construction of the velocity profiles by combining the motion corpus
variables. Top: all motion sequences represented with medium kinematics and smooth variant. Bot-
tom: profiles resulting from applying different kinematics or variants to motion sequence B. In total,
4× 3× 3 = 36 profiles can be obtained by combining the 4 motion sequences with 3 kinematics and
3 variants.

In Figure 5, we give an example of how a corpus velocity profile can be represented
as a sequence U = {u0, u1 . . . uN−1} of N motion phases, where uk = [ak, tk]. A motion
phase uk consists of the slope of the velocity profile (acceleration) ak and a duration tk over
which the acceleration is applied. In conjunction with an initial position x0 along the robot’s
forward axis, and initial linear velocity v0, these values define the robot’s trajectory in space
and time, and are related through the forward kinematics Equation (2). This equation is
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simplified with respect to the full differential drive forward kinematics, since we do not
control the angular velocity of the robot.

xk+1 =xk + vktk +
1
2

akt2
k

vk+1 =vk + aktk

(2)

Figure 5. Representation of a corpus velocity profile using motion sequence B (no pauses, no
hesitations) and the smooth variant as a sequence U of N = 2 motion phases u0 and u1. Values of
vkin and akin depend on the selected kinematics type (medium, low, and high), and dictate the slope
and maximum of the velocity profile.

Since each combination of corpus variables uniquely defines the velocity profile,
the distance travelled by the robot for a given type of movement prosody is fixed.
For example, the profile using motion sequence B in Figure 5, using medium kinematics
(akin = amedium = 0.35 m·s−2, vkin = vmedium = 0.5 m·s−1), results in t0 = t1 = vkin

akin
= 1.428 s,

meaning the profile makes the robot cover a distance equal to akin × t2
0 = 0.714 m. In order

to change the distance traveled, we need to introduce some degrees of freedom back into
the velocity profile. In the following section, we discuss how we add flexibility while
maintaining the distinct characteristics of each corpus variable as much as possible.

4.2. Generalization of Corpus Profiles to Variable Distances

Executing a given velocity profile results in the robot performing a unique trajectory
in space and time with a given length. To design a planning algorithm, we require a
formulation where the distance is a free variable. In other words, we want to transform the
corpus profiles corresponding to a combination of parameters into a class of profiles that
maintains as many characteristics of the original profiles as possible. We keep the piecewise
linear curve representation of the corpus profiles, given that using other functions might
lead to different impressions. With these limits, changing the distance traveled by following
a given velocity profile can be achieved by altering variables of the profile, each of which is
already involved in the definition of the corpus profiles:

1. Acceleration and maximum velocity (kinematics type);
2. Successions of accelerations and decelerations (motion sequence and variant);
3. Duration of maximum velocity phase (motion sequence).

Since the kinematics type and variants had high impacts on people’s perceptions of
the robot, we choose the third solution of changing the duration of the maximum velocity
to adapt the velocity profiles to variable distances. This variable is only partially controlled
in our original corpus by the motion sequence. The difference between motion sequences
A, C and B, D is the introduction of pauses between acceleration and deceleration phases
for sequences A and C, modeled as short (300 ms), constant velocity phases. In order to
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lengthen profiles, we introduce a constant velocity phase at the maximal velocity. To shorten
the profiles, we reduce the maximum velocity while maintaining the profile shape (motion
sequences) and the slopes (accelerations of the kinematics type). An example of the
transformations applied to alter the distance traveled can be seen in Figure 6. These profiles
are achieved by changing the motion phases uk = [ak, tk] by altering the values of the
accelerations ak as well as the durations tk such that generating a trajectory to cover a
given distance amounts to searching for their optimal values. In the following section, we
formalize this trajectory generation process as a constrained optimization problem.

Figure 6. Illustration of the transformation of a corpus velocity profile to travel shorter or longer
distances. Top: transformation for profiles without pauses or hesitations (sequence B). Bottom:
transformation for profiles with pauses and without hesitations (sequence A).

4.3. Problem Formulation

We first formalize a typical optimization problem that does not take into account
our corpus variables. Moving a robot towards a goal point while accounting for the
robot’s mechanical actuation limits can be cast as a discrete-time constrained minimization
problem, where we optimize the sequence of control inputs U = {u0, u1 . . . uN−1} such
that the robot minimizes its distance to a goal position xg. A control input uk = [ak, tk]
corresponds to a motion phase parameterized by a constant acceleration ak and a duration
tk over which the acceleration is applied. The durations tk take discrete values, tk = n ∗ dt,
n ∈ N, where dt is a constant determining the shortest possible control input duration.
The state xk = [xk, vk] of the robot comprises the robot’s position along the x axis and its
linear velocity v, since we focus only on linear motion in this paper. The control uk affects
the state xk, as described in the kinematics Equation (2).

The trajectory optimization is performed over a finite time Th [61], where Th is chosen
to be long enough to enable the trajectory plan to cover the entire motion from the robot’s
initial position to the goal. The duration of a trajectory plan is determined by the sum of
the control input durations; so, to enforce a finite time horizon, we introduce a constraint
∑N−1

k=0 tk = Th. The resulting classical trajectory planning problem formulation is given in
Equation (3).
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min
u0 ...uN−1

N−1

∑
k=0
||xg||2

subject to: ∀k ∈ {0, 1 . . . N − 1}, 0 ≤ vk ≤ vmax

∀k ∈ {0, 1 . . . N − 1},−amax ≤ ak ≤ amax

N−1

∑
k=0

tk = Th

(3)

Solving this optimization problem would produce triangular or trapezoidal velocity
profiles depending on the distance to be traveled. In our motion corpus, velocity profiles
that use the saccade and increment variants, or hesitation and pause motion sequences, are
not purely trapezoidal or triangular and cannot be generated using this approach since
they do not represent the optimal trajectory, e.g., hesitations introduce a deceleration in
the middle of the motion, which increases the time taken to arrive at the goal position.
The acceleration and maximal velocity values may also be different when compared to
those associated with the three kinematics types.

In order to shape the trajectories produced by the optimization, we propose designing
novel constraints that extend this optimization problem to restrict the set of valid control
sequences based on the values of our prosody motion corpus variables.

4.4. Prosody Constraint Formalization

In this section, we propose novel constraints that model each of the motion corpus
prosody parameters such that a trajectory whose motion phases satisfy the constraint is
representative of the corresponding motion corpus parameter value.

4.4.1. Integration of Motion Sequences

The corpus defined six motion sequences denoted A through F. We do not consider
sequences E and F in our trajectory generation since they are simply truncated versions
of sequence A. The four remaining sequences represent the possible combinations of
two concepts: pauses and hesitations. Pauses are used in sequences A and C, and hesitations
are used in sequences C and D.

Trajectories using pause Motion Sequences (i.e., sequences A or C) require that an
acceleration or deceleration phase ak−1 ̸= 0 is followed by a constant velocity phase ak = 0
with a duration tk greater or equal to the pause length tpause = 300 ms (see Figure 7). This
constraint is expressed in Equation (4), in such a way that it describes what should not
occur: if the previous phase is not a constant velocity phase, the current phase is not the
same acceleration as the previous, and the current phase is not a constant velocity phase as
long or longer than a pause, then this trajectory does not satisfy the pause constraint.

PauseConstraint(U)↔∀k ∈ [1, N − 1],

¬
(
ak−1 ̸= 0∧ ak ̸= ak−1 ∧ ¬(ak = 0∧ tk ≥ tpause)

) (4)

Figure 7. Illustration of the pause constraint. Left: valid trajectories. Right: invalid trajectories due to
insufficient length of the constant velocity phase.
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Trajectories using hesitation motion sequences (i.e., sequences C or D) incorporate
a deceleration from the current velocity down to some lower velocity, followed by the
opposite acceleration, both with duration th. This hesitation deceleration should occur
immediately after the end of an acceleration phase and then at regular time intervals
th_interval . Hesitation deceleration phases are enforced by the constraint in Equation (5).
The variable tsince_hesit is introduced to ensure that a hesitation deceleration is added
after th_interval . Hesitation accelerations are enforced by the constraint in Equation (6).
The variable typek ∈ {normal, hesitation} is introduced so that a hesitation acceleration is
not enforced after a normal deceleration. These constraints are combined to enforce the
hesitation motion sequence (Equation (7)).

HesitationDeceleration(U)↔∀k ∈ [1, N − 1],

(ak−1 = akin ∨ tsince_hesit ≥ th_interval)

∧ ¬(ak = −akin ∧ tk = th)

(5)

HesitationAcceleration(U)↔∀k ∈ [1, N − 1],

(ak−1 = −akin ∧ typek−1 = hesitation)

∧ ¬(ak = akin ∧ tk = th)

(6)

HesitationConstraint(U)↔¬HesitationDeceleration(U)

∧ ¬HesitationAcceleration(U)
(7)

4.4.2. Integration of Variants

A trajectory using the smooth variant should result in acceleration and deceleration
phases longer than a given minimal duration tsmooth, such that the trajectory does not
resemble the saccade variant. We simply implement a lower bound constraint on the length
of motion phases tsmooth = 300 ms (Equation (8)). By applying this definition of the smooth
variant, we are also limiting the robot’s ability to perform short motions, which would
require an acceleration and deceleration with shorter phase lengths. If instead we decide
that such short motions should be considered valid smooth motions, the constraints could
be modified to allow short two-phase trajectories if they start and end at zero velocity.

SmoothConstraint(U)↔∀k ∈ [0, N − 1], tk >= tsmooth (8)

The increment variant requires acceleration phases to be split into increments such that
the robot performs a constant velocity phase of duration tpause = 300 ms when reaching
certain velocities, which are multiples of vincrement =

1
3 stoppingTime(vkin, akin). The first

part of the constraint (Equation (9)) enforces that all acceleration or deceleration phases
should end at one of the increment velocities. The second part of the constraint enforces
that all acceleration and deceleration phases must be followed either by a pause phase or by
their opposite phase (Equation (10)), i.e., an acceleration or deceleration phase cannot be
extended, since it would violate the first constraint. The increment constraint is expressed
by combining these two conditions in Equation (11).

ValidVelocity(U)↔∀k ∈ [0, N − 1],

vk = i× vincrement, i ∈ N
(9)

BreakAccelerationPhase(U)↔∀k ∈ [1, N − 1],

ak−1 ̸= 0∧ ((ak = 0∧ tk = tpause) ∨ ak = −ak−1)
(10)

IncrementConstraint(U)↔ValidVelocity(U)

∧ BreakAccelerationPhase(U)
(11)
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The saccade variant differs from the other prosody variables, since we do not formalize
it as a constraint in the optimization problem, but rather as a post-processing step. In our
motion corpus, saccades correspond to oscillations of the velocity over time, with a high
frequency and low amplitude, since the aim of this variant is to reproduce stuttering or
shaking. The saccade variant can, therefore, be accomplished by adding a time-varying
offset given by a triangular wave to the profile given by planning under the smooth
variant constraint, without rendering the trajectory invalid. We use a period π = 0.02 s
and an amplitude dependent on the kinematics type: A_low = 0.02 m·s−2, A_medium =
0.05 m·s−2, and A_high = 0.07 m·s−2.

4.4.3. Integration of Kinematics Types

The kinematics type specifies an acceleration value or, in other words, the slope of the
velocity profile in acceleration and deceleration phases. When a kinematics type is specified,
the robot must accelerate using that specific value, which we enforce with a constraint on
the space of control inputs uk of the robot. The acceleration values ak are constrained to
the finite set {−akin, 0, akin}. The value of akin is determined by the kinematics type (high,
medium, or low).

KinematicsAcceleration(U)↔∀k ∈ [0, N − 1],

ak ∈ {−akin, 0, akin}
(12)

The kinematics type specifies a maximum velocity that the robot should not exceed,
which we enforce with an inequality constraint vk ≤ vkin. The kinematics type also captures
the amount of energy used for a motion; hence, the velocity should approach vkin when
possible. For example, accelerating to vk < vkin, performing a constant velocity phase,
and decelerating should not occur. The constraint in Equation (13) forces constant velocity
phases to only be planned at the maximum velocity. The velocity and acceleration con-
straints are combined to form the overall kinematics constraint expressed in Equation (13).

KinematicsVelocity(U)↔∀k ∈ [0, N − 1]

0 ≤ vk ≤ vkin ∧ ¬(ak = 0∧ vk /∈ {vkin, 0})
(13)

KinematicsConstraint(U)↔KinematicsAcceleration(U)

∧ KinematicsVelocity(U)
(14)

4.5. Trajectory Planning and Open-Loop Control

Our set of proposed prosody constraints PCo f f line is summarized in Table 4. These
constraints are integrated into our new problem formulation given in Equation (15),
which retains the same control variables and cost function as the previous formula-
tion. Each constraint enforces trajectory properties that are specific to a given corpus
variable value. In order for the trajectory planning to produce plans that reflect the
desired movement prosody, we must select a subset PCactive of the constraints from
PCo f f line. For example, in order to plan trajectories according to the corpus variable
values of pause motion sequence, high kinematics, and smooth variant, we define the
subset PCactive = {Pause, Kinematics, Smooth}, and set akin = ahigh and vkin = vhigh to
specify which kinematics type should be applied.

min
u0 ...uN−1

N−1

∑
k=0
||xg||2

subject to:

{
PCactive ⊂ PCo f f line ,

∑N−1
k=0 tk = Th .

(15)
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Table 4. Constraints forming the set PCo f f line used for offline planning.

Constraint Equation

Pause (4)
Hesitation (7)
Smooth (8)
Increment (11)
Kinematics (14)

4.5.1. Trajectory Planning

In order to solve the optimization problem (15), given that both optimization variables
ak and tk are discretized, we use a tree-based approach to search the space of trajectories with
a fixed length of N motion phases. We approach the problem as building a tree of possible
trajectories starting from the robot’s current state, iteratively adding phases in a depth-first
fashion. A node corresponds to a state xk, an edge corresponds to a motion phase uk,
and a path of depth N corresponds to a trajectory. The root node corresponds to the robot’s
initial state. The set of possible control inputs for the kth phase is given as uk ∈ A× T ,
where A = {akin, 0,−akin} is the set of acceleration values determined by the kinematics
type, and T = {dt, 2dt, . . . tmax} is the set of possible phase durations. The maximum
phase duration tmax is computed by subtracting the durations of previous phases and
the minimum duration of the following phases from the planning horizon duration Th
(Equation (16)). The discretization level for the accelerations is already enforced by the
kinematics constraint. For the durations, we choose a discretization dt = 100 ms, which is
short enough to enable all prosody constraints to be enforced accurately (such as the 300 ms
pause constraint) and also long enough to maintain a low number of possible trajectories.

tmax = Th −
k

∑
i=0

ti − (N − k)dt (16)

Pseudo-code for our algorithm is given in Algorithm 1. In order to expand the tree,
we select a control uk ∈ A× T (line 5) and compute the state xk+1 that would result from
executing uk (ForwardSimulation function, line 6). We then verify whether this extension
of the trajectory satisfies the constraints using the CheckConstraints function (line 7). This
function evaluates each constraint in problem (15), returning a Boolean value indicating
whether the edge corresponding to control uk is valid. If adding the edge to the tree causes
the corresponding trajectory to violate any of the constraints, the edge is discarded. If the
edge complies with the constraints, we add the node corresponding to the state xk+1 to the
tree (lines 8–9). This process is repeated for all controls uk, after which we select the next
node from which to expand the tree in a depth-first fashion (line 10).

The result is a tree of depth N, where each leaf node represents the last state of a fully
prosody-compliant trajectory. The EvaluateTrajectories function exhaustively evaluates the
trajectories according to the cost function from problem (15). The minimum-cost sequence
of control inputs U∗ is then used as the input to the open-loop control algorithm described
in the next paragraph, which executes the control inputs with appropriate timing.
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Algorithm 1: Prosody-aware trajectory planning
Input: xg, goal point. xinit, initial state. PCactive ⊂ PCo f f line, set of active prosody

constraints. A, set of phase accelerations. T , set of phase durations. N,
number of motion phases.

Output: U∗ = {u0, u1 . . . , uN−1}, phases of the optimal trajectory.
Notations:
xk = [xk, vk], kth robot state. uk = [ak, tk], kth motion phase. T trajectory tree.
Algorithm:

1 T ← CreateTree(xinit)
2 xk ← xinit
3 while ¬TraversalFinished(T) do
4 if T.Depth(xk) < N then
5 for uk ∈ A× T do
6 xk+1 ← ForwardSimulation(xk, uk) (Equation (2))
7 is_valid← CheckConstraints(PCo f f line, uk−1, uk, xk, xk+1)
8 if is_valid then
9 T.AddChild(xk, uk, xk+1)

10 xk, uk−1 ← T.DepthFirstNextNode

11 U∗ ← EvaluateTrajectories(xg, T)
12 return U∗

4.5.2. Open-Loop Control

Algorithm 2 describes the overall process to execute a prosody compliant trajectory
in an open loop fashion. It uses planning Algorithm 1 as a subroutine. The input to the
control algorithm is the goal position xg given in the robot’s local coordinate frame as well
as a selection of prosody constraints PCactive. We plan the trajectory using Algorithm 1 to
solve the optimization problem given in Equation (15), obtaining the optimal trajectory
U∗. We then simply iterate over the controls {u0, u1 . . . uN−1}, sending the corresponding
acceleration command at to the motors and waiting for the duration tt of the motion phase
to elapse before sending the next command.

Algorithm 2: Open-loop control
Input: xg, goal point. PCo f f line, set of prosody constraints.
Output: at, acceleration command sent to the motors.
Notations:
x0 = [x, v], initial state of the robot. ut = [at, tt], motion phase executed at time t.
U∗ = {u0, u1 . . . , uN−1}, sequence of motion phases describing the trajectory.
Algorithm:

1 U∗ ← PlanTrajectory(x0, xg, PCo f f line) (Algorithm 1)
2 for k ∈ [0, N − 1] do
3 at, tt ← ExtractControl(U∗, k)
4 SendMotorCommand(at)
5 DelayUntil(t + tt)

5. Implementation and Validation
5.1. Implementation

Firstly, we present the RobAIR wheeled mobile robot platform shown in Figure 8.
The RobAIR platform [62] is developed by the FabMASTIC fab lab at the Université
Grenoble Alpes, where it serves both as a platform for teaching robotics, student projects,
as well as for research. The robot is 1.20 m high, and has a diameter of 0.50 m at its widest
point—at the base. The robot has a differential drive configuration, can reach a maximum



Sensors 2024, 24, 3533 18 of 27

velocity of 0.8 m·s−1, and accelerates at 2.667 m·s−2. Two Hokuyo URG-04-LX-UG01 laser
range-finders are mounted on the robot’s head and at the base in order to detect obstacles
and track people while navigating.

Figure 8. Left: RobAIR mobile robot. Right: RobAIR base.

Certain parameters of our algorithm must be selected based on the types of movement
prosody the robot should produce. We employed N = 10 motion phases in order to
be able to plan the most complex motions such as those using the increment variant.
The time discretization was dt = 100 ms in order to maintain a fine temporal resolution
so that constraints such as the 300 ms pause may be accurately enforced. The short
time discretization also allows for more accurate position tracking. When deploying our
algorithm on a given robot, the velocity and acceleration constraint values should be
selected such that they are within the specifications of the robot motor hardware to ensure
that the generated trajectories are feasible.

Algorithm 2 is implemented as an ROS node in C++. One planning cycle takes
50 ms on average and no more than 100 ms on a single core of a low-power tablet PC (Intel
i5− 8365U). Figure 9 shows the overall architecture. The goal point xg to be reached is given
by a LIDAR-based perception module, allowing the robot to be driven to a person detected
by a multiple hypothesis tracker based on clustering of the laser data. The planning node
then uses Algorithm 1 to plan the trajectory to xg. The planned acceleration commands are
converted to sequences of linear velocity commands, given that our motors do not allow
acceleration-based control. The planner node sends these velocity commands at 10 Hz
to the hardware interface node, ensuring accurate timing. The linear velocity commands
are finally translated into wheel velocities and sent to the motors. The set of constraints
PCactive used by the planner can be altered by the means of a prosody parameter selection
node, which implements a simple ROS Dynamic Reconfigure interface to save and load
parameter presets to represent the different movement prosody styles.
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Figure 9. High-level architecture of our system. ROS nodes are represented with rounded boxes;
hardware devices are represented with dashed boxes.

5.2. Validation

In this section, we demonstrate the ability of our planning algorithm to produce
trajectories that accurately reproduce the different types of movement prosody defined by
the combination of corpus variables while ensuring the robot reaches its goal. Plots of the
velocity commands from our planner show that they are stable and consistent with the
desired prosody. We also plot the raw encoder-based velocity estimation, showing that the
commanded velocities are indeed achievable by our robot platform, thanks to our planner
and prosody constraints taking the robot’s mechanical limits into account. Unless stated
otherwise, the prosody used in these examples are the medium kinematics, smooth variant,
no pauses, and no hesitations.

5.2.1. Point-to-Point Trajectory Execution

Firstly, we demonstrate the ability of our proposed trajectory planning and control
algorithms to successfully drive the robot towards a goal position. Figure 10 shows the
execution of a plan consisting of an acceleration, constant velocity, and deceleration that
have been optimized to reach the goal while satisfying all movement prosody constraints
on the acceleration, velocity, and timing of the motion. In this case, the constraints involved
are the acceleration, maximum velocity, as well as the pause constraint, requiring the robot
to perform a 300 ms constant velocity phase before decelerating. In the remainder of this
section, we focus on demonstrating the accurate reproduction of the movement prosody
features in the planned velocity profiles.

(a) Stationary robot. (b) Mid-acceleration plan.
Figure 10. Cont.
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(c) Switching to pause phase. (d) Finishing pause phase.

(e) Mid-deceleration plan. (f) Arrived at goal position.
Figure 10. Top: past command velocities issued at 10 Hz (blue) and encoder-based odometry
estimated at 40 Hz (red) in m·s−1, plotted with respect to time (s). Bottom: visualization of the
planned trajectory’s velocity, discretized into time intervals of length dt = 100 ms. The robot stops
within 10 cm of its goal position (green).

5.2.2. Kinematics

The three kinematics types (low, medium, and high) require different accelerations,
and different maximal velocities. We show examples of motions produced by running our
planner with each of the kinematics types. We plot the raw odometry estimate of velocity
based on the integration of the motor’s encoder readings over time in order to demonstrate
how the physical robot platform responds to the velocity commands. The unfiltered
odometry is noisy due to the cheap encoder sensors, whereas the true motion of the robot
is smooth. The plots of the unfiltered commands allow us to see that the response time of
the motors is very fast, allowing the robot to accurately track even the most subtle and fast
changes in the velocity commands.

Figure 11 shows a short motion with the low kinematics. The goal point is close
enough that the robot only accelerates to 0.20 m·s−1, slightly below the low kinematics
maximum of 0.24 m·s−1. The slope of the commanded velocity profile corresponds to
the low kinematics acceleration of 0.2 m·s−2 as expected, and the estimated velocity also
follows the commanded velocity closely.
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Figure 11. Plot representing the full point-to-point motion to a goal point, using low kinematics. Past
command velocities shown in blue and unfiltered odometry shown in red, both given in m·s−1.

Figure 12 shows a short motion with high kinematics. Again, the goal point is close
enough such that the robot does not need to accelerate to the maximum high kinematics
velocity of 0.72 m·s−1. The robot accelerates to 0.65 m·s−1, with an acceleration of 0.5 m·s−2,
clearly distinguishing the motion from the low kinematics setting. The profiles shown in
the following subsections all use the medium kinematics setting, which is also distinct from
the low and high settings.

Figure 12. Plot representing the full point-to-point motion to a goal point using high kinematics. Past
command velocities shown in blue and unfiltered odometry shown in red, both given in m·s−1.

5.2.3. Pause and Hesitation Sequences

Figure 13 shows the plot of the robot’s velocity, and distance during a point-to-point
motion to a goal placed 62 cm from the robot without obstacles. The active prosody con-
straints are the medium kinematics type, smooth variant, and pauses. The plans generated
by the controller result in a velocity profile that conforms to the prosody constraints—a lin-
ear acceleration and deceleration phase, separated by a pause phase of 300 ms—and drives
the robot towards the goal point (video with visualization of the plan execution using Rviz
(shown at 0.2× speed for clarity): https://cloud.univ-grenoble-alpes.fr/s/f5G8kQR4rMx6
MWi (accessed on 25 March 2024)).

https://cloud.univ-grenoble-alpes.fr/s/f5G8kQR4rMx6MWi
https://cloud.univ-grenoble-alpes.fr/s/f5G8kQR4rMx6MWi
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Figure 13. Plot representing the full point-to-point motion to a goal point. Past command velocities
shown in blue and unfiltered odometry shown in red, both given in m·s−1. Distance to the goal in m
shown in green.

Figure 14 shows the plot of the robot’s velocity when using the hesitation constraint.
Once again, the generated plan for the robot’s velocity enforces the hesitation feature
by including the succession of a deceleration and acceleration upon reaching the robot’s
maximum velocity. The robot is able to accurately reproduce motions including the hesita-
tion feature.

Figure 14. Point -to-point motion using the hesitation sequence (without pauses) and medium
kinematics. Past command velocities shown in blue and unfiltered odometry shown in red, both
given in m·s−1.

5.2.4. Increment and Saccade Variants

In this subsection, we demonstrate motions planned under the increment or saccade
variant constraints. Figure 15 shows a long increment motion, allowing the robot to
reach the maximum velocity for the medium kinematics type. The planner correctly
inserts constant velocity phases at regular intervals, which are tracked by the robot motors,
reproducing the stepped acceleration pattern.
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Figure 15. Point -to-point motion using the increment variant and medium kinematics. Past command
velocities shown in blue and unfiltered odometry shown in red, both given in m·s−1.

Figure 16 shows a short saccade motion without pauses. The planner reproduces the
expected oscillation in the velocity commands, and the robot is able to accurately track
the rapid changes in the requested velocity, enabling the robot to perform the stuttering,
saccadic movements as desired.

Figure 16. Point -to-point motion using the saccade variant and medium kinematics. Past command
velocities shown in blue and unfiltered odometry shown in red, both given in m·s−1.

6. Discussion
6.1. Generalization of the Human Perception Model

Our model of human perception was derived from the analysis of experimental data
from our online study and in-person studies presented in our prior work [30]. The results
show that accelerations, velocities, and timing have significant impacts on the social
perception of our mobile robot. However, prior studies have shown that the size of a
robot [63], its shape and color [64], as well as its human-like or machine-like appearance [65]
may also impact interaction. While our study did include three appearance variables (head
orientation, eye shape, and base stability), further studies are necessary to explore the
generalization of our model to different robot types.

Our experiments were designed in such a way that the robot was not shown in
any specific scenario or social environment, since prior research has shown that a robot’s
behavior may be perceived differently and lead to different acceptance outcomes in different
social settings, such as two different hospital services in [16]. Further work is also necessary
to study how the robot’s task, its social role, and its social environment may impact and
alter human’s social perceptions of the robot.
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6.2. Limitations of the Trajectory Planning Algorithm

The main limitation of our algorithm is that it assumes static and known environments.
In many real-world use cases, the environment will be dynamic and the robot’s perception
of pedestrians or other dynamic obstacles will be uncertain. One approach is to use our
algorithm as a global planner and, subsequently, attempt to follow the global plan and
avoid obstacles when necessary; however, such an approach would not guarantee that
the robot’s movement style is accurately maintained by the obstacle avoidance algorithm.
Another approach to adapt trajectory planning algorithms to deal with changing and un-
certain environments is to perform frequent re-planning [61]. However, given the subtle
and time-dependent nature of the motion features we aim to reproduce, this would lead to
inconsistencies in the robot’s motion without careful consideration of the re-planning mech-
anism in the algorithm design, hence changing the human’s social perception of the robot.
Extending our algorithm to dynamic environments while maintaining accurate control
over the robot’s motion features is therefore non-trivial and requires further research.

6.3. Ethical Considerations

The statistical analysis of our perception experiment showed that the mobile robot’s
motion features could significantly impact a human’s social perception of the robot. Subse-
quently, we proposed an approach to formalize the relevant motion features and integrate
them into an optimization-based trajectory planner, taking a first step towards controlling
the motion features responsible for altering social perceptions. On the one hand, these
contributions may be used to analyze existing navigation algorithms to understand their
impact on people and potentially avoid generating inappropriate social attitudes. On the
other hand, altering the social perceptions of humans must be conducted with care and
while considering the goal of such manipulations. For example, generating an impression
of frailty can lead to a person being more engaged and active in an interaction, which may
be useful in assistive or care use-cases; however, this may also induce attachment effects,
which are not well understood [26,66]. Determining when and how to alter the generated
social attitude in a given deployment scenario should be determined with the input of
domain experts and end-users in addition to HRI researchers.

7. Conclusions and Future Work

In this paper, we studied how changes in a mobile robot’s motion features alter human
social perception of the robot, in order to better integrate robots into human environments.
The statistical analysis of a perception experiment with n = 100 participants showed that
motion features such as the robot’s acceleration, velocity, and saccades have statistically
significant impacts on human perception of social attitudes in mobile robots. Each of these
features altered the probability of perceiving the robot as aggressive or gentle, authoritative
or polite, or sturdy or frail by up to 30 percentage points. These results demonstrate that
even subtle motion features have strong impacts on social perception, and therefore on the
acceptance and integration of robots in human environments. Subsequently, we proposed
a trajectory planning algorithm that can be configured to integrate these motion features
into the trajectory while performing a point-to-point navigation task. We formulated the
problem as a constrained optimization and derived a novel set of constraints to enforce
the motion features that impact human social perception of the robot. The algorithm was
implemented and validated on a real mobile robot, demonstrating that the trajectories pro-
duced by our planner accurately reproduce the features used in our perception experiment.
Our algorithm enables a mobile robot’s motion to be adjusted according to the desired
social perception of the robot by humans, which was previously not possible using existing
social navigation algorithms. Providing explicit control over how the robot is perceived
ensures that the robot’s actions are appropriate with respect to its role and the people it is
interacting with.

In future work, we aim to extend our algorithm to handle dynamic uncertain envi-
ronments by introducing temporal coherence constraints to enable accurate re-planning.
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We also plan to deploy our algorithm in a realistic task to evaluate the impact of the differ-
ent trajectory styles on humans when the interaction is situated in a social environment
(preliminary video of a participant interacting with our robot using the proposed algo-
rithm, configured to convey a confident attitude: https://cloud.univ-grenoble-alpes.fr/s/
GdnDKQbKD9GEgnG (accessed on 25 March 2024)). Further experiments should also be
conducted in different social environments and scenarios, as well as with different robot
types, to determine the extent to which the model of human perception generalizes.
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