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Coatrieux, Guotao Quan, Yan Xi, Shuo Li, Tianling Lyu and Yang Chen, Senior Member, IEEE

Abstract—For material decomposition in spectral computed1

tomography, the x-ray attenuation coefficient of an unknown2

material can be decomposed as a combination of a group of basis3

materials, in order to analyze its material properties. Material4

decomposition generally leads to amplification of image noise5

and artifacts. Meanwhile, it is often difficult to acquire the6

ground truth values of the material basis images, preventing7

the application of supervised learning-based noise reduction8

methods. To resolve such problem, we proposed a self-supervised9

noise and artifact suppression network for spectral computed10

tomography. The proposed method consists of a projection-11

domain self-supervised denoising network along with physics-12

driven constraints to mitigate the secondary artifacts, including13

a noise modulation item to incorporate the anisotropic noise14

amplitudes in the projection domain, a sinogram mask image15

to suppress streaky artifacts and a data fidelity loss item to16

further mitigate noise and to improve signal accuracy. The17

performance of the proposed method was evaluated based on18

both numerical experiment tests and laboratory experiment tests.19

Results demonstrated that the proposed method has promising20

performance in noise and artifact suppression for material21

decomposition in spectral computed tomography. Comprehensive22
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ablation studies were performed to demonstrate the function of 1

each physical constraint. 2

Index Terms—Spectral CT, Material decomposition, Neural 3

network, Self-supervised Learning, Photon Counting CT 4

I. INTRODUCTION 5

FOR single-energy computed tomography (CT) scan (CT 6

scans with a single x-ray input spectrum), different 7

materials may demonstrate the same measured CT number 8

[i.e., measured x-ray linear attenuation coefficients (LACs)] 9

so that the materials can not be differentiated and quantified. 10

However, since different materials demonstrate different de- 11

pendencies of LACs on x-ray energy, they can be differentiated 12

based on CT scan measurements under multiple spectra, which 13

is referred to as the spectral CT imaging technique [1]–[3]. The 14

reconstructed CT images corresponding to different spectra 15

can be utilized to acquire the material properties. 16

One method to extract the material property information is 17

through material decomposition: with two or more materials 18

as a group of basis materials (e.g., water and iodine), the 19

acquired sinograms (i.e., data before the CT reconstruction) 20

or CT images are decomposed to generate the decomposition 21

coefficients [4]–[7]. Material decomposition methods can be 22

divided into two major categories: projection domain decom- 23

position [1], [4], [8], [9] and image domain decomposition 24

[10]–[15]. The projection domain material decomposition ac- 25

quires line integrals of different materials by performing a 26

non-linear transformation of the sinograms [1]. In principle, 27

projection domain material decomposition can eliminate beam 28

hardening artifacts since the polychromatic projection process 29

is incorporated in the non-linear transformation. However, 30

such decomposition method requires paired multi-spectral 31

sinograms which is sometimes unavailable for clinical spectral 32

CT systems. In this case, the image domain decomposition 33

is a more versatile method, which generates the material 34

basis images from a linear transformation of the reconstructed 35

spectral CT images. Such linear transform is based on the 36

assumption that the reconstructed spectral CT images can be 37

approximated as mono-energetic CT images under different 38

energy levels, which are free of artifacts induced by polychro- 39

maticity. If the assumption is violated, these artifacts would 40

propagate to the decomposed basis images, thus influencing 41

the quantification accuracy (e.g., accuracy of measurement of 42

iodine concentrations in human body) [10]. 43
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Besides the consideration on the decomposition accuracy,1

both the projection domain and image domain material de-2

composition suffer from the noise amplification problem: the3

decomposed basis images demonstrate higher noise levels than4

the original CT images. Due to such decomposition noise,5

application of spectral CT has been restricted to quantification6

for regions of interest comprising many pixels with similar7

pixel values while quantitative information related to the tiny8

structures (e.g., contrast-enhanced vessels) are hard to acquire9

[16]. Previous studies proposed different methods to mitigate10

the noise of the decomposition process. Conventional methods11

utilized the negative statistical correlation between the basis12

images to reduce noise. Kalender et al. estimated the noise13

of one basis image, which was scaled and added to another14

basis image to reduce noise [16]. Petrongolo et al. reduced15

decomposed basis image noise by using a basis transformation16

in image domain based on entropy minimization [17]. Jiang17

et al. expanded such method to multi-material decomposition18

[18]. Besides conventional methods, iterative methods reduce19

the noise by introducing different regularizers. Some of the20

iterative methods directly outputs the basis CT images from21

raw projection domain data, which are also referred to as one-22

step inversion methods. Long et al. proposed a multi-material23

decomposition method based on the x-ray transmission physics24

accompanied by an edge-preserving regularizer [19]. Iterative25

calculations can also be performed in the image domain. Niu et26

al. proposed an iterative image-domain material decomposition27

method to reduce the noise based on the statistical correlation28

between the basis images [12]. Xue et al. developed a sta-29

tistical image-domain decomposition method with a negative30

logarithm-likelihood term and an edge-preserving regulariza-31

tion [15]. The major drawback of iterative methods is that32

the computational time is relatively long due to the iterative33

calculations.34

With the development of deep learning algorithms, multiple35

studies demonstrate the advantage of incorporating deep neural36

networks in the material decomposition process to reduce37

noise and artifacts [20]–[25]. Most of the deep learning-based38

methods utilize supervised learning, which requires the ground39

truths of the material basis images. These ground truths,40

however, are often unavailable for experimental or clinical41

systems. To resolve such limitation, several studies introduced42

a self-supervised denoising method for noise reduction studies.43

Lehtinen et al. found that the optimal network parameters44

remain the same when zero-mean noise is added to the clean45

network labels. Based on such finding, Noise2Noise method46

was proposed where neural network was trained by mapping47

one noisy image to another noisy image without the need of48

clean training labels [26]. Fang et al. utilized the denoised49

image from the Noise2Noise method as a prior to reduce the50

noise of the decomposed material basis images [27]. When51

noisy image pairs taken from the same scene are not avail-52

able, an alternative self-supervised training strategy named53

Neighbor2Neighbor (Ne2Ne) utilizes random downsampling54

operators to create noisy data pairs [28]. Wu et al. applied55

such method along with guided filtering to low dose CT56

imaging in the reconstructed CT image domain [29]. However,57

the reconstruction algorithm can lead to complex correlations58

between pixels in the CT images [30]; since the original 1

Ne2Ne method requires the neighboring pixels to be free of 2

correlations [28], the performance of the Ne2Ne method may 3

be compromised. 4

This work incorporates the idea of the Ne2Ne method 5

to realize self-supervised noise and artifact suppression for 6

material decomposition in spectral CT. The noise reduction 7

is performed in the projection domain in order to disentangle 8

the complex noise correlations from the CT reconstruction. 9

However, direct application of the Ne2Ne method in the 10

projection domain without additional constraints can lead to 11

degradation of image quality (which will be shown later in 12

the ablation study). This work proposes several physics-driven 13

constraints together to mitigate secondary artifacts caused by 14

the projection domain operations: 15

• A sinogram mask (generated from forward projection of 16

the thresholded CT image) is added as network input to 17

suppress streak artifacts; 18

• A noise modulation item is added to incorporate the 19

anisotropic noise levels within each sinogram; 20

• A data fidelity loss item incorporating the polychromatic 21

x-ray interaction model is utilized to further suppress 22

noise and to maintain signal accuracy. 23

To the best of our knowledge, this work is the first self- 24

supervised deep-learning method to realize noise and artifact 25

suppression for projection-domain material decomposition in 26

spectral CT. The proposed self-supervised noise and artifact 27

reduction network (SeNAS-Net) is validated by both numerical 28

experiments and physical experiments and is compared with 29

a conventional denoising method [17] and several super- 30

vised denoising methods. The proposed method demonstrates 31

promising performance in noise and artifact suppression for 32

spectral CT without the need of training labels. In addition, 33

comprehensive ablation studies are performed to demonstrate 34

the function of each physics-driven constraint. 35

II. METHODS 36

A. Theoretical workflow of the proposed self-supervised ma- 37

terial decomposition noise and artifact suppression method 38

The proposed self-supervised material decomposition noise 39

suppression method utlizes the Ne2Ne denoising strategy for 40

noise suppression in the projection domain. To mitigate the 41

secondary artifacts from operations in the projection domain, 42

a mask image as well a projection domain constraint item is 43

incorporated in the network. The flowchart and the network 44

structure of the proposed method are summarized in Fig. 1 and 45

Fig. 2. Details of the proposed methods are given as follows. 46

47

1) Review of the Ne2Ne denoising method: We will first 48

briefly review the Ne2Ne denoising method. For a denoising 49

network f with parameters θ and noisy input x⃗, the output 50

of network is given as f(x⃗;θ). If the clean images y⃗ corre- 51

sponding to each x⃗ are available as training labels, the aim is 52

to solve following optimization problem: 53

θ = argmin
θ

Ex⃗||f(x⃗;θ)− y⃗||22, (1)
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Fig. 1. Overall flowchart of the proposed method. The acquired multi-energy sinograms goes through the Ne2Ne-based denoising network. The denoised
sinograms are decomposed and reconstructed to generate the material basis CT images. The network structure is shown in Fig. 2. The mask sinogram image
is generated from the VMI based on the conventional material decomposition process, where the detailed workflow is shown in Fig. 5. The loss items for the
projection domain are illustrated in Fig. 4.

Fig. 2. Structure for the projection domain denoising network to output the unmodulated sinogram noise signal (f(Sin,SM;θ)).

Fig. 3. Illustration of the random downsample operators.

where E represents the expectation operator and || · ||22 repre-1

sents the L2 loss. Due to the fact that clean images y⃗ are often2

unavailable, self-supervised denoising methods come into play.3

The Ne2Ne denoising method relies on the assumption that4

the neighboring pixels are weakly correlated [28]. It utilized5

random downsample operators to form the training label to6

calculate the reconstruction loss Lrec:7

Lrec = ||f(g1(x⃗))− g2(x⃗)||22, (2)

where g1 and g2 are random downsample operators, which is8

illustrated in Fig. 3. Due to the fact that the clean realizations9

of g1(x⃗) and g2(x⃗) differ, minimization of Lrec leads to over-10

smoothing; therefore, the regularization loss is added:11

Lreg = ||f(g1(x⃗))− g2(x⃗)− {g1(f(x⃗)− g2(f(x⃗)}||22, (3)

The parameters of the network is acquired through minimiza- 1

tion of the summation of Lrec and Lreg: 2

θ = argmin
θ

Ex⃗{Lrec + aLreg}, (4)

where a is a coefficients changing the weight of Lrec and Lreg. 3

2) Projection domain denoising network: A denoising net- 4

work is applied in the projection domain. The whole network 5

is denoted as F . The input of the network is the measured 6

noisy multi-energy sinograms (e.g., Sin = {Sin,1, Sin,2} 7

for dual-energy CT) and a mask sinogram image SM. The 8

mask sinogram image is to mitigate the secondary artifacts 9

in the image domain caused by the sinogram operations. In 10

this work, the network structure is shown in Fig. 2. The 11

direct output from the network, f(Sin,SM;θ) (f indicates the 12

network processing and θ are the network parameters), is the 13

unmodulated output noise signals of the input sinograms. The 14

noise variances of a sinogram can be different for different 15

regions: assuming Poisson statistics, the noise variance of the 16

post-log signal is proportional to 1/N , where N is the photon 17

detected per pixel when the image object is present. Since N 18

is proportional to e−S (S is the sinogram), the noise standard 19

deviation is proportional to
√
1/e−S = eS/2. Therefore, 20

f(Sin,SM;θ) is further modulated as: 21

f(Sin,SM;θ)⊗ esmooth(Sin)/2, (5)
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Fig. 4. Details of the data processing workflow and loss items of the projection domain denoising network. Lines with different line styles indicate the items
to calculate the specific type of loss (for example, Lrec is calculated from D[g2(Sin)] and D[F (g1(Sin;SM))]).

Fig. 5. The mask sinogram image is generate by thresholding the virtual
monoenergetic image following a forward projection process.

where ⊗ indicates the Hardmard product; “smooth” indicates1

a low-pass filter to mitigate the noise of Sin for better noise2

amplitude estimation. Here the low-pass filter is a Gaussian3

filter with a width of 3 pixels.4

Operations in the projection domain denoising network5

leads to secondary artifacts in the reconstructed CT images,6

especially in regions close to the high contrast boundaries7

between air the image object (will be demonstrated in the8

Results section). To mitigate this issue, the mask sinogram9

image SM is introduced. The idea is inspired by deep learning-10

based metal artifact reduction methods, where the trace of the11

metal is masked in sinograms [31]. The workflow to generate12

the mask sinogram image is shown in Fig. 5: the raw sino-13

grams are decomposed following a standard projection domain14

material decomposition process [32] and are reconstructed to15

generate the noisy material basis images:16

I = R−1(D(Sin)), (6)

where R−1 is the inverse Radon transform or filtered back-17

projection operator and D represents the material decom-18

position operator. The material basis images are scaled and19

summed to generate the virtual monoenergetic image (VMI).20

Take two material decomposition as an example, namely21

I = {I1, I2}. The VMI is calculated as 1

Ivmi = µ1(E0)I1 + µ2(E0)I2, (7)

where E0 is selected to be the average of the mean energies 2

of the simulated spectra and µi is the energy-dependent linear 3

attenuation coefficients of the i-th material. Then the VMI is 4

thresholded and forward projected to generate the sinogram 5

mask image: 6

SM = R(Th(Ivmi)), (8)

where R indicates the Radon transform for parallel-beam cases 7

or x-ray transform for fan-beam cases and Th indicates a hard 8

thresholding process. The threshold value is selected to be 9

half of the LAC of water. The VMI contains less noise and 10

artifacts compared with the raw reconstructed CT image for 11

each spectrum; therefore, it is utilized to generate the mask 12

image. The final estimated noise δSin in the projection domain 13

is further modulated by SM: 14

δSin = f(Sin,SM;θ)⊗ esmooth(Sin)/2 ⊗ SM. (9)

The noise is subtracted from the input sinograms to generate 15

the noise-free sinograms: 16

Sout = Sin − f(Sin,SM;θ)⊗ esmooth(Sin)/2 ⊗ SM. (10)

The output of the denoising network can be summarized as: 17

Sout = F (Sin,SM;θ), (11)

where Sout = {Sout,1, Sout,2} is the network output for dual 18

energy CT. 19

3) Incorporation of the Ne2Ne denoising method: Due to
the lack of noise-free multi-energy sinograms, the Ne2Ne
method is incorporated to realize self-supervised denoising.
The reason in performing the Ne2Ne method in the projection
domain is that the noise of the neighboring pixels of the sino-
grams are weakly correlated (especially for photon counting
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CT [33]), compared with the reconstructed CT images. As
pointed out in the original Ne2Ne paper, the Ne2Ne method
is more effective if the noise amplitude is larger than a
threshold value: for a given 8-bit image with value 0-255,
noise amplitude should better be larger than 5. The noise
amplitude of the measured multi-energy sinograms marginally
meet the above criterion. Since the material decomposition
process leads to noise amplification, the loss of the Ne2Ne
method is calculated from the material basis sinograms from
the projection domain material decomposition, rather than
the original multi-energy sinograms. Mathematically speaking,
Lrec and Lreg are calculated as:

Lrec = ESin
||D[F (g1(Sin,SM))− g2(Sin)]||22; (12)

Lreg = ESin
||D[F (g1(Sin,SM))− g2(Sin)

− {g1(F (Sin,SM))− g2(F (Sin,SM))}]||22; (13)

where D represents the projection domain material decompo-1

sition. For the detailed form of D, we used to up to second-2

order polynomials following reference [32]. The coefficients3

can be acquired through a calibration process, which will be4

discussed in section II-B.5

Since second-order polynomials may not perfectly charac-6

terize the relationship between the material basis sinograms7

and the raw multi-energy sinograms, a data fidelity loss item8

based on the polynomial forward projection process is added:9

Lfid = ESin ||h(D[F (Sin,SM)];Ω(E))− Sin||22, (14)

where Ω(E) = {Ω1,Ω2, . . . ,Ωm} are the input x-ray spectra
and h represents the polynomial forward projection:

h(L;Ω(E)) = {− ln

∫
E

Ωi(E)e−
∑n

j=1 µj(E)LjdE},

i = 1, 2, . . . ,m, (15)

where Lout = D[F (Sin,SM)] = {L1, L2, . . . , Ln} are the10

decomposed pathlengths for n types of materials, E is the x-11

ray energy and µj are the linear attenuation coefficient of the12

j-th material. For dual energy measurement, Ω(E) and L are13

simplified to be Ω(E) = {Ω1,Ω2} and L = {L1, L2}. The14

data processing workflow and loss items for the projection15

domain denoising network are summarized in Fig. 4.16

4) Summary of the proposed method: The total loss Ltot17

of the denoising network F is given as:18

Ltot = αLfid + βLreg + γLrec. (16)

where α, β and γ are the weighting coefficients. In this work,19

the values of these coefficients are selected to be 1, 1 and 220

respectively. A comprehensive study will be performed later21

to demonstrate the impact of the coefficients on the results.22

The aim of the proposed method is to find the value of the23

network parameters to minimize the total loss:24

θ = argmin
θ

Ltot. (17)

B. Experimental Methods25

1) Methods for numerical experiments: Numerical experi-26

ments were performed to test the performance of the proposed27

method. High-quality dual energy clinical abdomen CT images28

(more than 1500 slices in total) from 13 patients were collected 1

in Shanghai Changhai Hospital, China, using a clinical diag- 2

nostic CT scanner (Model uCT960, United Imaging Healthcare 3

Co., Ltd., Shanghai, China). The usage of the data was with 4

the approval of the institutional review board and patient 5

consent forms (under approval number 2018-038-01). Water 6

and iodine density images were generated from the dual energy 7

CT images as digital phantoms. The basis images were forward 8

projected to generate the basis sinograms L = {Lw, Lb}, 9

which were then used to generate the polychromatic x-ray 10

sinograms: 11

Si = − ln

∫
E

Ωi(E)e−µw(E)Lw−µb(E)LbdE, (18)

where i = 1, 2 representing low and high energy measurement. 12

The forward projection was implemented using an in-house 13

CT simulation package named MandoCT [34]. The energy- 14

dependent attenuation coefficients µ(E) are from the NIST 15

website [35]. The spectra in the simulation study were shown 16

in Fig. 6, with kVp = 80 kV and 140 kV, respectively. The 17

mean energy of the spectra were approximately 50 and 75 keV, 18

respectively. The forward projection process was simulated to 19

be a fan-beam one, with an ideal point x-ray source and a 20

line detector. An ideal photon counting detector with a pixel 21

size of 0.8 mm and a pixel array of 1 by 800 pixels was 22

simulated. The source to detector distance and the source to 23

isocenter distance were simulated to be 800 mm and 1200 24

mm respectively. The simulated CT scan was a 360 degree 25

full scan with 720 view angles. Poisson noise was added to 26

the pre-log raw forward projection data to simulated the noise 27

in CT data acquisition: 28

Nm ∼ Poisson(N0 × e−S), (19)

where N0 is the number of photon counts in the absence of the 29

image object, S is the post-log sinogram and Nm is measured 30

post-object photon counts. The measured post-log projection 31

data pm with noise is calculated as: 32

pm = − ln
Nm

N0
. (20)

In the simulation study, N0 = 105 per pixel. The training 33

data and validation data were from 10 patients (7 patients for 34

training data and 3 patients for validation data) while the test 35

data were from the remaining 3 patients. During the train- 36

ing process, data augmentation operations including random 37

cropping, random flipping, and random noise generation were 38

introduced to further expand the dataset. Data corresponding 39

to the same patient were not split to the training dataset and 40

the test dataset. The reconstructed CT images has a dimension 41

of 512× 512 and a pixel pitch of 0.8 mm. 42

Up to second-order polynomials were used to fit the pro-
jection domain decomposition relationships:

Lw = Lw(S1, S2) =a1,0S1 + a0,1S2 + a2,0S
2
1

+ a1,1S1S2 + a0,2S
2
2 (21)

Lb = Lb(S1, S2) =b1,0S1 + b0,1S2 + b2,0S
2
1

+ b1,1S1S2 + b0,2S
2
2 (22)
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Fig. 6. Spectra for the dual energy CT scan simulation.

To achieve the coefficients for the projection domain material
decomposition, materials with water thicknesses ranging from
0 to 30 cm and bone thickness ranging from 0 to 10 cm
was simulated. The polychromatic projection values Si were
calculated based on (18). The coefficients were acquired using
least-square calculations:

{ai,j} = arg min
{ai,j}

||Lw − Lw(S1, S2)||22 (23)

{bi,j} = arg min
{bi,j}

||Lb − Lb(S1, S2)||22 (24)

The bone and water basis images were then transformed into1

iodine and water basis images based on simple linear basis2

transformation process.3

To evaluate the performance of the proposed method on4

the noise standard deviation, signal accuracy and the spatial5

resolution on the decomposed basis images, an additional6

digital quantification phantom was used, as shown in Fig. 7.7

The simulation of the projection data of the quantification8

phantom follows those of the simulation of the patient. The9

reconstructed CT images has a dimension of 512× 512 and a10

pixel pitch of 0.4 mm.11

Fig. 7. Digital quantification phantom to evaluate the quantitative performance
of the proposed method. The base of the phantom is solid water while the
inserts are iodine solutions with different sizes and concentrations.

2) Methods for laboratory experiments: To validate the12

proposed method using real experimental data, dual energy CT13

measurements were performed on a benchtop CT system. The14

x-ray source of the system was from Spellman Cor. (Model15

XRB160PN192). The detector was an energy integrating de-16

tector (Model CareView 300 RF, CareRay Digital Medical17

Technologies, China) with an active area of 201 mm by 15118

mm and a pixel pitch of 98 µm. The pixels were binned 1

4 by 8 for reconstruction. The source to detector distance 2

was 860 mm and the source to isocenter distance was 1500 3

mm. The dual energy CT scan was realized by scanning 4

the image object twice: first with 80 kVp tube potential and 5

then with 120 kVp tube potential. Each CT scan was a 360 6

degree full scan with 1080 view angles. The image object 7

was an in-house quantification phantom. The diameter of 8

the phantom was approximately 7 cm and was filled with 9

water. CaCl2 solutions with different concentrations (10, 25, 10

50 and 100 mg/mL) were placed in plastic test tubes, which 11

were then inserted into the phantom. The reconstructed CT 12

images has a dimension of 512 × 512 and a pixel pitch of 13

0.2 mm. To test the performance of the proposed method for 14

animal objects, additional experiments with mice objects were 15

performed on a prototype small animal CT system. The x-ray 16

source of the system was a microfocus x-ray tube (Model 17

L9421-02. Hamamatsu Photonics, Hama-matsu, Japan). The 18

detector was a photon counting detector (Model XC-Thor, 19

Direction Conversion AB, Sweden) with a active area of 77 20

mm by 13 mm and a pixel pitch of 100 µm. The source to 21

detector distance was 110 mm and the source to isocenter 22

distance was 220 mm. The CT scan was a 360 degree full scan 23

with 600 view angles. During the CT scan, the tube potential 24

was 40 kVp. The detector thresholds were set to be 25 keV 25

and 33 keV to realize dual energy CT scan with the [25,33] 26

keV as the low energy bin and the [33,40] keV as the high 27

energy bin. The reconstructed CT images has a dimension of 28

384×384 and a pixel pitch of 0.075 mm. Due to the fact that 29

the image object was small, the projection domain material 30

decomposition was approximated as a linear process without 31

considering the 2nd or higher order items. Since the objects 32

are small, the LACs of the basis materials (water and 100 33

mg/mL CaCl2 for quantification phantom, soft tissue and bone 34

for mice study) were directly measured from the spectral CT 35

images to form the LAC matrix. The linear decomposition 36

coefficients were obtained by calculating the inverse of the 37

LAC matrix. It should also be noted that in this case, the data 38

fidelity item in (14) degenerates into a linear relationship. 39

3) Training strategies and computational cost: The network 40

training and testing for both the numerical simulation study 41

and the physical experiment study were implemented using 42

PyTorch toolbox. The environment for the network training 43

and testing was a desktop computer with Intel Core i7-6950X 44

CPU and one NVIDIA TITAN X GPU. The network were 45

trained using the Adam optimizer with a learning rate of 1× 46

10−3 and weight decay of 10−4. The networks were trained 47

200 epochs and the learning rate was reduced to half after 48

each 40 epochs. 49

4) Quantitative metrics: For the numerical simulation stud- 50

ies, material basis images were evaluated using the root mean 51

squared error (RMSE) and the structural similarity index 52

(SSIM), with the ground truth values of the materials basis 53

images as references. For the quantification phantom, the noise 54

standard deviation and the mean values of the concentrations 55

of the iodine inserts were measured to quantify the denoising 56

performance as well as the signal accuracy. The resolution 57

patterns were used to evaluate the spatial resolution. For the 58
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physical experiments, due to the fact that the ground truths1

of the material basis images are not available, images are2

evaluated by visual inspection.3

5) Comparison studies and ablation studies: Comparison4

studies include a conventional material decomposition method5

based on entropy minimization [17] and three supervised deep6

learning methods. One supervised deep learning method was7

implemented by omitting the Ne2Ne modules while directly8

using the clean material basis images as training labels [De-9

noted as “Proposed-S” (Proposed-supervised)]. Other aspects10

of the supervised method were the same with the proposed11

self-supervised method. The second supervised deep learning12

method was the Direct-Net, which is a dual-domain neural13

network for material decomposition [25]. The third method14

was the RED-CNN method, which is for denoising in the15

image domain [36]. The input of the network was the grouped16

reconstructed basis images from projection domain decompo-17

sition while the labels were the grouped ground truths of the18

basis images.19

Comprehensive ablation studies were performed to demon-
strate the necessity of different components of the proposed
method. The ablation studies included: #1: All additional
constraints were removed and Ne2Ne was directly applied
to the decomposed material basis sinograms. #2: With all
additional constraints except the sinogram mask; #3: With all
additional constraints except the data fidelity loss item Lfid in
(16);#4: With all additional constraints except the sinogram
noise modulation item in (5); #5: The reconstruction loss and
regularization loss for Ne2Ne was calculated from the original
sinogram rather than the decomposed sinogram, namely:

Lrec = ESin ||F (g1(Sin))− g2(Sin)||22; (25)
Lreg = ESin ||F (g1(Sin))− g2(Sin)

− {g1(F (Sin))− g2(F (Sin))}||22; (26)

This ablation study was to demonstrate the side effect when20

the noise level was not high enough to meet the criterion of21

the Ne2Ne method.22

We also tested the impact of the values of the coefficients23

in (16) on the final results. With β remained 1, we altered the24

value of α from 0.5 to 4 and value of γ from 1 to 16. The25

results were analyzed quantitatively by comparing those with26

the results from the original proposed method.27

III. RESULTS28

A. Results for numerical experiments29

Fig. 8. Sample of the low and high energy sinograms as well as the mask
image as the input of the network.

Fig. 9. Comparison of the material basis sinograms from the polynomial
projection domain decomposition and after the proposed denoising method
for the numerical experiments.

Fig. 8 demonstrates an example of the input low and 1

high energy sinogram as well as the mask sinogram image 2

generated based on the workflow in Fig. 3. The mask image 3

extracted the non-air region of the image slice and was utilized 4

to mitigate the secondary artifacts, whose function will be 5

demonstrated later in the ablation studies. Fig. 9 demonstrates 6

the results of denoised sinograms from the projection domain 7

denoising network. As one can tell, compared with the material 8

basis sinograms calculated from the polynomial fitting process, 9

the proposed method effectively reduces the noise amplitude. 10

Fig. 10 and Fig. 11 show the results of the proposed method 11

of the digital abdomen phantom as well as the results of the 12

comparison methods. The results from the direct projection 13

domain decomposition using polynomial fitting demonstrates 14

high noise level due to the noise amplification process in the 15

material decomposition calculation, as shown in Fig. 10(a1)- 16

(c1) and Fig. 11(a1)-(c1). The conventional denoising method 17

based on entropy minimization could partially reduce the noise 18

amplitude. However, it leads to signal bias and loss of differen- 19

tiation of soft tissue contrast. For example, in Fig. 11(b2), the 20

contrast of the water basis image in the zoomed region could 21

not be differentiated. The iodine signal in the zoomed region in 22

Fig. 10(a2) is also darker than the reference image. The three 23

supervised deep learning methods achieve better denoising 24

performance compared with the IDEM method. The perfor- 25

mance of the proposed self-supervised method approaches that 26

of the supervised method. For example, for Fig. 10(a6), the 27

proposed method reveals the shape of the renal vein in the 28

water basis image, which is barely visible due to the noise in 29

the decomposed basis image using the polynomial method. 30

The proposed method successfully recovers the soft tissue 31

details in the water basis image: as shown in the zoomed 32

image for the case in Fig. 11(b6), the soft tissue details 33

are well preserved. Such results indicate the effectiveness of 34

the proposed self-supervised network in noise and artifact 35

suppression without the need of training labels. 36

The quantitative metrics for the digital abdomen phantom 37

are summarized in Table I. The supervised learning method 38

achieves the highest SSIM as well as lowest RMSE. The met- 39

rics for the proposed SeNAS-Net are almost the same with the 40

supervised method for the iodine basis images and was slightly 41

inferior than those of the supervised method for the water 42

basis images. The metrics for the conventional IDEM method 43

are much more inferior than neural network-based methods. 44

The quantitative results further confirms the capability of the 45

proposed method in noise and artifact suppression. 46
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Fig. 10. Comparison of the iodine basis CT images from different methods for the digital abdomen phantom in the simulation study. Display range: [-5 25]
mg/mL.

Fig. 11. Comparison of the water basis CT images from different methods for the digital abdomen phantom in the simulation study. Display range: [900
1100] mg/mL for water.

Fig. 12. Comparison of the iodine basis CT images from different methods for the digital quantification phantom. Display range: [0 10] mg/mL.

The reconstructed images of iodine basis of the quantifica-1

tion phantom, processed by different methods, are shown in2

Fig. 12. The zoomed region demonstrates one of the resolution3

pattern (7 lp/cm) in the quantification phantom. As one can4

tell, the proposed method successfully maintains the spatial5

resolution while suppressing the image noise. Fig. 13 demon-6

strates the quantitative performance of the proposed method7

and other comparison methods: the measured concentrations 1

for the 3.3 mg/mL, 6.7 mg/mL and 10 mg/mL iodine inserts 2

are quantified and compared with the ground truth values, 3

as well as the errors. For all inserts, the signal bias of the 4

proposed method is less than 0.3 mg/mL, which indicates that 5

it maintains the signal accuracy. 6

For the numerical experiments, the training time to conver- 7
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TABLE I
QUANTITATIVE METRICS FOR DIFFERENT METHODS IN THE NUMERICAL STUDY

Polynomial IDEM Proposed-S Direct-Net RED-CNN Proposed

RMSE (iodine) (mg/mL) ↓ 0.99± 0.06 0.96± 0.04 0.39± 0.02 0.71± 0.07 0.29± 0.02 0.41± 0.02
RMSE (water) (mg/mL) ↓ 61.74± 1.76 28.48± 0.61 15.50± 0.71 18.97± 0.79 15.38± 0.58 16.98± 0.64

SSIM (iodine) ↑ 0.944± 0.006 0.955± 0.004 0.973± 0.003 0.964± 0.004 0.983± 0.002 0.971± 0.004
SSIM (water) ↑ 0.618± 0.018 0.895± 0.007 0.970± 0.001 0.971± 0.001 0.970± 0.001 0.962± 0.001
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Fig. 13. Bar plots of the quantitative performance of the proposed method as
well as other methods for comparison. A: Polynomial, B: IDEM, C: Proposed-
S, D: Direction-Net, E: RED-CNN, F: Proposed, G: Reference. (a) Measured
concentrations. (b) Errors.

gence was about 50 hours. When the network training was fin-1

ished, the time to process one image slice was approximately2

0.1 s.3

B. Results for laboratory experiments4

Fig. 14 demonstrates that results of the quantification phan-5

tom. For the results using the polynomial method, there exist6

strong noise in the CaCl2 material basis images. The IDEM7

method is able to partially mitigate the image noise, but there8

still exist abnormal dark and bright spots, as shown in the9

zoomed region in Fig. 14(a2). In contrast, the proposed method10

demonstrates more robust performance in noise reduction.11

Results of the quantitative measurements are shown in Fig. 15.12

The proposed method does not lead to signal bias and the noise13

standard deviations (error bars) are reduced. For example, for14

the 50 mg/mL CaCl2 insert, the standard deviation is reduced15

from 51 mg/mL to 8.5 mg/mL, resulting an increase of signal16

to noise ratio of approximately 6 times.

Fig. 14. Comparison of the reconstructed CT images for the CaCl2 material
basis from different methods for the laboratory experiment study. The nominal
concentrations for each insert are also annotated (unit: mg/mL). Display range:
[-20 120] mg/mL.

17

Fig. 16 shows the comparison of the reconstructed CT18

images using different methods for the small animal CT scan.19

The original reconstructed images for the low energy (in even20

rows) and high energy bin (in odd rows) are also shown21

as reference images. For the results using the polynomial22

A B C

10 mg/mL 25 mg/mL 50 mg/mL
-50

0

50

100

C
aC

l 2 C
on

ce
nt

ra
tio

n 
(m

g/
m

L
)

Fig. 15. Comparison of the CaCl2 quantification accuracy of the proposed
method and comparison methods. A: Polynomial, B: IDEM, C: Proposed
method.

method, visualization of the details of the soft tissue are 1

compromised due to the amplification of noise in the material 2

decomposition process (Fig. 16(a1)-(d1)). The boundaries of 3

the bone tissue are also obscured due to the image noise. The 4

IDEM method can partially reduce the image noise but the 5

soft tissue details can not be fully recovered (e.g., the lung 6

tissue in Fig. 16(b2), which is similar to the observation for 7

the numerical experiments. There also exists signal bias: for 8

example, the bone signals marked by the arrows of the zoomed 9

regions in Fig. 16(a2) and (c2) are lost. The proposed method 10

effectively reduces the noise of the decomposed CT images. 11

For the bone basis images, the proposed method extracts the 12

bone information while suppressing the background noise, as 13

shown in Fig. 16(a3), which can be told by comparing the 14

decomposed bone basis image and the high energy CT images. 15

For the water basis, the proposed method recovers the soft 16

tissue details in the lung region, as shown in zoomed region in 17

Fig. 16(b3). However, we acknowledge that the performance 18

of the proposed method in this mice study is not as good 19

as that in the numerical simulation study. For example, there 20

remain low-frequency rings artifacts due to the inconsistent 21

energy response of the photon counting detector pixels. Such 22

inconsistency may also impact the noise suppression perfor- 23

mance of the proposed method. These non-idealities will be 24

further discussed in the Discussion section. 25

C. Results for ablation studies 26

Results of the ablation studies are shown in Fig. 17. 27

For ablation study #1 (direct application of Ne2Ne in the 28

decomposed material basis sinograms without additional con- 29

straints), one can observe that the reconstructed basis images 30

demonstrates severe artifacts: there are abnormal blooming 31

and shading regions as well as ring artifacts in Fig. 17(b1). 32

The image reduction is neither as effective as the proposed 33

method, due to the absence of the noise modulation item 34

in (5). Such results indicate the necessity of the additional 35
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TABLE II
QUANTITATIVE METRICS FOR THE ABLATION STUDIES (UNIT FOR RMSE: MG/ML)

Proposed Ablation #1 Ablation #2 Ablation #3 Ablation #4 Ablation #5

RMSE (iodine) ↓ 0.41± 0.02 0.46± 0.03 0.40± 0.02 0.44± 0.02 0.52± 0.03 0.69± 0.04
RMSE (water) ↓ 16.98± 0.64 20.67± 0.68 18.11± 0.43 21.28± 0.40 19.91± 0.58 38.97± 0.95
SSIM (iodine) ↑ 0.971± 0.004 0.969± 0.004 0.971± 0.004 0.970± 0.004 0.965± 0.004 0.957± 0.005
SSIM (water) ↑ 0.962± 0.001 0.950± 0.001 0.952± 0.001 0.932± 0.004 0.943± 0.006 0.790± 0.012

TABLE III
QUANTITATIVE METRICS FOR THE COMBINATIONS OF DIFFERENT HYPER-PARAMETERS (UNIT FOR RMSE: MG/ML)

α = 0.5, γ = 2 α = 2, γ = 2 α = 4, γ = 2 α = 1, γ = 1 α = 1, γ = 4 α = 1, γ = 16 Proposed

RMSE (iodine)↓ 0.43± 0.02 0.48± 0.02 0.48± 0.02 0.46± 0.02 0.58± 0.03 0.43± 0.02 0.41± 0.02
RMSE (water)↓ 16.66± 0.50 16.60± 0.60 16.44± 0.51 16.73± 0.58 18.45± 0.48 25.00± 1.13 16.98± 0.64
SSIM (iodine) ↑ 0.971± 0.004 0.967± 0.004 0.967± 0.004 0.968± 0.004 0.963± 0.004 0.962± 0.003 0.971± 0.004
SSIM (water) ↑ 0.964± 0.001 0.964± 0.001 0.965± 0.001 0.965± 0.001 0.952± 0.002 0.903± 0.005 0.962± 0.001

Fig. 16. Comparison of the reconstructed CT images from different methods
for the physical experiment study. The original low energy (LE) and high
energy (HE) CT images are also shown as references. Display range: [-1 1.5]
for bone basis images, [0 2] for water basis images and [0 0.5] cm−1 for
HE/LE images.

physical constraints of the proposed method. For ablation1

study #2, if the mask sinogram is not concatenated to the2

spectral sinograms as inputs, secondary artifacts presented in3

the reconstructed basis images as radial streak artifacts close to4

the high contrast region, e.g. air sacs in human abdomen. Such5

artifacts can be observed in the zoomed region of Fig. 17(b2) 1

and (d2). For ablation study #3, if the data fidelity loss item 2

is removed in (16), there are remaining noise streaks and loss 3

of differentiation of the soft tissue details, as shown in the 4

zoomed region in Fig. 17(b3) and (d3). Meanwhile, there exist 5

stronger signal bias, which can be told from the increase of 6

the RMSE in the quantitative metrics in Table II. For ablation 7

study #4, if the noise modulation item in (5) is not applied, 8

the reconstructed material basis images demonstrate abnormal 9

coarse noise structure, which is due to the error of noise 10

estimation in the projection domain without consideration of 11

the anisotropic noise amplitudes. For ablation study #5, when 12

the loss items related to the Ne2Ne method are calculated in 13

the raw sinogram domain, noise level is not high enough to 14

meet the criterion of the Ne2Ne: as shown in the first column 15

of Fig. 17, the noise level is still high after the denoising 16

network. As a result, the soft tissue details is compromised, 17

as shown in the zoomed region in Fig. 17(d5). The quantitative 18

metrics are summarized in Table II. For the water basis, 19

the metrics of all ablation studies are inferior to that of the 20

proposed method. The metrics of ablation #2 are slightly better 21

than the proposed method for the iodine basis image (but is not 22

statistically significant considering the standard deviations). 23

This is consistent with the visual observation as the streak 24

artifacts for the ablation study #2 is more obvious in the water 25

basis images. 26

Results of the ablation studies when the values of the hyper- 27

parameters in (16) are tuned are shown in Fig. 18. For the 28

impact of coefficient α (coefficient for the data fidelity loss 29

item), results demonstrate that the water basis images are not 30

very sensitive to the value of α. As α increases, the noise 31

of the iodine basis images slightly increases, which can be 32

told by comparing Fig. 18(a1) - (a3), but the difference is 33

not significant. The quantitative results in Table III confirm 34

the above visual observations. For the impact of coefficient γ 35

(coefficient for the reconstruction loss item), the difference 36

between the case when γ = 1 and the proposed method 37

(γ = 2) is not very obvious: there is a slightly better reduction 38

of noise streaks in the water basis image while the noise 39

in the iodine basis image is less suppressed for γ = 1. 40
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Fig. 17. Results of the ablation studies to demonstrate the impact of the additional constraints. Display range: [-5 25] mg/mL for iodine and [900 1100]
mg/mL for water.

Fig. 18. Results of the ablation study when the hyper-parameters in (16) are tuned. Note that the parameter β = 1. Display range: [-5 25] mg/mL for iodine
and [900 1100] mg/mL for water.

As γ further increases, the noise streaks in the water basis1

images become more and more severe, which can be told by2

comparing Fig. 18(b4) - (b6). Such result is also reflected3

in the quantitative results in Table III, as the RMSE for the4

water basis images increases when γ increases. The above5

results indicate that the selection of the parameter values for6

the proposed method (α = 1, β = 1, γ = 2) is an quasi-7

optimal one.8

IV. DISCUSSION AND CONCLUSION 1

In this work, a self-supervised noise and artifact suppression 2

method (SeNAS-Net) for spectral CT is proposed. The method 3

incorporates the idea of Neighbor2Neighbor denoising strategy 4

to realize self-supervised learning without the need of training 5

labels. The method is physics-driven by including material 6

decomposition process in the calculation of the reconstruction 7

and regularization loss in the projection domain. Meanwhile, 8
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several additional constraints were incorporated in the network1

to suppress the secondary artifacts due to the random down-2

sample operators in the projection domain network. The pro-3

posed method is validated using both numerically simulated4

data and real experimental data. Results demonstrated that the5

performance of the proposed method is close to a supervised6

learning method which required the ground truth values of the7

material basis images as the training label.8

The neighbour2neighbour is realized in the projection do-9

main rather than in the image domain in this work, due to the10

fact that in image domain, the pixels have long range corre-11

lation so the prerequisites of the Ne2Ne method are violated.12

The correlation in the projection domain only comes from the13

correlation between the detectors pixels, and correlation length14

is much shorter. Projection domain operations inevitably lead15

to secondary artifacts in the reconstructed CT images. This16

work introduces a mask image as the input along with several17

constraints to mitigate such artifacts. However, there still18

remain certain discrepancies between the decomposed basis19

images using the proposed method and the ground truth20

images. For example, in Fig. 11(b7), the iodine signal in the21

center of the right kidney erroneously leaked to the water basis22

image, presenting as a bright dot. Additional constraints may23

help to mitigates such secondary artifacts and the proposed24

method may be further improved.25

There are several additional limitations related to the study.26

The data fidelity loss item for the proposed method requires27

spectral information. Such information may not be easy to28

acquire for real CT system: even the output spectra of the29

source can be estimated by measuring the half-value layer, the30

spectra can be distorted due to the energy responses of the x-31

ray detectors. For the real experimental data in this experiment,32

due to the fact that the image object is small, the spectra is33

approximated to be monoenergetic so the problem is partially34

resolved. However, even in this case, the detected spectra35

across different pixels can be different so that ring artifacts36

remain in the decomposed CT images, as shown in Fig. 16.37

Pixel-specific spectral calibration may mitigate such problem.38

For large objects, the spectra need to be relatively precisely39

modeled to reflect the effect caused by the polychromaticity.40

Finally, although the work only covers experiments for dual41

energy CT, the proposed method can be revised for multi-42

material decomposition in principle. However, several issues43

may arise for multi-material decomposition. For example,44

the polynomial coefficients for multi-materials decomposition45

can be hard to acquire, especially for the high order items,46

so that the initial decomposition may contain large signal47

bias. How the proposed method is applied to multi-material48

decomposition can be an interesting future topic.49
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