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We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain
lakes and mainstems, during both high water (HW) and low water (LW) phases
(p < 0.05). Our results showed that bacterial production (BP) was lower and more
variable than bacterial respiration, determined as total respiration. Bacterial carbon
demand was mostly accounted by BR and presented the same pattern that BR in
both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2–
23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting
that dissolved organic carbon was mostly allocated to catabolic metabolism. However,
BGE was regulated by BP in LW phase. Consequently, changes in BGE showed
the same pattern that BP. In addition, the hydrological pulse effects on mainstems
and floodplains lakes connectivity were found for BP and BGE in LW. Multiple
correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-
a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial
carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly
driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either
high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic
metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM
quality.

Keywords: bacterial production, bacterial respiration, bacterial carbon demand, bacterial growth efficiency,
hydrological pulse, Amazonian freshwater ecosystems
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Introduction

Bacterioplankton (generic term including heterotrophic aerobic
Bacteria and Archaea) is considered the main agent for the
removal of organic carbon (C) in aquatic systems (Williams,
2000). Bacterioplankton convert dissolved organic carbon (DOC)
into biomass through bacterial production (BP) and into CO2
through bacterial respiration (BR). The whole amount of carbon
consumed by the bacterial metabolism on BP and BR has been
referred as bacterial uptake or bacterial carbon demand (BCD),
an important pathway in the global carbon cycle. The efficiency
of bacterial carbon assimilation will determine if carbon is
either passed to the next trophic level or converted into CO2
(Del Giorgio et al., 1999). Bacterial communities in tropical
inland aquatic ecosystems have higher metabolic rates (BP, BR,
and BCD) and lower bacterial growth efficiency (BGE) than in
temperate ecosystems (Amado et al., 2013).

In particular, BR measurements require the separation of
bacteria from the rest of the plankton community. The filtration
process can cause: the removal of the pressure by competitors and
predators (Martínez-García et al., 2013); structure disruption of
bacterial community (Del Giorgio and Cole, 1998; Del Giorgio
et al., 2011); phytoplankton cells to suffer rupture; and the
release of labile organic C to the filtered (Hopkinson et al., 1989)
resulting overestimation of respiration measurements. On the
other hand, the filtration process may cause an underestimation
when particles are retained, which causes a significant percentage
of adhered bacteria. Bacteria within a water column can reach
high abundances in microhabitats such as aggregates (Grossart
and Tang, 2010). This aspect is enhanced in Amazonian
freshwater ecosystems due to the high levels of suspended
materials. Amazonian aquatic ecosystems show high levels of
turbidity reaching 151 nephelometric turbidity units (NTU) in
mainstems and 128 NTU in floodplains lakes.

Large parts of the Amazon River are subjected to periodical
floods in the surrounding central Amazon area, due mainly
to rainfall in the headwaters (Junk, 1997). This creates large
temporary wetlands called floodplain, which account with rivers
for a total area of ca. 350,000 km2 (Melack and Hess, 2011).
The periodical connectivity of the rivers creates a great diversity
of carbon sources across the mainstems and floodplains lakes
(Mortillaro et al., 2011). The organic matter (OM) has been
reported as refractory in the mainstem and it has been described
as more labile in the Amazonian floodplains (Hedges et al.,
1986; Moreira-Turcq et al., 2003; Aufdenkampe et al., 2007).
Dissolved organic matter (DOM) originating from aquatic
primary producers (planktonic algae and aquatic macrophytes)
is usually more labile to bacterial growth (Amon and Benner,
1996; Farjalla et al., 2006). Composition and quality of OM in
the Amazon Basin have been previously documented using stable
isotopes, chlorophyll-a, elemental analysis, fatty acids (FAs),
amino acids, and lignin phenols (Hedges et al., 1994; Bernardes
et al., 2004; Mortillaro et al., 2011; Moreira-Turcq et al., 2013). In
turn, these factors are important regulators of bacterial activity in
aquatic systems (Del Giorgio and Cole, 1998) and can have effects
on metabolic efficiency (i.e., BGE) under different environmental
conditions (Hall and Cotner, 2007).

The aim of this study was to evaluate the changes in the BP, BR,
BGE, and BCD in floodplain/mainstem Amazonian ecosystems.

Materials and Methods

Study Site
The Amazon River is the world’s largest river with a drainage
basin area of 6.1 × 106 km2 covering about 40% of South
America (Goulding et al., 2003). The mean annual discharge is
200 × 103 m3 s−1 at Óbidos, the most downstream gauging
station in the Amazon River (Callede et al., 2000). Due to the
equatorial position (Figures 1A–C), temperature in the central
Amazon basin is relatively constant around the year with a
mean annual air temperature (MAAT) of ca. 27◦C (New et al.,
2002). Rivers within the Amazon drainage basin are traditionally
classified according to water color, as well as physical and
chemical parameters (Sioli, 1956): white water (e.g., Solimões
and Madeira), black water (e.g., Negro), and clear water (e.g.,
Tapajós). Large parts of the central Amazon basin are subjected to
periodical floods due mainly to spatial and temporal distribution
of rainfall in the headwaters. This creates large temporary
wetlands, i.e., seasonally flooded forests which cover a total area
of ca. 350 × 103 km2 (Junk, 1997; Melack and Hess, 2011).
There is water exchange between flooded forests and the Amazon
River which is highly influenced by the rising and falling of
water during the rainy or dry seasons, respectively (Lesack and
Melack, 1995). Five floodplain lakes were investigated in this
study (Figure 1C): Cabaliana, Janauaca, Miritituba, Canaçari,
and Curuai (Figures 1D–F), located in a gradient of decreasing

FIGURE 1 | Location of study areas across the Amazonian River
ecosystems in a large (A–C) and small scale (D–F). Dashed black lines
delineate the Cabaliana, Janauaca, Miratuba, Canaçari, and Curuai
floodplains (Abril et al., 2014).
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flooded forests and increasing open waters (Bourgoin et al., 2007).
Cabaliana has a large area surrounded by flooded forests and two
sub-regions. In the northern region, Piranha stream discharges
black water while in the southern region white water, brought
by the Solimões River, mixes with black water. Janauaca has a
peculiar morphology with a ravine shape surrounded by flooded
forests. Solimões water comes through the channel in the north
and black water comes through the stream system in the south.
Miritituba receives white water from the Madeira River and
the Amazon River. It can be considered as a white water lake
surrounded by flooded forests, with no significant contribution of
black water streams. Canaçari has two well-defined sub-regions.
In the northern region, the Urubu River discharges black water
and in the southern region, the Amazon River discharges white
water. Canaçari is surrounded by grass plains but is disconnected
from flooded forests most of the year. Curuai is the largest lake
in the central Amazon basin, mainly surrounded by grass plains
and open waters. It receives white water from the Amazon River
through small channels, apart from the main channel in the
eastern side. There are no significant contributions of black water
streams for Curuai Lake.

Sampling
The main channels of five mainstems were selected (Solimões,
Negro, Madeira, Amazon, and Tapajós; Figure 1) as well as
five floodplain lakes (Cabaliana, Janauacá, Canaçari, Miratuba,
and Curuai; Figure 1). In total, three to six subsurface water
samples were collected at the mainstem stations, and six to seven
samples were collected at the floodplain lake stations. Samples
were collected from an 800 km transect along the lower Amazon
River basin fromManacapuru on the Solimões River to Santarém
at the mouth of the Tapajós River. Two cruises were conducted,
one in June 2009 during the high water (HW) season andOctober
2009, 1 month before the lowest water stage, referred to here
as the low water (LW) season. In June, as the water level was
the highest recorded in the last century, the study area was
extensively inundated, enhancing exchange and mixing between
the river mainstem, the flooded forest and the open floodplain
lakes. In October, the water level was minimal, allowing little
interaction with the main channel. The difference in water level at
Óbidos betweenHWand LWwas 6m. The amplitude is generally
3–4 m upstream Manaus (Sioli, 1984).

Subsurface waters (1 m) were collected with a Van Dorn
sampler from the ship on seven lakes in HWand LW. Subsamples
for chlorophyll a, Tot-P, pH, turbidity, DOC, 13δC of the
particulate organic carbon (POC), conductivity, O2 and bacterial
abundance (BA) were taken immediately after sampling. The
samples for bacterial parameters were always collected between
7:00 and 11:00 a.m. into acid-washed plastic bottles.

Bacterial Analytical Methods
Bacterial production was measured in unfiltered samples right
after sampling using the 4,5-3H L-leucine [specific activity (SA),
50 Ci mmol−1] incorporation based on the method of cold
trichloroacetic acid (TCA) extraction (Simon and Azam, 1989;
Wetzel and Likens, 2000). Tenmillilitre of the sample were placed
in a vial and leucine added at final concentration of 50 nM. Three

replicate tubes plus two blanks were incubated in the dark for
30 min. After, the TCA was added to a final concentration of
20% and then incubated at 4◦C. In addition, the samples were
filtered through 0.22 μm Nuclepore membranes (Thomaz and
Wetzel, 1995), being washed with TCA 5% and ethanol. The
leucine incorporated into the bacterial biomass was measured in
a Beckman LS 6500 scintillation counter. The protein production
was converted to carbon production using a protein-to-carbon
ratio of 0.86 (Wetzel and Likens, 2000).

Bacterial respiration was measured by following changes in
dissolved oxygen during dark incubations. Boro-silicate glass
bottles were carefully filled and three replicates were immediately
fixed with Winkler reagents to determine the initial oxygen
concentration. Three replicate bottles were incubated in the dark
at in situ temperature and fixed with Winkler reagents after12 h.
Dissolved oxygen measurements were made with an automatic
titrator (DL50 Graphix, Mettler Toledo) based on potentiometric
endpoint detection (Granéli and Granéli, 1991). The respiration
rate was determined by the difference between final and initial
samples measured at times zero and 12 h. To convert mg O2 L−1

to mg C L−1, we used a respiration quotient (RQ) = 1. In order
to detect possible interferences of filtration on BRmeasurements,
tests were conducted in June 2009 (HW) on filtered and unfiltered
samples (total sample) from 13 stations. The BR wasmeasured by
following changes in dissolved oxygen during dark incubations of
total and filtered water following the procedures described above.
The filtered fraction was obtained from total samples filtered
under low pressure with a vacuum pump through 1.2μm (GF/C)
Whatmann fiber filters right after sampling. The respiration
measurements on the filtered fractions were significantly higher
than the unfiltered samples (p < 0.05) for 100% of the stations
(1.6 times higher). Therefore, the measurement obtained from
the unfiltered water, and not the filtered fraction, was used as the
estimate of BR in the present study.

Bacterioplankton abundance was estimated on subsamples
collected in 40 ml sterile polyethylene flasks, preserved in borate-
buffered 0.2 μm pre-filtered formalin (3% final concentration),
and stored at 4◦C. Subsamples were stained with DAPI
(4μg mL−1) for 15 min (Porter and Feig, 1980), filtrated through
0.2 μm black polycarbonate membranes (Millipore© Isopore)
previously mounted on GF/C Whatman fiber filters to optimize
cell distribution, then mounted on slides with non-fluorescent
oil (Olympus optical). Direct counts were performed at 1,250×
magnification under an epifluorescence microscope (Leica Leitz
DMR; 365 nm). In high-turbid waters, subsamples were pre-
treated (before staining) by an addition of 150 μL of Tween,
sonicated at 35 kHz for 5 min, and centrifuged at 3,000 g during
10 min at 4◦C (Chevaldonné and Godfroy, 1997; Hubas et al.,
2007). The abundance of free bacteria was estimated in untreated
diluted samples and/or in subsamples pre-filtered through a 3-
μm filter. The attached bacteria were deduced from total to free
bacterial counts.

Bacterial Carbon Fluxes
Bacterial growth efficiency was calculated as BP/BCD (Del
Giorgio and Cole, 1998). BCD was defined as the sum of BR and
BP. BR, BP, and BCD were expressed as μg C L−1 h−1.
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Ancillary Parameters
Water temperature, conductivity, pH, O2, and turbidity were
measured with an YSI R© multiprobe, calibrated every 10 days.
Position was recorded with a global positioning system (GPS)
at the same frequency of 1 min. During LW periods, most
shallow and remote lakes were visited with the aid of a
small boat and a 12V version of the complete measurement
setup was used. DOC concentration was measured on water
that was filtered through pre-combusted GF/F filters (4 h,
550◦C), stored in pre-combusted glass bottles and acidified with
ultrapure H3PO4. DOC concentrations were measured using a
Shimadzu TOC-VCSH analyzer. The detection limit for carbon
was 4 μg/L. POC, total nitrogen (TN, i.e., organic and inorganic
nitrogen), δ13C and δ15N isotope ratios were measured on the
same sample aliquots by EA-IRMS (Carlo-Erba NA-1500 NC
Elemental Analyser on line with a Fisons Optima Isotope Ratio
Mass Spectrometer). The δ13C and δ15N of POC values are
reported in per mil (�) relative to Pee Dee Belemnite (PDB)
standard and relative to air N2, respectively. The analytical
precision (as the standard deviation of repeated internal standard
measurements) for the stable isotope measurements was 0.06
and 0.13% for δ13C and δ15N, respectively (Moreira-Turcq et al.,
2013). Chlorophyll-a concentrations (μg L−1) were measured
on GF/F filters, stored frozen before analysis, according to the

method described by Yentsch and Menzel (1963), Holm-Hansen
et al. (1965), and (Marker et al., 1980), using a 10-AU Turner
Fluorometer.

Data Analyses
The differences between HW and LW were tested by Mann–
Whitney Rank Sum Test because the data did not meet the
normality and equal variance test criteria. Potential correlations
between variables were determined through Spearman’s
correlation analysis without log-transformation of data. All
statistical calculations were performed using SigmaPlot v12.5.
For all statistical tests we assumed p < 0.05 as a threshold level
for acceptance.

Results

Mainstem and Floodplain Environmental
Variability
The subsurface water temperature did not differ between
mainstems and floodplain lakes, although in the LW period
the temperature was slightly higher (about 2◦C) than in
HW (Table 1). The DOC concentration range was similar in
mainstems and floodplain lakes in HW and LW. The POC

TABLE 1 | Location and general features of the Amazon River subsystem (mainstem and floodplain lakes).

Mainstem Floodplain lakes

Min. Max. Mean ( ± SD) Min. Max. Mean ( ± SD)

HW

Water temperature 27.9 29.9 28.6 (± 0.02) 28.1 29.7 28.85 (± 0.02)

DOC 3.6 7.6 4.3 (± 0.43) 3.6 5.1 4.04 (± 0.15)
13C-POC –27.8 –34.55 30.21 (± 0.07) –28.1 –30 29.18 (± 0.02)

C/N 6.19 11.43 8.25 (± 0.20) 6.87 8.86 8.15 (± 0.09)

pCO2 3650 6850 4555.5 (± 0.43) 3000 8360 5448.5 (± 37)

Turbidity 3,5 151 41.83 (± 1.35) 9.5 61.2 28.9 (± 0.66)

Conductivity 12 56 31.33 (± 0.60) 43 74 49.7 (± 0.25)

pH 4,9 6.4 5.91 (± 0.11) 6.3 6.6 6.4 (± 0.02)

Chlorophyll-a 0.5 3.0 1.7 (± 0.92) 0.9 2.5 1.82 (± 0.40)

02 36.1 71.8 58.9 (± 0.39) 30.9 79.9 51.6 (± 0.34)

BA 0.8 1.3 1.06 (± 0.27) 0.3 1.4 0.97 (± 0.49)

LW

Water Temperature 30.8 31.9 31.2 (± 0.02) 29.5 32.3 30.82 (± 0.04)

DOC 1.4 6.1 4.13 (± 0.59) 3.8 5.5 4.54 (± 0.18)
13C-POC –28 –29.5 28.9 (± 0.02) –27.1 –29.7 28.46 (± 0.04)

C/N 8.65 11 9.82 (± 0.12) 5.82 8.28 6.68 (± 0.14)

pCO2 750 4548 3032.7 (± 0.66) 298 7900 2985 (± 1.95)

Turbidity 6.4 56 23.7 (± 1.81) 17 128 59.6 (± 0.80)

Condensation 8 59 28.3 (± 0.95) 41 78 56.2 (± 0.26)

pH 4.7 6.9 6.1 (± 0.20) 6.6 7.7 7.1 (± 0.06)

Chlorophyll-a 1.7 9.8 4.83 (± 0.90) 9.3 73.7 32.74 (± 0.78)

02 73 100.4 83.9 (± 0.17) 63 110 86.4 (± 0.25)

BA 0.3 1.2 0.63 (± 0.78) 0.9 2.9 1.17 (± 0.29)

Water temperature (◦C); dissolved organic carbon (DOC, mg L-1); stable isotope signal of POC (13C-POC, �); partial pressure of the CO2 (pCO2, μatm); turbidity (NTU);
conductivity (m s−1); pH; Chlorophyll-a (μg L−1); Oxygen (%) and bacterial abundance (BA; 106 cell mL−1) and correspond to the respective year of study [High water
(HW) and Low water (LW) phases] at each station.
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isotopic signal differed only in mainstems in HW and LW. The
chlorophyll-a range was similar in mainstems in HW and LW
and increased in floodplain lakes in LW. The average BA was
similar between mainstems and floodplain lakes in HW and in
mainstems in HW and LW and increased in floodplain lakes
in LW.

BP and BR
The BP rates varied from 0.02 to 0.36μg C L−1 h−1 (0.16 ± 0.11)
in the mainstems and from 0.02 to 0.60 μg C L−1 h−1

(0.36 ± 0.25) in the floodplain lakes in HW phase. BP ranged
from 0.17 to 0.48 μg C L−1 h−1 (0.33 ± 0.22) in the mainstems
and from 0.54 to 3.44 μg C L−1 h−1 (1.84 ± 0.96) in the
floodplain lakes in LW (Figure 2). The levels of BP on floodplain
lakes were significantly higher (p < 0.05) than on mainstems in
LW. No difference was found between mainstems and floodplain
lakes on HW. The BR rates varied from 1.54 to 12.15 μg
C L−1 h−1 (6.11 ± 4.80) in the mainstems and from 5.43 to
17.82 μg C L−1 h−1 (9.41 ± 4.30) on floodplain lakes in HW
(Figure 3). The levels of BR in LW varied from 9.43 to 14.28 μg
C L−1 h−1 (11.85 ± 3.42) on mainstems and from 7.34 to
51.5 μg C L−1 h−1 (19.70 ± 16.16) on floodplain lakes. The BR
did not show any significant difference between mainstems and
floodplain lakes in HW and LW (p > 0.05).

BCD and BGE
The BCD varied from 1.58 to 12.36 μg C L−1 h−1 (6.27 ± 4.82)
in mainstems and from 5.94 to 17.84 μg C L−1 h−1 (8.88 ± 5.33)

in floodplain lakes in HW (Figure 4). In LW, BCD varied
from 9.6 to 14.76 μg C L−1 h−1 (12.18 ± 3.65) in mainstems
and from 9.57 to 19.62 μg C L−1 h−1 (15.98 ± 4.57) in
floodplain lakes. The BCDdid not show any significant difference
between mainstems and floodplain lakes in HW and LW
(p > 0.05). The lack of correlation between the simultaneous
measurements of BP and BR in both sampling conditions
resulted in a wide range of calculated BGE. BGE varied from
0.01 to 0.18 (0.05 ± 0.06) on mainstems and from 0.002 to
0.07 (0.05 ± 0.03) on floodplain lakes in HW, and from 0.02
to 0.03 (0.02 ± 0.007) in mainstems and from 0.03 to 0.23
(0.12 ± 0.08) in floodplain lakes in LW (Figure 5). The BGE
in floodplain lakes were significantly higher (p < 0.05) than in
mainstem in LW (Figure 4) and mainly driven by BP (Tables 2
and 3). During HWs, no significant difference was observed
between the mainstem and the floodplain lakes (p > 0.05). No
correlation was found between BP and BR in either sampling
periods.

Bacterial Metabolism Correlation with
Environmental Factors
Indexes of OMquality (chlorophyll-a, δ15N, and C/N ratios) were
the strongest seasonal statistical predictors of bacterial carbon
metabolism in the Amazonian subsurface waters. BP, BR, BCD,
and BGE were not correlated to DOC or C13 (Tables 2 and 3). In
contrast, the POC OM stoichiometry (C/N) showed a significant
negative correlation to BGE (r = –0.54, p < 0.05) in HW.
Besides, there was a strong tendency of increasing BA and BCD

FIGURE 2 | Bacterial production (BP; μg C L−1 h−1) by H3-Leu incorporation across the Amazon River system in high water (HW; left upper panel)
and low water (LW; right upper panel). CA, Cabaliana; JA, Janauacá; NR, Negro River; AR, Amazonas River; MR, Madeira River; MI, Miratuba; C, Curuai; TA,
Tapajós River. Average and standard deviation for the mainstems and floodplain lakes in HW (left bottom panel) and LW (right bottom panel).
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FIGURE 3 | Bacterial respiration (BR; μg C L−1 h−1) across the Amazon River system in HW (left upper panel) and LW (right upper panel). CA,
Cabaliana; JA, Janauacá; NR, Negro River; RAR, Amazonas River; MR, Madeira River; MI, Miratuba; C, Curuai; TA, Tapajós River. Average and standard deviation
for the mainstems and floodplain lakes in HW (left bottom panel) and LW (right bottom panel).

FIGURE 4 | Bacterial growth efficiency (BGE) across the Amazon River system in HW (left upper panel) and LW (right upper panel). CA, Cabaliana; JA,
Janauacá; NR, Negro River; AR, Amazonas River; MR, Madeira River; MI, Miratuba; C, Curuai; TA, Tapajós River (upper panel). Average and standard deviation for
the mainstems and floodplain lakes in HW (left bottom panel) and LW (right bottom panel).
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FIGURE 5 | Bacterial carbon demand (BCD) across the Amazon River
system in HW (left upper panel) and LW (right upper panel). CA,
Cabaliana; JA, Janauacá; NR, Negro River; AR, Amazonas River; MR,
Madeira River; MI, Miratuba; C, Curuai; TA, Tapajós River (upper panel).
Average and standard deviation for the mainstems and floodplain lakes in HW
(left bottom panel) and LW (right bottom panel).

with chlorophyll-a concentration in LW (r = 0.93, p < 0.0001;
r = 0.68, p < 0.05). The δ15N of POC presented strong negative
correlation to BP and BGE (r = -0.77 and –0.75, p < 0.05) in
LW.

Discussion

The assessment of bacterial metabolic rates (BR, BP, BCD,
and BGE) from Amazonian freshwater ecosystems is poorly
understood. Most of studies considered only one or few
freshwater ecosystems (Farjalla et al., 2002, 2006; Castillo et al.,
2003; Amado et al., 2006). A study conducted by Benner et al.
(1995) was the most comprehensive study considering samples
taken from mainstems and tributaries. It showed that bacterial
metabolism, represented by BP and BR, presented minimal
spatial variability in Amazonian tributaries and mainstems but
strong seasonal patterns of variability. Rivers are very dynamic
and potentially subject to great spatial heterogeneity, making the
identification of regulatory factors on bacterial community highly
complex. Such heterogeneity suggests that a dynamic and variable
microbial metabolism might be expected in rivers (Del Giorgio
et al., 2011). Recently, Farjalla (2014) showed that BP increases
in areas of mixing zones of Amazonian rivers. The Amazonian
mainstems and floodplains studied in the present study reflect the
wide variability of the world’s largest river system (Table 1).

The consumption of OM by bacteria is driven by OM
amount and composition (Kritzberg et al., 2005; Jansson
et al., 2006; Vidal et al., 2011), therefore, the range of
metabolic versatility of heterotrophic bacterial metabolism
has often been assumed to occur as the response to
large shifts in resources across major ecosystems or along
extremely broad environmental gradients (Del Giorgio et al.,
2011).

In Amazonian freshwater ecosystems, the carbon from the
forest goes into the floodplain lakes and meets the in-lake
OM production (i.e., phytoplankton and macrophytes), which is
part processed before reaching the mainstem channel (Moreira-
Turcq et al., 2003). Besides, the percentage of forest occupying
the drainage basin in the study area showed a well-defined
biogeographic gradient from flooded forests that are dominant
upstream to open lakes and that are dominant downstream
with temporal scale across the floodplain lakes (Abril et al.,
2014). Consequently, the forest carbon litterfall entering the

TABLE 2 | Spearman correlation coeficients between measured variables in Amazonian systems to HW period; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001.

BR BP BCD BGE CHLOR-A TURB BA DOC C13 C/N δ15N

BR –

BP ns –

BCD 0.98∗∗∗ ns –

BGE ns 0.85∗∗∗ ns –

CHLOR-A ns ns ns ns –

TURB ns ns ns ns –0.68∗∗ –

BA 0.50∗ ns ns ns ns ns –

DOC ns ns ns ns ns ns ns –

C13 ns ns ns ns –0.53∗∗ 0.81∗∗∗ ns ns –

C/N ns ns ns 0.54∗∗ ns –0.64∗∗ ns ns ns –

δ15N ns ns ns ns ns ns ns ns ns ns –

BR, bacterial respiration; BP, bacterial production; BCD, bacterial carbon demand; BGE, bacterial growth efficiency; CHLOR-A, chlorophyll-a; TURB, turbidity; BA, bacterial
abundance; DOC, dissolved organic carbon; POC, stable isotopic of POC; C/N, carbon and nitrogen ratio; δ15N, stable isotopic of nitrogen.

Frontiers in Microbiology | www.frontiersin.org 7 September 2015 | Volume 6 | Article 1054

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Vidal et al. Bacterial metabolism in the Amazon River system

TABLE 3 | Spearman correlation coeficients between measured variables in Amazonian systems to LW period; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001.

BR BP BCD BGE CHLOR-A TURB BA DOC C13 C/N δ15N

BR –

BP ns –

BCD 0.88∗∗ ns –

BGE ns 0.93∗∗ ns –

CHLOR-A ns ns 0.68∗∗ ns –

TURB ns ns ns ns ns –

BA ns ns ns ns 0.93∗∗∗ ns –

DOC ns ns ns ns ns ns ns –

C13 ns ns ns ns ns ns ns ns –

C/N ns ns ns ns –0.89∗∗ ns ns 0.77∗∗ ns –

δ15N ns –0.77∗∗ ns –0.75∗∗ ns ns ns ns ns ns –

BR, bacterial respiration; BP, bacterial production; BCD, bacterial carbon demand; BGE, bacterial growth efficiency; CHLOR-A, chlorophyll-a; TURB, turbidity; BA, bacterial
abundance; DOC, dissolved organic carbon; C13, stable isotopic of POC; C/N, carbon and nitrogen ratio; δ15N, stable isotopic of nitrogen.

aquatic ecosystems may be also variable. The spatial variability
of organic carbon across the Amazon floodplain basin where
OM is spatially and seasonally structured may facilitates the
evolution of a broad repertoire of functional attributes of bacteria
to their environment (Comte and del Giorgio, 2010). In addition,
floodplains represent a hotspot of primary production during
LW and, consequently, a source of presumably fresh suspended
particulate organic matter (SPOM) for much of the system,
particularly from macrophytes. Seasonal water movements are a
way to redistribute this fresh SPOM in the hydrological network
via the transfer to the river main channel (Mortillaro et al.,
2012).

Bacterial metabolism in Amazonian aquatic ecosystems is
inversely related to the water level. The phytoplankton and
macrophytes are the main forms of organic carbon at LW phase,
and the allochthonous input of OM is a significant energy
source to bacterial activity during HW level (Amado et al.,
2006). It is also known that the synergy between low- and
high-molecular-weight carbon sources and consequences for the
bacterioplankton has recently been pointed out (Fonte et al.,
2013). For instance, recent findings suggest that lignin and other
terrestrially derived macromolecules contribute significantly
to carbon dioxide outgassing from inland waters thorough
microbial degradation in Amazon River systems (Ward et al.,
2013). In the present study, it was possible to notice a clear
difference on bacterial metabolism through BP and BGE between
HW and LW phases and also between mainstems and floodplain
lakes in LW (Figures 2 and 4). The range of bacterial metabolic
processes found in the Amazonian freshwater ecosystems showed
to be in part driven by the diversity of OM available across the
Amazonian floodplain basin. Our results showed that indexes
of OM quality (chlorophyll-a, N stable isotopes, and C/N
ratios) were the strongest seasonal drivers of bacterial carbon
metabolism. The effects of OM fate (origin and decomposition
stage) on bacterial carbon consumption in the present study
were suggested by the negative correlation of BGE and BP
with C:N ratio in HW and by the strong negative coupling
with δ15N in LW. The increasing in stoichiometry of carbon
may indicate carbon of terrestrial origin and N limitation,
characteristic of periods of HW when the carbon from the

forest is dominating and the nutrients are more diluted in the
water. The higher δ15N values attest for enhanced nitrogen
recycling in the system (Ometto et al., 2006) in LW when
there is an increasing in carbon from phytoplankton origin
and nutrients availability. Indeed, positive relationships were
evidenced between phytoplankton (expressed as chlorophyll-
a concentration) and heterotrophic bacteria (expressed as
abundance) and BCD in LW. The DOC quantity did not account
for variations in BP and BR in the present study on both
sampling times. Such lack of relationship between DOC and
bacterial metabolism parametersmay indicate that not the carbon
concentration but the carbon quality is accounting for such
variations. Recent studies in boreal and Amazonian freshwater
ecosystems have shown that C alone is not enough to regulate
bacterial metabolism; but instead, the stoichiometry of carbon
must be considered. (Farjalla et al., 2002; Castillo et al., 2003;
Vidal et al., 2011).

The BP rates were the responsible for most of BGE variability
(Roland and Cole, 1999; Kritzberg et al., 2005) but not enough
to increase BGE according to the present study. The higher
respiration rates in relation to production showed that most
of the BCD is converted into CO2, which resulted in low
BGE values in both sampling phases, (0.03 in HW and 0.06
in LW). These higher metabolic rates (e.g., BCD) and lower
BGE values in tropical inland water ecosystems are lower than
those observed in temperate ecosystems which is related to
temperature when inserted in a global scenario, but also to
intrinsic ecosystems aspects (Amado et al., 2013) like OM quality,
as indicated in this study. Moreover, regarding BR rates, it is
important to keep in mind that in the unfiltered water used
during respiration incubations a range of protists and metazoans
must have contributed directly to heterotrophic respiration
resulting in BR and BCD overestimations and consequently
BGE underestimations. In addition, trophic interactions may
also have affected respiration rates as suggested by Biddanda
et al. (2001), with bacteria accounting less with total respiration
with increasing in system productivity. However, the respiration
measurements between high and LW phase did not show any
significant difference in the present study, which may indicate
that increasing in phytoplankton production showed through
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chlorophyll-a concentration in LW, did not resulted in changes in
respiration rates. This was reinforced by the no correlation found
between BR and Chlorophyll-a (Tables 2 and 3). Thus, we believe
such possible bias of the measurements with no filtration would
not affect the seasonal pattern found in the present study.

Concluding Remarks

Our results showed that the hydrologic connectivity, through
carbon quality (chlorophyll-a, N stable isotopes, and C/N ratios),
differentially drives bacterial carbon allocation across freshwater
Amazonian ecosystems. In general, it showed higher BP in LW
phase than in HW phase and higher BR rates than BP in both
water phases. In addition, BR rates did not show any significant
difference between HW and LW (p > 0.05). The same was
registered to BCD. Average BGE was low in both seasons (0.03
and 0.06, HW and LW, respectively), suggesting that DOC was
mostly allocated to catabolic bacterial cell processes besides BP
increasing in LW. Consequently, changes in BP and BGE between
the deep rivers and the adjacent shallow lakes showed the same
pattern as BP. Multiple correlation analyses revealed that indexes
of OM quality (chlorophyll-a, DOC and DOC, N stable isotopes,
and C/N ratios) were the strongest seasonal drivers of bacterial
carbon metabolism.

Our work indicated that: (i) the bacterial metabolism was
mostly driven by respiration in Amazonian aquatic ecosystems
resulting in low BGE in either HW or LW phase; (ii)
the hydrological pulse regulated the bacterial heterotrophic
metabolism betweenAmazonianmainstems and floodplain lakes,
mostly driven by OM quality.

From the results presented in this study we could increase
the discussion about bacterial carbon metabolism in Amazon
floodplain ecosystems and we tried to fill the gap about in
situ detailed knowledge of local factors regulating microbial
metabolism.
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