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Abstract:
Large granular lymphocytic (LGL) leukemia is a rare lymphoproliferative chronic disorder
characterized by expansion of either T- or NK- cytotoxic cells. Contrary to EBV-induced aggressive
NK-LGL leukemia, chronic T- and NK-LGL leukemia are indolent diseases affecting elderly patients
with a median age of 66.5 years old. LGL leukemia is frequently associated with autoimmune
disorders, most frequently rheumatoid arthritis. An auto/allo antigen is tentatively implicated in
disease initiation. LGLs expansion is then triggered by proinflammatory cytokines such as
interleukin (IL) IL-15, MIP-1, and RANTES. This proinflammatory environment contributes to
deregulation of proliferative and apoptotic pathways. Following the initial description of the JAK-
STAT pathway signaling activation in the majority of patients, recurrent STAT3 gain of function
mutations have been reported. The JAK-STAT pathway plays a key role in LGL pathogenesis by
promoting survival, proliferation and cytotoxicity. Several recent advances have been made towards
understanding the molecular landscapes of T and NK LGL leukemia, identifying multiple recurrent
mutations affecting the epigenome, such as TET2 or KMT2D, and crosstalk with the immune
microenvironment, such as CCL22. Despite an indolent course, published series suggest that the
majority of patients will eventually need treatment. However, it is noteworthy that many patients
may have a long-term observation period without ever requiring therapy. Treatments rely upon
immunosuppressive drugs, namely cyclophosphamide, methotrexate and cyclosporine. Recent advances
have led to the development of targeted approaches, including JAK-STAT inhibitors, cytokine
targeting and hypomethylating agents, opening new developments in a still-incurable disease.
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Abstract 34 

Large granular lymphocytic (LGL) leukemia is a rare lymphoproliferative chronic disorder 35 

characterized by expansion of either T- or NK- cytotoxic cells. Contrary to EBV-induced 36 

aggressive NK-LGL leukemia, chronic T- and NK-LGL leukemia are indolent diseases affecting 37 

elderly patients with a median age of 66.5 years old. LGL leukemia is frequently associated 38 

with autoimmune disorders, most frequently rheumatoid arthritis. An auto/allo antigen is 39 

tentatively implicated in disease initiation. LGLs expansion is then triggered by 40 

proinflammatory cytokines such as interleukin (IL) IL-15, MIP-1, and RANTES. This 41 

proinflammatory environment contributes to deregulation of proliferative and apoptotic 42 

pathways. Following the initial description of the JAK-STAT pathway signaling activation in the 43 

majority of patients, recurrent STAT3 gain of function mutations have been reported. The 44 

JAK-STAT pathway plays a key role in LGL pathogenesis by promoting survival, proliferation 45 

and cytotoxicity. Several recent advances have been made towards understanding the 46 

molecular landscapes of T and NK LGL leukemia, identifying multiple recurrent mutations 47 

affecting the epigenome, such as TET2 or KMT2D, and crosstalk with the immune 48 

microenvironment, such as CCL22. Despite an indolent course, published series suggest that 49 

the majority of patients will eventually need treatment. However, it is noteworthy that many 50 

patients may have a long-term observation period without ever requiring therapy. 51 

Treatments rely upon immunosuppressive drugs, namely cyclophosphamide, methotrexate 52 

and cyclosporine.  Recent advances have led to the development of targeted approaches, 53 

including JAK-STAT inhibitors, cytokine targeting and hypomethylating agents, opening new 54 

developments in a still-incurable disease.  55 

 56 

Introduction 57 

Large granular lymphocytic leukemia (LGLL) is a rare hematological malignancy characterized 58 

by clonal expansion of cytotoxic T cells leading to diverse clinical and biological 59 

manifestations. LGLL accounts for 2-5% of chronic lymphoproliferative disorders with an 60 

estimated incidence of 0.2-0.72 cases per million population/year.1 LGLL can be divided into 61 

2 entities according to phenotype, namely T- and NK-LGLL, accounting for 85% and 15% of 62 

cases respectively, and sharing a common pathophysiology and presentation.2 With an 63 

estimated 10-years overall survival (OS) of above 70% in T-LGLL and 65% in NK-LGLL, LGLL is 64 
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an indolent disease.2-4 However, about half of patients will eventually need treatment 65 

because of symptomatic cytopenias or associated autoimmune manifestations. Infections 66 

represent the main cause of death.  67 

The clonal nature of the disease was proved in 1985 and the description of the T and NK 68 

entities was made in 1993.5,6 The discovery of JAK-STAT pathway deregulation and the later 69 

identification of recurrent STAT3 mutations in both T-LGL and NK-LGLL represented a key step 70 

in the understanding of the pathophysiology and unified the two entities.7 T-LGL and 71 

aggressive NK-LGLL were included in the World Health Organization (WHO) classification in 72 

2001 in the “Mature T- and NK-cell neoplasms” group. Until recently, NK-LGL proliferation 73 

was considered a “provisional entity” because of difficulties demonstrating clonality. 74 

Therefore, the term “Chronic Lymphoproliferative Disorder of Natural Killer Cells” (CLPD-NK) 75 

was used, opposed to the aggressive natural killer leukemia (ANKL). Thanks to the 76 

identification of recurrent mutations in clonal NK lymphoproliferations, the last 2022 WHO 77 

classification included both T- and NK-LGL leukemia.8 By contrast, the 2022 International 78 

Consensus Classification (ICC) kept the T-LGL and CLPD-NK denominations.9  79 

This review will cover pathogenesis of the disease, clinico-biological features, diagnostic 80 

workflows, and treatment recommendations, including future directions. 81 

 82 

Pathophysiology 83 

After initial expansion, thought to be due to a chronic antigen stimulation, persistence of 84 

monoclonal LGLs is the consequence of resistance to the Fas-induced apoptosis, a pro-85 

inflammatory cytokine environment, activation of the JAK-STAT pathway and epigenetic 86 

alterations (Figure 1).   87 

 88 

Initiating event 89 

LGLs clones commonly display an effector memory phenotype suggesting the involvement of 90 

chronic stimulation by an auto/allo antigen in leukemogenesis, further supported by peculiar 91 

associations with autoimmune disorders and documented interactions between LGLs and 92 

dendritic cells.10 Several viral pathogens, including HTLV1/2 and EBV, have been suspected 93 

despite no documented evidence of direct viral DNA insertion.11-13 Interestingly, 94 

hematological responses to antiviral therapies have been observed in LGLL infected patients 95 
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(HCV, HBV and HIV). 14 15 Importantly, no common TRA or TRB clonotype shared by different 96 

patients was identified in single cell analyses coupled with TCR profiling.16,17 However, in 97 

most patients, LGL clones shared a TCR target with their normal counterpart.  While the 98 

triggering event may likely be a result of different antigens, it would appear that the 99 

mechanisms sustaining pathogenesis are common and may be independent of the inciting 100 

antigen. 101 

 102 

The role of inflammatory cytokines in LGL expansion 103 

In LGLL, sustained LGLs expansion is favored by several cytokines, including interleukin-15 (IL-104 

15), IL-18, IP10 (CXCL10), and platelet derived growth factor.18-21 Deregulation of cytokine 105 

production leads to a pro-inflammatory microenvironment, contributing to LGL 106 

pathophysiology (Figure 2).22 LGLs clones secrete high levels of cytokines and their cognate 107 

receptors forming an autocrine loop activating survival and proliferations pathways.20,23,24 IL-108 

15 plays a crucial role in the genesis and homeostasis of NK- or T-LGL: mice lacking the IL-15α 109 

receptor display an NK-cell and CD8pos memory T cell defect.25 Interleukin-15 is 110 

overexpressed by LGLs leukemic clones and in-vitro culture of LGLs isolated from patients are 111 

IL-15 dependent.26 In addition, transgenic mice overexpressing IL-15 develop either T- or NK-112 

LGLL.27 Finally, IL-15 chronic in-vitro exposure leads to a leukemic transformation  due to IL-113 

15-induced centrosome aberration and DNA hypermethylation. Interleukin-6 could be 114 

implicated in LGLL pathogenesis as high levels of IL-6, produced in part by non-leukemic 115 

clones, were observed in some LGL-leukemia patients.28,29  116 

 117 

Resistance to the Fas-induced apoptosis 118 

Physiologically, pathogen clearing is followed by activation of the Fas-mediated activation-119 

induced cell death. LGL clones are characterized by resistance to Fas-induced apoptosis, 120 

almost always without evidence of FAS gene mutation as observed in ALPS syndrome.30-32 121 

FAS-L overexpression in LGL clones leads to secretion of soluble Fas (sFas) acting as a decoy-122 

receptor inhibiting Fas-dependent apoptosis.31 Moreover, in LGLL, increased expression of 123 

the inhibiting C-FLIP molecule, downstream to the Fas-receptor, leads to decreased caspase 8 124 

cleavage and ultimately inhibits the death induced signaling complex (DISC).33  125 

 126 
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The Genetic landscape of LGL leukemia 127 

Since the discovery of constitutive activation of STAT3 in 2001 as the hallmark of LGLL, 128 

several mutations affect key T-cell cellular functions, such as cytokine secretion, proliferation, 129 

apoptosis and epigenetics.7,34,35 As observed in the vast majority of hematological 130 

malignancies, LGLL is characterized by a clonal heterogeneity with the cooccurrence of 131 

different mutations (Figure 3).32  132 

 133 

a) A key role of JAK-STAT signaling 134 

The JAK/STAT pathway plays a major role in the regulation of T-cells. The role of STAT3 in LGLL 135 

was identified in 2001 with high levels of phosphorylated STAT3.35 STAT3 inhibition using an 136 

antisense oligonucleotide restored Fas-dependent apoptosis. STAT3 gain-of-function 137 

mutations were later identified in T- and NK-LGLL, unifying both entities.7,36 STAT3 mutations 138 

are identified in up to 60% of T-LGLL and 30% of NK-LGLL.37,38 STAT3 mutations are classically 139 

missense mutations found in the region encoding for the Src homology 2 domain (SH2) with 140 

the D661Y and Y640F mutations accounting for 80% of all mutations found.36 These 141 

mutations induced constitutive dimerization and phosphorylation of STAT3, leading to 142 

increased transcription of antiapoptotic genes (BCLXL, FLIP), cell cycle genes (CDKN1D, 143 

CMYC) and proinflammatory cytokine coding genes (IL-6, IL-12, IL-17, IL-21, IL10 and IFNγ). 144 

Multiple STAT3 mutations can be found in LGLL patients, supporting the existence of 145 

subclonal evolution as observed in acute leukemia.39 STAT3 gain-of-function mutation leads 146 

to a more cytotoxic profile, higher blood LGL level, and deeper cytopenia. It is associated 147 

with an hypermethylated status, a higher expression of FASL and an increased ROS 148 

level.16,29,40 Interestingly, STAT3 gain-of-function mutations are described in several 149 

autoimmune diseases associated with a CD8pos T-cell expansion.41 In a mouse model, STAT3 150 

gain-of-function induced expansion of NKG2DposCD8posCD62LnegCD44pos T-cells and 151 

overexpression of cell cycle and killer cell genes (GZMA and GZMB) through NKG2D/IL2-IL15 152 

receptor interactions.42  While current opinion states autoimmune disease and LGLL can both 153 

arise from a common pro-inflammatory context, this study demonstrate that the LGL clone 154 

itself may play a crucial role in auto-immunity development.  In addition to STAT3, STAT5B 155 

mutations have been reported in LGLL patients,  particularly in Tγδ-LGLL (6%) or in the rare 156 

indolent form of CD4pos Tαβ-LGLL (45%).40,43-46 Mutations of other genes implicated in the 157 
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JAK-STAT pathway, such as JAK1, JAK3, IL6R, PTPRT, and GNAS have also been described.32,47 158 

The JAK/STAT pathway can also be activated by non-mutational mechanisms, such as 159 

cytokine modulation and epigenetic inactivation of JAK-STAT pathway inhibitors, including 160 

micro RNAs (miRNA) modifications. miR-181a and miR-146b have been associated with 161 

STAT3 activation in unmutated-patients.48,49 Finally, deregulation of other signaling pathways 162 

(i.e.  MAP-kinase, PI3K/AKT or NF-KB) is reported in LGLL inducing pro-survival signals.50-52 163 

Accordingly, NRAS, KRAS, PI3KCD and TNFAIP3 mutations complete the genomic landscape of 164 

LGLL. 165 

 166 

b) Mutations affecting epigenetic pathways 167 

Epigenetic modifications are recent developments in understanding LGLL pathophysiology. 168 

DNA methylation alteration seems to be a crucial event in NK-LGLL development, as 169 

suggested by the high frequency of TET2 (Ten-eleven-translocation 2) mutations in this LGLL 170 

subtype. Initially described in few cases of LGLL, we recently reported that TET2 mutations 171 

are present in 28 to 34% of NK-LGLL patients.38,53 However, TET2 mutations are also reported 172 

in clonal hematopoiesis of indeterminate potential (CHIP) affecting the myeloid 173 

compartment but not normal T-cells.54 TET2 mutations have been initially described in 174 

myeloid disorders, aplastic anemia and also in various T-cell malignancies, including angio-175 

immunoblastic lymphoma.55,56 Most recently, clonal hematopoeisis was reported in some 176 

LGL leukemia patients with neutropenia, with TET2 mutation seen in a small percentage.57 In 177 

myelodysplastic syndromes, TET2 mutations are associated with hypermethylation of genes 178 

implicated in NK-cell function including Killer Immunoglobulin-like receptors (KIR), perforin, 179 

and TNFA.58 In NK-LGLL, TET2 mutations were associated with a methylation pattern distinct 180 

from normal NK cells, including the hypermethylation of PTPRD (a negative regulator of 181 

STAT3) and the JAK inhibitor SOCS3, all contributing to the activation of the JAK-STAT 182 

pathway.38,53,59 We explored the clonal hierarchy of genomic alterations in NK-LGLL. In some 183 

cases, TET2 can occur early and be shared between NK-cell and myeloid compartments. In 184 

this case, TET2 can explain the link between NK-LGLL and the development of other TET2-185 

derived malignancies, such as MDS. TET2 may support the selection of NK-cell clones which 186 

can secondarily acquire STAT3 mutations leading to the cytotoxic phenotype, and ultimately 187 

define a symptomatic NK-LGLL. This hypothesis is supported by the co-occurrence of TET2 188 

and STAT3 or CCL2 in a third of TET2 mutated cases. TET2 can also be restricted to NK-cell 189 
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clones and support STAT3 activation through epigenetic silencing of JAK-STAT regulators. 190 

TET2 seems to be a crucial event in NK-LGLL development, presenting relevant clinical 191 

features, such as more thrombopenia and frequent associations with other malignancies. In 192 

T-LGLL, mutations of the histone monomethyl-transferase KMT2D are detected in up to 20% 193 

of cases.32 The exact role of KMT2D in LGLL pathogenesis remains unclear, but chromatin 194 

accessibility profiling can discriminate LGLL from others mature T-cell malignancies.60 Clearly, 195 

epigenetic modifications constitute a new field in LGLL pathophysiology, which should be 196 

elucidated with single cell analyses and functional studies, detailed later. 197 

 198 

c) Role of the immune microenvironment  199 

Mutations affecting the CCL22 encoding gene are observed in 27% of NK-LGLL.61 CCL22 200 

mutations were enriched at highly conserved residues and mutually exclusive of STAT3 201 

mutations. They consist of gain of function alterations, inducing a CCR4 internalization defect 202 

in targeted cells, leading to increased cellular chemotaxis and dysregulated crosstalk with the 203 

hematopoietic microenvironment. For example, myeloid cells and dendritic cells produce 204 

higher IL-15 level in vitro with mutated CCL22, which may favor NK-cell proliferation. 205 

Similarly, a recent study reported that STAT3-mutated patients display skewed Th17/Treg 206 

ratios and abnormal distributions of monocyte populations with increases in intermediate 207 

and non-classical monocytes.62 CCL5, a cytokine produced by LGL clones induced high-level 208 

of IL-6 release by monocytes. Further studies are needed to gain mechanistic insight and to 209 

test potential therapeutic intervention targeting this dysregulated crosstalk.  210 

 211 

Clinico-biological features  212 

 213 

With a median age of 66.5 years old, LGLL usually affects elderly people with similar 214 

incidence in men and women. Symptomatology is dominated by neutropenia-related 215 

infections which represent the highest risk of mortality. The main clinico-biological features 216 

reported in the literature are summarized in Table 1.        217 

 218 

Clinical manifestations 219 
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Clinical manifestations vary largely among the LGL patients’ population. Neutropenia-related 220 

infections affect 15-39% of patients and involve the skin, oropharynx, perirectal area and the 221 

lungs. Life-threatening bloodstream infections may occur. Opportunistic bacterial, fungal and 222 

viral infections are uncommon. Some patients have prolonged neutropenia without any 223 

infection. Splenomegaly is seen in 20-50% of cases while hepatomegaly and 224 

lymphadenopathy are less common. Fatigue and B symptoms are observed in 20-30% of 225 

cases. Tissue infiltrations of the skin, nerves or kidney have been described sporadically.63-65 226 

As opposed with indolent LGLL, aggressive NK LGLL is characterized by systematic bone 227 

marrow and organ involvement, marked deterioration of the general status and an extremely 228 

poor OS.66 In this context, the diagnosis of hepato-splenic T cell lymphoma (generally 229 

CD4negCD8negCD56pos) must be also ruled out.67  230 

LGLL is at the interface between hematology and autoimmunity, with autoimmune disorders 231 

reported in ~25-32% of cases.68,69 Several autoimmune disorders have been described, 232 

mostly in case reports and small cohorts. Rheumatoid arthritis (RA) represents the main 233 

autoimmune disorder associated with LGLL, affecting 10-15% of patients and is usually 234 

diagnosed before or concomitantly to the LGLL. Sjogren syndrome, rhizomelic pseudo 235 

polyarthritis and unclassified inflammatory arthritis have also been described.2,70-72 Psoriasis 236 

incidence seems to be preferentially observed in patients carrying the CCL22 mutation.61 237 

Pulmonary artery hypertension has also been described.73 Vasculitis such as 238 

cryoglobulinemia, cutaneous leukocytoclastic angiitis and ANCA-negative microscopic 239 

polyangiitis have been reported. The regression of vasculitis-related manifestations following 240 

the treatment of LGL-leukemia highlights the close relationship between the two 241 

conditions.74 Occasionally, systemic lupus erythematosus and inclusion body myositis have 242 

been reported.  243 

Solid cancers and hematological malignancies are found in 5 - 21% of LGLL patients.2,71 244 

Monoclonal gammapathy of undetermined significance, multiple myeloma and B-cell 245 

lymphomas have been reported.75 Overrepresentation of cancers in LGLL patients is difficult 246 

to ascertain due to its high incidence above the age of 60 years. 247 

STAT3 mutations are associated with a more symptomatic phenotype with a higher incidence 248 

of neutropenia, associated autoimmune disorders including RA, a more frequent treatment 249 

requirement and a reduced OS.76,77 More specifically, STAT3 mutation D661Y is correlated 250 

with the presence of macrocytic anemia.18  251 
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 252 

Biological features 253 

Neutropenia is observed in 70-85% of cases with a higher incidence in T-LGLL compared to its 254 

NK counterpart.2 Fas-mediated apoptosis has been implicated in the pathogenesis of 255 

neutropenia. Fas-ligand, produced in excess by LGLs clones, binds to the neutrophils Fas-256 

receptors inducing apoptosis.78 Moreover, auto-antibodies are found in 20-40% of patients 257 

and can form immune-complexes binding to the fc receptors of neutrophils. Anemia is 258 

usually moderate and less than 10-20% of patients are transfusion-dependent. Conversely, 259 

anemia is the most frequent cytopenia in Asia, affecting 29-42% of LGL patients mainly due 260 

to pure red cell aplasia (PRCA). Hemolytic anemia and immune thrombocytopenia have 261 

occasionally been reported.79. Thrombocytopenia, usually moderate, is observed in 19% of 262 

patients. Bone marrow involvement, observed in 70% - 90% of cases, is unlikely to directly 263 

contribute to cytopenias as infiltration is subtle in the majority of patients. Lymphocytosis is 264 

inconstant and LGL threshold was lowered to 0.5 X 109/L even if the 2 X 109/L threshold is 265 

still retained as a diagnostic criterion in the last 2022 ICC and WHO classifications.8,9,80 266 

Indeed, authentic LGLL are described with a circulating LGL count between 0.5 and 2 X 109/L.  267 

Serum electrophoresis frequently shows hypergammaglobulinemia. Antinuclear antibodies 268 

are seen in 20%. Increased ß2 microglobulin and sFas-L are seen in 65% and 95% 269 

respectively.  270 

Tγδ LGLL variant represents only 5% of all T-LGLL. Even if Tγδ and Tαβ entities share clinical 271 

and biological features including STAT3/5B mutations, the frequencies of cytopenia is higher 272 

in Tγδ subtypes and survival lower than Tαβ LGLL.4,81,82 Recent whole-exome sequencing 273 

data found shared somatic mutations and putative drivers between Tαβ-LGL and Tγδ-LGLL.32 274 

 275 

The CD4pos T-LGLL: a rare entity with a specific presentation and outcome. 276 

Alongside with the largely predominant CD3posCD8pos T-LGLL phenotype, a rare 277 

CD3posCD4posCD8neg entity has been reported.83 Compared with classical CD8pos T-LGLL, 278 

patients with a CD4pos T-LGLL seem to have a more indolent evolution with less cytopenia 279 

and autoimmune manifestations. A higher incidence of associated neoplasia such as 280 

monoclonal B-cell lymphocytosis and plasma cell disorders has been reported.83,84 CD4pos T-281 

LGLL are characterized by a high frequency of STAT5B mutation.43 In the rare CD4pos T-Cell 282 
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LGLL, the diagnosis of prolymphocytic leukemia, sharing similarities in term of phenotype 283 

and molecular profile, should be ruled out.45,83 284 

 285 

Diagnosis 286 

In a compatible clinico-biological context, the aim of diagnostic procedures is to distinguish 287 

between reactive LGL expansion and LGLL. Reactive polyclonal LGL expansion can be seen in 288 

various situations, such as viral infections (CMV, EBV, HIV, etc.), after splenectomy, and organ 289 

or stem cell transplantation.85,86 A polyclonal LGL expansion has also been described in 290 

association with hematological malignancies and autoimmune conditions.87  291 

Therefore, diagnosis is based on 2 mandatory criteria: (1) the identification of an elevated 292 

number (> 0,5 X 109/L) circulating LGL cells based on the complete blood cell count and/or 293 

compatible phenotypic pattern and (2) a proof of clonality obtained by flow cytometry 294 

and/or molecular biology. The diagnosis workflow is presented in Figure 4.  295 

 296 

Cytology 297 

Large granular lymphocytes are easily identified on a blood smear. These large cells (15-298 

20µm) are characterized by abundant cytoplasm containing azurophilic granules and a 299 

reniform or round nucleus with mature chromatin. In a normal setting, LGLs represent 10-300 

15% of mononuclear cells i.e., 0,21 – 0,29 LGL X 109/L. Leukemic and normal LGLs are 301 

morphologically indistinguishable, justifying phenotypic analyses when LGLL is suspected. 302 

Caution is needed in the case of normal lymphocyte count. Blood analyses are usually 303 

sufficient to ascertain the diagnosis and bone marrow exploration is only recommended in 304 

atypical presentations or in case of associated confounding conditions such as PRCA or MDS. 305 

This exploration is particularly useful in patients with low (<1 X 109/L) LGL count to confirm 306 

the diagnosis.  307 

Bone marrow involvement, observed in the vast majority of patients, is frequently subtle 308 

without any correlation between the degree of LGL marrow infiltration and the severity of 309 

cytopenia. Histological analysis classically shows intra-sinusoidal linear clusters of LGLs.88 310 

LGLs are in most cases CD8pos Granzyme Bpos and TiA1pos.  311 

 312 

Clonality assessment  313 
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LGLL has a CD3pos T phenotype in 85% of diagnoses whereas its CD3negCD56pos/CD16pos NK 314 

counterpart represents 15% of cases. In most cases, leukemic T-LGLs display a terminal 315 

effector memory T-cell phenotype (TCRαβposCD45posD8posCD57posCD16posCD62Lneg) and an 316 

aberrant dim expression of CD5.89 TCRγδ LGLLs with a CD4negCD8neg phenotype are seen in 317 

about 15% of cases.81 The proof of clonality is a key step in the diagnosis of T-LGLL. TCR Vβ 318 

analysis by flow cytometry can be used as a surrogate marker of TCR clonality with 319 

commercially available antibodies covering ~ 70% of the Vβ repertoire. However, clonal 320 

rearrangement of TCRγ gene by polymerase chain reaction (PCR) using primers targeting 321 

conserved region of the VDJ segments remains the gold standard.90,91 In TCRαβpos LGLL, flow 322 

cytometry-based analysis of the constant region 1 of the TCRβ chain (TCRBC1) has been 323 

recently developed with high sensitivity and good correlation with the TCR sequencing.92,93 324 

However, this procedure is neither widely available and its high sensitivity could lead to the 325 

identification of T-cell clones in patients not meeting LGL-diagnostic criteria or corresponding 326 

to the T-cell clone of undetermined significant (T-CUS) entity.94 Similarly, clonality can be 327 

assessed by deep sequencing of the TCR repertoire in highly specialized laboratories.44   328 

Normal NK cells can be divided into 2 main phenotypes based on the expression of CD16 and 329 

CD56. Indeed, CD56lowCD16high NK-cells are mainly characterized by their cytotoxic properties 330 

whereas CD56highCD16low NK-cells are cytokine producing cells.95,96 In NK-LGLL, leukemic cells 331 

usually display the following phenotype:  332 

CD2possCD3negCD3εposTCRαβnegCD4negCD8posCD16highCD56low. However, phenotypic analysis 333 

does not allow easily the distinction between normal and leukemic NK cells. Compared with 334 

T-LGLL, proof of clonality is far more difficult to obtain in chronic NK cells LGL since NK T cells 335 

do not express TCR. A restricted KIR repertoire has been used as a surrogate marker of 336 

clonality.97,98 Similarly to T-LGLL, recurrent mutations have been recently described in the NK 337 

entity with STAT3 , TET2 and CCL22 mutations observed in around 30% each.38,53,61 In order 338 

to distinguish authentic NK-LGLL from reactive NK-cell proliferation, we recently proposed a 339 

NK clonality score combining KIR repertoire analysis by flow cytometry and molecular 340 

analysis.38 341 

 342 

How we treat LGL leukemia  343 
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LGLL remains an indolent but incurable disease, with a reported 10 years OS above 70% in 344 

the largest retrospective studies.2,3,70,71 Treatment indication and strategy do not differ 345 

between T- and NK-LGLL. First line treatment still relies on immunosuppressive drugs (Figure 346 

5). Recent advances in our understanding of pathogenesis have opened the way to the 347 

development of new therapeutic approaches targeting the IL-15 signaling, JAK-STAT 348 

pathways and epigenetic deregulation.  349 

 350 

When do we treat? 351 

Consistent with the indolent evolution, a watch and wait strategy can be proposed in nearly 352 

half of the cases but only 20% will not need treatment in their lifetime. Severe neutropenia 353 

(neutrophils < 0,5 X 109/L), neutropenia-related infections, transfused-dependent and 354 

symptomatic anemia represent the main indications. Auto-immune disorders represent an 355 

indication of treatment in 12% of cases in our experience.2 Evaluation of the treatment 356 

response is mostly based on the blood parameters and transfusion dependency. The role for 357 

minimal residual disease detection using flow cytometry or molecular approaches remains to 358 

be determined.     359 

 360 

First line treatment 361 

Single agent cyclophosphamide, methotrexate and cyclosporine are the 3 recommended 362 

drugs in first line. No consensus exists regarding the treatment sequence.2,3,70,99,100 Overall 363 

response rates (ORR) reported with the 3 available drugs range from 38-75% depending on 364 

the retrospective or prospective nature of the studies. 2,3,37,70,99,101,102  Only 2 prospective 365 

studies have been conducted in naïve patients. The ECOG study reported an ORR of 38% 366 

after methotrexate.101 160 patients have been enrolled in the prospective randomized study 367 

comparing cyclophosphamide and methotrexate in France (NCT01976182). 37  Results of the 368 

interim analysis performed on the first 96 patients showed an ORR to the first line of 55% at 369 

4 months with only 16% complete remission and a high rate of relapse occurring in 67% of 370 

the cohort. Methotrexate (10mg/m2/week) and cyclosporine A (3mg/kg/day) are generally 371 

given until progression whereas cyclophosphamide should not be given more than 1 year 372 

because of the mutagenic risk. Treatment response is assessed after a minimum of 4 months. 373 

Cyclophosphamide or cyclosporine may be more adapted for patients with anemia, 374 
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especially PRCA. Methotrexate is appropriate in patients with RA because of its activity in 375 

both conditions. In the absence of response to one drug, a switch is recommended. 376 

Cyclophosphamide and methotrexate are generally considered as the best first line option. 377 

Cyclosporine A is usually considered for LGLL patients with overlapping aplastic anemia as 378 

well as patients failing both drugs. A recent retrospective study including 60 patients in 379 

second line reported a 70% ORR with cyclophosphamide. By contrast, methotrexate was not 380 

effective in patients failing cyclophosphamide.103 381 

 382 

Treatment in relapsed/refractory diseases  383 

Several approaches have been evaluated in patient refractory to the 3 main 384 

immunosuppressives drugs. Alemtuzumab have been used with promising results (56% ORR; 385 

95% CI 35-76) but high toxicity (7 deaths out of 25 patients).104 Bendamustine and purine 386 

analogues such as fludarabine and cladribine have shown interesting response rates in small 387 

retrospective studies.100,105 In LGLL patients with aplastic anemia, antithymocyte globulins 388 

associated or not with cyclosporine A led to some responses.70 Autologous and allogeneic 389 

stem cell transplantations have been rarely  used in highly pretreated and refractory 390 

patients.106 391 

Given the key role of JAK-STAT pathway in the pathogenesis of LGLL, JAK inhibitors such as 392 

ruxolitinib represent an attractive option. We initially reported the efficacy of ruxolitinib in 2 393 

patients with refractory T-LGLL.107 The efficacy of ruxolitinib was recently confirmed in a 394 

prospective phase 2 clinical trial.108,109 In 20 patients with refractory/relapsed LGLL evaluable, 395 

the ORR and complete response rate were respectively 55% and 30%. Interestingly, STAT3 396 

mutational status was predictive of the event free survival (EFS) with a 14-month EFS of 397 

100% in the mutated patients compared with 40% in the non-mutated patients. We 398 

confirmed these impressive results in a series of 21 refractory/relapsed patients with an 85% 399 

ORR.110 These results lead us to consider ruxolitinib as one of the best 2nd line options. 400 

Similarly, tofacitinib, a JAK3 inhibitor demonstrated partial efficacy in LGLL patients with 401 

associated RA but yet with a significant toxicity.111   402 

 403 

Future therapeutic directions  404 
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BNZ-1, a pegylated peptide selectively inhibiting the binding of IL-15 and other γc cytokines 405 

to their receptors has been recently prospectively evaluated in a phase 1/2 clinical trial after 406 

promising preclinical results.112,113 In 20 highly pretreated patients, 20% had an objective 407 

clinical response. Futures studies are warranted to confirm the efficacy of this agent as a 408 

monotherapy or in combination. A phase I study evaluating siltuximab is ongoing 409 

(NTC05316116). Azacitidine, an hypomethylating agent, inhibits STAT3 activation by SHP1 410 

restoration and DNMT1 downregulation.29 A phase I study with oral azacitidine is ongoing 411 

(NCT05141682). Efficacy of decitabine was reported in a refractory patient.114  A phase I/II 412 

trial assessing the safety and efficacy of DR-01, a non-fucosylated antibody targeting the 413 

CD94 lectin receptor is now recruiting (NCT05475925). Similarly, ABC008 is a first-in-class 414 

monoclonal antibody targeting the co-inhibitory T cell receptor killer cell lectin-like receptor 415 

G1 (KLRG1). A phase I/II trial is ongoing in the United States (NCT05532722). Specific STAT 416 

inhibitors have been developed. KT-333 is a STAT3 degrader currently evaluated in a phase 417 

Ia/Ib study (NCT05225584). Drugs targeting IL-6 and its receptor such as tocilizumab and 418 

siltuximab could also represent potential candidates. Considering the multiple pathways 419 

involved in the pathogenesis of LGLL and the clonal heterogeneity of the disease, it is 420 

conceivable that a multidrug approach combining a JAK-STAT inhibitor and a cytokine 421 

targeting agent may be efficient based on a personalized therapy approach.  422 

 423 

Innovative research strategies 424 

There remain several research areas in need of additional study to enhance our 425 

understanding of LGL leukemia pathogenesis and clinical management.  Multiple recent 426 

studies have defined the somatic variants in coding genes as well as transcriptomic profiles 427 

for large cohorts of T- and NK-LGL leukemia patient samples32,38,53,61. Thus, the field must 428 

now fully characterize the functional consequences of recurrent molecular events, the 429 

impact of co-occurring somatic variants, and the contribution of mutant acquisition 430 

sequence to LGL biology. Refined studies are needed to define the biochemical, molecular, 431 

and clinical consequences for the large list of STAT3 somatic variants that have been reported 432 

in LGL leukemia.   433 

 434 

Further single-cell transcriptomic analyses with associated definitions of T-cell receptor 435 

clonality have refined our understanding of LGL-specific gene expression programs and 436 
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pathways.16,17 Knowledge gaps include a lack of single-cell transcriptomics for NK-LGL 437 

leukemia, integrated single-cell chromatin accessibility and gene expression data, and 438 

detailed analyses of samples with varying mutational status in STAT3, TET2, CCL22 and other 439 

recurrently mutated genes.  New insights will be gained by comparing LGL single-cell datasets 440 

to those acquired from T-cells during acute or chronic viral infection as well as tumor 441 

infiltration.  New spatial transcriptomics platforms also provide the opportunity to explore 442 

single-cell gene expression along with tissue localization and cell-cell communication of LGLs 443 

in the context of bone marrow or other tissue microenvironments relevant to disease 444 

symptoms and progression.   445 

 446 

Beyond somatic variants and gene expression, the field lacks a detailed catalog of chromatic 447 

accessibility, DNA methylation, histone modifications, long-range enhancer interactions, 448 

transcription factor networks, large-scale duplications and deletions, and the impact of non-449 

coding variants on these parameters.  STAT3 variants are linked to co-mutation of chromatin 450 

and epigenetic modifier genes, thus a full picture of the genomic architecture of LGL 451 

leukemia requires that each of these datatypes be acquired and integrated in samples of 452 

varying STAT3 mutational subtypes.  Finally, each of these technologies should be applied to 453 

longitudinal samples that span the course of disease progression and treatment to 454 

characterize molecular events associated with clonal evolution, clinical features and 455 

treatment response.  The refined molecular characterization provided by these new datasets, 456 

especially single-cell and spatial transcriptomics studies, is likely to yield new LGL-specific 457 

therapeutic targets and strategies. 458 

Conclusion 459 

LGLL is a rare lymphoproliferative disorder characterized by large spectrum of clinico-460 

biological manifestations and a peculiar association with auto-immune disorders. Even 461 

though single agent immunosuppressive drugs induce responses in the majority of patients, 462 

relapses are frequent and the disease remains uncurable. Advances in the understanding of 463 

the pathophysiology with the identification of recurrent mutations open the way to the 464 

development of new therapeutic strategies.  465 

 466 
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Table 1. 793 

Parameters Loughran et 
al. (1993) 

Semenz
ato et 

al. 
(1997) 

Bareau et al. 
(2010) 

Sanikom
mu et al. 

(2017) 

Zhu et al. 
(2020) 

Dong et 
al. 

(2021) 

Number of patients  129 162 229 204 108 319 

T-LGL leukemia (%) 100 100 88 90 100 93 

NK-LGL leukemia (%) 
NA (aggressive 

form) 0 12 10 0 8 
Median age (year) [min-
max] 57 [15-88] 59 59 [12-87] 

63 [54-
72] 51 [21-78] 

65 [17-
90] 

Sex ratio (M/F) 0,8 0,8 0,8 0,9 0,9 0,9 

Biological features 
      

LGL count (G/L) NA NA 
37%<1G/L, 
15%>4G/L 

1,7 [0,8-
3,3] 

2,07 [0,3-
45,5] 

0,9 [0,5-
2,3] 

Median neutrophil count 
[min-max] NA NA NA 

1,56 [0,8-
2,6] 

1,36 
[0,04-9,6] NA 

Neutropenia (%) (ANC < 
1,5G/L) 84 NA 59 46 57 41 
Sevre neutropenia (ANC < 
0,5G/L) (%) 48 37 24 17 10 17 

Median Hb level [min-max] NA NA NA 
11,7 [10-

13] 
7,5 [3,1-

15,6] NA 

Anemia (%) 49 26 24 40 59 41 
Transfusion dependency 
(%) NA NA 6 22 58 19 

Thrombocytopenia (%) 19 9 17 30 8 26 

Antinuclear antibodies 38 38 17 NA 45 22 

Rhumatoid factor (%) 57 43 14 NA 10 39 

STAT3 mutation (%) NA NA NA 36 28 40* 

Clinical manifestations 
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Treatment requirement 73 33 44 58 97 57 

B symptoms (%) NA 26 7 NA 0 63 

Hepatomegaly (%) 23 32 10 NA 6 NA 

Splenomegaly %) 50 44 24 24 41 28 

Lymphadenopathies (%) 1 12 6 NA 7 NA 

Recurrent infections (%) 39 61 22 NA 12 NA 
Autoimmune 
manifestations (%) 28 NA 32 25 23 26 

Rhumatoid Arthritis (%) 28 NA 17 15 2,7 12 
Other hematological 
malignancies (%) NA NA 10 19 0 19 

Solid tumor (%) NA NA 4 17 0 21 

LGL related death (%) 36 NA 7 5 3 NA 

 794 

 795 

Figures legends 796 

Figure 1. LGL leukemia pathogenesis: polyclonal LGLs expansion is thought to be initiated by 797 

a viral/autoantigen. LGLs expansion is then sustained by inflammatory cytokines whose can 798 

also contribute to the frequently associated autoimmune disorders. LGLs expansion and 799 

clonal selection can also be favored by the occurrence of specific mutations including STAT3 800 

and CCL22 inducing a resistance to apoptosis, increased proliferative capacities and 801 

dysregulation of the crosstalk with the immune microenvironment respectively. Even in the 802 

absence of STAT3 mutation, the JAK-STAT pathway is activated in the majority of LGL 803 

leukemia patients. Epigenetic modifications have also been described with TET2 mutations, 804 

possibly representing an early event, observed in ~ 30% of cases. Production of inflammatory 805 

cytokines and release of the cytotoxic granules by the leukemic LGLs in the infiltrated tissues 806 

lead to a spectrum of clinical and biological manifestations including cytopenia, fatigue and 807 

autoimmune diseases. Abbreviations: LGL: large granular lymphocytic leukemia. IL: 808 

interleukin, PDGF: Platelet-Derived Growth Factor, TET2: Ten-eleven-translocation 2, CCL22: 809 

C-C Motif Chemokine Ligand 22, STAT3: Signal transducer and activator of transcription 3, 810 

FasL: Fas Ligand, IP10 (CXCL10): Interferon gamma-induced protein 10, TRAIL: tumor-811 

necrosis-factor related apoptosis inducing ligand.  812 

 813 

Figure 2. Main deregulated pathways in LGL leukemia:  Deregulation of apoptosis pathways is 814 

a key element in LGL leukemia pathogenesis. LGLs clones are resistant to the Fas-mediated 815 
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apoptosis. Secreted soluble Fas (sFas) act as a decoy of FasL preventing the formation of the 816 

Fas-mediated death-inducing signaling complex (DISC). Apoptosis cascade is also inhibited by 817 

an increased level of an inhibitory protein named cellular FADD-like IL-1 converting enzyme 818 

inhibitory protein (c-FLIP). Ras and phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) 819 

pathways are also activated in LGL leukemia and contribute to the apoptosis inhibition. The 820 

JAK-STAT pathway is constitutively activated in LGL leukemia and leads to the transcription of 821 

B-cell lymphoma 2 (BCL-2) and myeloid cell leukemia 1 (Mcl-1) antiapoptotic proteins 822 

expression. Indeed, the JAK-STAT pathway is activated by several mechanisms. Gain of 823 

function STAT3 mutations are observed in 30-60% of patients and have recently been shown 824 

to trigger the expansion of cytotoxic LGL cells expressing high level of NKG2D. The JAK-STAT 825 

pathway is also activated downstream to the cytokine’s receptors. Increased secretion of 826 

inflammatory cytokines creates an autocrine loop. Mutations affecting genes implicated in 827 

epigenetic mechanisms such as Ten-eleven-translocation 2 (TET2) and lysine 828 

methyltransferase 2D (KMT2D) have been recently described. Gain of function CCL22 829 

mutation induce a defect in its CCR4 receptor internalization leading to an increase adhesion 830 

of myeloid and dendritic cells. These immune cells can stimulate LGL cells survival and 831 

proliferation in part by IL-15 secretion. Inflammatory cytokines secretion and cytotoxic 832 

granules release lead to the clinical symptoms and biological features observed in LGL 833 

leukemia. 834 

 835 

Figure 3. Mutational landscape of LGL leukemia. (A) Clinico-mutational correlation. STAT3, 836 

STAT5B and TET2 mutations have been associated with specific clinico-biological features. * 837 

Compared to STAT3 wildtype. **CCL22 and STAT3 mutations are mutually exclusive. (B) 838 

mutational landscape of LGL leukemia (N=120 patients). Courtesy from Dr Cédric Pastoret, 839 

hematology department, Rennes university hospital. Abbreviations: AITL: 840 

Angioimmunoblastic T-cell lymphoma, MDS: myelodysplastic syndrome, CMML: chronic 841 

myelomonocytic leukemia, Ref: references. 842 

 843 

Figure 4. Diagnosis algorithm of LGL Leukemia. * NK clonality score based on 4 parameters: 844 

NK cell count > 11 x 109/L: 2 points / KIR restricted phenotype: 2 points / CD94 or NKG2Ahi: 1 845 

points / STAT3, STAT5B, TET2 or TNFAIP3 mutation: 2 points.38   846 

 847 
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Figure 5. Treatment algorithm in LGL Leukemia 848 

 849 

Table 1. Clinical and biologic presentation: data from the largest retrospective series. 850 

Abbreviation: M: male, F: female, NA: not available, ANC: absolute neutrophils count. * 851 

Performed only on 25 patients 852 

 853 
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