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Abstract

Background:  Understanding  how  weather  and  landscape  shape  the  fine-scale  distribution  and

diversity of malaria vectors is crucial for efficient and locally tailored vector control. This study

examines  the  meteorological  and  landscape  determinants  of  (i)  the  spatiotemporal  distribution

(presence and abundance) of the major malaria vectors in the rural region of Korhogo (northern

Côte d'Ivoire) and (ii) the differences in vector probability of presence, abundance, and diversity

observed  between  that  area  and  another  rural  West  African  region  located  300  km  away  in

Diébougou, Burkina Faso.

Methods:  We monitored  Anopheles human-biting  activity  in  28 villages  of  the  Korhogo health

district  for 18  months  (2016  to  2018),  and  extracted  fine-scale  environmental  variables

(meteorological and landscape) from high-resolution satellite imagery. We used a state-of-the-art

statistical modeling framework to associate these data and identify environmental determinants of

the presence and abundance of malaria vectors in the area. We then compared the results of this

analysis with those of a similar, previously published study conducted in the Diébougou area.

Results:  The  spatiotemporal  distribution  of  malaria  vectors  in  the  Korhogo  area  was  highly

heterogeneous  and  appeared  to  be  strongly  determined  and  constrained  by  meteorological

conditions. Rice paddies, temporary sites filled by rainfall, rivers and riparian forests appeared to be

the  larval  habitats  of  Anopheles mosquitoes.  As  in  Diébougou,  meteorological  conditions

(temperatures, rainfall) appeared to significantly affect all developmental stages of the mosquitoes.

Additionally,  ligneous  savannas  were  associated  with  lower  abundance  of  malaria  vectors.

Anopheles species diversity was lower in Korhogo compared to Diébougou, while biting rates were

much higher. Our results suggest that these differences may be due to the more anthropized nature
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of the Korhogo region in comparison to Diébougou (less forested areas, more  agricultural land),

supporting the hypothesis of higher malaria vector densities and lower mosquito diversity in more

anthropized landscapes in rural West Africa.

Conclusion: The study offers valuable insights into the landscape and meteorological determinants

of the spatiotemporal distribution of malaria vectors in the Korhogo region and, more broadly, in

rural  west-Africa.  The  results  emphasize  the  adverse  effects  of  the  ongoing  landscape

anthropization process in the sub-region, including deforestation and agricultural development, on

malaria vector control.

Introduction

Malaria remains a major public health burden globally, with over 240 million cases in 2022 (1).

Despite a major decrease in malaria cases in the last two decades, the progress has stalled since

2015 (1),  even re-increasing in certain areas  (e.g.  + 10% between 2015 and 2022 in the West

African sub-region (1)). Involved in such worrying trends are, among others, the widespread of

resistance to insecticides used in public health and agriculture among malaria vectors (Anopheles

mosquitoes),  population  growth,  and  environmental  changes  (2–6).  To  reinvigorate  progress,

shifting  from  a  global  approach  of  prevention  and  curation  where  interventions  are  deployed

regardless of the context, to a local approach where interventions are tailored to the local settings, is

a key feature encouraged by the whole malaria community (5). In particular, for vector control

(VC), it is crucial to acquire a good knowledge of entomological situation at operational scale so as

to better target the places and times of interventions using complementary tools to those widely

used, e.g the Long-Lasting Insecticidal Nets (LLIN). Towards this aim, it is important to understand

how the environment shapes the presence, abundance and diversity of the vectors at a local scale in
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the present, and how environmental alterations, such as climate or Land Use Land Cover (LULC)

changes, may impact them in the future (4,7,8).

Among the  environmental  determinants  of  malaria  transmission,  weather  and  landscape  play  a

critical  role.  Because  they  impact  the  bio-ecology  of  mosquitoes,  these  environmental  features

shape the diversity, presence, abundance, and spatiotemporal distribution of malaria vectors, and in-

fine  the  risk  of  transmission  of  the  disease  (4,8–10).  In  this  context,  the  identification  of

meteorological  and  landscape  determinants  of  spatiotemporal  heterogeneity  in  malaria  vector

abundance within a  given spatial  and temporal  framework is  an increasingly common research

topic,  supported in particular by the proliferation of high-resolution environmental satellite data

(11–15).  These  studies  are  useful  for  understanding  the  local  bionomics  of  malaria  vectors,

predicting and mapping the spatiotemporal distribution of the anopheles mosquitoes in the area, and

deploying locally tailored vector control tools. On a different note, to assess the potential impact of

climate or LULC changes on the diversity or abundance of mosquitoes, it is common to compare

such indicators between areas that have different environmental conditions  (16–18). In this study,

we  propose  to  use  both  approaches  to  better  understand  the  landscape  and  meteorological

determinants, and the impact of their middle and long-term change, in the presence, abundance and

diversity of Anopheles mosquitoes in rural west Africa.

In a  previous  study (19),  we investigated  the environmental  factors  affecting the presence  and

abundance  of  the  main  malaria  vectors  at  the  scale  of  a  west-African  health  district,  in  the

Diébougou area,  located southwestern Burkina  Faso (BF).  We used data  on the spatiotemporal

distribution and abundance of Anopheles mosquitoes collected in this area between 2016 and 2018

as part of a research project, together with landscape and meteorological data extracted from high-

resolution Earth observation data, into a state-of-the-art statistical modeling framework. As part of
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the  same project,  Anopheles collections  were  carried  out  simultaneously  300 km away,  in  the

Korhogo area, northern Côte d’Ivoire (CI), using similar protocols. The goal of the present study

was to replicate the modeling work in the Korhogo area with the aim to assess the meteorological

and landscape conditions that affected the presence and abundance of the main malaria vectors in

this  area  and  to  compare  the  results  with  what  we  previously  found  in  Diébougou.  From  a

methodological perspective, we discuss the added-value of  consistent entomological surveillance

data, used in conjunction with high resolution satellite data and powerful statistical modeling tools,

to  improve  our  understanding  of  the  impact  of  climate  and  LULC  changes  on  the  diversity,

abundance, and distribution of malaria vectors.

Material and methods

Study area 

The Korhogo area is located in the north of Côte d’Ivoire, in the Sudanian bioclimatic region (20).

The climate is characterized by a dry season from October to April (including a 'cold' period from

December to February and a 'hot' period from March to April) and a rainy season from May to

September.  Average  annual  cumulated  rainfall  varies  from  1  200  to  1  400  mm  and  daily

temperatures vary from 21 °C to 35 °C. During the period covered by our study (from 2016-09-30

to 2018-03-24, i.e. 1.5 years), cumulated rainfall was 1 693 mm, with high variations between the

dry and the rainy season (S1 Fig) ; average daily  diurnal Land Surface Temperature (LST) was

35.1°C (SD=3.9) and average daily nocturnal LST was 19.7°C (SD=2.5). The landscape is mainly a

mixture of agricultural lands (51% of the total surface of the study area) and natural vegetation

(30%) (S1 Fig) (21). Agricultural land is composed of croplands (including fallows) (24% of the

total  surface  of  the  study area),  cashew and mango  plantations  (18%),  and rice  paddies  (9%).
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Natural vegetation is mainly composed of woodlands (17% of the total surface of the study area),

savannas (9%) and riparian forests (4%). The region is dotted with villages of a few hundred people

each,  and has a high density of hydraulic  small  dams (see Figure 1) that allow for year-round

agriculture. Regarding vector control, the primary VC tool is the LLIN, distributed universally by

the government every 3–4 years since 2010 (22). The last distribution before the beginning of the

REACT project was in 2014. During the project, LLINs were distributed in the study villages in

June 2017. As part of the REACT project, complementary VC tools were implemented in some of

the villages in the middle of the project - namely indoor residual spraying of insecticide, intensive

Information Education and Communication to the populations, and larval control.

Entomological data

 

Anopheles human-biting activity was monitored as part of a project carried out simultaneously in

the Korhogo (CI) and the Diébougou (BF) rural health districts (23). For the Korhogo area, 28

villages within an area of 70x40 km were selected (Fig 1) according to the following criteria:

accessibility during the rainy season, 200–500 inhabitants per village, and distance between two

villages greater than 2 km. The names and geographic coordinates of the villages (both in the CI

and BF area) are available at (23). Eight rounds of mosquito collection were conducted in each

village between October 2016 and March 2018. The periods of the surveys span some of the typical

climatic conditions of this tropical area (2 surveys in the “dry-cold” season, 3 in the “dry-hot”

season, 3 at  each extremum of the rainy season;  S1 Fig).  Mosquitoes  were collected using the

Human Landing Catch (HLC) technique from 17:00 to 09:00 both indoors and outdoors at four sites

per village for one night during each survey. Malaria vectors were identified using morphological

keys  (24).  Then,  all  individuals  belonging  to  the  Funestus  Group  and  a  sub-sample  of  the

individuals  belonging  to  the  Gambiae  Complex  (due  to  the  very  large  number  of  individuals
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collected) were identified to species using molecular analyses (25,26). The sub-sampling strategy

was  as  following:  for  the  first  four  survey,  one  individual  of  the  Gambiae  Complex randomly

selected per hour per collection site (indoors/outdoors) in six randomly selected villages (over 28)

was selected and proceeded for molecular identification. For the remaining four surveys, a random

sub-sample representing 25 % of the individuals belonging to the Gambiae Complex was proceeded

for molecular identification. Collection design for this study has been extensively described in (27)

(23), and the data are available in the Global Biodiversity Information Facility (GBIF) (28).
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Fig 1. Map of the study area. The map includes the villages of the study, the land cover derived

from very high spatial resolution satellite image acquired on 2017-10-11, and the theoretical stream

network derived from a digital elevation model (see Methods section).
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Landscape and meteorological data

Landscape variables were extracted from a very high spatial resolution (1.5-meter) LULC map of

the study area containing 16 classes, that was produced  ad-hoc.  The raster map and the detailed

methodology used to generate it are available at (21). From this map, we merged under-represented

and/or similar classes: “dense forest” and “open forest” were merged into a single class of non-

riparian forests named “woodland” , and “cashew plantation” and “mango plantation” were merged

into a single class named “plantation”.  We calculated the percentage of landscape occupied by each

land cover class in four spatial buffer areas around each collection site (250 m, 500 m, 1 km, and 2

km buffer radii).

We generated the theoretical stream network in the study area using a Digital Elevation Model (29)

from which we computed two variables: the length of streams in each buffer zone and the shortest

distance from each collection point  to  the stream network. We calculated the Clark and Evans

aggregation index (30) (clustering of the households in each village) and the distance from each

collection point to the edge of the village that are proxys of the attractiveness and penetrability of

the villages for malaria vectors. 

Meteorological variables (temperatures and rainfall) were extracted from satellite imagery. Daily

diurnal  and  nocturnal  temperatures  were  derived  from  the  Moderate  Resolution  Imaging

Spectroradiometer (MODIS) Land Surface Temperature (LST) Terra and Aqua products (31,32),

and rainfall estimates were extracted from the Global Precipitation Measurement (GPM) Integrated

Multi-satellitE Retrievals for GPM (IMERG) Final products (33). These meteorological data were

collected up to 42 days (i.e.  6 weeks) preceding each mosquito collection,  so as to encompass
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largely the whole duration of the anopheles life cycle in the field (34). They were then aggregated

pixel-by-pixel  on  a  weekly  scale,  averaged  in  a  2-km  radius  buffer  zone  around  each  HLC

collection point, and finally cumulated (rainfall) or averaged (temperature) for all possible time lags

between 0 and 6 weeks preceding the collection dates. 

More details on the methods used to generate the landscape and meteorological variables can be

found in (19).

Statistical analyses

We  used  a  hurdle-like  methodology  to  model  the  malaria  vectors’ biting  rates :  we  modeled

separately the probability of human-vector contact and the positive counts of human-vector contact

–  respectively  called  « presence »  and  « abundance »  models  in  the  rest  of  this  article.  In  the

presence  models,  the  response  variable  was  the  presence/absence  of  vectors  (binarized  as  1/0)

collected during 1792 nights of HLC (28 villages *8 entomological surveys * 4 collection points * 2

locations), while in the abundance models, the response variable was the number of bites per human

on the positive catch sessions only - i.e. the sessions with at least one bite. In addition, we modeled

the  biting  rates  separately  for  each  vector  species,  as  they  might  exhibit  different  ecological

preferences.  Since  two  main  vector  species  were  found  (see  section  Results),  four  response

variables were hence built in total (presence and absence of both An. gambiae s.s. and An. funestus).

For each of the response variables,  we used a two-stage statistical  approach (a bivariate  and a

multivariate analysis, described below), each potentially providing complementary information on

Anopheles bioecology.
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Bivariate  analysis.  We  calculated  the  Spearman  correlation  coefficient  between  the  response

variable  and each environmental  variable  taken at  the different  buffer zones (for the landscape

variables) and time lags (for the meteorological variables); with the aim of identifying the distances

(around  the  capture  point)  and  the  periods  (prior  to  capture),  respectively,  for/in  which  our

environmental variables had the greatest effect on biting rates. For the meteorological variables, we

generated Cross Correlation Maps (CCM) (35) to study the influence of environmental conditions

during multiple time intervals (instead of single time points) prior to the collection event.

Multivate  analysis. We  first  selected  a  set  of  environmental  variables  to  introduce  in  the

multivariate  model,  using  the  following  algorithm:  we  excluded  variables  that  were  poorly

correlated with the response variable (correlation coefficients < 0.1 or p-values > 0.2) (except for

variables related to the presence of water which were all retained). Then, for each of the remaining

meteorological (or landscape) variable, we retained the variable with the time lag interval (or buffer

radius) showing the higher  absolute  correlation coefficient value.  We further excluded collinear

variables (i.e. Pearson correlation coefficient > 0.7) based on empirical knowledge. We included

two adjustment variables in the models: the vector control tool(s) used and the place of collection

(indoors or outdoors). These variables may influence the presence and abundance of the species but

will not be discussed in this study, since we focus here on environmental determinants. Selected

variables were used to train a multivariate Random Forest (RF) model (36) (binary classification

and regression RF for the presence and abundance models, respectively) following the same method

as previously  described (19). The predictive power of each model was assessed by spatial leave-

one-village-out cross-validation, measuring the ability of the models to predict biting rates on out-

of-sample,  unseen  nights  of  HLC.  Precision–recall  (PR)  plots  were  generated  for  the  presence

models, and precision–recall area under the curve (PR-AUC) was calculated and compared to a

baseline PR curve. Sensitivity and specificity were also calculated. For abundance models, visual
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evaluation through (i) distribution of mean absolute errors and (ii) observed versus predicted values

for each out-of-sample village was preferred due to expected low performance metrics given the

overdispersion of the  response variables and the type of model used (i.e. non-parametric model)

(37).

To interpret  the  strengths  and shapes  of  associations  learned  by the  RF models,  we generated

Variable Importance Plots (VIP) (37) to estimate the environmental variables that were the most

influential in determining the behavior of the response variable and Partial Dependence Plots (PDP)

(38) to estimate the functional relationship between each environmental variable and  the response

variable. 

More details on the statistical framework used in this study can be found in (19).

Comparison with the Diébougou area

As mentioned in the Introduction and in the Entomological data sections, the human biting activity

of Anopheles mosquitoes was monitored as part of a research project (the REACT project) carried

out simultaneously in the rural health districts of Korhogo (CI) and Diébougou (BF). Results from

the  Diébougou  area,  obtained  from data  and  analyses  following  the  same  methods  that  those

presented here, were published previously in (19). 

With  the  aim  of  discussing  similarities  and  differences  between  the  results  obtained  in  the

Diébougou area of Burkina Faso (19) and those of this replication work in the Korhogo area of Côte

d'Ivoire, we used key indicators to summarize the landscapes, the meteorological regimes, and their
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association with the spatiotemporal distribution of vectors. The selected indicators were the % area

occupied by each land cover class (in the whole area and in the 2 km buffer around the collection

points), cumulated rainfall, nocturnal (minimum) and diurnal (maximum) weekly temperature as

well as Anopheles richness, diversity (Shannon’s index) and average measured biting rates. A set of

results from the bivariate and multivariate analyses was extracted (correlation coefficients and time

lag showing the higher correlation coefficient from the CCMs, most important variables from the

VIP in the multivariate models).

Results

Specific  composition  and  spatiotemporal  distribution  of  Anopheles

biting rates

A total of 1792 human-nights of collections was conducted in the Korhogo area (28 villages * 8

surveys * 4  points * 2 locations). Altogether, 57 716 anopheles were collected, of which 56 267

(97.5 %) and 714 (1.2 %) belonged to the Gambiae Complex and the Funestus Group, respectively.

Over the 922 An. gambiae s.l. individuals (7% of the total) selected for molecular identification, 3

726 (95%) were  An. gambiae s.s. and 196 (5%) were  An. coluzzii. Consequently, throughout the

remainder of the manuscript, we will consider An. gambiae s.l. as An. gambiae s.s. 

An. gambiae s.s. and An. funestus were present (i.e. at least one individual captured) respectively in

64% and 6% of the human-nights of collections. The distribution of positive human biting rates

(i.e. human-nights with at least one bite) was highly left-skewed (for  An. gambiae s.s. :  median
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(med)  =  18  bites/human/night,  standard  deviation  (sd)  =  65,  maximum (max)  =  505;  for  An.

funestus: med = 2, sd = 12, max = 84). 

Figure 2 shows the spatiotemporal distributions of the biting rates of the main Anopheles species.

The map shows that An. gambiae s.s. was more abundant during or at the end of the rainy season

(September, October) than in the dry season, when it was nevertheless present. Spatially, we note i)

a certain level of heterogeneity in the distribution, and ii) that the species was present in almost all

villages  in  all  entomological  surveys  (except  the  7th).  The  spatiotemporal  distribution  of  An.

funestus was  very unbalanced:  the overwhelming majority  of  individuals  (93%) were  collected

during the first entomological survey, and almost half of the individuals (42%) were collected in a

single village.

Fig  2.  Map  of  the  biting  rates  of  the  two  main  vector  species  for  each  village  and

entomological survey. Unit: average number of bites/human/ night. Blue dots indicate absence of

bites in the village for the considered survey. Background layer: OpenStreetMaps.
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Bivariate analysis

Figure 3 shows the landscape variables that were significantly correlated (Spearman correlation

coefficient (cc) > 0.1 and  p-value < 0.2) with the presence or abundance of the studied vector

species. The presence and abundance of An. funestus were correlated with more landscape variables

than that of An. gambiae s.s., and the highest correlation coefficients with the landscape variables

were found for An. funestus.

Fig 3. Multilevel Spearman’s correlation between the vectors’ biting rates and the landscape

variables. Biting rates were separated into presence/ absence of bites (left) and abundance of bites

(i.e. positive counts only) (right). Unit of biting rates: number of landings on human/night. Unit of

landscape variables: % of landscape occupied by each land cover class. Landscape variables were

extracted in four spatial buffer zones around the sampling locations (250 m radius, 500 m, 1 km, 2

km) for each main vector species. Only correlations with coefficient > 0.1 and p-values < 0.2 are
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displayed. Stars indicate the range of the p-value: *** p-value  [0, 0.001[; ** p-value  [0.001,∈ [0, 0.001[; ** p-value ∈ [0.001, ∈ [0, 0.001[; ** p-value ∈ [0.001,

0.01[; * p-value  [0.01, 0.05[; absence of stars: p-value  [0.05, 0.2[.∈ [0, 0.001[; ** p-value ∈ [0.001, ∈ [0, 0.001[; ** p-value ∈ [0.001,

The presence of An. funestus was positively correlated with the length of the rivers and with the %

of surface area occupied by rice paddies areas, in the 2-km radius buffer zone. It was also correlated

with the % of surface occupied by riparian forests and woodland (i.e. non-riparian forest areas) in

all  buffer zones. The abundance of the species was positively correlated with the length of the

streams and the % of surface occupied by rice paddies areas, marshlands, riparian forests, and (non-

riparian) forest areas, in various buffer zone sizes according to land cover class. The abundance of

An. funestus was negatively correlated with the % of surface occupied by croplands in the 2-km

radius buffer zone, and with the distance to the nearest stream (i.e. abundance was higher when the

collection point was closer to the hydrographic network).

The presence of  An. gambiae s.s. was positively correlated with the % of surface occupied by

permanent water,  marshlands, and crop areas in the 1-km radius buffer zone. The presence and

abundance of the species were also correlated with the % of surface occupied by rice paddies areas,

in all the buffer zones for presence and in the 1-km and 2-km radius buffer zones for abundance.

The presence and abundance of An. gambiae s.s. were negatively correlated with the % of surface

occupied by riparian forests, in the 1-km and 2-km radius buffer zones for presence and in the 2-km

radius buffer zone for abundance. The abundance of the species was negatively correlated with the

% of surface occupied by forested areas in the 2-km radius buffer zone, and with the distance to the

edge of the village (i.e. abundance was higher in dwellings located near the edge of the village than

in  those  close  to  the  center  of  the  village).  The  presence  of  An.  gambiae  s.s. was  negatively

correlated with the % of surface occupied by ligneous  savannas in all buffer zones with radius >

250 m.
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Figure 4 shows the meteorological variables that were significantly correlated (spearman correlation

coefficient (cc) > 0.1 and p-value < 0.2) with the presence and abundance of the vector species (in

the form of cross-correlation maps).

Fig  4.  Multilevel  Spearman’s  correlation  between  the  vectors’  biting  rates  and  the

meteorological  variables  (as  cross-correlation  maps).  Biting  rates  were  separated  into

presence/absence of bites (left) and abundance of bites (i.e. positive counts only) (right). Unit of

biting rates: number of landings on human/person/night. Unit of meteorological variables: °C for

land surface temperatures (LST), cumulative millimeters for rainfall. Meteorological variables were

extracted on a weekly scale up to 6 weeks before the dates of collection for each main vector

species. In each CCM, time lags are expressed in week(s) before the date of collection. The red-

bordered  square  indicates  the  time  lag  interval  that  showed  the  highest  correlation  coefficient

(absolute value) with the meteorological variable (the associated time lag interval and correlation

coefficient are reported on the top-left corner of the CCM). The black-bordered squares indicate

correlations close to the highest observed correlation (i.e. less than 10% of difference). Gray-filled

squares indicate correlations with p-value > 0.2 or coefficient < 0.1.
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The presence and abundance of  An.  funestus were positively correlated with cumulated rainfall

preceding the date of collection, at almost all time lags. The presence and abundance of the species

were  negatively  correlated  with  daytime  temperatures,  again  at  almost  all  time  lags  preceding

collection. The correlations between the presence or abundance of  An. funestus and the nocturnal

temperatures preceding the date of collection were weak or non-significant.

The presence and abundance of  An. gambiae s.s. were positively and strongly correlated with the

cumulative rainfall preceding collection, at all time lags. The time interval showing the maximum

correlation coefficient with cumulative rainfall was b/w 1 and 6 weeks before the date of collection

for presence, and b/w 2 and 6 weeks before the date of collection for abundance. The presence of

An. gambiae s.s. was also positively correlated with the nocturnal temperatures preceding the date

of collection at all time lags, with the highest correlation coefficient observed for interval b/w 5 and

6  weeks  before  the  date  of  collection.  The  presence  and  abundance  of  An.  gambiae  s.s. was

negatively correlated with the diurnal temperatures preceding the date of collection, at all time lags.

The maximum correlation coefficient between diurnal temperatures and the presence/abundance of

the species was found between 0 and 2-3 weeks before the date of collection.

The correlation  coefficients  between the  presence/abundance  of  species  and the  meteorological

variables were higher for An. gambiae s.s. than for An. funestus.

Multivariate analysis

The Precision-Recall area under the curve (PR-AUC) of the presence models were 0.52 (baseline =

0.09) and 0.91 (baseline = 0.64) for An. funestus and An. gambiae s.s. respectively. The specificity

and sensitivity of the models at the optimal probability thresholds were respectively 53% and 98%
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for  An. funestus and 88% and 61% for  An. gambiae s.s. These results  indicate good predictive

power for the presence models. The abundance models reflected the trends well for the two species,

although they often underestimated high counts. Model evaluation plots are presented in Figure 5

(presence models) and Figure 6 (abundance models).

Fig 5. Model evaluation plots for the presence models. A1 and A2 are precision–recall curves for

the presence models of respectively An. funestus and An. gambiae s.s. Precision–recall curves show

the precision and the recall of the models for different probability thresholds of the “presence”

class. Precision is the proportion of presence identifications that was actually correct, while recall is

the proportion of actual presence observations that were identified correctly. The horizontal dashed

line represents the baseline (i.e. random or no-skill) classifier. A precision–recall curve above the

horizontal line indicates a better-than-no-skill classifier. The higher the area between the precision–
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recall  curve and the horizontal  line,  the better  the classifier.  Plots  B1 and B2 are observed vs.

predicted presence probabilities for each out-of-sample village. The y-axis represents the sum over

the  8 sampling  points/village/survey (4 points  by  village  * 2  positions  (interior  and exterior)).

Overall, the plots A1 and A2 show that the models had good predictive accuracies (precision–recall

curves are higher than the baseline curves). The plots B1 and B2 show that the models predicted

well the spatiotemporal trends of presence/absence of bites (lines of predicted presence probabilities

are generally close to lines of observed probabilities).

Fig 6.  Model evaluation plots for the abundance models.  A1 and A2 are violin  plots  of the

distribution of the residuals for the abundance models of respectively An. funestus and An. gambiae

s.s., by observed counts of bites. Black dots indicate the median value. B1 and B2 are observed vs.

predicted number of bites/village/entomological surveys. The y-axis represents the sum of bites
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over the 8 sampling points/village/survey (4 points by village * 2 positions (interior and exterior))

on a logarithmic scale. The absence of a dot indicates that no vector was collected. MAE = mean

absolute error; n = number of observations. Overall,  the plots A1 and A2 show that the models

predicted well small to medium observed counts of bites (cf. small MAEs, small residuals), which

represent  the  vast  majority  of  observations  (high  n).  Larger  counts  (>  50  bites)  tended  to  be

underestimated by the models. The plots B1 and B2 confirm these observations, and additionally

show that  general trends of biting rates over  time were well  predicted by the models (lines of

predicted abundance are generally close to lines of observed abundance).

Figures  7  and  8  show  the  model  interpretation  plots  (variable  importance  plot  and  partial

dependence plots) for An. gambiae s.s. and An. funestus, respectively. 
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Fig 7. Interpretation plots of the random forest models for the presence and abundance of An.

gambiae s.s. Biting rates were separated into presence/absence of bites and abundance of bites (i.e.

positive counts only),  and two models  were therefore generated [presence (top)  and abundance

(bottom)]. For each model, the top-left corner plot is the variable importance plot. The other plots

are partial dependence plots (PDPs) for each variable included in the models (1 plot/variable). The

y-axis in the PDPs represents: in the presence models, the probability of at least one individual

biting  a  human during a  night;  in  the  abundance  models,  the  log-transformed number  of  bites

received by one human in one night conditional on their presence. The dashed lines represent the

partial dependence function ± one standard deviation (i.e. variability estimates). The range of values

in the x-axis represents the range of values available in the data for the considered variable. The

rugs above the x-axis represent the actual values available in the data for the variable. LST = land

surface temperature, b/w = between.

23

405

410

415



24



Fig 8. Interpretation plots of the random forest models for the presence and abundance of An.

funestus. Biting rates were separated into presence/absence of bites and abundance of bites (i.e.

positive counts only),  and two models  were therefore generated [presence (top)  and abundance

(bottom)]. For each model, the top-left corner plot is the variable importance plot. The other plots

are partial dependence plots (PDPs) for each variable included in the models (1 plot/variable). The

y-axis in the PDPs represents: in the presence models, the probability of at least one individual

biting  a  human during a  night;  in  the  abundance  models,  the  log-transformed number  of  bites

received by one human in one night conditional on their presence. The dashed lines represent the

partial dependence function ± one standard deviation (i.e. variability estimates). The range of values

in the x-axis represents the range of values available in the data for the considered variable. The

rugs above the x-axis represent the actual values available in the data for the variable. LST = land

surface temperature, b/w = between.

The most important predictors of both the presence and abundance of  An. gambiae s.s. were the

three meteorological variables recorded during the weeks preceding collection (Figure 7): in order,

cumulative  rainfall  between  1-2  and  6  weeks  before  collection  (positive  relationship),  diurnal

temperatures  between 0  and 2-3  weeks  before  collection  (negative  relationship),  and nocturnal

temperatures (between 5 and 6 weeks and between 0 and 1 week before collection for the presence

and abundance  models,  respectively)  (positive  relationship).  It  should  be  noted  (i)  that  for  the

presence  model,  the  three  most  important  predictors  were  equally  important,  and  (ii)  that  the

importance  of  rainfall  was  particularly  high  in  the  abundance  model,  far  outweighing  the

importance of all other variables.

The  most  important  predictors  of  the  presence  of  An.  funestus were  the  three  meteorological

variable recorded during the weeks preceding collection (Figure 8): cumulative rainfall (positive
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relationship),  diurnal  temperatures  (negative  relationship),  and nocturnal  temperatures  (negative

relationship). The most important variables in the abundance model for this species were: the % of

surface occupied by riparian forests (postive relationship), the total length of hydrographic stream in

the  2-km  radius  buffer  zone  around  the  collection  points  (postive  relationship),  and  diurnal

temperatures (postive relationship).

Comparison with the Diébougou area in Burkina Faso

Table 1 presents a set of selected indicators characterizing the landscape, meteorological regime,

and entomological conditions in the Diébougou (BF) and the Korhogo (CI) area, as well as the

impacts  of  the  environmental  (landscape  +  meteorological)  conditions  on  the  spatiotemporal

distribution of vectors (i.e. main outputs of the bivariate and multivariate statistical analyses).

Table 1.  Quantitative characterization of the landscape, meteorological,  and entomological

conditions  in  the  Diébougou  (BF)  and  the  Korhogo  (CI)  area,  and  of  the  impacts  of

environmental conditions on the spatiotemporal distribution of vectors in each area.

Diébougou (BF) Korhogho (CI)

Meteorological regime

Cumulated rainfall over the study period 1112 mm 1693 mm

Average diurnal LST (SD) over the study period 37.9°C (4.9) 35.1°C (3.9)

Average nocturnal LST (SD) over the study period 19.4°C (2.7) 19.7°C (2.5)

Landscape 

 % natural vegetation 71% 30 %

% agricultural lands 26 % 51 %

% rice paddies 1 % 9 %

% plantations 0 % 17 %

% savannah 52 % 9 %

% woodland 3 % 18 %
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Entomological conditions

Anopheles species richness 10 7

 Anopheles species diversity (Shannon index) 1.23 0.33

Average human biting rate (bites/human/night) 1.98 32.21

Associations b/w environmental  variables  and presence /  abundance of vectors:  time lag
with higher cc in bivariate analysis)

 Rainfall with presence of An. gambiae s.s. 2 to 6 weeks (0.33) 1 to 6 weeks (0.52)

Rainfall with abundance of An. gambiae s.s. 2 to 6 weeks (0.34) 2 to 6 weeks (0.7)

 Diurnal LST with presence of An. gambiae s.s 0 to 2 weeks (-0.37) 0 to 2 weeks (-0.49)

 Diurnal LST with abundance of An. gambiae s.s 0 to 2 weeks (-0.26) 0 to 3 weeks (-0.64)

 Nocturnal LST with presence of An. gambiae s.s. 4 to 6 weeks (0.39) 5 to 6 weeks (0.35)

 Nocturnal LST with abundance of An. gambiae 3 to 6 weeks (0.34) 0 to 1 weeks (0.31)

Rainfall with presence of An. funestus 1 to 3 weeks (-0.18) 0 to 1 week (0.33)

Rainfall with abundance of An. funestus 2 to 3 weeks (-0.14) 4 to 5 weeks (0.23)

 Diurnal LST with abundance of An. funestus 3 to 6 weeks (-0.22) 0 to 1 weeks (-0.19)

 Diurnal LST with abundance of An. funestus 4 to 6 weeks (-0.24) 2 to 4 weeks (-0.28)

 Nocturnal LST with presence of An. funestus 0 to 3 weeks (-0.18) 5 to 6 weeks (0.08)

 Nocturnal LST with abundance of An. funestus 1 to 3 weeks (-0.19)  ns

 Associations  b/w  environmental  variables  and  presence  /  abundance  of  vectors:  most
important variables in multivariate analysis (ordered by importance)

Presence model for An. gambiae s.s.
Nocturnal  LST
Diurnal LST
Rainfall

Rainfall
Diurnal LST
Nocturnal  LST

Abundance model for An. gambiae s.s.
Rainfall
Diurnal LST 
Marshlands

Rainfall
Diurnal LST
Nocturnal LST

Presence model for An. funestus
Grassland
Marshlands
Ligneous Savannah

Rainfall
Diurnal LST
Nocturnal LST

Abundance model for An. funestus
Marshlands
Grassland
Ligneous Savannah

Riparian forest
Hydrographic stream
Diurnal  LST

Legend: These indicators were extracted from the landscape, meteorological and entomological

data  described  in  the  Methods  section,  and  the  bivariate  and  multivariate  statistical  models

described  in  the  Methods  section  as  well.  LST =  land  surface  temperature,  cc  =  correlation
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coefficient, pp = percentage point. Time lags are displayed only if p-values<0.2 and cc>0.1, either

ns is displayed.

The Diébougou area is located in the Sudanian bioclimatic region, as Korhogo. The seasonality is

characterized by the same dynamics (i.e. dry-cold, dry-hot, and rainy season). During the study

period (from 2016-09-30 to 2018-03-24),  cumulated rainfall  was 1112 mm (-34% compared to

Korhogo) (S3 Fig) ; average diurnal Land Surface Temperature (LST) was 37.9°C (sd=4.9) (+2.8°C

compared  to  Korhogo)  and  average  nocturnal  LST was  19.4°C  (sd=2.7)  (-0.3°C  compared  to

Korhogo). The landscape in the Diébougou study area was, as for Korhogo, mainly a mixture of

natural vegetation and agricultural lands (39), with some notable differences (S4 Fig). Agricultural

land accounted for 26% of the total surface area of the Diébougou study area, proportionally half

that of Korhogo. Rice paddies represented only 1% of the total surface area in Diébougou (against

9% in Korhogo), and there was no tree plantations in the Diébougou study area (17% of the study

area  in  Korhogo).  Conversely,  the  natural  vegetation  accounted  for  71%  of  the  total  surface,

proportionally more than twice that of Korhogo. It was composed of  savannas (52% of the total

surface), grasslands (7%), marshlands (5%), riparian forests (4%), and woodlands (3%). Contrary to

Korhogo, the Diébougou area had very few hydraulic dams.

Vector control strategies implemented in the Diébougou area were similar to those of Korhogo. The

primary vector control tool is the LLIN. The last distribution before the beginning of the REACT

project  was  in  2016  (40).  As  part  of  the  REACT  project,  complementary  VC  tools  were

implemented as well in some villages.

In  the  Diébougou  area,  three  main  Anopeheles species  were  collected:  An.  gambiae  s.s., An.

coluzzii, An. funestus (27). The specific composition was more balanced than in the Korhogo area
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(20% An. gambiae s.s., 44% An. coluzzii, 24% An. funestus). The Anopheles species richness was

higher than in Korhogo (10, against 7 in Korhogo) as well as the diversity (Shannon index = 1.23,

against 0.33 in Korhogo). The average human biting rate was much lower (1.98 bites/human/night

in Diébougou vs. 32.21 bites/human/night in Korhogo).  The distribution of the vector species in

space and time was highly heterogeneous, as in Korhogo (S5 Fig and Fig 1 in (19)). However in

Diébougou, An. funestus was present in a higher ratio of villages and entomological surveys. The

seasonal dynamics of  An. gambiae s.s. were similar to those of the Korhogo area but, unlike the

Korhogo area, the species was completely absent from most of the villages during the dry season.  

In  the  bivariate  analysis,  the  absolute  values  of  the  correlation  coefficients  between  the

presence/abundance of  Anopheles species and the landscape variables were overall lower in the

Korhogo area than in the Diébougou (BF) area (see Fig 3 in (19)). Conversely, the absolute values

of  the  correlation  coefficients  between  the  presence/abundance  of  the  species  and  the

meteorological variables were generally higher in the Korhogo area than in the Diébougou area,

particularly for An. gambiae s.s. (see Fig 4 in (19)). Notably, the CCMs of An. gambiae s.s. in the

Korhogo and Diébougou areas were, one by one, very similar: while the absolute values of the

correlation coefficients were generally slightly higher in the Korhogo area, the time lags with the

highest correlation correlation coefficients were almost identical for 5 of the 6 CCMs.

The presence and abundance models had high predictive power in the Diébougou area, as for the

Korhogo area (see Additional files 4 and 5 in (19)). Overall, the most important predictors of the

presence and abundance of  An.  gambiae s.s. in  the Diébougou area were,  as for  Korhogo,  the

meteorological variable recorded during the weeks preceding collection (see Fig 7 in (19)). The

secondary  predictors  were  also  close  to  those  of  Korhogo  (e.g.  marshlands,  riparian  forests,

ligneous savannas) – although rice paddies were not  present.  In contrast  to Korhogo, the most
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important  predictors  of  the  presence  of  An.  funestus in  Diébougou  were  landscape  variables

(marshlands, grasslands, savannas) (see Fig 6 in (19)).

Discussion

The  overarching  aim  of  this  study  was  to  investigate  (i)  the  landscape  and  meteorological

determinants of  the spatiotemporal distribution of the major malaria vectors in the rural Korhogo

region  (Côte  d’Ivoire),  and  (ii)  the  differences  with  another  rural  West  African  region,  the

Diébougou (Burkina Faso) area.

Landscape  and  meteorological  determinants  of  the  presence  and

abundance of malaria vectors in the Korhogo area

In the Korhogo rural area in Côte d’Ivoire, rainfall was the most important predictor of both the

presence and abundance of An. gambiae s.s; directly followed by land surface temperature-related

variables. The cross-correlations maps (CCM) of  An. gambiae s.s. showed that the presence and

abundance of the species were significantly correlated with the three meteorological variables at all

time lags preceding collection. Similar observations were made in the Diébougou area in Burkina

Faso (19). These findings suggest that in the Korhogo area, as in Diébougou and also more widely

in Africa (41), i) An. gambiae s.s. was dependent on temporary breeding sites filled by rainfall and

ii) its life traits (development and survival at both larval and adult stages) were strongly impacted

by weather conditions. Moreover, some CCMs showed a maximum correlation with meteorological

variables recorded at time periods anterior to the mean lifetime of collected mosquitoes (i.e. more

than 3 weeks before  collection). This suggests, as discussed in (19), that vector abundance and

presence may have been influenced by the effect of weather on life traits of the parent generations
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(further impacting the collected generation through mechanical effects on population dynamics), or

by preparing different biotic and abiotic conditions that affected the survival and development of

the observed generation. 

Our studies have revealed important similarities in the shapes of the CCMs of An. gambiae s.s. in

the two study areas. Indeed, the  An gambiae s.s.  populations in Korhogo and Diébougou shared

common time lag for the effect of weather on their dynamic. This finding suggests that population

dynamics of  An. gambiae s.s. in relation to the meteorological factors are highly comparable in

these  two  areas,  and  by  extrapolation,  possibly  in  the  entire  sub-region  where  meteorological

regimen are similar.

The % of surface occupied by rice paddies was the second and first  most important landscape

variable in the models of presence and abundance of An. gambiae s.s., respectively, suggesting that

rice paddies were probably important breeding sites for  An. gambiae s.s larvae, and enabled their

year-round presence. This hypothesis was actually confirmed by a field study carried out in the

Korhogo area by the REACT project team with the aim of  characterizing the larval habitats of

Anopheles spp (42).  In  this  latter  study,  the authors  identified that  rice paddies  were the  most

frequent breeding sites for An. gambiae s.s., both during the rainy and dry seasons. Several studies,

in the Korhogo areas (43) and elsewhere in West Africa (44,45) had previously found that extension

of irrigated rice cultivation was correlated to the density of the main malaria vectors.

The % of  surface  occupied  by  ligneous  savannas  around  the  villages  was  the  most  important

landscape variable in the abundance model of  An. gambiae s.s., with a negative correlation. This

finding  agrees  to  observations  made  in  southern  Côte  d'Ivoire  (10),  in  Benin  (46)  and  in  the

Diébougou area (19). It supports the hypothesis  that the degree of openness of the surrounding
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landscape  affects  the  biting  rates  of  An.  gambiae  s.s. in  the  villages.  Closed  landscapes  (in

comparison to open landscape) may reduce the dispersal capacity of  Anopheles mosquitoes (47),

resulting in longer gonotrophic cycle duration, in turn leading to decreased biting frequencies (48).

Another plausible hypothesis is that closed landscapes may be less favorable to larval breeding as a

consequence  of  lower  sunlight  exposure  (42,49),  lower  temperature  (48)  and  possibly  higher

negative biotic interactions (competition, predation) (50,51). 

In the Korhogo area, unlike in Diébougou, the most important variables in the model of presence of

An. funestus were all meteorological (in particular rainfall and diurnal temperature). Thus, contrary

to  the  observations  made  in  the  Diébougou  area,  landscape  was  not  the  main  driver  of  the

spatiotemporal presence of An. funestus in the Korhogo area. On the other hand, when An. funestus

was present, landscape strongly impacted its abundance (two of the three most important variables

in the species abundance model were landscape-related), as in Diébougou. In particular, the species

seemed particularly dependent on rivers and riparian forests. These landscape features therefore

seemed to constitute preferential breeding sites for An. funestus in the Korhogo area, confirming the

literature (41,52).

The multivariate models correctly predicted the presence and abundance of the two species, as in

Diébougou.  This  indicates  that  the  main  determinants  of  the  presence  and  abundance  of  both

species were identified and incorporated into the models.

Differences  in  Anopheles mosquitoes  diversity,  presence  and

abundance between the Diébougou and Korhogo areas : the effect of

meteorological conditions and landscape anthropization ?
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The Korhogo and Diébougou areas are « contextually » close: they are both rural  areas in west

Africa,  located  in  the  same  bioclimatic  region,  distant  only  300  km  as  the  crow  flies,  and

implementing similar  VC strategies.  Despite  these similarities,  we found notable differences  in

richness, diversity,  and abundance of the malaria vectors.  Anopheles species richness and, even

more so, diversity were lower in Korhogo than in Diébougou. In addition, the average proportion of

positive sessions (i.e. sessions with at least one mosquito collected) and the overall biting rates were

much higher in the Korhogo area than in Diébougou. The present study, combined with that of

Diébougou (19), offers insights into the potential reasons for these variations.

Our studies have demonstrated the significant impact of weather and landscape conditions on the

presence  and  abundance  of  Anopheles mosquitoes  in  our  study  areas.  Differences  in  both

meteorological  regimen and LULC in  the  two areas  could  explain  these  contrasts.  The  higher

rainfall  in  Korhogo  than  in  Diébougou  may  result  in  more  numerous  or  persistent  temporary

breeding  sites,  the  preferred  habitat  for  larvae  of  several  Anopheles species  (41).  In  terms  of

landscape, permanent larval habitats (rice paddies, dams irrigating them) were more abundant in

Korhogo  than  in  Diébougou.  Furthermore,  these  habitats  enabled  the  year-round  presence  of

Anopheles larvae (42). In contrast, 'closed' natural environments (especially ligneous savannas) -

which  our  models  suggest  reduce  vector  biting  rates  -  were  less  common in  Korhogo than in

Diébougou. Overall, as a result of these differences, adult vectors and biting rates are likely to be

higher. 

The observed differences in Anopheles species richness and diversity could also be explained by the

differences in landscape composition between the two areas, particularly the variation in natural

vegetation cover. The Diébougou area, which is over 70% covered by natural vegetation (against
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30% in the Korhogo area), has the potential to host a greater variety of mosquito species due to their

species-specific preferences for different types of habitats, blood and sugar sources (41), that are

more common in natural environments and particularly in woodland areas (6). Overall, as stressed

out by (53), woodland has the highest levels of species diversity on land, and almost all taxonomic

groups  are  more  likely  to  occur  as  woodland  cover  increases.  These  disparities  in  landscape

composition  (surface  of  rice  paddies,  number  of  dams,  surface  of  savanna,  etc.),  which  could

explain the observed differences in malaria vectors presence, abundance and diversity, also indicate

a higher level of anthropization of the land in the Korhogo area than in the Diébougou area. Our

results hence  support the hypothesis of higher vectors’ densities and lower mosquito diversity in

more anthropized landscapes, as suggested by a recent meta-analysis of the link between landscape

anthropization and mosquito diversity and abundance at a global scale (6). A recent study conducted

in western Burkina Faso has shown similar trends (i.e. fewer species in environments with high

human impact, such as urban areas and rice fields, than in environments with lower human impact

such as forested areas) (54).

The second, maybe less documented in the literature,  is the removal of natural ‘closed’ natural

environments (like ligneous savannas and forests), which seemed to act as protective barriers in

both areas, especially when located closely around the villages. As stated previously, another recent

study carried out in Côte d’Ivoire found a similar result (10). A third process, whose effect could

unfortunately not directly be assessed here, is the creation of artificial dams for agriculture. In this

study, we could not directly assess their impact on mosquito presence and abundance because few

dams were located in the considered 2-km radius buffer area around the collection points. However,

these artificial infrastructures have already been identified as important breeding sites for anopheles

mosquitoes in Africa in general (55–57) and in the Korhogo (42) and Diébougou (19,58) areas in

particular.
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Anthropization could consist of replacing elements of the landscape that reduce biting rates (e.g.

natural ligneous savannas) with elements that favour them (e.g. rice fields), thus cumulating the

entomological impact. In practice, such processes are happening in West Africa : the sub-region has

lost — and is still losing — large extents of its natural land cover classes, replaced by a heavily

human-influenced landscape dominated by agriculture (20). For example, Côte d’Ivoire lost 60 % (-

22,000 km2) of its forest in 38 years (1975 to 2013), while increasing agricultural lands, in the same

period,  by  84 % (+31,600 km²)  (20).  Burkina  Faso  shows similar  trends,  with  a  39 % loss  of

savannas and 160 % increase in rain-fed agricultural land over the same period (20). 

It is important to note that while landscape anthropization may pose significant threats to the control

of malaria vectors in rural West Africa, its impact on malaria transmission is less straightforward -

as it might come with positive side-effects. For example, higher vector abundance associated with

the development of irrigated crops may be associated with changes in biting patterns or life history

of the vectors, or may be offset by the socioeconomic and public health improvements associated

with agriculture (44). In the Korhogo area, a study from 2003 showed that the extent of flooded

surfaces  associated  to  the  extension  of  irrigated  rice  cultivation  was  strongly  correlated  to  the

density  of  the  main  malaria  vector,  but  that  there  was  no  clear  correlation  between  malaria

transmission  and  these  flooded  surfaces,  most  probably  due  to  the  influence  of  intra-specific

competition  on  the  lifespan  of  the  mosquito  population  (43).  Comparison  of  the  malaria

transmission indicators between our study areas or holistic statistical modeling of malaria incidence

(including  data  related  to  the  demographical,  socio-economical,  entomological,  environmental,

human  behavioral,  etc.  contexts) could  enable  to  better  assess  the  interplay  between  vector

abundance and malaria transmission risk.
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Limitations and directions for future work

The identification of the determinants of the presence and abundance of malaria vectors in the study

area has several limitations, which have already been addressed and discussed in our previous work

(19).  These  limitations  include:  absence  of  variables  representing fine-scale  potential  important

drivers of mosquito presence, abundance or biting rates (e.g. alternative sources of blood meal,

domestic  breeding sites,  market  gardening,  etc.),  absence  of  any study of  interactions  between

variables,  absence  of  confirmation  of  the  cause-effect  relations  (i.e.  bio-ecological  processes)

underlying the statistical correlations founds.

Our work paves  the way for  the development  of  operational  tools  to  support  the  fight  against

malaria transmission in the Korhogo area. As detailed in our previous study  (19), the knowledge

and models generated in this study could support (i) conceptualization of tailored vector control

intervention plans and tools, (ii) decisions regarding the places and times where recurrent (long-

term) and (iii) occasional (short-term) interventions should be deployed. Although Côte d’Ivoire has

begun  implementing  stratification  of  vector  control  at  the  district  level  in  2021  (59,60),  the

heterogeneity in the spatial distribution of the malaria vectors in the Korhogo health district (but

also in other districts (10,61)) suggests that even more spatially stratified targeting of interventions,

i.e. at the village level, would likely be beneficial. The VC operational tools mentioned above could

be developed for the Korhogo and the Diébougou areas, but this study shows that they may also be

applicable to much larger areas. Indeed, we identified several similarities in the predictive models

from  both  areas  (e.g.  cross-correlation  maps,  relative  importance  of  predictors,  shape  of

relationships)  that  opens  up  interesting  prospects  for  the  generalizability  of  these  models.

Concretely, we could envisage, using the whole entomological dataset, to train a predictive model

that could be used to predict the probability of presence and the abundance of  Anopheles at the
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village level in rural areas beyond our two study areas (and further develop the related decision-

making tools such as maps of predicted biting rates or EWS). The scalability of the models could

actually  be  tested  by  attempting  to  predict  the  presence  and  abundance  of  Anopheles in  the

Diebougou area using the models trained in the Korhogo area, and vice versa. The exact spatial and

temporal areas of applicability of such models remains to be determined.

Lastly,  our  work  is  an  example  of  how  harmonized  entomological  surveillance  data,  used  in

conjunction with high-resolution satellite data and powerful statistical modeling tools, can improve

our understanding of the potential impact of climate and LULC changes on malaria vector density

and, by extension, the role of environmental change in the stalling of malaria reduction progress

that has been observed for almost a decade. Although fine-scale landscape and meteorological data

covering the African continent are increasingly abundant and accessible, such research is limited by

lack  of  consistent  data  on  mosquitoes  distribution  in  Sub-saharan  Africa  (62).  It  should  be

remembered that  the  WHO now  recognizes vector  surveillance  as  a  key  feature  of  vector  and

malaria control (63) There is hence an urgent need for the implementation of mosquito surveillance

systems  that  collect  consistent,  long-term,  small-spatial-scale  entomological  data,  and  the

development of an associated centralized, Findable, Accessible, Interoperable, and Reusable (FAIR)

database. Recent technological developments in electronics, artificial intelligence, computer science

and telecommunications show great potential for building surveillance systems with such features,

for example by developing smart and connected mosquito traps that can autonomously count and

identify mosquitoes and transmit the data wirelessly (64).
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Supporting information

S1 Fig. Summary of the meteorological and landscape conditions in the Korhogo area during

the mosquito collection period. A) Average meteorological conditions in a 2 km radius buffer zone

around  the  collection  points  (weekly  aggregation) :  Vertical  red  lines  indicate  the  dates  of  the

entomological surveys. Ribbons indicate the mean ± one standard deviation (i.e. spatial variability)

considering all the sampling points for the date. Sources : for temperature: MODIS Land Surface

Temperature  (https://doi.org/10.5067/MODIS/MOD11A1.006),  for  rainfall :  Global  Precipitation

Measurement  (https://doi.org/10.5067/GPM/IMERGDF/DAY/06)  B)  Landscape  conditions :

Percentage of surface occupied by each land cover class i) in the whole study area (green bars) and

ii) in a 2-km radius buffer areas around the collection points (orange bars). In the latter, error bars
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indicate the mean ± one standard deviation (i.e. spatial variability) considering all the sampling

points. Source : https://doi.org/10.23708/MTF4S8

S2 Fig.  Contextual  map of  the  study areas  (Korhogo  in  Côte  d’Ivoire  and Diébougou  in

Burkina Faso) and locations of the villages where entomological collections were performed

between 2016 and 2018.

S3 Fig. Comparison of the meteorological conditions in the areas of Korhogo and Diébougou

during the mosquito collection period.  Average meteorological conditions in a 2 km radius buffer

zone around the collection  points  (weekly  aggregation)  for  the Korhogo and Diébougou areas.

Vertical  red lines indicate the dates  of the entomological  surveys (Korhogo area :  orange lines,

Diébougou area : grey lines). Sources : for temperature: MODIS Land Surface Temperature (https://

doi.org/10.5067/MODIS/MOD11A1.006),  for  rainfall :  Global  Precipitation  Measurement

(https://doi.org/10.5067/GPM/IMERGDF/DAY/06)

S4 Fig.  Comparison of  the  landscape conditions  in  the  areas  of  Korhogo and Diébougou

during the mosquito collection period.  A)  Percentage of surface occupied by each land cover

class in the whole study areas, for Korhogo area (orange bars) the Diébougou area (grey bar) B)

Percentage of surface occupied by each land cover class in a 2-km radius buffer areas around the

collection points in the Korhogo area (left plot) and in the Diébougou area (right plot). Sources : for

Korhogo: https://doi.org/10.23708/MTF4S8  , for Diébougou: https://doi.org/10.23708/ARSJNB

S5 Fig.  Plots  of the spatial and temporal distribution of the main malaria vectors  species

observed in the areas of Korhogo and Diébougou. 
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