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Non-Hermitian topology offers a promising avenue toward an enhanced control of waves, and many of the
underlying interesting phenomena are studied through the paradigmatic Hatano-Nelson (HN) model, which
remains unexplored in continuous wave systems. Herein, we propose a framework to map one-dimensional
continuous nonreciprocal systems onto the HN model. Our approach, based on the properties of transfer matrices,
is applicable across various physical domains. We experimentally apply our method in audible acoustics using
active elements, where we not only observe the predicted skin effect but also access the spectrum topology using
stable configurations and observe its subsequent boundary sensitivity. By establishing a connection between
continuous wave systems and the discrete HN model, our results significantly broaden the potential application
of nonreciprocal topological phenomena.
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Introduction. The intriguing characteristics of non-
Hermitian Hamiltonians have attracted a lot of attention
lately [1,2]. These Hamiltonians make it possible to ex-
amine nonconservative systems with complex eigenvalues.
Growing interest in these systems is a result of the ground-
breaking work on parity-time (PT ) symmetry [3,4], which
showed that non-Hermitian systems with simultaneous par-
ity and time symmetry could display real eigenvalues and
illuminated the significance of exceptional points. Later, PT -
symmetric systems were found to have a variety of unique
characteristics, including special sensitivity [5–8], coherent
perfect absorption (CPA)-lasing [9–13], and unidirectional
invisibility [14,15].

Inevitably, given its potential for the unidirectional control
of waves and the development of sensors, non-Hermiticity is
now also studied in the framework of topological phenomena
[16–25]. In that regard, the topological invariants typically
used to connect a lattice’s bulk characteristics and its behavior
near the edges of a finite system had to be reinterpreted. As
a result, several concepts, including the Brillouin zone, have
been redefined, and the notions of point and line gaps are
now necessary to categorize the various topological classes
[26]. One of the most profound discoveries of non-Hermitian
topology is the non-Hermitian skin effect (NHSE) [27–29],
which occurs when transitioning from periodic boundary con-
ditions (PBCs) to open boundary conditions (OBCs) leading
to the localization of bulk modes at one boundary. This effect
has been extensively studied theoretically with experimen-
tal demonstration in electrical circuits [30–32] and acoustic
setups [33,34].
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Unquestionably, one of the most prominent models in non-
Hermitian topology is the Hatano-Nelson (HN) model [35].
It consists of a one-dimensional (1D) lattice with asymmet-
ric (nonreciprocal) hoppings which are responsible for the
localization of all the bulk states at the edges, leading to
the emergence of the non-Hermitian skin effect. Addition-
ally, a field of non-Hermitian topology in discrete lattices
has emerged since the recent work in Ref. [36] due to the
model’s topological features and those of its generalizations
[25,26,28]. It has been established that these systems can
be constructed in passive lossy systems [34,37]. Similarly,
these models can be implemented using nonreciprocal sys-
tems, requiring the introduction of an external energy source
or sink, thus potentially leading to the generation of unwanted
instabilities.

In this Research Letter, we propose a comprehensive,
broadband, and exact mapping of the HN model to 1D contin-
uous and nonreciprocal periodic systems. To experimentally
validate our theoretical model, we use an acoustic network
employing active loudspeakers [38], where we observe the
NHSE. Additionally, owing to the inherent system’s losses,
our setup remains stable under PBCs, which allows us to
highlight experimentally the transition from PBCs to OBCs
by using various diaphragms and exhibit the exponential sen-
sitivity of the system to changes in boundaries.

Mapping of continuous systems. We consider the propa-
gation of waves in a 1D periodic and continuous medium,
where only plane waves are propagating (monomode approx-
imation). Such a two-port unit cell can be described using a
2 × 2 transfer matrix M which makes a relation between two
successive cells and has the general form [see also Fig. 1(a)]

M =
(

a b
c d

)
, det(M) = t . (1)

The state vector of the system at the position x takes the
form [A(x), B(x)]T , and for simplicity below we use the nota-
tion An ≡ A(xn). Equation (1) allows us to write the following
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FIG. 1. (a) A sketch of a continuous system which is composed
of periodically arranged unit cells of length �. The edges of each
unit cell are connected via the transfer matrix M. (b) By a simple
manipulation of the transfer matrix equations we map the continuous
system to the HN model where the nonreciprocal coupling strength t
is equal to the determinant of the transfer matrix.

system of equations between three consecutive equidistant
points: (

An+1

Bn+1

)
= M

(
An

Bn

)
,

(
An−1

Bn−1

)
= M−1

(
An

Bn

)
. (2)

The first line of each of the above systems of equations is
explicitly written as

An+1 = aAn + bBn, (3)

tAn−1 = dAn − bBn. (4)

Therefore, by adding the two equations (3) and (4), the
problem can be simplified to the following discrete equation:

An+1 + tAn−1 = EAn. (5)

The last equation provides an exact analog of the HN
model and can be readily applied to various continuous phys-
ical systems. Note that the same equation is also true for Bn.

According to our mapping the transfer matrices of both the
continuous and the discrete unit cell have the same nonunitary
determinant, which was recently shown in Ref. [39] to be
the key parameter to reestablish the bulk-boundary correspon-
dence for non-Hermitian systems. The energy E in Eq. (5) is
simply given by

E = tr(M) = a + d (6)

and provides the direct link between the eigenvalues of Eq. (5)
and the elements of M. In practice, for wave systems the only
restriction of our model is that the determinant t of the transfer
matrix does not depend on the frequency. When the latter is
satisfied, our exact analog of the HN is broadband and only
requires periodicity and the monomode approximation.

Properties of the model. We now briefly summarize the
properties of the HN model starting from the dispersion re-
lation equation (5), which yields

Eq = (1 + t ) cos(q) + i(1 − t ) sin(q). (7)

When t �= 1, in the presence of nonreciprocity, the energies
are complex. Furthermore, E (q) creates a closed loop in the
complex plane for q ∈ [−π/2, π/2]. The fact that the energy
itself is a complex function has motivated researchers to at-
tribute topological properties to such non-Hermitian models.
In particular, it is now well established that one can define the
following winding number:

wE = 1

2π

∮
C

d

dz
argE (z), (8)

where z = exp(iq). This integral along the Brillouin zone
gives wE = 1 (wE = −1) for |t | > 1 (|t | < 1) signaling a
transition at t = 1. This transition is now known to be re-
lated to the appearance of the so-called skin modes [40],
i.e., localized modes at one edge of a finite structure. The
sign of the winding number indicates the side of localization.
However, the complex spectrum of the HN (and many other
non-Hermitian topological models) predicts unstable modes
with a positive imaginary part. Such instability manifests
itself in periodic systems, where initially some eigenvalues
are degenerate (of order 2) for a symmetrical hopping factor
t = 1 and lie in the complex plane. The introduction of nonre-
ciprocity t �= 1 causes the modes to split and form an ellipse
characterized by unstable and damped modes. Moreover, the
corresponding eigenvectors take the form

Aj = 1

N
[1, λ j, λ2 j, . . . , λ(N−1) j]T , λ = ei 2π

N , (9)

which corresponds to traveling waves. Note that these modes
are different from the ones found around chiral exceptional
points [41–43]. This makes it difficult to implement PBCs in
a classical wave system. Our model surpasses this difficulty as
long as the effects of losses are counterbalancing the instabil-
ity growth.

Application to acoustics and experimental results. We now
apply our theory using an acoustic system where we identify
the acoustic flux A → u and pressure B → p in Eq. (1). Non-
reciprocity in acoustics can be achieved using (among others)
nonlinearity, active elements, spatiotemporal modulations, or
the thermoacoustic effect [44–53], and here we choose a sim-
ple active element to get |t | �= 1.

A sketch of the unit cell is displayed in Fig. 2(a) and con-
sists of a cavity connected to two ducts. A speaker is installed
in the center of the cavity and is controlled by a feedback loop
consisting of a current amplifier and a microphone mounted
in the vicinity of the loudspeaker.

The nonreciprocity arises from the electroacoustic feed-
back loop, in which an electrical current supplied to the
loudspeaker is proportional to the feedback gain G and the
pressure measured by a nearby microphone. This generates an
additional oscillating force that acts on the loudspeaker mem-
brane. For frequencies below the cutoff, the acoustic pressure
and velocity at the edges of the unit cell are connected through
a transfer matrix M as in Eq. (1), and the hopping parameter t
is simply adjusted by the amplifier gain G. For a more detailed
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FIG. 2. (a) Sketch of the unit cell. (b) Determinant of the transfer
matrix of the unit cell (equivalently, the hopping factor t) as a func-
tion of the frequency, where solid black and blue circles represent the
passive and the active cell, respectively.

derivation of the transfer matrix, please see Supplemental
Material (SM) [54].

To confirm the nonreciprocity of the unit cell, the experi-
mentally measured determinant of the transfer matrix det(M)
is displayed as a function of the frequency in Fig. 2(b). In
the absence of a feedback loop G = 0, the system is recip-
rocal [i.e., t = det(M) = 1] since the loudspeaker behaves as
a passive resonator. However, if a gain G �= 0 is applied, the
reciprocity is broken, and the hopping term t becomes nonuni-
tary, thereby favoring propagation in one direction. For the
measurements shown in Fig. 2(b) we have tuned the gain such
that t = 3.7, which would lead to a right-side localization with
(wE > 1). Furthermore, one can see that the hopping factor is
frequency independent and thus the mapping is broadband.

A finite-size lattice composed of N = 8 cells is con-
structed, and the two ends of the total waveguide are closed
with rigid walls. Such a setup corresponds to Dirichlet bound-
ary conditions for the acoustic flux and thus to an OBC
HN model. We excite the system from the one end (left)
and measure the pressure at equidistant points designated by
p(ω, x j ) as shown at the top of Fig. 3. The bottom panels
of Fig. 3 depict the normalized magnitude of the measured
acoustic pressure at different sites as a function of frequency.
Starting with the reciprocal case (t = 1), the acoustic pressure
signal response is found to be strong only within the interval
f ∈ [120, 300] Hz, which is the first allowed band of the
periodic lattice. Furthermore, the field appears to have greater
amplitude near the source due to the strong damping (mainly

FIG. 3. The experimentally measured pressure as a function of
the index site j and the frequency f , for a symmetrical (t = 1, bottom
left) and asymmetrical (t = 3.7, bottom right) hopping, where the
system is excited from the left side at j = 0. Mic., microphone,
Norm., normalized.

caused by the loudspeakers), since away from the source the
wave is rapidly dissipated.

On the other hand, by turning on the feedback gain and
reaching a value of the asymmetric hopping t = 3.7, we
clearly see the appearance of the non-Hermitian skin effect at
the opposite boundary of the system. This means that despite
the high damping, and excitation from the left-hand side, the
excited bulk modes exhibit a strong localization on the right
side. In fact, the amplification ratio from the first site, j = 1,
to site j = N is as high as p(xN )/p(x1) = 120. Note that the
accumulation of energy on the right-hand side is persistent
for all frequencies in this band confirming the fact that all
modes exhibit the skin effect. Additionally, this amplification
is in quantitative agreement with the OBC solutions where
the amplification ratio for the modes is ∼tN/2. Experimental
transition from PBCs to OBCs. As mentioned before, many
of the properties of topological non-Hermitian systems lie in
the complex spectrum. As such, here we focus on measuring
the complex eigenfrequencies fn of our setup, which can be
obtained by fitting the frequency response using a dedicated
algorithm [55,56].

Figures 4(a)–4(c) show the measured eigenfrequencies in
the complex plane for the acoustic waveguide with OBCs. The
reciprocal (t = 1) and nonreciprocal (t = 1.35) systems have
seven acoustic modes and, as predicted by the theory, form
an arc lying in the negative imaginary part of the complex
plane. For the HN model the OBC spectrum always lies on
the real axis for any value of t . However, here we see that by
increasing the gain (thus t) the modes are pushed towards the
real axis. This property, which is embedded in the proposed
mapping, reveals the fact that adding gain to the system al-
lows one to better compensate losses. To further reveal the
NHSE, we measure the pressure field at different positions
of the waveguide for the corresponding eigenfrequencies.
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FIG. 4. (a) Complex eigenfrequencies of the problem in the OBC
configuration, for t = 1 (open black circles) and t = 1.35 (solid
orange circles), and for the PBCs at t = 1.35 (gray circles). (b) Mode
shape of the OBC configuration for t = 3.7. (c) The inverse partici-
pation ratio of each mode shape as a function of the hopping factor
t in the OBC configuration. (d) Complex eigenfrequencies in the
PBC configuration, for t = 1 (open black circles) and t = 1.35 (solid
orange circles).

An example of the mode shape for t = 3.7 is shown in
Fig. 4(b) where the energy is clearly localized predomi-
nantly on the right boundary ( j = 8). Moreover, we plot
the experimentally obtained inverse participation ratio (IPR),∑

k |p(xk )|2/(
∑

k |p(xk )|)2, as a function of t in Fig. 4(c).
This ratio quantifies the localization level of the eigenmodes;
for instance, values of IPR = 1 and IPR = 0 indicate a total
localization at one site and full delocalization, respectively.
As anticipated, the present results indicate that the increase
in the hopping factor leads to a stronger localization of the
eigenmodes on the right side of the system.

Importantly, our modeling predicts that the proposed
acoustic device can have stable configurations not only with
OBCs but also using PBCs. This is possible due to the in-
herent losses and their accurate modeling. We build such a
device using a looped waveguide as shown in the top panel
of Fig. 4(d). In the bottom panel of Fig. 4(d) we show the
experimental eigenfrequencies for the PBC waveguide N = 8.
In the reciprocal case with t = 1, five eigenfrequencies are
identified; among them, three are degenerate with multiplicity
2 due to the angular symmetry. On the other hand, in the
nonreciprocal case t = 1.35, the degenerate modes split in
pairs, and the spectrum forms a closed loop in the complex
plane indicated by the solid orange circles in the bottom panel
of Fig. 4(d). An important aspect of the proposed acoustic
system is that as expected, there is a maximum value of the
gain, after which some modes become unstable.

Another interesting aspect of the proposed system is that it
allows one to study experimentally the transition from PBCs
to OBCs. This transition has been the subject of several stud-
ies since it gives insights into the sensitivity of the underlying
spectrum under changes in the boundary conditions. Experi-
mentally, it has only been observed in discrete lattices [31],
but not in a continuous wave system. Here, we achieve the
transition in a rather natural way by adding a thin diaphragm
of radius rd inside the looped waveguide of radius rw and pro-
gressively reducing the ratio r = rd/rw. In the bottom panel of
Fig. 5(a) we plot the experimentally obtained spectrum in the
complex plane for various values of r between PBCs (r = 1)
and OBCs (r = 0). The first row corresponds to a relatively
small gain t = 1.35, and the transition is explicitly demon-
strated for all the ranges of the diaphragm radius. As the radius
decreases, the ellipse gradually shrinks until it transforms
into an arc for the OBCs. This transition is clearly visible
for various values of t as shown in Fig. 5(a). In addition,

Im

Re

Re

Im

FIG. 5. (a) Top: a schematic of the diaphragm used in experiments inside the waveguide. Bottom: the eigenfrequencies obtained from
experimental results for different values of the nonreciprocal hopping t and the ratio r. (b) The transition from PBCs to OBCs obtained using
the experimentally fitted transfer matrix. (c) The exponential sensitivity of the absolute value of the eigenfrequency as a function of the system
size.
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as predicted by the theory, by increasing the hopping factor
for a fixed radius ratio (e.g., the column for 0.1), the ellipse
expands, which is a characteristic of the HN model.

The red shaded region in the bottom panel of Fig. 5(a)
indicates the values of t where the system becomes unstable,
i.e., at least one mode has an imaginary part crossing the
real axis. In fact, in the marginal case of t = 2.4, by opening
a small hole (10% of the waveguide radius) the otherwise
stable OBC configuration abruptly becomes unstable. This
motivates us to follow recent results showing the exponen-
tial sensitivity of the HN with respect to the system size l
[20,24,57] and explore this aspect for our system. To do so,
we investigate the sensitivity semianalytically using the exper-
imentally obtained transfer matrix Mexpt. In particular, we use
an analytical 1D model (see SM) including the effect of a thin
diaphragm [58,59] and fit it to the experimentally obtained
elements of Mexpt. To find the corresponding eigenfrequencies
of the system with PBCs, one can calculate the solutions of
det(Md MN

expt − I ) = 0 (see Supplemental Material [54]). Fig-
ure 5(b) exhibits the eigenfrequencies of a system with N = 8
and t = 1.5 [corresponding to the second row in the bottom
panel of Fig. 5(a)]. Here we vary the ratio r by increments of
0.1. What we observe is that with r = 0.1 the eigenfrequen-
cies have slightly shifted as observed in the experiments. Then
for r > 0.2 a large ellipse has been formed in the complex
plane indicating a strong change in the eigenfrequencies. To
further quantify this sensitivity, we have calculated the change

in the absolute value of the frequency for the mode in the
center of the ellipse for a change in the ratio �r = 0.1. The
results for three different values of t are shown in Fig. 5(c) in a
logarithmic scale. It is clear that the proposed acoustic system
is indeed exponentially sensitive to its size.

Conclusion. In this Research Letter, an exact mapping of
the Hatano-Nelson model to one-dimensional nonreciprocal
continuous systems is presented. The mapping is achieved
solely by using a transfer matrix approach and can be applied
to a plenitude of systems, provided that nonreciprocity can be
implemented for the given device. The experimental results
show the emergence of the non-Hermitian skin effect once an
asymmetric hopping is achieved, and by analyzing the com-
plex frequency of the acoustic mode, the theoretical model is
validated. Finally, while using diaphragms of different hole
sizes, the transition from PBCs to OBCs and the subsequent
exponential sensitivity to the system size are exhibited. Using
the proposed method, many other variants of the NH model
can be constructed in continuous media, including various
nonreciprocal topological models or higher-dimensional mod-
els which profit from the interplay between topology and
non-Hermiticity.
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