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Homogeneous Control Design Using Invariant
Ellipsoid Method

Siyuan WANG, Haibin DUAN, Gang ZHENG, Xubin PING, Driss BOUTAT, Andrey POLYAKOV

Abstract—The invariant ellipsoid method is aimed at min-
imization of the smallest invariant and attractive set of a
control system operating under bounded external disturbances
and parametric uncertainties. This paper extends this technique
to a class of the so-called generalized homogeneous system.
The generalized homogeneous optimal (in the sense of invariant
ellipsoid) controller allows further improvement of the control
system providing a faster convergence and smaller overshoots.
Theoretical results are supported by numerical simulations and
experiments.

Index Terms—Homogeneity, Invariant set, LMI

I. INTRODUCTION

During the formulation of any control issue, there is always
a discrepancy between the actual system and the mathematical
model used for control design. This mismatch arises from
unmodeled dynamics, uncertainties in system parameters, or
the approximation of complex plants. However, the engineer
needs to guarantee that the designed controller is able to
achieve the required performance despite of all these mis-
matches. This leads to the development of the so-called robust
control methods solving this problem. Robust control design is
an approach dealing with perturbations of a nominal system.
Its objective is to attain the certain level of performance
or stability in the system despite the presence of bounded
disturbance. Several well-known methodologies of robust con-
trol design have been invented such as sliding mode control,
H∞ approach, attractive/invariant ellipsoid method, and so
on. The sliding mode control (SMC) as a robust control
design methodology is known since 1960s in Russia. The first
survey paper by V. Utkin is published in English in 1977 [1].
Sliding mode methodology has been devised for both linear
and nonlinear systems [2], [3] and delivers a good performance
in numerous real-world scenarios [4]. The concepts of the H∞
control theory to solve the robust stabilization problem for
linear system can be found in [5]–[7]. Later the H∞ control
methodology was extended to various systems [8].

The basic ideas of the attractive/invariant method were
introduced in the papers [9]–[11]. One of the main features of
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this method is that the states of the robustly stabilized system
converge to a minimal (in some sense) ellipsoidal set regard-
less of perturbations or uncertainties satisfying certain bounds.
The attractive/invariant ellipsoid method is widely applied to
various control and estimation problems for both linear [12]
and nonlinear plants [13]. It deals with linear feedback laws.
The key feature of the method is control parameters tuning
by means of Linear Matrix Inequalities (LMIs) [14]. The
optimal tuning turns out to be equivalent to a Semi-Definite
Programming (SDP) problem minimizing the invariant ellip-
soid of the closed-loop system. The further improvement of
control quality using the same linear feedback strategy seems
infeasible. This paper develops the attractive/invariant ellipsoid
method for a class of generalized homogeneous controllers
[15], which may provide faster response, better robustness and
smaller overshoots comparing with linear algorithms.

A generalized homogeneity is a crucial characteristic of a
homogeneous controller studied in this paper. Mathematically,
it represents a symmetry with respect to a dilation, as discussed
in [16], [17]. This concept is applied in the field of control
theory and experiment for the purpose of system analysis,
controller and observer design (e.g., [18]–[24] and references
therein). The homogeneity with respect to the standard dilation
x 7→ esx was introduced by Leonhard Euler in the eighteenth
century. The homogeneity of dynamical systems with respect
to the weighted dilation (x1, x..., xn) 7→ (er1sx1, ..., e

rnsxn)
was first studied by Vladimir Zubov in 1958 (see [16]). The
generalized concepts of the homogeneity (geometric homo-
geneity) in Rn were considered in [25], [26]. This paper deals
with the linear geometric dilation (see e.g., [27]) given by
x 7→ eGdsx, where Gd ∈ Rn×n is an anti-Hurwitz matrix1.
The homogeneity as a relaxation of linearity provides an extra
degree of freedom for further minimization of the disturbance
effects [28].

The key contribution of this article is the extension of
the attractive/invariant ellipsoid approach to the generalized
homogeneous control systems [29]. Specifically, we introduce
a homogeneous invariant ellipsoid using the canonical homo-
geneous norm [27] and derive its characterization in terms
of LMIs. We also show that an optimal tuning a homoge-
neous controller can be realized by solving an SDP problem
minimizing the homogeneous attractive/invariant ellipsoid of
the closed-loop system. As an example, the controlled rotary
inverted pendulum is studied. We demonstrate that the optimal
(in the sense of attractive ellipsoid) homogeneous controller
can stabilize the pendulum with a better precision than the

1The matrix Gd ∈ Rn is anti-Hurwitz, if (−Gd) is Hurwitz.
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optimal (in the same sense) linear controller without any
degradation of control quality.

The structure of paper is as follows: The problem statement
is outlined in Section II. Preliminaries to homogeneity theory
are presented in Section III. The main results are discussed
in Sections IV and V. Simulation/experiment results and
some concluding remarks are given Section VI provides the
simulation results to support the proposed theories.

Notation : R: set of real numbers, R+ = {x ∈ R : x > 0};
|x| =

√
x⊤x: norm in Rn; ∥x∥P =

√
x⊤Px: weight norm

in Rn; diag{λi}ni=1 : the diagonal matrix with elements λi;
P ≻ 0(≺ 0,⪰ 0,⪯ 0) for P ∈ Rn×n means that the matrix P
is symmetric and positive (negative) definite (semi definite);
λmin(P ) and λmax(P ) : the minimal and maximal eigenvalues
of matrix P = P⊤; for P ⪰ 0 the square root of P is a
matrix M = P

1
2 such that M2 = P ; tr(P ) : trace of matrix

P ; if V : Rn 7→ [0,+∞) is a positive definite function and
ẋ = f(t, x) is an ODE with f continuous on c then we denote
the time derivative of V along all solutions of the ODE as
d
dtV (x) := ∂V

∂x f(t, x); a function γ : R≥0 → R≥0 is said
to be of class K if it is continuous strictly increasing and
satisfies γ(0) = 0; a function β : R≥0 × R≥0 → R≥0 is
said to be of class KL if for each fixed t the mapping β(·, t)
is of class K and for each fixed s it is decreasing to zero
on t as t → ∞; L∞ is the space of Lebesgue measurable
essentially bounded function σ : R+ → Rn with norm defined
as ∥σ∥L∞ := ess supt∈R+

∥σ(t)∥∞ < +∞;

II. PROBLEM STATEMENT

In this paper, we deal with the linear time-invariant system
with additive perturbations,

ẋ(t) = Ax(t) +Bu(t) +Dω(t), t > 0 (1)

where x(t) ∈ Rn is the system state, ω(t) ∈ Rp is an external
bounded disturbance, u(t) ∈ Rm is the control input, A ∈
Rn×n, B ∈ Rn×m, D ∈ Rn×p are constant matrix. We assume
that the pair {A,B} is controllable.

We study a stabilization problem of the system (1). In the
general case, it is not possible to achieve a precise stabilization
of this system to zero, but a feedback controller u(x) can be
optimally tuned in order to minimize (in some sense) the effect
of external disturbance ω. For the case of a linear stabilizing
feedback there are several well-known methodologies tackling
this problem. For example, H∞ and H2 algorithms (see
e.g., [30], [31]) suggest to optimize a norm of a transfer
function, while the attractive/invariant ellipsoid method [12]
optimizes (in a certain sense) the attractive/invariant set of
the system (1) with a linear feedback. This paper is aimed
at an extension of the latter approach to a special class of
generalized homogeneous [23], [27], [29], [32] feedback laws.
The mentioned nonlinear control algorithms are known to be
efficient for finite/fixed-time stabilization of linear plants. Our
objective is to design a generalized homogeneous controller
that minimizes the attractive/invariant ellipsoid of the closed-
loop system (1) with

ω⊤(t)Qω(t) ≤ 1, ω ∈ L∞(R+,Rp), (2)

where 0 ≺ Q = Q⊤ ∈ Rp×p is a known matrix.

III. PRELIMINARIES: ELEMENTS OF THE HOMOGENEITY
THEORY

A. Linear dilation and monotonicity

The homogeneity is a symmetry of an object (e.g. a function
or a set) with respect to a group of transformations called
dilation. In this paper we deal only with the linear continuous
dilation [15]: x 7→ d(s)x, x ∈ Rn, s ∈ R, where s ∈ R is a
parameter of the dilation and d(s) = esGd =

∑+∞
i=0

siGi
d

i! . The
anti-Hurwitz matrix Gd ∈ Rn×n is known as the generator of
the dilation d.

The monotonicity of dilation is useful for a characterization
of homogeneous geometric structures in Rn and an analysis
of homogeneous control systems.

Definition 3.1: [15] Dilation d(s) is strictly monotone with
respect to a norm ∥ · ∥ in Rn, if there exist β > 0 such that

∥d(s)∥ := sup
x̸=0

∥d(s)x∥
∥x∥ ≤ eβs, ∀s ≤ 0. (3)

The monotonicity property implies that d(s) acts as a strong
contraction when s < 0 and a strong expansion when s > 0.

Theorem 3.1: [15, Corollary 6.5] If d is a linear dilation
in Rn, then the following statement holds :

1) d is strictly monotone with respect to the norm ∥ · ∥P if
and only if

PGd +G⊤
dP ≻ 0, P ≻ 0. (4)

2) if d is strictly monotone with respect to the norm ∥x∥P =√
x⊤Px then

eαs ≤ ∥d(s)∥P ≤ eβs, if s ≤ 0 (5)

eβs ≤ ∥d(s)∥P ≤ eαs, if s ≥ 0 (6)

where α = 1
2λmax(P

1
2GdP

− 1
2 + P− 1

2G⊤
dP

1
2 ) and β =

1
2λmin(P

1
2GdP

− 1
2 + P− 1

2G⊤
dP

1
2 ).

B. Canonical homogeneous norm

In the case of a strictly monotone dilation, the so-called
canonical homogeneous norm [32] can be introduced through
a homogeneous projection onto the unit sphere.

Definition 3.2: [15] Let a linear dilation d in Rn be strictly
monotone with respect to the norm ∥·∥P . The d-homogeneous
function ∥ · ∥d,P : Rn 7→ [0,+∞) defined as follows

∥x∥d,P :=

{
esx : ∥d(−sx)x∥P = 1, if x ̸= 0,

0, if x = 0,
(7)

is called the canonical homogeneous norm.
As the dilation is strictly monotone then it has been demon-
strated in [27] that ∥ · ∥d,P is single-valued, continuous
everywhere on Rn and continuously differentiable on Rn\{0}:

∂∥x∥d,P

∂x
= ∥x∥d,P

x⊤d⊤(− ln ∥x∥d,P )Pd(− ln ∥x∥d,P )

x⊤d⊤(− ln ∥x∥d,P )PGdd(− ln ∥x∥d,P )x
, x ̸= 0. (8)

Moreover, for any x ∈ Rn and s ∈ R, we have the following
properties: ∥x∥d,P = ∥−x∥d,P , ∥d(s)x∥d,P = es∥x∥d,P and
∥x∥d,P = 1 ⇔ ∥x∥P = 1.

Definition 3.3: [25] A function h : Rn → R is said to be
d-homogeneous of degree ν if

h(d(s)x) = eνsh(x), ∀x ∈ Rn\{0}, ∀s ∈ R (9)
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Definition 3.4: [25] A vector field f : Rn → Rn is said to
be d-homogeneous of degree ν ∈ R if

f(d(s)x) = eνsd(s)f(x), for x ∈ Rn\{0},∀s ∈ R (10)

The property of homogeneity of the vector field f implies that
the solutions x(t, x0) of the system ẋ = f(x), t > 0, x(0) =
x0 are also homogeneous, meaning that x(t,d(s)x0) =
d(s)x(eνst, x0), where ν ∈ R represents the homogeneity
degree of f .

C. Homogeneous control design for linear plants

Homogeneous control systems offer several benefits com-
pared to linear ones, including faster convergence [19], en-
hanced robustness [33] and reduced overshoots [15, Chapter
1]. The following theorem recalls a procedure of the gen-
eralized homogeneous control design for linear plants and
summarizes the results of the papers [22], [29], [34].

Theorem 3.2: For the time-invariant controllable system

ẋ = Ax+Bu (11)

let a pair {A,B} be controllable. Then

1) any solution Y0 ∈ Rm×n, G0 ∈ Rn×n of the linear
algebraic equation

AG0 −G0A+BY0 = A, G0B = 0 (12)

is such that the matrix G0 − In is invertible, the ma-
trix Gd = In + µG0 is anti-Hurwitz for any µ ∈
[−1, 1

ñ ], where ñ is a minimal natural number such
that rank[B,AB, ..., Añ−1B] = n, the matrix A0 =
A+BY0(G0 − In)

−1 satisfies the identity

A0Gd = (Gd + µIn)A0, GdB = B (13)

2) the linear algebraic system

A0X +XA⊤
0 +BY + Y ⊤B + ρ(GdX +XG⊤

d ) = 0 (14)
GdX +XG⊤

d ≻ 0, X = X⊤ ≻ 0 (15)

has a solution X ∈ Rn×n, Y ∈ Rm×n for any ρ ∈ R+

3) the canonical homogeneous norm ∥ · ∥d,P induced by the
weighted Euclidean norm ∥x∥P =

√
x⊤Px with P =

X−1 is a Lyapunov function of system (11) with

u(x) = K0x+ ∥x∥µ+1
d,P Kd(− ln ∥x∥d,P )x (16)

K0 = Y0(G0 − In)
−1, K = Y X−1 (17)

4) the feedback law u given by (16) is continuously differ-
entiable on Rn\{0}, u is continuous at zero if µ > −1
and u is discontinuous at zeros if µ = −1;

5) the system (11), (16) is d−homogeneous of degree µ.

Clearly, when the homogeneous degree µ < 0, the closed-
loop system (11) with controller (16) is uniformly finite-time
stable and if µ > 0, it is nearly fixed-time stable. If µ = 0, the
controller (16) turn out to be a linear controller u = K0x+Kx.

IV. HOMOGENEOUS INVARIANT ELLIPSOID

Let us consider the following MIMO (multiple-inputs
multiple-outputs) non-linear system:

ẋ = f(x, ω), t > 0 (18)

where f : Rn ×Rn → Rn is a continuous vector field, x and
ω are defined as before.

To have a bounded solution of (18) for any bounded
perturbation ω, the system must satisfy a condition like ISS2.
Recall [12] [36], that the set

ε(P ) = {x ∈ Rn : ∥x∥P ≤ 1}, P ≻ 0 (19)

is an ellipsoid centered at origin and configured with the
matrix P . Similarly, we define the d−homogeneous ellipsoid
as follows

εd(P ) = {x ∈ Rn : ∥x∥d,P ≤ 1}, P ≻ 0 (20)

where ∥ · ∥d,P is the canonical homogeneous norm induced
by the weighted Euclidean norm ∥ · ∥P .

Definition 4.1: [12] For system (18),(2), a d−homogeneous
ellipsoid εd(P ) with a configuration matrix P is said to be

• Invariant if the condition ∀x(0) ∈ εd(P ) implies x(t) ∈
εd(P ) for any t ≥ 0;

• Attractive if x(0) /∈ εd(P ) then x(t)→εd(P ) as t→∞.
In other words, an ellipsoid is considered invariant if it retains
any trajectory initiated from the interior of the ellipsoid. If
the ellipsoid is attractive, any trajectory starting outside the
ellipsoid will converges to (or into) it as time goes to infinity.
The definition of the conventional invariant ellipsoid can be
obtained by replacing εd(P ) with ε(P ) in the above definition.
For any fixed Gd, the set of the conventional ellipsoids ε(P )
is more rich than the set of d-homogeneous ellipsoids εd(P ),
since, according to the definition of the canonical homoge-
neous norm, the matrix P for the d-homogeneous ellipsoid
must satisfy the restriction P ∈ Rn×n : PGd + G⊤

dP ≻ 0,
which is required for the existence of the canonical homo-
geneous norm. However, for any positive definite symmet-
ric matrix P , a generator Gd can always be selected such
that the latter matrix inequality holds. Indeed, according to
the Theorem 3.2 the generator can always be selected as
Gd = In+µG0, then for µ sufficiently close to zero we have
PGd+G⊤

dP = 2P +µ(PG0+G⊤
0 P ) ≻ 0 due to the positive

definiteness of P . This means by choosing an appropriate
dilation d, any conventional ellipsoid can be converted into a
d−homogeneous one. The conventional and d-homogeneous
invariant ellipsoids have similar characterization.

Lemma 4.1: The following two claims are equivalent :
1) εd(P ) is a d-homogeneous invariant ellipsoid of the

system (18);
2) PGd + G⊤

dP ≻ 0 and x⊤Pf(x, ω) ≤ 0, ∀x ∈ Rn :
∥x∥P = 1, ∀ω ∈ Rp : ∥ω∥Q ≤ 1.

Proof. 1) ⇒ 2) Suppose inversely that εd(P ) is invariant,
but ∃x0 : ∥x0∥P = 1, ∃ω0 ∈ Rp : ∥ω0∥Q ≤ 1 such that

2The system (18) is considered Input-to-State Stable (ISS) [35] if there
exist two functions, β from the class KL and γ from the class K, such that
for every bounded control input u(·) and initial state x0, the solution satisfies
∥x(t)∥ ≤ β(∥x0∥, t) + γ(∥u∥).
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x⊤
0 Pf(x0, ω0) > 0. Notice that the LMI PGd +GdP ≻ 0 is

fulfilled due to Theorem 3.1. Then, for any solution x(t) of
the system (18) with ω = ω0, by the formula (8) we have

d∥x(t)∥d,P

dt = r(t)x
⊤(t)d⊤(− ln r(t))Pd(− ln r(t))f(x(t),ω0)
x⊤(t)d⊤(− ln r(t))PGdd(− ln r(t))x(t)

,

where r(t) = ∥x(t)∥d,P . Since f and ∥ · ∥d,P are continuous
and x(t) → x0 as t → 0+ then ∥x(t)∥d,P → ∥x0∥d,P = 1

as t → 0+ and d∥x(t)∥d,P

dt

∣∣∣
t=0+

=
x⊤
0 Pf(x0,ω0)

x⊤
0 PGdx0

> 0, where
the equivalence ∥x0∥d,P = 1 ⇔ ∥x0∥P = 1 is utilized. The
obtained inequality means that the function t 7→ ∥x(t)∥d,P is
growing on some interval of time [0, ε] and ∥x(t)∥d,P > 1 for
t ∈ (0, ε). This contradicts to the invariance of the ellipsoid
εd(P ).

2) ⇒ 1) Suppose εd(P ) is not invariant ellipsoid, i.e., for
some ω satisfying (2) there exists a solution x(t) of the system
(18) initiated inside the ellipsoid εd(P ) such that there exists
T > 0 : ∥x(T )∥P > 1. Since the function t 7→ ∥x(t)∥d is con-
tinuous then there exists tb ∈ (0, T ) such that ∥x(tb)∥d,P = 1
and 1 < ∥x(t)∥d,P for all t ∈ (tb, T ). In this case, using the
continuity of f we derive lim supt→tb

∥x(t)∥d,P−∥x(tb)∥d,P

t−tb
=

lim supt→tb
x⊤(tb)Pf(x(tb),ω(t))

x(tb)⊤PGdx(tb)
> 0. Hence, there exists the

time instant t∗ (belonging to a neighborhood of tb) such that
ω(t∗)⊤Qω∗(t∗) ≤ 1 and x⊤(tb)Pf(x(tb),ω(t∗))

x(tb)⊤PGdx(tb)
> 0. Therefore,

we obtain the contradiction to the condition 2). ■
The following corollary shows that the homogeneity of the

system implies the homogeneity of set of invariant ellipsoids.
Corollary 4.1: Let d and dω be dilations in Rn and Rp,

respectively. Let a continuous vector field (x, ω) 7→ f̃(x, ω) =[
f(x,ω)

0

]
be d̃-homogeneous of degree µ ∈ R with d̃(s) =

diag(d(s),dω(s)), s ∈ R. If εd(P ) is an invariant ellipsoid
of the system ẋ = f(x, ω), then d(s)εd(P ) is an invariant
ellipsoid of the system ẋ = f(x,dω(s)ω).
This immediately follows from Lemma 4.1 and the d̃-
homogeneity of f̃ implying d(s)ẋ = e−µsf(d(s)x,dω(s)w).
The invariant/attractive ellipsoid can be used to characterize
the effects caused by external perturbations ω(t). For example,
a conventional ellipsoid ε(P ) is invariant for the linear system

ẋ = Ax+Dω, A ∈ Rn×n, D ∈ Rn×p, (21)

where A is a Hurwitz matrix, the pair {A,D} is controllable
and x, ω are as before, if and only if the LMI holds [36], [37]:
X⊤A⊤ +AX + βX + 1

βDQ−1D⊤ ⪯ 0, X = P−1 ≻ 0.
For the considered linear system, any invariant ellipsoid is

attractive [36], [37]. Below we show that the latter conclusion
takes a place for the linear plant (1) with any stabilizing
homogeneous controller (16).

V. HOMOGENEOUS CONTROL WITH MINIMAL
INVARIANT/ATTRACTIVE ELLIPSOID

A. LMI-based characterization of invariant/attractive ellipsoid

Below in the proof we use the S-procedure recalled here.
Lemma 5.1 (Proposition 4.1, [38]): Let us consider the ho-

mogeneous quadratic forms fi(x) = x⊤Aix, i = 0, 1, 2 with
x ∈ Rn Ai = A⊤

i ∈ Rn×n, and the numbers α0, α1, α2 ∈ R,
α2 ̸= 0. Let there exist µ1, µ2 ∈ R and x0 ∈ Rn such that

µ1A1 + µ2A2 ≻ 0 and f1(x0) < α1, f2(x0) = α2.

Then the following two claims are equivalent:
1) ∃τ1≥ 0,∃τ2∈ R : A0⪯τ1A1+τ2A2, α0≥τ1α1+τ2α2;
2) f0(x)≤α0, ∀x ∈ Rn : f1(x)≤α1, f2(x)=α2.
Based on Lemma 5.1, a criterion of invariance of the

d−homogeneous ellipsoid for the system (1) with the homo-
geneous controller (16) is given by the following theorem.

Theorem 5.2: Let D ̸= 0 and all parameters of the control
(16) be defined as in Theorem 3.2 with X ∈ Rn×n, A0 =
A+BK0 and Gd = In+µG0. Let dω be a linear continuous
dilation in Rp such that the vector field

(x, ω) 7→ f̃(x, ω) =

[
Ax+Bu(x) +Dω

0

]
(22)

is d̃−homogeneous of degree µ with respect to the dilation

d̃(s) =

[
d(s) 0
0 dω(s)

]
, s ∈ R (23)

in Rn+p. The d-homogeneous ellipsoid εd(X
−1) is invariant

for the system (1), (16) if and only if there exist β > 0:

W :=

[
A0X+XA⊤

0 +BY +Y ⊤B⊤+βX D
D⊤ −βQ

]
⪯0,

GdX+XG⊤
d ≻0, X≻0

(24)

with Y = KX ∈ Rm×n.
Proof. Let us denote P = X−1. Sufficiency: From the first
LMI of (24), we derive[

x
ω

]⊤[
PA0+A⊤

0 P+PBK+K⊤B⊤P+βP PD
D⊤P −βQ

] [
x
ω

]
⪯0 (25)

which can be written as

x⊤(PA0 +A⊤
0 P + PBK +K⊤B⊤P )x+ x⊤PDω

+ ω⊤D⊤Px ≤ β(ω⊤Qω − x⊤Px)

Since ∥x∥d,P is continuous and x → x0 as t → 0, then for
ω⊤Qω ≤ 1 and ∥x0∥d,P = 1 we derive
d∥x(t)∥d,P

dt

∣∣∣
t=0+

=
x⊤0(PA0+A⊤

0P+PBK+K⊤B⊤P )x0+x⊤0PDω+ω⊤D⊤Px0

x⊤0(PGd+G⊤
dP )x0

≤ 0,

where the equivalence ∥x0∥d,P = 1 ⇔ ∥x0∥P = 1 and the
second LMI of (24) are utilized. By Lemma 4.1, we conclude
that εd(P ) is a d-homogeneous invariant ellipsoid of the
system (1).

Necessity: First of all, notice that, by definition of the d-
homogeneous invariant ellipsoid, the canonical homogeneous
norm is well defined, which ensures that the second and the
third matrix inequalities in (24) are fulfilled. Therefore, we
need to prove the fulfillment of the first one. Let us initially
show that if εd(P ) is a d-homogeneous invariant ellipsoid of
the system (1) then

ω⊤d⊤(− ln ∥x∥d,P )Qd(− ln ∥x∥d,P )ω ≤ 1 ⇒ (26)

x⊤d⊤(− ln ∥x∥d,P )Pd(− ln ∥x∥d,P )f(x, ω) ≤ 0 (27)

Suppose inversely that εd(P ) is a d−homogeneous in-
variant ellipsoid, but ∃x1 ∈ Rn, ∃ω1 ∈ Rp such
that ω⊤

1 d
⊤
ω (− ln ∥x1∥d,P )Qdω(− ln ∥x1∥d,P )ω1 ≤ 1 and

x⊤
1 d

⊤(− ln ∥x1∥d,P )Pd(− ln ∥x1∥d,P )f(x1, ω1) > 0. De-
noting xs1 = d(−s)x1, ωs1 = dω(−s)ω1 and s = ln ∥x1∥d,P ,
we derive ω⊤

s1Qωs1 ≤ 1, eµsx⊤
s1Pf(xs1, ωs1) > 0, where
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the homogeneity of f̃(x, ω) is utilized on the last step. Since
∥xs1∥P = 1 then we derive

∥xs1∥P = 1, ω⊤
s1Qωs1 ≤ 1, x⊤

s1Pf(xs1, ωs1) > 0.

The latter contradicts Lemma 4.1, so the implication (26)-
(27) takes a place. Moreover, using the notation π =
d(− ln ∥x∥d,P )x and ωx = dω(− ln ∥x∥d,P )ω, we derive
d(− ln ∥x∥d,P )f(x, ω) = eµsf(π, ωx) = eµs[(A0 +BK)π +
Dωx]. Since for any x ̸= 0 we have π⊤Pπ = 1 then the
proven implication can be rewritten as follow :

ω⊤
x Qωx ≤ 1 and π⊤Pπ = 1 ⇒ π⊤P [(A0 +BK)π +Dωx] ≤ 0

Applying Lemma 5.1 we derive ∃τ1 ≥ 0,∃τ2 ∈ R: τ1+τ2 ≤ 0,[
P (A+BK)+(A+BK)⊤P PD

D⊤P 0

]
≤ τ1

[
0 0
0 Q

]
+ τ2 [ P 0

0 0 ] .

If the latter inequality holds for τ2 < −τ1 then it holds for
τ2 = −τ1. Indeed, τ2 ≤ −τ1 ⇒ τ2P ⪯ −τ1P . Taking into
account P = X−1, we conclude that the inequality (24) holds
for β := τ1 ≥ 0. Let us show that β > 0. Indeed, if β = 0
then the following inequality must hold :[

A0X+XA⊤
0+BY+Y ⊤B⊤ D

D⊤ 0

]
⪯0. (28)

The latter inequality may hold only if D = 0. Indeed, by
the generalized Schur complement [39], it has the equivalent
conditions A0X+XA⊤

0 +BY +Y ⊤B⊤ ⪯ 0 and I ·D⊤ = 0.
Therefore, β may be zero only if D = 0. This contradicts the
assumption of the theorem. ■

Similarly to the case of the linear control system [36], [37],
the invariant ellipsoids of the d-homogeneous control system
(1), (16) can be characterized by means of a linear matrix
inequality (24) as long as the perturbation ω is involved into
the system in a generalized homogeneous manner. The only
difference in the LMI (24) with respect to the conventional
linear case is the condition GdX +XG⊤

d ≻ 0 inspired
by the homogeneity of system. Notice that for µ = 0 the
homogeneous controller (16) becomes linear u = (K0 +K)x
and Gd = In. This means that all linear stabilizing controllers
belong to the set of the considered homogeneous stabilizers
(16). However, the above theorem introduces a restriction
to the structure of the exogenous perturbations. Namely, it
requires certain symmetry with respect to a dilation of the
vector of disturbances ω too. The mentioned condition can be
checked as follows.

Proposition 5.1: Let G0 and the homogeneous controller u
be defined as in Theorem 3.2. If there exists a matrix G0,ω ∈
Rp×p such that

G0D = DG0,ω (29)

then for any µ ∈ R satisfying

1 + µ+ µRe (λi(G0,ω)) > 0, ∀i = 1, 2, ..., n (30)

1) the matrix Gdω = Ip+µ(Ip+G0,ω) is anti-Hurwitz and
dω(s) = esGdω , s ∈ R, is a dilation in Rp;

2) the vector field f̃ defined by (22) is d̃-homogeneous of
degree µ, where d̃ is a dilation in Rn+p defined by (23).

Proof. The inequality (30) immidiately implies that Gdω

is anti-Hurwitz and dω(s) = esGdω is a dilation in Rp. From

equation (29), we derive that Gi
0D = DGi

0,ω , where i is a
natural number. Then we have

eµG0sD =
∑+∞

i=0
Gi

0µ
isi

i! D = D
∑+∞

i=0

Gi
0,ωµisi

i! = DeµG0,ωs (31)

This implies eµsd(s)D = Ddω(s). Finally, since G0 is
defined as in Theorem 3.2, then we have

f(d(s)x,dω(s)ω) = Ad(s)x+Bu(d(s)x) +Ddω(s)ω =

eµsd(s)x+ eµsd(s)Bu(x) + eµsd(s)Dω = eµsd(s)f(x, ω),

where f(x, ω) = Ax+Bu(x) +Dω. ■
It is well-know [36], [37] that, in many cases, an invariant

ellipsoid of the linear control system is attractive as well. The
same conclusion can be made for the considered homogeneous
control system provided the dilation dω in Rp is strictly
monotone with respect to the norm ∥ · ∥Q in Rp.

Corollary 5.1: Under the conditions of Theorem 5.2, the
invariant ellipsoid εd(P ) with P = X−1 is attractive if

QGdω +G⊤
dω

Q ≻ 0. (32)

Proof. Considering the canonical homogeneous norm as a
Lyapunov function of the system (1), (16), we derive

d∥x(t)∥d,P

dt = ∥x∥d,P x⊤
s X−1d(− ln ∥x∥d,P )[Ax+Bu+Dω]

x⊤
s PGdxs

= ∥x∥1+µ
d,P

x⊤
s X−1[(A0+BK)xs+Dωs]

x⊤
s PGdxs

=
∥x∥1+µ

d,P [(X
−1xs)

⊤(A0+BK)xs+(X−1xs)
⊤Dωs]

2x⊤
s PGdxs

+
∥x∥1+µ

d,P [x
⊤
s (A0+BK)⊤X−1xs+ω⊤

s D⊤X−1xs]
2x⊤

s PGdxs

+
∥x∥1+µ

d,P [βx
⊤
s X−1xs−β−βω⊤

sQωs+βω⊤
sQωs]

2x⊤
s PGdxs

=
∥x∥1+µ

d,P

2x⊤
s PGdxs

([
X–1xs
ωs

]⊤
W

[
X–1xs
ωs

]
− β + βω⊤

sQωs

)
,

where xs = d(− ln ∥x∥d,P )x, ωs = d(− ln ∥x∥d,P )ω and
the identities A0d(s) = eµsd(s)A0,d(s)B = es,∀s ∈ R are
utilized on the first step. Since

ω⊤d⊤
ω (s)Qdω(s)ω +

∫ 0

s
d
dτ ω

⊤d⊤
ω (τ)Qdω(τ)ωdτ = ω⊤Qω

then, due to (32), for any s > 0 and any ω ̸= 0 we have∫ 0

s
d
dτ ω

⊤d⊤
ω (τ)Qdω(τ)ωdτ =

∫ 0

s
ω⊤d⊤

ω (τ)
(
QGdω

+G⊤
dω

Q
)
dω(τ)ωdτ > 0

and ω⊤d⊤
ω (s)Qdω(s)ω < ω⊤Qω. This implies that

ω⊤
s Qωs < ω⊤Qω ≤ 1 for any x : ∥x∥d,P > 1 and any

ω ̸= 0. Therefore, using the inequality (24) with β > 0, we
conclude that

d

dt
∥x∥d,P < 0, ∀x : ∥x∥d,P > 1,∀ω : ∥ω∥Q ≤ 1.

Hence, the d-homogeneous ellipsoid is attractive. ■
Corollary 5.2: If G0,ω ∈ Rp×p is defined as in Proposition

5.1, then the inequalities (30) and (32) with Gdω
= Ip+µ(Ip+

G0,ω) hold for any µ ∈ R satisfying

1 + µ+ µ
λi

(
Q

1
2 G0,ωQ− 1

2+Q− 1
2 G⊤

0,ωQ
1
2

)
2 >0, ∀i = 1, ..., n. (33)

Proof. Since 1 + µ + µ
λi

(
Q

1
2 G0,ωQ− 1

2+Q− 1
2 G⊤

0,ωQ
1
2

)
2 =

λi

(
Q

1
2 GdωQ− 1

2+Q− 1
2 G⊤

dω
Q

1
2

)
2 then the inequality (33) implies

the inequality (32). Taking into account that Q ≻ 0, by
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Lyapunov inequality, we derive that Gdω
is anti-Hurwitz, i.e.,

the inequality (30) holds as well. ■
Obviously, the inequalities (30) and (33) are always feasible,

at least, for µ close to 0. So, the existence of solution for the
equation (29) is the only critical restriction of an applicability
of the homogeneous invariant/attractive ellipsoids method.

B. Minimal invariant and attractive ellipsoids

Inspired by [36] and Theorem 5.2, the optimal tuning of
the homogeneous controller (16) can be formulated in terms
of the following Semi-Definite-Programming (SDP) problem:

tr(X) → min (34)

subject to the LMI constraints (24).
Note that for any fixed β and any fixed homogeneity degree

µ, the problem of finding an optimal solution is reduced
to minimizing the linear function (34) subject to the LMI
constraints (24), which is the classical SDP problem. There
exist many MATLAB toolboxes for its numerical solution
such as SeDuMi and YALMIP. The optimization with respect
to scalar parameters β and µ can be realized using some
gradient-free algorithms (like fminsearch in MATLAB).
The considered SDP problem without the additional constraint
GdX + XG⊤

d ≻ 0 was studied in [36], where its convexity
has been proven.

Notice that the linear controller is a particular case of the
homogeneous controller with µ = 0, d(s) = esIn, dω(s) =
esIp, so the condition of the homogeneity of the vector field f̃
is always fulfilled (see Theorem 5.2) and LMI (24) becomes

A0X +XA⊤
0 + βX +BY + Y ⊤B⊤ + 1

βDQ−1D⊤ ⪯ 0, X ≻ 0 (35)

which perfectly fits the results of [36], [37]. Moreover, if the
system of algebraic equations (12), (29) has a solution then
an optimal (in the sense of minimal invariant ellipsoid) linear
controller can be upgraded to a (nonlinear) homogeneous one
without any degradation of the minimal invariant/attractive
ellipsoid. Such an upgrade can be useful in practice, since
homogeneous controllers may provide another good properties
faster convergence, smaller overshoots and better robustness
with respect to unmodelled nonlinearities than linear algo-
rithms (see [15, Chapter 1]).

Corollary 5.3: Let the tuple (Xopt, Yopt, βopt) ∈ Rn×n ×
Rm×n× (0,+∞) be a solution of the SDP problem (34), (35)
then for any µ ∈ R satisfying

1 + µλmin

(
X

− 1
2

opt G0X
1
2
opt +X

1
2G⊤

0 X
− 1

2
opt

)
> 0, (36)

the tuple (Xopt, Yopt, βopt) is a solution of the SDP problem
(34), (24), with Gd = In + µG0 ∈ Rn×n. Moreover, the d-
homogeneous ellipsoid εd(X

−1)opt is
• invariant for the homogeneous control system (1), (16)

provided that µ ∈ R satisfies (36) and (30);
• attractive for the homogeneous control system (1), (16)

provided that µ ∈ R satisfies (36) and (33).
Proof. The required result directly follows from the equiva-
lence of inequality (36) to GdX +XG⊤

d ≻ 0. ■
The process of upgrading the optimized linear controller

to the optimal homogeneous controller can be summarized in

the following steps: 1) Define the system by matrix A,B,D
and the bounded disturbance characterized by Q; 2) Solve
the LMIs system (12) (29) to obtain G0 and G0,ω; 3) Solve
the SDP problem (34), (35) to obtain the linear optimal
parameters (Xopt, Yopt, βopt) where Kopt = YoptX

−1
opt; 4) Find

the admissible µ by solving (36) and (30). If there exists an
feasible solution µ in the final step, then it means the optimal
homogeneous controller (in the sense of minimal ellipsoid) can
be implemented in the form of (16) with K = Kopt − K0,
Gd = In + µG0 and P = (Xopt)−1.

A transformation of a linear optimal controller to a homo-
geneous optimal controller can also be useful, for example, if
an additional criterion needs to be optimized or an additional
condition has to be satisfied. For example, if K0 = 0 and
the selection µ = −1 is admissible in the latter corollary
then the corresponding (”upgraded”) homogeneous controller
is uniformly bounded. Indeed,

u⊤u = x⊤d⊤(− ln ∥x∥d,P )K⊤Kd(− ln ∥x∥d,P )x ≤ λmax(P
−1/2K⊤KP−1/2)

where the identity x⊤d⊤(− ln ∥x∥d,P )Pd(− ln ∥x∥d,P )x = 1
is utilized in the last step.

Corollary 5.4: If K0 = 0 and µ = −1 then the homo-
geneous control (16) satisfies the restriction u⊤(x)u(x) ≤
ū2,∀x ∈ Rn, for some ū > 0, if and only if[

X Y ⊤

Y ū2Im

]
⪰ 0 (37)

where X = P−1, Y = KX .
Proof. If K0 = 0 and µ = −1, we have

u⊤u ≤ λmax(P
−1/2K⊤KP−1/2)

The latter inequality is sharp, thus the inequality u⊤u ≤ ū2 is
equivalent to λmax(P

−1/2K⊤KP−1/2) ≤ ū2 and to

X⊤K⊤KX ≤ ū2X, (38)

Apply the Schur complement we derive (37). ■
Therefore, the design of globally bounded controllers that

minimize the size of the invariant or attractive ellipsoid can
be achieved by using the d-homogeneous invariant ellipsoid
method. The design procedure in this case is formulated in
terms of the SDP problem (34), (24), (37).

VI. SIMULATION AND EXPERIMENT

A. Numerical Results

In this subsection, the linearized model of rotary inverted
pendulum system Quanser Qube Servo-2 is studied.

ẋ = Ax+Bu+Dω (39)

A =


0 0 1 0
0 0 0 1

0
l2rgm2

p
Jt

−brJp
Jt

− k2
m

Rm

Jp
Jt

−lrmpbp
Jt

0
glmpJr

Jt
− lrmpbr

Jt
− k2

m
Rm

lrmp
Jt

−Jrbp
Jt

 ,

B =
km
Rm

 0
0
Jp
Jt

lrmp
Jt

 , D =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, x =

[
x1
x2
x3
x4

]
=

[
θ
α
θ̇
α̇

]
,

θ is the angle position of arm and α is the angle position of
pendulum. The external disturbance is bounded by ∥ω∥Q ≤ 1
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TABLE I: Pendulum Model Parameters

Parameter Description Value Units
Rm Motor Resistance 8.4 Ω

Km Back-emf constant 0.042 V ·s
rad

mr Rotary arm mass 0.095 kg
r Rotary arm length 0.085 m
Jr Rotary Inertia Moment r2mr

3
kg ·m2

br Rotary Damping Coefficient 10−3 N·M·s
rad

mp Pendulum Link Mass 0.024 kg
Lp Pendulum Link length 0.129 m

l Pendulum center of mass lp
2

m

Jp Pendulum inertia moment
mp·L2

p

3
kg ·m2

bp Pendulum Damping Coefficient 5× 10−5 N·M·s
rad

g Gravity constant 9.81 m
s2

with

Q =

[
2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

]
, ω =

[
0.2 0.3 0.3 0.4

]⊤ · sin t

2

Using Theorem 3.2 and Proposition 5.1, we find the matrix
Y0, G0 and G0,ω such that (12) and (29) hold:

Y0 =
[
0 10.65 −0.73 0.47

]
, (40)

G0 =

[−3 2.02 0 0
0 −1 0 0
0 0.38 −2 2.02
0 0 0 0

]
, G0,ω =

[−3 2.02 0 0
0 −1 0 0
0 0.38 −2 2.02
0 0 0 0

]
(41)

We define K0 and Gd using Y0 and G0 as in Theorem 3.2.
Using (34) (35) we design the optimal linear controller

Kopt =

[
27.12

−177.13
10.91
−17.93

]⊤
, X =

[ 1.33 0.11 −0.87 0.42
0.11 0.05 −0.51 −0.58
−0.87 −0.51 48.52 35.47
0.42 −0.58 35.47 30.13

]
(42)

Finally, we verify that for µ = −0.7, the LMIs (24)
(36) (33) are feasible. We define the gain of homogeneous
controller K = Kopt − K0. The simulation results are
shown in Fig.1-2. Theoretically, the optimal linear controller
and the ”upgraded” (homogeneous) controller has the same
invariant ellipsoid. However, according to the Fig. 1, for linear
controller the maximum value of x1 in the invariant set is
about 0.1296. The same x1 by using homogeneous controller
is about 0.0494. The precision improvement on x1 is about
60%. Besides, we can also find that x1 has a faster response
by using the homogeneous controller.

0 5 10 15

time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
1
 Linear

x
1
 homogeneous

Fig. 1: x1 by linear and homogeneous controller

B. Experiment results

This experiment is based on the rotary inverted pendu-
lum Quanser Qube Servo-2, where the same model (39) is
applied locally (close-to the upper unstable position of the
pendulum). The system parameters are presented in Table

0 5 10 15

time(s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x
2

x
2
 linear

x
2
 homogeneous

Fig. 2: x2 by linear and homogeneous controller

I. Here we consider more physical model of disturbances
D =

[
0 0 2.53 2.50

]⊤
and Q = 1. We use the well tuned

linear feedback gain K =
[
2 −35 1.5 −3

]⊤
provided by

Quanser to design the homogeneous controller by upgrading
the linear one. We obtain

X =

[ 0.00159 0.00002 −0.00275 −0.00018
0.00002 0.00002 0.00011 −0.00004
−0.00275 0.00011 0.02492 0.01377
−0.00018 −0.00004 0.01377 0.01210

]
(43)

for µ = −0.7 satisfying (36) (33) and LMI (24).
The experiment is repeated five times to guarantee a fair

comparison. The results are presented in the Table II and Table
III. It is clear to see that the stabilization precision of θ and α
in L2-norm is improved by using the homogeneous controller
about 20.22% and 8.3%, respectively. The stabilization preci-
sion in the L∞-norm is improved about 11.62% and 15.4%,
respectively. The energy consumption increases about 2.41%.
Fig. 3 and 4 provide the error trajectory of θ and α in Test 2
of experiment.

TABLE II: Pendulum stabilization with linear controller

Linear ∥θ∥L∞ ∥α∥L∞ ∥θ∥L2 ∥α∥L2 ∥u∥L2

Test 1 0.0767 0.0092 0.21333 0.01347 0.79136
Test 2 0.07363 0.00613 0.20377 0.01271 0.7717
Test 3 0.07363 0.00613 0.21414 0.01282 0.67597
Test 4 0.0859 0.0092 0.2379 0.01423 0.74302
Test 5 0.0859 0.0092 0.24353 0.01332 0.60481

Average 0.0792 0.00797 0.2225 0.0133 0.7174

TABLE III: Pendulum stabilization with homogeneous controller

Homogeneous ∥θ∥L∞ ∥α∥L∞ ∥θ∥L2 ∥α∥L2 ∥u∥L2

Test 1 0.0675 0.00613 0.18762 0.01268 0.6292
Test 2 0.0675 0.00613 0.18695 0.01277 0.77291
Test 3 0.0675 0.00613 0.16906 0.01126 0.71843
Test 4 0.0767 0.0092 0.17481 0.01245 0.76564
Test 5 0.07056 0.00613 0.16912 0.01202 0.78741

Average 0.0700 0.00674 0.1775 0.0122 0.7347
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Fig. 3: θ error trajectory by linear and homogeneous controller
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Fig. 4: α error trajectory by linear and homogeneous controller

VII. CONCLUSION

This article extends the invariant/attractive ellipsoid method
[12], [36] to a class of the generalized homogeneous system.
The LMI-based characterization of d-homogeneous invari-
ant/attractive ellipsoid for a linear plant is obtained by the
homogeneous control. Linear stabilizers belong to the set
of the considered homogeneous controllers assuming that the
homogeneity degree is a tuning parameter. Under certain
restriction to the structure of perturbations, an optimal (in
the sense of the minimal invariant ellipsoid) d−homogeneous
controller can be obtained from the optimal linear one by
a proper selection of dilation group d. Despite that, in this
case, optimal invariant ellipsoids are theoretically the same
for linear and homogeneous controllers, the homogeneous
controller still may improve the control quality by faster
response, better robustness to unmodelled uncertainties and
reduction of overshoots. Numerical and practical experiments
support this theoretical conclusion.
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