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A REAL-TIME VIDEO QUALITY METRIC FOR HTTP ADAPTIVE STREAMING
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ABSTRACT

In HTTP Adaptive Streaming (HAS), a video is encoded
at multiple bitrate-resolution pairs, referred to as repre-
sentations, which enables users to choose the most suit-
able representation based on their network connection.
To optimize the set of bitrate-resolution pairs and im-
prove the Quality of Experience (QoE) for users, it is
of utmost importance to measure the quality of the rep-
resentations. VMAF is a highly reliable metric used in
HAS to assess the quality of representations. However,
in practice, using it for optimization can be a very time-
consuming process, and it is infeasible for live streaming
applications. To tackle its high complexity, our paper in-
troduces a new method called VOM4HAS, which extracts
low-complexity features, including (7) video complexity
features, (47) bitstream features logged during the encod-
ing process, and (zi¢) basic video quality metrics. These
extracted features are then fed into a regression model
to predict VMAF. Our experimental results demonstrate
that VOM4HAS achieves a high Pearson Correlation Co-
efficient (PCC) with VMAF, ranging from 0.95 to 0.96
depending on the resolution. However, it exhibits sig-
nificantly lower complexity, making it suitable for live
streaming scenarios.

Index Terms— Video quality, HAS, VMAF, QoE,
bitstream.

1. INTRODUCTION

Video streaming is experiencing a steady increase in
usage, thanks to the widespread availability of the high-
speed internet and the proliferation of mobile devices [1].
It has become an integral part of our daily lives, with
applications ranging from entertainment to education,
business, and beyond. For example, streaming platforms
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such as Netflix, Hulu, and Amazon Prime Video give us
the ability to watch our favorite content anytime, any-
where. Online learning platforms, like Coursera and
Udemy, provide students with the flexibility to learn at
their own pace and from anywhere in the world, us-
ing video streaming technology. Additionally, video
streaming technology enables real-time communication
between people regardless of their location, resulting in
significant time and cost savings by eliminating the need
for travel.

Video streaming services typically rely on HTTP
Adaptive Streaming (HAS) [2] as their primary technol-
ogy for delivering content to viewers. HAS divides each
video content into smaller segments, enabling clients to
receive and play the video immediately without waiting
for the entire video to download. Furthermore, each
video segment is provided at multiple bitrates, known
as representations, allowing clients to adjust dynami-
cally based on the available network bandwidth and the
device’s capabilities, ensuring a smooth viewing experi-
ence [3, 4].

Measuring the perceived video quality [5] is an im-
portant aspect of evaluating QoE in video streaming ser-
vices [6, 7]. Video quality is typically affected by com-
pression artifacts that occur during video compression,
which is necessary to reduce the bitrate of the video for
efficient transmission over networks. The video com-
pression process uses codecs to encode the video data
and remove redundant information, resulting in the loss
of some details and visual quality.

The most accurate method of assessing video qual-
ity is subjective testing, which is very time-consuming
and expensive [8, 9]. As a cost-effective alternative to
subjective testing, objective metrics can be used to eval-
uate video quality. Among objective quality metrics,
VMATF [10] has gained significant attention in recent
years due to its high correlation with subjective testing
results [11, 12, 13]. While VMAF is highly accurate in
predicting human video quality perception, it has been
criticized for its slow processing speed [14]. This can in-
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crease computation costs for content providers and make
it impractical for use in real-time applications. This is
particularly important for streaming applications, where
the quality metric needs to be evaluated multiple times
for the same video, across different representations.

In this paper, we propose a novel video quality metric
named VOM4HAS to reduce the computational demand
for the calculation of video quality in HAS. The pro-
posed VOM4HAS metric significantly reduces the com-
putational cost of VMAF while maintaining a high corre-
lation with that. This is achieved by using a combination
of low-complexity features, such as (z) video complexity
features, (i) bitstream features logged during encoding,
and (z27) basic video quality metrics logged during en-
coding, for making predictions.

2. A VIDEO QUALITY METRIC FOR HAS

In this section, we present our proposed video quality
metric, VOM4HAS, which utilizes low-complexity fea-
tures extracted from the original video and video encod-
ings to incorporate them for prediction. These features
are classified into three categories: (¢) video complex-
ity features (cf. 2.1), (iz) bitstream features (cf. 2.2), and
(417) basic quality metrics (cf. 2.3) which are used to con-
struct VOM4HAS, as shown in Fig. 1.

2.1. Video Complexity Features

The perceived quality of video frames at a fixed bitrate is
affected by various factors, including the spatial and tem-
poral complexities of the frames. These features have a
significant impact on video compressibility [15] and are
commonly utilized in video quality metrics [16]. The
spatial complexity of frames refers to the amount of de-
tail and variation in the video frames, such as textures,
edges, and colors. Temporal complexity, on the other
hand, refers to the amount of motion and changes be-
tween frames, such as camera movements, object move-
ments, and scene changes. Videos with high spatial and
temporal complexity typically require higher bitrates to
maintain the same perceived video quality. Therefore,
we compute video complexity features for both the orig-
inal and encoded videos, denoted as Cyq and Ci., re-
spectively. In this paper, we use a DCT-based energy
function (Epcr) [17, 18] to quantify the spatial com-
plexity of video frames. The energy function serves as a
tool for mapping the texture of a block of pixels from a
multi-dimensional frequency space to a one-dimensional
energy space. It assigns higher costs to higher DCT fre-
quencies. The DC value is treated separately. The func-
tion is defined as follows:

w h

Epcr =33 G Uipori—1,5-1)] )

i=1 j=1

where E'pcr represents the energy of the block, with
w and h denoting its width and height, respectively. The
(4,7)*" DCT component is given by DCT (i, ) when
1 + j is greater than 2, and is O otherwise. The energy
function per frame E is calculated by averaging over en-
tire blocks [18]. Blocks of highly textured pixels produce
high energy values, as they contain many high-frequency
DCT values. Conversely, blocks of homogeneously col-
ored pixels, which have few high-frequency DCT values,
produce low energy values.

For the temporal complexity, we use the temporal
function of the DCT-based energy function (h) [18],
which is expressed as follows:

1& 1
h = C ; w2 SAD(EDCT(t,C),EDCT(t 1,6)) )

here, ¢ denotes the block index, C' represents the total
number of blocks, w signifies the width of the blocks,
and t denotes the frame index. In summary,

Crec - {EreC7 hrec}: Corg = {Eorm horg}- (3)

2.2. Bitstream Features

The encoding statistics and information are valuable data
because they can represent the compressibility of the
video. We selected some features from the bitstream log
during encoding as follows:

* QP (Quantization Parameter) is a parameter used in
video coding to control the quantization process, which
in turn affects the bitrate and video quality. In the con-
stant bitrate rate control method, QP is dynamically
determined for each block so that the bitrate reaches
the target level. Lower () P values result in better video
quality but higher bitrate, while higher ) P values re-
sult in lower video quality but lower bitrate. The aver-
age ()P per frame is recorded as a feature during video
encoding.

* Bits, which denotes the number of bits required to en-
code each frame, is another feature that can be logged
during encoding. This feature can provide information
on the complexity of each frame, which can be useful
for predicting video quality.

* Distortion denotes the average distortion video frames
after compression and is typically reported as two
separate values: one for the luma (brightness) compo-
nent and one for the chroma (color) component of the
frames.
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Fig. 1: Overview of VOM4HAS architecture.

* Psy Energy refers to the amount of energy in a video
frame that is not perceived by the human visual sys-
tem. It is calculated as the sum of the absolute differ-
ence (SAD) between the source and the reconstructed
energy of a frame.

* Residual Energy is a measure of the energy of the
difference between the original image and the recon-
structed image. It is calculated as the sum of squared
error (SSE) between the original image and the recon-
structed image before quantization.

* Luma/Chroma Values represent the brightness (luma)
and color (chroma) information of a video frame. For
our evaluation, we focused solely on their average val-
ues and disregarded their minimum and maximum val-
ues.

» Total CTU Time is the average time for compressing
and filtering Coding Tree Units (CTUs) [19] of each
frame

In summary,

B = {gp, bit, luma_dist, chroma_dist, psy_energy

res_energy, luma_avg, cr_avg, cb_avg, CTU _time}

2.3. Basic Video Quality Metrics

Video codecs often provide two quality metrics, namely
PSNR and SSIM. These can be enabled by appending op-
tions like ——psnr and ——ssim to the FFmpeg com-
mand line. These metrics, denoted as () in this paper, can
be calculated during encoding without incurring a signif-
icant additional time cost compared to performing a sep-
arate calculation, as the encoder computes them on-the-
fly. This eliminates the need to invoke external software
and read frames again, thereby improving efficiency.

3. EXPERIMENTAL RESULTS

In this section, we present the experimental results by
evaluating VOM4HAS on the Inter4K dataset [20]. It
contains 1000 ultra-high (4K) resolution video clips with
a frame rate of 60 frames per second (fps) sourced from
YouTube. The videos cover a variety of content types.
We use the open-source software x265 v3.4 to encode
videos, following the recommendations of Apple [21]
by producing 12 representations of the HLS bitrate lad-
der. The spatial (E,,4) and temporal (h,4) complexity
features are extracted from the original videos using the
open-source VCA software [18]. The features of the en-
coded representation are extracted by logging them into a
csv file using the ——csv-log-level option in x265.
The x265 encoder was modified to log the spatial (Fie.)
and temporal (h.) complexity features during encoding.
To compute VMAF scores, the encoded representations
are first decoded and then upscaled to a 4K resolution.
The VMAF score is then calculated between the original
video and the upscaled representation using the VMAF
model vmaf_4k v0.6.1!.

3.1. Performance Analysis

To predict the per-segment VMAF scores for each rep-
resentation in the bitrate ladder, we perform temporal
pooling and calculate the average of the per-frame fea-
tures for each segment. We then use both linear regres-
sion and random forest models to predict the scores. Ta-
ble 2 summarized the PCC scores obtained when using
VOM4HAS to predict per-segment VMAF. It is observed
that the PCC of VMAF is slightly lower only for the
lowest bitrate (0.87), whereas with increasing bitrate, the
PCC can reach as high as 0.96.

Uhttps://github.com/Netflix/vmaf/blob/master/resource/doc/models.md



Table 1: HLS bitrate ladder.

Represnetation ID 1 2 3 4 5 6 7 8 9 10 11 12
Bitrate ladder Bitrate (kbps) 145 | 300 | 600 | 900 | 1600 | 2400 | 3400 | 4500 | 5800 | 8100 | 11600 | 16800
Resolution 360p | 432p | 540p | 540p | 540p | 720p | 720p | 1080p | 1080p | 1440p | 2160p | 2160p

Table 2: PCC for VOM4HAS when predicting per-segment VMAF scores.

Represnetation ID 1 2 3 4 5 6 7 8 9 10 11 12
Model Linear 0.83 | 0.86 | 0.90 | 0.91 | 0.93 | 0.95 | 0.95 | 0.95 | 0.95 | 0.94 | 0.92 | 0.90
Random Forest 0.87 | 090 | 0.94 | 094 | 0.95 | 0.95 | 0.95 | 0.96 | 0.95 | 0.95 | 0.95 | 0.94

In live video streaming, a fixed bitrate ladder is
typically used [22], which makes it feasible to use a
regression model for each representation. However, if
a new bitrate-resolution pair is added to the ladder, a
new regression model will be required. Considering that
infinite bitrates are possible for encoding, we evaluate
VOM4HAS per resolution, as only a limited number of
standard resolutions are used for encoding. To achieve
this, we train a random forest model on the training
set of representations that share the same resolution.
For instance, we train a random forest model on the
training videos with bitrates of 600 kbps, 900 kbps, and
1600 kbps, all having a resolution of 540p. This model
is used to predict the VMAF scores of the test set for
the same representations. The PCC results for resolu-
tions that have more than one bitrate in the HLS ladder
(Table 1) are summarized in Table 3.

Table 3: PCC for VOM4HAS when predicting per-
resolution VMAF scores.

Resolution
VMAF prediction

540p 720p
095 0.96

1080p  2160p
096  0.96

3.2. Time-complexity Analysis

In this section, we compare the time complexity of
VMATF with the proposed VOM4HAS. To this end, we
calculate all the metrics on an Amazon EC2 c5.4xlarge
instance assuming that the videos are being watched on
a 4K display. Therefore, for the VMAF calculation, the
representations are upscaled to 4K, which is also the
resolution of the original video. This means that the time
complexity of the VMAF calculation is independent of
the resolution of the representation, while VOM4HAS
is dependent on the bitrate and resolution of the repre-
sentation. The results indicate that VOM4HAS exhibits
significantly lower time complexity in comparison to
VMAF, making it suitable even for live streaming appli-
cations. The maximum delay added by the computation
of VOM4HAS is related to the representation #12 in the

bitrate ladder, which has a delay of 2.5 ms. This delay
is much lower than that of the real-time computation
(33.3ms or 30 fps).
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Fig. 2: (a) The time complexity of different methods
when computing on 12 representations of a 5-second
video encoded with the HLS ladder parameters. The
complexity breakdown across representations for (a)
VOM4HAS, (b) VMAF

4. CONCLUSION

This paper introduced a new video quality metric called
VOMA4HAS, which is capable of accurately predicting
VMATF with high correlation while maintaining signif-
icantly lower computational complexity. In order to
accurately model perceived video quality, low complex-
ity features, including () video complexity features, (%)
bitstream features, and (¢:7) basic video quality metrics,
are extracted and fed into a regression model. All of
these features are logged during the encoding of repre-
sentations, incurring minimal costs, and only the video
complexity features are extracted from the original video.
Linear and random forest regression models were eval-
vated for the study. Per-resolution evaluations demon-
strated that VOM4HAS is capable of predicting VMAF
with a Pearson correlation coefficient (PCC) ranging
from 0.95 to 0.96. The prediction of VMAF is largely
influenced by a few key features depending on the res-
olution/representation. This makes it highly suitable for
use in live streaming applications.



(1]

2

—

3

—

[4

—_

[5

—

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

[12]

5. REFERENCES

Cisco, “Cisco Visual Networking Index: Forecast and
Trends, 2018-2023,” White Paper, Mar. 2020.

Iraj Sodagar, “The MPEG-DASH Standard for Multime-
dia Streaming Over the Internet,” IEEE Multimedia, vol.
18, no. 4, pp. 62-67, Apr. 2011.

Michael Seufert, Sebastian Egger, Martin Slanina,
Thomas Zinner, Tobias HofBfeld, and Phuoc Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive
Streaming,” IEEE Communications Surveys Tutorials,
vol. 17, no. 1, pp. 469-492, 2015.

Babak Taraghi, Minh Nguyen, Hadi Amirpour, and Chris-
tian Timmerer, “Intense: In-Depth Studies on Stall Events
and Quality Switches and Their Impact on the Quality of
Experience in HTTP Adaptive Streaming,” IEEE Access,
vol. 9, pp. 118087-118098, 2021.

Guangtao Zhai and Xiongkuo Min, “Perceptual Image
Quality Assessment: A Survey,” Science China Informa-
tion Sciences, vol. 63, no. 11, pp. 211301, Nov. 2020.

Hadi Amirpour, Christian Timmerer, and Mohammad
Ghanbari, “PSTR: Per-Title Encoding Using Spatio-
Temporal Resolutions,” in 2021 IEEE International Con-
ference on Multimedia and Expo (ICME), July 2021, pp.
1-6, ISSN: 1945-788X.

Hadi Amirpour, Mohammad Ghanbari, and Christian
Timmerer, ‘“DeepStream: Video Streaming Enhance-
ments using Compressed Deep Neural Networks,” IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, pp- 1-1, 2022.

Margaret H Pinson and Stephen Wolf, “Comparing Sub-
jective video Quality Testing Methodologies,” in Vi-
sual Communications and Image Processing 2003. SPIE,
2003, vol. 5150, pp. 573-582.

Kalpana Seshadrinathan, Rajiv Soundararajan, Alan C
Bovik, and Lawrence K Cormack, “A Subjective Study to
Evaluate Video Quality Assessment Algorithms,” in Hu-
man Vision and Electronic Imaging XV. SPIE, 2010, vol.
7527, pp. 128-137.

Netflix Technology Blog, “VMAF: The Journey Contin-
ues,” Oct. 2018.

Reza Rassool, “VMAF reproducibility: Validating a per-
ceptual practical video quality metric,” in 2017 IEEE
International Symposium on Broadband Multimedia Sys-
tems and Broadcasting (BMSB), Cagliari, Italy, June
2017, pp. 1-2, IEEE.

Nabajeet Barman, Steven Schmidt, Saman Zadtootaghaj,
Maria G. Martini, and Sebastian Moller, “An Evaluation
of Video Quality Assessment Metrics for Passive Gam-
ing Video Streaming,” in Proceedings of the 23rd Packet

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

Video Workshop, Amsterdam Netherlands, June 2018, pp.
7-12, ACM.

C. Lee, S. Woo, S. Baek, J. Han, J. Chae, and J. Rim,
“Comparison of Objective Quality Models for Adaptive
Bit-Streaming Services,” in 2017 8th International Con-
ference on Information, Intelligence, Systems & Applica-
tions (IISA), Larnaca, Aug. 2017, pp. 1-4, IEEE.

Abhinau K. Venkataramanan, Cosmin Stejerean, and
Alan C. Bovik, “Funque: Fusion of Unified Quality Eval-
vators,” in 2022 IEEE International Conference on Im-
age Processing (ICIP), Bordeaux, France, Oct. 2022, pp.
2147-2151, IEEE.

Werner Robitza, Rakesh Rao Ramachandra Rao, Steve
Goring, and Alexer Raake, “Impact of Spatial and Tem-
poral Information on Video Quality and Compressibil-
ity,” in 2021 13th International Conference on Quality
of Multimedia Experience (QoMEX), June 2021, pp. 65—
68, ISSN: 2472-7814.

M.H. Pinson and S. Wolf, “A New Standardized Method
for Objectively Measuring Video Quality,” IEEE Transac-
tions on Broadcasting, vol. 50, no. 3, pp. 312-322, Sept.
2004.

Michael King, Zinovi Tauber, and Ze-Nian Li, “A New
Energy Function for Segmentation and Compression,” in
Multimedia and Expo, 2007 IEEE International Confer-
ence on, Beijing, China, July 2007, pp. 1647-1650, IEEE.

Vignesh V Menon, Christian Feldmann, Hadi Amirpour,
Mohammad Ghanbari, and Christian Timmerer, “VCA:
Video Complexity Analyzer,” in Proceedings of the 13th
ACM Multimedia Systems Conference, June 2022, pp.
259-264.

Ekrem Cetinkaya, Hadi Amirpour, Mohammad Ghanbari,
and Christian Timmerer, “CTU Depth Decision Algo-
rithms for HEVC: A Survey,” Signal Processing: Image
Communication, vol. 99, pp. 116442, Nov. 2021.

Alexandros Stergiou and Ronald Poppe, “AdaPool:
Exponential Adaptive Pooling for Information-Retaining
Downsampling,” [EEE Transactions on Image Process-
ing, vol. 32, pp. 251-266, 2023.

Apple, “HTTP Live Streaming (HLS) Authoring Specifi-
cation for Apple Devices | Apple Developer Documenta-
tion,” 2015.

Vignesh V Menon, Hadi Amirpour, Mohammad Ghan-
bari, and Christian Timmerer, “OPTE: Online Per-
Title Encoding for Live Video Streaming,” in ICASSP
2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2022, pp.
1865-1869, ISSN: 2379-190X.



	 Introduction
	 A video quality metric for HAS
	 Video Complexity Features
	 Bitstream Features
	 Basic Video Quality Metrics

	 Experimental results
	 Performance Analysis
	 Time-complexity Analysis

	 Conclusion
	 References

