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Learning conditional distributions on continuous spaces

Cyril Bénézet ∗† Ziteng Cheng ∗‡ Sebastian Jaimungal ∗§

Abstract

We investigate sample-based learning of conditional distributions on multi-dimensional unit boxes,

allowing for different dimensions of the feature and target spaces. Our approach involves clustering

data near varying query points in the feature space to create empirical measures in the target space.

We employ two distinct clustering schemes: one based on a fixed-radius ball and the other on nearest

neighbors. We establish upper bounds for the convergence rates of both methods and, from these bounds,

deduce optimal configurations for the radius and the number of neighbors. We propose to incorporate

the nearest neighbors method into neural network training, as our empirical analysis indicates it has

better performance in practice. For efficiency, our training process utilizes approximate nearest neighbors

search with random binary space partitioning. Additionally, we employ the Sinkhorn algorithm and

a sparsity-enforced transport plan. Our empirical findings demonstrate that, with a suitably designed

structure, the neural network has the ability to adapt to a suitable level of Lipschitz continuity locally.

For reproducibility, our code is available at https://github.com/zcheng-a/LCD_kNN.

1 Introduction

Learning the conditional distribution is a crucial aspect of many decision-making scenarios. While this

learning task is generally challenging, it presents unique complexities when explored in a continuous space

setting. Below, we present a classic example (cf. [BHW92, PP16]) that highlights this core challenge.

For simplicity, we suppose the following model

Y = 1
2X + 1

2U,

where the feature variable X and the noise U are independent Uniform([0, 1]), and Y is the target variable.

Upon collecting a finite number of independent samples D = {(Xm, Ym)}Mm=1, we aim to estimate the

conditional distribution of Y given X. Throughout, we treat this conditional distribution as a measure-

valued function of x, denoted by Px. A naive approach is to first form an empirical joint measure

ψ̂ :=
1

M

M∑
m=1

δ(Xm,Ym),

where δ stands for the Dirac meaasure, and then use the conditional distribution induced from ψ̂ as an

estimator. As the marginal distribution of X is continuous, with probability 1 (as P(Xm = Xm′) = 0 for all
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m ̸= m′), we have that1

P̂x =

{
δYm

, x = Xm for some m,

Uniform([0, 1]), otherwise.

Regardless of the sample size M , P̂x fails to approximate the true conditional distribution,

Px = Uniform
(
[x, x+ 1

2 ]
)
, x ∈ [0, 1].

Despite the well-known convergence of the (joint) empirical measure to the true distribution [Dud69,

FG15], the resulting conditional distribution often fails to provide an accurate approximation of the true dis-

tribution. This discrepancy could be due to the fact that calculating conditional distribution is an inherently

unbounded operation. As a remedy, clustering is a widely employed technique. Specifically, given a query

point x in the feature space, we identify samples where Xm is close to x and use the corresponding Ym’s to

estimate Px. Two prominent methods within the clustering approach are the kernel method and the nearest

neighbors method2. Roughly speaking, the kernel method relies primarily on proximity to the query point for

selecting Xm’s, while the nearest neighbors method focuses on the rank of proximity. Notably, discretizing

the feature space (also known as quantization), a straightforward yet often effective strategy, can be seen as

a variant of the kernel method with static query points and flat kernels.

The problem of estimating conditional distributions can be addressed within the non-parametric regression

framework, by employing clustering or resorting to non-parametric least squares, among others. Alternatively,

it is feasible to estimate the conditional density function directly: a widely-used method involves estimating

the joint and marginal density functions using kernel smoothing and then calculating their ratio. This

method shares similarities with the clustering heuristics mentioned earlier. For a more detailed review of

these approaches, we refer to Section 1.2.

This work draws inspiration from recent advancements in estimating discrete-time stochastic processes

using conditional density function estimation [PP16] and quantization methods [BBBW22, AH23]. A notable

feature of these works is their use of the Wasserstein distance to calculate local errors: the difference between

the true and estimated conditional distributions at a query point x. One could average these local errors

across different values of x’s to gauge the global error. Employing Wasserstein distances naturally frames the

study within the context of weak convergence, thereby enabling discussions in a relatively general setting,

although this approach may yield somewhat weaker results in terms of the mode of convergence. Moreover,

utilizing a specific distance rather than the general notion of weak convergence enables a more tangible

analysis of the convergence rates and fluctuations. We would like to point out that the advancements

made in [BBBW22, AH23], as well as our analysis in this paper, relies on recent developments concerning

the Wasserstein convergence rate of empirical measures under i.i.d. sampling from a static distribution (cf.

[FG15]).

1.1 Main contributions

First, we introduce some notations to better illustrate the estimators that we study. Let X and Y be multi-

dimensional unit cubes, with potentially different dimensions, for feature and target spaces. For any integer

M ≥ 1, any D = {(xm, ym)}Mm=1 ∈ (X× Y)M , and any Borel set A ⊂ X, we define a probability measure on

Y by

µ̂D
A :=


(∑M

m=1 1A(xm)
)−1∑M

m=1 1A(xm)δym
,
∑M

m=1 1A(xm) > 0,

λY, otherwise,
(1)

1In accordance to the model, we set the conditional distribution to Uniform([0, 1]) at points where it is not well-defined.
2These should not be confused with similarly named methods used in density function estimation.
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where λY is the Lebesgue measure on Y and, for y ∈ Y, δy is a Dirac measure with atom at y. In general, one

could consider weighting δym ’s (cf. [GKKW02, Section 5], [BD15, Chapter 5]), which may offer additional

benefits in specific applications. As such adjustments are unlikely to affect the convergence rate, however,

we use uniform weighting for simplicity.

With (random) data D = {(Xm, Ym)}Mm=1, we aim to estimate the conditional distribution of Y given X.

We view this conditional distribution as a measure-valued function P : X → P(Y) and use a subscript for the

input argument and write Px. Consider a clustering scheme3 given by the map AD : X → 2X. We investigate

estimators of the form x 7→ µ̂D
AD(x). We use P̂A to denote said estimator and suppress D from the notation

for convenience. In later sections, we consider two kinds of maps AD (i) a ball with fixed radius centered at

x, called an r-box and (ii) the k nearest neighbors of x, called k-nearest-neighbor estimator. Wee Definitions

5 and 9 for more details.

One of our main contribution pertains to analyzing the error∫
X
W
(
Px, P̂

A
x

)
ν(dx), (2)

whereW is the 1-Wasserstein distance (cf. [Vil08, Particular Case 6.2]) and ν ∈ P(X) is arbitrary and provides

versatility to the evaluation criterion. A canonical choice for ν is the Lebesgue measure on X, denoted by

λX. This is particularly relevant in control settings where X represents the state-action space and accurate

approximations across various state and action scenarios are crucial for making informed decisions. The form

of error above is also foundational in stochastic process estimation under the adapted Wasserstein distance (cf.

[BBBW22, Lemma 3.1]), making the techniques we develop potentially relevant in other contexts. Under the

assumption that P is Lipschitz continuous (Assumption 2) and standard assumptions on the data collection

process (Assumption 3), we analyze the convergence rate and fluctuation by bounding the following two

quantities

E
[∫

X
W
(
Px, P̂

A
x

)
ν(dx)

]
and Var

[∫
X
W
(
Px, P̂

A
x

)
ν(dx)

]
.

Moreover, by analyzing the above quantities, we gain insights into the optimal choice of the clustering

mapping A. For the detail statements of these results, we refer to Theorems 7, 10, 8, and 11. We also refer

to Section 2.4 for related comments.

To illustrate another aspect of our contribution, we note by design x 7→ P̂A
x is piece-wise constant. This

characteristic introduces limitations. Notably, it renders the analysis of performance at the worst-case x

elusive. Contrastingly, by building a Lipschitz-continuous parametric estimator P̃Θ from the raw estimator

P̂A, in Proposition 13 we demonstrate that an upper bound on the aforementioned expectation allows us to

derive a worst-case performance guarantee. Guided by Proposition 13, we explore a novel approach of training

a neural network for estimation, by using P̂A as training data and incorporating suitably imposed Lipschitz

continuity. To be comprehensive, we include in Section 1.2 a review of studies on Lipschitz continuity in

neural networks.

In Section 3.1, we define P̃ θ as a neural network that approximates P , where θ represents the network

parameters. We train P̃ θ with the objective:

argmin
θ

N∑
n=1

W
(
P̂A
X̃n
, P̃ θ

X̃n

)
,

where (X̃n)
N
n=1 is a set of randomly selected query points. For implementation purposes, we use the k-nearest-

neighbor estimator in the place of P̂A (see Definition 9). To mitigate the computational costs stemming from

the nearest neighbors search, we employ the technique of Approximate Nearest Neighbor Search with Random

3In general, the clustering scheme may require information on (x1, . . . , xM ). For example, clustering the k-nearest-neighbor

near a query point x requires to know all xm’s.
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Binary Space Partitioning (ANN-RBSP), as discussed in Section 3.1.1. In Section 3.1.2, we compute W using

the Sinkhorn algorithm, incorporating normalization and enforcing sparsity for improved accuracy. To impose

a suitable level of local Lipschitz continuity on P̃ θ, in Section 3.1.3, we employ a neural network with a specific

architecture and train the networks using a tailored procedure. The key component of this architecture is

the convex potential layer introduced in [MDAA22]. In contrast to most extant literature that imposes

Lipschitz continuity on neural networks, our approach does not utilize specific constraint or regularization of

the objective function, but relies on certain self-adjusting mechanism embedded in the training.

In Section 3.2, we evaluate the performance of the trained P̃ θ, denoted by P̃Θ, using three sets of synthetic

data in 1D and 3D spaces. Our findings indicate that P̃Θ generally outperforms P̂A, even though it is initially

trained to match P̂A. This superior performance persists even when comparing P̃Θ to different P̂A using

various k values, without retraining P̃Θ. Furthermore, despite using the same training parameters, P̃Θ

consistently demonstrates the ability to adapt to a satisfactory level of local Lipschitz continuity across all

cases. Moreover, in one of the test cases, we consider a kernel that exhibits a jump discontinuity, and we find

that P̃Θ handles this jump case well despite Lipschitz continuity does not hold.

Lastly, we provide further motivation of our approach by highlighting some potential applications for P̃Θ.

The first application is in model-based policy gradient method in reinforcement learning. We anticipate that

the enforced Lipschitz continuity allows us to directly apply the policy gradient update via compositions of

P̃Θ and cost function for more effective optimality searching. The second application of P̃Θ is in addressing

optimisation in risk-averse Markov decision processes, where dynamic programming requires knowledge be-

yond the conditional expectation of the risk-to-go (cf. [CTMP15, HH17, CJC23, CJ23]). The study of these

applications is left for further research.

1.2 Related works

In this section, we will first review the clustering approach in estimating conditional distributions, and then

proceed to review recent studies on Lipschitz continuity in neural networks.

1.2.1 Estimating conditional distributions via clustering

The problem of estimating conditional distributions is frequently framed as non-parametric regression prob-

lems for real-valued functions. For instance, when dY = 1, estimate the conditional α-quantile of Y given X.

Therefore, we begin by reviewing some of the works in non-parametric regression.

The kernel method in non-parametric regression traces its origins back to the Nadaraya-Watson estimator

[Nad64, Wat64], if not earlier. Subsequent improvements have been introduced, such as integral smoothing

[GM79] (also known as the Gasser-Müller estimator), local fitting with polynomials instead of constants

[Fan92], and adaptive kernels [HWY99]. Another significant area of discussion is the choice of kernel band-

width, as detailed in works like [HM85, GG04, KSS14]. Regarding convergence rates, analyses under various

settings can be found in [Sto82, HH90, KKW09, KKW10], with [Sto82] being particularly relevant to our

study for comparative purposes. According to [Sto82], if the target function is Lipschitz continuous, with

i.i.d. sampling and that the sampling distribution in the feature space has a uniformly positive density, then

the optimal rate of the ∥ · ∥1-distance between the regression function and the estimator is of the order

M
− 1

dX+2 . For a more comprehensive review of non-parametric regression using kernel methods, we refer to

the books [GKKW02, FV06, Was06] and references therein.

Non-parametric regression using nearest neighbors methods originated from classification problems [FH51].

Early developments in this field can be found in [Mac81, Dev82, BG90]. For a comprehensive introduction

to nearest neighbors methods, we refer to [GKKW02]. More recent reference [BD15] offers further detailed

exploration of the topic. The nearest neighbor method can be viewed as a variant of the kernel method

that adjusts the bandwidth based on the number of local data points—a property that has gained significant

traction. Recently, the application of the nearest neighbor method has expanded into various less standard

settings, including handling missing data [RLK+21], reinforcement learning [SX10, GOR24], and time series
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forecasting [MFPR17]. For recent advancements in convergence analysis beyond the classical setting, see

[ZL19, PSCW20, RK22, DFG+24].

Although the review above mostly focuses on clustering approach, other effective approaches exist, such

as non-parametric least square, or more broadly, conditional elicitability (e.g., [GKKW02, MFSS17, Wai19,

CJC23]). Non-parametric least square directly fits the data using a restricted class of functions. At first

glance, this approach appears distinct from clustering. However, they share some similarities in their heuris-

tics: the rigidity of the fitting function, due to imposed restrictions, allows data points near the query point

to affect the estimation, thereby implicitly incorporating elements of clustering.

Apart from non-parametric regression, conditional density function estimation is another significant

method for estimating conditional distributions. One approach is based on estimating joint and marginal

density functions, and then using the ratio of these two to produce an estimator for the conditional density

function. A key technique used in this approach is kernel smoothing. Employing a static kernel for smoothing

results in a conditional density estimator that shares similar clustering heuristics to those found in the kernel

method of non-parametric regression. For a comprehensive overview of conditional density estimation, we

refer to reference books [Sco15, Sim96]. For completeness, we also refer to [MFSS17, Section 5.1] for a perspec-

tive on static density function estimation from the standpoint of reproducing kernel Hilbert space. Further

discussions on estimation using adaptive kernels can be found in, for example, [BH01, Lac07, BLR16, ZT23].

Despite extensive research in non-parametric regression and conditional density function estimation, in-

vestigations from the perspective of weak convergence have been relatively limited, only gaining more traction

in the past decade. Below, we highlight a few recent studies conducted in the context of estimating discrete-

time stochastic processes under adapted Wasserstein distance, as the essence of these studies are relevant to

our evaluation criterion (2). [PP16] explores the problem asymptotically, employing tools from conditional

density function estimation with kernel smoothing. Subsequently, [BBBW22] investigates a similar problem

with a hypercube as state space, employing the quantization method. Their approach removes the need to

work with density functions. They calculate the convergence rate, by leveraging recent developments in the

Wasserstein convergence rate of empirical measures [FG15]. Moreover, a sub-Gaussian concentration with

parameter M−1 is established. The aforementioned results are later extended to Rd in [AH23], where a

non-uniform grid is used to mitigate assumptions on moment conditions. Most recently, [Hou24] examines

smoothed variations of the estimators proposed in [BBBW22, AH23]. Other developments on estimators

constructed from smoothed quantization can be found in [vK24].

Lastly, regarding the machine learning techniques used in estimating conditional distributions, conditional

generative models are particularly relevant. For reference, see [MO14, PPM17, VSP+17, FJGZ20]. These

models have achieved numerous successes in image generation and natural language processing. We suspect

that, due to the relatively discrete (albeit massive) feature spaces in these applications, clustering is implicitly

integrated into the training procedure. In continuous spaces, under suitable setting, clustering may also

become an embedded part of the training procedure. For example, implementations in [LAO20, VPC24,

HHT24] do not explicitly involve clustering and use training objectives that do not specifically address the

issues highlighted in the motivating example at the beginning of the introduction. Their effectiveness could

possibly be attributed to certain regularization embedded within the neural network and training procedures.

Nevertheless, research done in continuous spaces that explicitly uses clustering approaches when training

conditional generative models holds merit. Such works are relatively scarce. For an example of this limited

body of research, we refer to [XA22], where the conditional density function estimator from [PP16] is used

to train an adversarial generative network for stochastic process generation.

1.2.2 Lipschitz continuity in neural networks

Recently, there has been increasing interest in understanding and enforcing Lipschitz continuity in neural

networks. The primary motivation is to provide a certifiable guarantee for classification tasks performed by

neural networks: it is crucial that minor perturbations in the input object have a limited impact on the

classification outcome.
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One strategy involves bounding the Lipschitz constant of a neural network, which can then be incorporated

into the training process. For refined upper bounds on the (global) Lipschitz constant, see, for example,

[BFT17, VS18, TSS18, FRH+19, XLR+22, FERC24]. For local bounds, we refer to [JD21, BDR21, SWZ+22]

and the references therein. We also refer to [ZJHW22] for a study of the Lipschitz property from the viewpoint

of boolean functions.

Alternatively, designing neural network architectures that inherently ensure desirable Lipschitz constants

is another viable strategy. Works in this direction include [MDAA22, SSF22, WM23, AHD+23]. Notably,

the layer introduced in [MDAA22] belongs to the category of residual connection [HZSS16].

Below, we review several approaches that enforce Lipschitz constants during neural network training.

[TSS18, LWJ+22] explore training with a regularized objective function that includes upper bounds on

the network’s Lipschitz constant. [GFPC21] frame the training problem into constrained optimization and

train with projected gradients descent. Given the specific structure of the refined bound established in

[FRH+19], [PKB+22] combines training with semi-definite programming. They develop a version with a

regularized objective function and another that enforces the Lipschitz constant exactly. [FERC24] also

investigates training with a regularized objective but considers Lipschitz constants along certain directions.

[HZS+21] devises a training procedure that removes components from the weight matrices to achieve smaller

local Lipschitz constants. [TK21] initially imposes orthogonality on the weight matrices, and subsequently

enforces a desirable Lipschitz constant based on that orthogonality. Ensuring desirable Lipschitz constants

with tailored architectures, [SSF22, WM23] train the networks directly. Although the architecture proposed

in [MDAA22] theoretically ensures the Lipschitz constant, it requires knowledge of the spectral norm of the

weight matrices, which does not admit explicit expression in general. Their training approach combines

power iteration for spectral norm approximation with the regularization methods used in [TSS18].

Finally, we note that due to their specific application scenarios, these implementations concern relatively

stringent robustness requirements and thus necessitate more specific regularization or constraints. In our

setting, it is generally desirable for the neural network to automatically adapt to a suitable level of Lipschitz

continuity based on the data, while also avoiding excessive oscillations from over-fitting. The literature

directly addressing this perspective is limited (especially in the setting of conditional distribution estimation).

We refer to [BLZ+21, BZLX23, CRK19] for discussions that could be relevant.

1.3 Organization of the paper

Our main theoretical results are presented in Section 2. Section 3 is dedicated to the training of P̃Θ. We

will outline the key components of our training algorithm and demonstrate its performance on three sets of

synthetic data. We will prove the theoretical results in Section 4. Further implementation details and ablation

analysis are provided in Section 5. In Section 6, we discuss the weaknesses and potential improvements of our

implementation. Appendix A and B respectively contain additional plots and a table that summarizes the

configuration of our implementation. Additionally, Appendix C includes a rougher version of the fluctuation

results.

Notations and terminologies

Throughout, we adopt the following set of notations and terminologies.

◦ On any normed space (E, ∥ · ∥), for all x ∈ E and γ > 0, B(x, γ) denotes the closed ball of radius γ

around x, namely B(x, γ) = {x′ ∈ E | ∥x− x′∥ ≤ γ}.

◦ For any measurable space (E,E ), P(E) denotes the set of probability distributions on (E,E ). For all

x ∈ E, δx ∈ P(E) denotes the Dirac mass at x.

◦ We endow normed spaces (E, ∥ · ∥) with their Borel sigma-algebra B(E), and W denotes the 1-

Wasserstein distance on P(E).
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◦ On X = [0, 1]d, we denote by λX the Lebesgue measure. We say a measure ν ∈ P(X) is dominated by

Lebesgue measure with a constant C > 0 if ν(A) ≤ CλX(A) for all A ∈ B([0, 1]d).

◦ The symbol ∼ denotes equivalence in the sense of big O notation, indicating that each side dominates

the other up to a multiplication of some positive absolute constant. More precisely, an ∼ bn means

there are finite constants c, C > 0 such that

c an ≤ bn ≤ C an, n ∈ N.

Similarly, ≲ implies that one side is of a lesser or equal, in the sense of big O notation, compared to

the other.

2 Theoretical results

In Section 2.1, we first formally set up the problem and introduce some technical assumption. We then study

in Section 2.2 and 2.3 the convergence and fluctuation of two versions of P̂A, namely, the r-box estimator

and the k-nearest-neighbor estimator. Related comments are organized in Section 2.4. Moreover, in Section

2.5, we provide a theoretical motivation for the use of P̃Θ, the Lipschitz-continuous parametric estimator

trained from P̂A.

2.1 Setup

For dX, dY ≥ 1 two integers, we consider X := [0, 1]dX and Y := [0, 1]dY , endowed with their respective

sup-norm ∥ · ∥∞.

Remark 1. The sup-norm is chosen for simplicity of the theoretical analysis only: as all norms on Rn are

equivalent (for any generic n ≥ 1), our results are valid, up to different multiplicative constants, for any other

choice of norm.

We aim to estimate an unknown probabilistic kernel

P : X → P(Y)
x 7→ Px(dy).

To this end, given an integer-valued sampled size M ≥ 1, we consider a set of (random) data points

D := {(Xm, Ym)}Mm=1 associated to P . We also define the set of projections of the data points onto the

feature space as DX := {Xm}Mm=1.

Throughout this section, we work under the following technical assumptions.

Assumption 2 (Lipschitz continuity of kernel). There exists L ≥ 0 such that, for all (x, x′) ∈ X2,

W(Px, Px′) ≤ L∥x− x′∥∞.

Assumption 3. The following is true:

(i) D is i.i.d. with probability distribution ψ := ξ ⊗ P , where ξ ∈ P(X) and where ξ ⊗ P ∈ P(X × Y) is

(uniquely, by Caratheodory extension theorem) defined by

(ξ ⊗ P ) (A×B) :=

∫
X
1A(x)Px(B)ξ(dx), A ∈ B(X), B ∈ B(Y).

(ii) There exists c ∈ (0, 1] such that, for all A ∈ B(X), ξ(A) ≥ c λX(A).
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These assumptions allow us to analyze convergence and gain insights into the optimal clustering hyper-

parameters without delving into excessive technical details. Assumption 2 is mainly used for determining

the convergence rate. If the convergence rate is not of concern, it is possible to establish asymptotic results

with less assumptions. We refer to [Dev82, BBBW22] for relevant results. The conditions placed on ξ in

Assumption 3 are fairly standard, though less stringent alternatives are available. For instance, Assumption

3 (i) can be weakened by considering suitable dependence [HH90] or ergodicity in the context of stochastic

processes [RS18]. Assumption 3 (ii), implies there is mass almost everywhere and is aligned with the motiva-

tion from control settings discussed in the introduction. Assumptions 2 and 3 are not exceedingly stringent

and provides a number of insights into the estimation problem. More general settings are left for further

research.

The estimators discussed in subsequent sections are of the form P̂A, as introduced right after (1), for two

specific choices of clustering schemes A constructed with the data D.

Remark 4. In the following study, we assert all the measurability needed for P̂A to be well-defined. These

measurability can be verified using standard measure-theoretic tools listed in, for example, [AB06, Section 4

and 15].

2.2 Results on r-box estimator

The first estimator, which we term the r-box estimator, is defined as follows.

Definition 5. Choose r, a real number, s.t. 0 < r < 1
2 . The r-box estimator for P is defined by

P̂ r : X → P(Y)

x 7→ P̂ r
x := µ̂D

Br(x),

where, for all x ∈ X, Br(x) := B(βr(x), r) and βr(x) := r ∨ x∧ (1− r), where r ∨ · and · ∧ (1− r) are applied

entry-wise.

Remark 6. The set Br(x) is defined such that it is a ball of radius around x whenever x is at least r away

from the boundary ∂X (in all of its components), otherwise, we move the point x in whichever components

are within r from ∂X to be a distance r away from ∂X. Consequently, for all 0 < r < 1
2 and for all x ∈ X,

Br(x) has a bona fide radius of r, as the center βr(x) is smaller or equal to r away from ∂X.

For the r-box estimator, we have the following convergence results. The theorem below discusses the

convergence rate of the average Wasserstein distance between the unknown kernel evaluated at any point

and its estimator, when the radius r is chosen optimally with respect to the data sample M . Section 4.2 is

dedicated to its proof.

Theorem 7. Under Assumptions 2 and 3, choose r as follows

r ∼

{
M

− 1
dX+2 , dY = 1, 2

M
− 1

dX+dY , dY ≥ 3.

Then, there is a constant C > 0 (which depends only on dX, dY, L, c), such that, for all probability distribution

ν ∈ P(X), we have

E
[∫

X
W
(
Px, P̂

r
x

)
ν(dx)

]
≤ sup

x∈X
E
[
W
(
Px, P̂

r
)]

≤ C ×


M

− 1
dX+2 , dY = 1,

M
− 1

dX+2 ln(M), dY = 2,

M
− 1

dX+dY , dY ≥ 3.

(3)

Next, we bound the associated variance whose proof is postponed to Section 4.3.
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Theorem 8. Under Assumptions 3, consider r ∈ (0, 12 ]. Let ν ∈ P(X) be dominated by λX with a constant

C > 0. Then,

Var

[∫
X
W
(
Px, P̂

r
x

)
dν(x)

]
≤ 4dX+1C

2

c2(M + 1)
.

2.3 Results on k-nearest-neighbor estimator

Here, we focus in the second estimator – the k-nearest-neighbor estimator, defined as follows.

Definition 9. Let k ≥ 1 an integer. The k-nearest-neighbor estimator for P is defined by

P̌ k : X → P(Y)
x 7→ P̌ k

x := µ̂D
Nk,DX (x),

where, for any integerM ≥ 1 and any DX ∈ XM , N k,DX(x) contains (exactly) k points of DX which are closest

to x, namely

N k,DX(x) :=
{
x′ ∈ DX

∣∣ ∥x− x′∥∞ is among the k-smallest of (∥x− x′∥∞)x′∈DX

}
,

Here, in case of a tie when choosing the k-th smallest, we break the tie randomly with uniform probability.

We have the following analogs of the convergence results (Theorems 7 and 8) for the k-nearest-neighbor

estimator. The proofs are postponed to Section 4.4 and Section 4.5, respectively.

Theorem 10. Under Assumptions 2 and 3, and choosing k as

k ∼

{
M

2
dX+2 , dY = 1, 2,

M
dY

dX+dY , dY ≥ 3,

there is a constant C > 0 (which depends only on dX, dY, L, c), such that, for all probability distribution

ν ∈ P(X), we have

E
[∫

X
W
(
Px, P̌

k
x

)
ν(dx)

]
≤ sup

x∈X
E
[
W
(
Px, P̌

k
x

)]
≤ C ×


M

− 1
dX+2 , dY = 1,

M
− 1

dX+2 lnM, dY = 2,

M
− 1

dX+dY , dY ≥ 3.

(4)

Theorem 11. Under Assumptions 3, for any ν ∈ P(X), we have

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
≤ 1

k
. (5)

Moreover, if ν is dominated by λX with a constant C > 0, then

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]

≤ 22dX+1C
2
M

c2k2

((
8

√
2dX ln(M)

M − 1
+

k

M − 1

)2

+

√
2π√

M − 1

(
8

√
2dX ln(M)

M − 1
+

k

M − 1

)
+

4

M − 1

)
.

With k chosen as in Theorem 10, this reduces to

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
≲

M
− 2(2∨dY)

dX+dY ln(M), 2 ∨ dY ≤ dX,

M−1, 2 ∨ dY > dX.

9



2.4 Comments on the convergence rate

This sections gathers several comments on the convergence results we have developed in Section 2.2 and 2.3.

2.4.1 On the convergence rate

We first comment on the expectations in Theorem 7 and 10.

Sharpness of the bounds. Currently, we cannot establish the sharpness of the convergence rates in

Theorems 7 and 10. We can, however, compare our results to established results in similar settings. For

dY = 1, we may compare it to the optimal rate of non-parametric regression of a Lipschitz continuous function.

It is shown in [Sto82] that the optimal rate is M
− 1

dX+2 , the same as in Theorems 7 and 10 when dY = 1. For

dY ≥ 3, as noted in [BBBW22], we may compare to the Wasserstein convergence rate of empirical measure

in the estimation of a static distribution on RdX+dY . We refer to [FG15] for the optimal rate, which coincides

with those in Theorems 7 and 10.

Error components. We discuss the composition of our upper bound on the expected average error by

dissecting the proof of Theorem 7 and 10. In the proofs, we decompose the expected average errors into two

components: approximation error and estimation error. The approximation error occurs when treating Px′

as equal to Px when x′ is close to the query point x, leading to an error of size L∥x− x′∥∞. The estimation

error is associated with the Wasserstein error of empirical measure under i.i.d. sampling (see (21)). From

Definitions 5 and 9, the r-box estimator effectively manages the approximation error but struggles with

controlling the estimation error, whereas the k-nearest-neighbor estimator exhibits the opposite behavior.

Explicit bounds. We primarily focus on analyzing the convergence rates of the r-box and k-nearest-

neighbor estimators as M → ∞. Therefore, within the proofs of these results, we track only the rates (and

ignore various constant coefficients). If more explicit bounds are preferred, intermediate results such as (23),

or (27) could be good starting points for computing them.

2.4.2 On the fluctuation

We next discuss the variances studied in Theorems 8 and 11. In Appendix C, we also include results derived

from the Azuma-Hoeffding inequality (e.g., [Wai19, Corollary 2.20]), though they provide rougher rates.

Condition that ν is dominated by λX. In Theorems 8 and 11, we assume that the ν is dominated

by λX. This assumption is somewhat necessary. To illustrate, let us examine the non-parametric regression

problem under a comparable scenario. We consider a fixed query point. In this context, the central limit

theorem for k-nearest-neighbor estimator is well-established, and the normalizing rate is k−
1
2 (cf. [BD15,

Theorem 14.2]). This suggests that the rate in (5) is sharp. For the r-box estimator, we believe that a

supporting example can be constructed where ν is highly concentrated. On the other hand, we conjecture

that if ξ ∼ ν, the variance could potentially attain the order of M−1. For a pertinent result, we direct the

reader to [BBBW22, Theorem 1.7].

Sharpness of the bounds. Regarding the variance in Theorem 8, it is upper bounded by the commonly

observed order of M−1. We believe that this rate is sharp, though we do not have a proof at this time. As

for Theorem 11, the variance is subject to a rougher rate when 2 ∨ dY ≤ dX. We, however, conjecture that

this variance attains the order of M−1 as long as ν is dominated by λX.

2.5 Towards implementation with neural networks

In light of recent practices in machine learning, during the learning of P , we may combine the r-box method

or k-nearest-neighbor method into the training of certain parameterized model. To this end we let

P̃ : T× X → P(Y)
(θ, x) 7→ P̃ θ

x

10



be a parameterized model (e.g., a neural network), where T is the parameter space and θ ∈ T is the parameter

to be optimized over. Given an integer N ≥ 1, we may train P̃ θ on a set of query points Q = (X̃n)
N
n=1

satisfying the assumption below.

Assumption 12. The query points Q = {(X̃n)}Nn=1 are i.i.d. with uniform distribution over X, and are

independent of the data points D = {(Xm, Ym)}Mm=1.

We propose the training objectives below

argmin
θ∈T

1

N

N∑
n=1

W
(
P̂ r
X̃n
, P̃ θ

X̃n

)
or argmin

θ∈T

1

N

N∑
n=1

W
(
P̌ k
X̃n
, P̃ θ

X̃n

)
, (6)

that is, minimize the mean of 1-Wasserstein errors between the parametrized model and the empirical r-box

(or k-nearest-neighbour) approximation of the conditional distribution at the location of the random query

points.

The following proposition together with Theorem 7 or Theorem 10 justifies using the objectives in (6). It

is valid for any estimator for P that satisfies the bounds in (3) or (4). Moreover, due to Lipschitz continuity

conditions in the proposition, the proposition provides insights into the worst-case performance guarantee.

We also refer to [AHS23] for a worst-case performance guarantee for conditional generative models, which is

contingent upon Lipschitz continuity. In contrast, similar guarantees for the r-box and k-nearest-neighbor

estimators are more elusive due to their inherently piece-wise constant nature. We refer to Section 4.6 for

the proof.

Proposition 13. Suppose Assumptions 2, 3, and 12 hold. Let P of P be an estimator constructed using the

data points D only. Consider a training procedure that produces a (random) Θ = Θ(D,Q) satisfying

sup
x,x′∈X

W(P̃Θ
x , P̃

Θ
x′ )

∥x− x′∥∞
≤ LΘ (7)

for some (random) LΘ > 0. Then,

E
[∫

X
W(Px, P̃

Θ
x ) dx

]
≤ E

[
(L+ LΘ)W

(
λX,

1

N

N∑
n=1

δX̃n

)]

+ E
[∫

X
W(Px, P x) dx

]
+ E

[
1

N

N∑
n=1

W
(
P X̃n

, P̃Θ
X̃n

)]
.

(8)

Moreover, with probability 1,

sup
x∈X

W
(
Px, P̃

Θ
x

)
≤ (dX + 1)

1
dX+1 (L+ LΘ)

dX
dX+1

(∫
X
W(Px, P̃

Θ
x ) dx

) 1
dX+1

. (9)

Remark 14. Assuming LΘ ≤ L for some (deterministic) L > 0, by (9) and Jensen’s inequality, we have

E
[
sup
x∈X

W
(
Px, P̃

Θ
x

)]
≤ (dX + 1)

1
dX+1 (L+ L)

dX
dX+1E

[∫
X
W(Px, P̃

Θ
x ) dx

] 1
dX+1

.

This together with (8) provides a worst-case performance guarantee for P̃Θ.

Remark 15. Proposition 13 along with Remark 14 provides insights into the worst-case performance guaran-

tees, but more analysis is needed. Specifically, understanding the magnitude of LΘ and E
[

1
N

∑N
n=1 W(P X̃n

, P̃Θ
X̃n

)
]

requires deeper knowledge of the training processes for P̃Θ, which are currently not well understood in the

extant literature. Alternatively, in the hypothetical case where P̃Θ = P , LΘ would match L as specified in

Assumption 2, and E
[

1
N

∑N
n=1 W

(
P X̃n

, P̃Θ
X̃n

)]
would obey Theorem 7 or 10. However, practical applica-

tions must also consider the universal approximation capability of P̃ θ. Further discussion on this topic can be

found in [Kra23, AKP24], although, to the best of our knowledge, recent universal approximation theorems

in this subject do not yet concern continuity constraints.
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3 Implementation with neural networks

Let X and Y be equipped with ∥ · ∥1. Following the discussion in Section 2.5, we let P̃ θ : X → P(Y) be

parameterized by a neural network and develop an algorithm that trains P̃ θ based on k-nearest-neighbor

estimator. The k-nearest-neighbor estimator P̌ k is preferred as P̌ k
x consistently outputs k atoms. This

regularity greatly facilities implementation. For instance, it enables the use of 3D tensors during Sinkhorn

iterations to enhance execution speed (see Section 3.1.2 later). We refer also to the sparsity part of Section

5.2 for another component that necessitates the aforementioned regularity of P̌ k. These components would

not be feasible with the r-box estimator P̂ r, as P̂ r
x produces an undetermined number of atoms. Furthermore,

there is a concern that in some realizations, P̂ r
x at certain x may contain too few data points, potentially

leading P̃Θ
x to exhibit unrealistic concentration.

We next provide some motivation for this implementation. For clarity, we refer to the r-box estimator

and the k-nearest-neighbor estimator as raw estimators. Additionally, we refer to P̃Θ, once trained, as the

neural estimator. While raw estimators are adequate for estimating P on their own, they are piece-wise

constant in x by design. On the other hand, a neural estimator is continuous in x. This continuity provides a

performance guarantee in supW distance, as outlined in Proposition 13 and the following remark. Moreover,

the neural estimator inherently possesses gradient information. As discussed in the introduction, this feature

renders the neural estimators useful in downstream contexts where gradient information is important, e.g.,

when performing model-based reinforcement learning.

We construct P̃ θ such that it maps x ∈ X to atoms in Y with equal probabilities. For the related universal

approximation theorems, we refer to [Kra23, AKP24]. We represent these atoms with a vector with Natom

entries denoted by yθ(x) = (yθ1(x), . . . , y
θ
Natom

(x)) ∈ YNatom , where Natom ∈ N is chosen by the user. In our

implementation, we set Natom = k. To be precise, we construct P̃ θ such that

P̃ θ
x =

1

Natom

Natom∑
j=1

δyθ
j (x)

, x ∈ N. (10)

This is known as the Lagrangian discretization (see [PC19, Section 9]). In Algorithm 1, we present a high

level description of our implementation of training P̃ θ based on the raw k-nearest-neighbor estimator.

Algorithm 1 Deep learning conditional distribution in conjunction with k-NN estimator

Input: data {(Xm, Ym)}Mm=1 valued in RdX ×RdY , neural estimator P̃ θ represented by yθ(x) as elaborated in (10), parameters

such as k,Natoms, Nbatch ∈ N+, and learning rate ηθ
Output: trained parameter Θ for the neural estimator

1: repeat

2: for n = 1, . . . , Nbatch do

3: generate a query point X̃n ∼ Uniform(X)
4: find the k nearest neighbors of X̃n from data (Xm)Mm=1 and collect accordingly (Ỹn,i)

k
i=1

5: end for
6: compute with Sinkhorn algorithm (Y is equipped with ∥ · ∥1)

L[θ] :=

Nbatch∑
n=1

W

 1

k

k∑
i=1

δỸn,i
,

1

Natom

Natom∑
j=1

δ
yθ
j
(X̃n)

 (11)

7: update θ ← θ − ηθ∇θL[θ]

8: until Convergence

9: return Θ = θ

3.1 Overview of key components

In this section, we outline the three key components of our implementation. Each of these components

addresses a specific issue:
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Figure 1: An instance of RBSP in [0, 1]2.

The 2D unit box is partitioned into 16 rectangles based on 500 samples from Uniform([0, 1]). Note that the overlap

between the bounding rectangles is intentionally maintained. Each partitioning is performed along an axis selected

at random, dividing the samples within the pre-partitioned rectangle according to a random ratio drawn from

Uniform([0.45, 0.55]). The edge ratio for mandatory bisecting along the longest edge is 5. If this ratio is exceeded,

partitioning along the longest edge is enforced. The black dots represent samples within the respective rectangle.

◦ Managing the computational cost arising from the nearest neighbors search.

◦ Implementing gradient descent after computing W.

◦ Selecting an appropriate Lipschitz constant for the neural estimator, preferably at a local level.

Further details and ablation analysis on these three components can be found in Section 5.

3.1.1 Approximate Nearest Neighbors Search with Random Binary Space Partitioning (ANNS-

RBSP)

Given a query point, performing an exact search for its k-nearest-neighbor requires O(M) operations. While

a single search is not overly demanding, executing multiple searches as outlined in Algorithm 1 can result

in significant computational time, even when leveraging GPU-accelerated parallel computing. To address

this, we use ANNS-RBSP as a more cost-effective alternative. Prior to searching, we sort (Xm)Mm=1 along

each axis and record the order of indices. During the search, the data is divided into smaller subsets by

repeatedly applying bisection on these sorted indices, with a random bisecting ratio, on a randomly chosen

axis. Furthermore, we apply a restriction that mandates bisection along the longest edge of a rectangle when

the edge ratio exceeds certain value (a hyper-parameter of the model). We record the bounding rectangle

for each subset created through this partitioning process. Once partitioning is complete, we generate a small

batch of query points within each rectangle and identify the k nearest neighbors for each query point within

that same rectangle. For a visual representation of ANNS-BSP, we refer to Figure 1. Leveraging the sorted

indices, we can reapply this partitioning method during every training episode without much computational

cost. We refer to Section 5.1 for additional details. There are similar ideas in the extant literature (cf.

[HAYSZ11, RS19, LZS+20]). Given the substantial differences in our setting, however, we conduct further

empirical analysis in Section 5.1 to showcase the advantage of our approach against exact search.
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3.1.2 Computing W for gradient descent

The following discussion pertains to the computation of (11), with the subsequent gradient descent in consid-

eration. For simplicity, let us focus on the summand and reduce the problem to the following minimization.

Let (ỹ1, . . . , ỹk) ∈ Yk be fixed, we aim to find

argmin
y∈Yn

W

1

k

k∑
i=1

δỹi
,
1

n

n∑
j=1

δyj

 . (12)

The criterion in (12) is convex as W is convex in both arguments (cf. [Vil08, Theorem 4.8]). To solve (12),

as is standard, we cast it into a discrete optimal transport problem. To do so, first introduce the (k×n)-cost
matrix Cy, where Cy,ij := ∥ỹi− yj∥1. As the criterion in (12) has uniform weights on the atoms, we next aim

to solve the problem

argmin
T∈[0,1]k×n

φy(T) :=
∑

(i,j)∈{1,...,k}×{1,...,n}

TijCy,ij

 (13)

subject to

n∑
j=1

Tij =
1

k
, i = 1, . . . , k and

k∑
i=1

Tij =
1

n
, j = 1, . . . , n.

Let T∗
y be an optimal transport plan that solves (13) for y fixed. Taking derivative of y 7→ φy(·) yields

∂yj
φy(T)

∣∣
T=T∗

y
=

∑
i∈{1,...,k}

T∗
y,ij ∂yj

∥ỹi − yj∥1, j = 1, . . . , n. (14)

This gradient is in general not the gradient corresponding to (12), as T∗
y depends on y, while (14) excludes

such dependence. Nevertheless, it is still viable to update y using the gradient descent that employs the partial

gradient specified in (14). To justify this update rule, first consider y′ ∈ Y satisfying φy′(T∗
y) ≤ φy(T

∗
y), then

observe that

W

1

k

k∑
i=1

δỹi
,
1

n

n∑
j=1

δy′
j

 ≤ φy′(T∗
y) ≤ φy(T

∗
y) = W

1

k

k∑
i=1

δỹi
,
1

n

n∑
j=1

δyj

 .

This inequality is strict if φy′(T∗
y) < φy(T

∗
y). We refer to [PC19, Section 9.1] and the reference therein for

related discussions.

The Sinkhorn algorithm, which adds an entropy regularization, is a widely-used algorithm for approximat-

ing the solution to (13). Specifically, here, it is an iterative scheme that approximately solves the following

regularized problem, subject to the constraints in (13),

argmin
Tϵ∈[0,1]k×n

 ∑
i,j∈{1,...,k}×{i,...,n}

Tϵ
ijCij + ϵ

∑
i,j∈{1,...,k}×{i,...,n}

Tϵ
ij(logTij − 1)

 , (15)

where ϵ > 0 is a hyper-parameter, and should not be confused with the ε used elsewhere. We refer to Section

5.2 for further details. We also refer to [PC19, Section 4] and the reference therein for convergence analysis

of the Sinkhorn algorithm. It is well known that the regularization term in (15) is related to the entropy of

a discrete random variable. Larger values of ϵ encourages the regularized optimal transport plan to be more

diffusive. That is, for larger values of ϵ, the mass from each yj is distributed more evenly across all ỹi’s.

Performing gradient descent along the direction in (14) tends to pull yj ’s towards the median of the ỹi’s, as

we are equipping Y with the norm ∥ · ∥1. Conversely, small values of ϵ often leads to instability, resulting in

NaN loss/gradient. To help with these issues, we implement the Sinkhorm algorithm after normalizing the

cost matrix. Additionally, we use a large ϵ (e.g., 1) in the first few training episodes, then switch to a smaller

ϵ (e.g., 0.1) in later episodes. Furthermore, we impose sparsity on the transport plan by manually setting the

smaller entries of the transport plan to 0. The specific detailed configurations and related ablation analysis

are provided in Section 5.2 and Appendix B.
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3.1.3 Network structure that induces locally adaptive Lipschitz continuity

As previously discussed, it is desirable for the neural estimator to exhibit certain Lipschitz continuity. In

practice, however, determining an appropriate Lipschitz constant for training the neural estiamtor P̃ θ is

challenging, largely because understanding the true Lipschitz continuity of P (if it exists) is very challeng-

ing. Additionally, the estimate provided in Proposition 13 is probabilistic. Fortunately, a specific network

structure allows the neural estimator, when properly trained, to exhibit locally adaptive Lipschitz continuity.

Subsequently, we provide a high-level overview of this network structure. Further detailed configurations and

ablation analysis are presented in Section 5.3 and Appendix B.

Consider a fully connected feed-forward neural network with equal width hidden layers and layer-wise

residual connection [HZSS16]. Let Nneuron denote the width of the hidden layers. For activation, we use

Exponential Linear Unit (ELU) function [CUH16], denoted by σ. For hidden layers, we employ the convex

potential layer introduced in [MDAA22],

xout = xin − ∥W∥−1
2 WTσ (Wxin + b) . (16)

By [MDAA22, Proposition 3], the convex potential layer is 1-Lipschitz continuous in ∥ · ∥2 sense. For the

input layer, with a slight abuse of notation, we use

xout = N−1
neurondiag(|W|−1

1 ∧ 1)σ (Wxin + b) , (17)

where |W|1 computes the absolute sum of each row of the weight matrix to form a vector of size Nneuron,

the reciprocal and · ∧ 1 are applied entry-wise, and diag produces a diagonal square matrix based on the

input vector. In short, the normalization in (17) is only applied to the rows of W with ℓ1-norm exceeding 1.

Consequently, the input layer is 1-Lipschitz continuous in ∥ · ∥1 sense. A similar treatment is used for the

output layer but without activation,

xout = L d−1
Y diag(|W|−1

1 ∧ 1) (Wxin + b) . (18)

where L > 0 is a hyper-parameter. The output represents atoms on Y with uniform weight, therefore, no

N−1
atom is required here.

The spectral norm ∥W∥2 in (16), however, does not, in general, have an explicit expression. Following the

implementation in [MDAA22], we approximate each ∥W∥2 with power iteration. Power iterations are applied

to all hidden layers simultaneously during training. To control the pace of iterations, we combine them with

momentum-based updating. We refer to Algorithm 2 for the detailed implementation. Our implementation

differs from that in [MDAA22], as the authors of [MDAA22] control the frequency of updates but not the

momentum. In a similar manner, for input and output layers, instead of calculating the row-wise ℓ1-norm

explicitly, we update them with the same momentum used in the hidden layers. Our numerical experiments

consistently show that a small momentum value of τ = 10−3 effectively maintains adaptive continuity while

maintaining a satisfactory accuracy. The impact of L in (18) and τ in Algorithm 2 is discussed in Section

5.3.

During training, due to the nature of our updating schemes, the normalizing constants do not achieve

the values required for the layers to be 1-Lipschitz continuous. We hypothesize that this phenomenon leads

to a balance that ultimately contributes to adaptive continuity: on one hand, the weights W stretch to fit

(or overfit) the data, while on the other, normalization through iterative methods prevents the network from

excessive oscillation. As shown in Section 5.3.2 and 5.3.3, the L value in (18) and the momentum τ in

Algorithm 2 affect the performance significantly. For completeness, we also experiment with replacing (16)

by fully connected feedforward layers similar to (17), with or without batch normalization [IS15] after affine

transformation. This alternative, however, failed to produce satisfactory results.

3.2 Experiments with synthetic data

We consider data simulated from three different models. The first two have dX = dY = 1, while the third

has dX = dY = 3. Here we no longer restrict Y to be the unit box, however, we still consider X to be a
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Algorithm 2 Power iteration with momentum for updating ∥W∥2 estimate, applied to all convex potential

layers simultaneously at every epoch during training

Input: weight matrix W ∈ Rd×d of a convex potential layer, previous estimate ĥ ∈ R and auxiliary vector û ∈ Rd, momentum

τ ∈ (0, 1)

Output: updated ĥ and û, in particular, ĥ will be used as a substitute of ∥W∥2 in (16)

1: v←Wû/∥Wû∥2
2: u←WTv/∥WTv∥2
3: h← 2/

(∑
i(Wu · v)i

)2
4: ĥ← τĥ+ (1− τ)h

5: û← τ û+ (1− τ)u

6: return ĥ, û

power iteration

momentum-

based updating

dX-dimensional unit box (not necessarily centered at the origin).

In Model 1 and 2, X ∼ Uniform([0, 1]). Model 1 is a mixture of two independent Gaussian random

variables with mean and variance depending on x,

Y = ξ
(
0.1
(
1 + cos(2πX)

)
+ 0.12

∣∣1− cos(2πX)
∣∣Z + 0.5

)
,

where Z ∼ Normal(0, 1) and ξ is a Rademacher random variable independent of Z. For Model 2, we have

Y = 0.51[0,1)(X) + 0.5U,

where U ∼ Uniform([0, 1]). The conditional distribution in Model 2 is intentionally designed to be discon-

tinuous in the feature space. This choice was made to evaluate performance in the absence of the Lipschitz

continuity stipulated in Assumption 2. Model 3 is also a mixture of two independent Gaussian random

variables, constructed by considering X ∼ Uniform([− 1
2 ,

1
2 ]

3) and treating X as a column vector (i.e., X take

values in R3×1),

Y = ζ
(
cos(AX) + 0.1 cos(ΣX)W

)
+ (1− ζ)

(
cos(A′X) + 0.1 cos(Σ′

X)W ′
)
.

Above, the cos functions act on vector/matrix entrywise, A ∈ R3×3, and Σx also takes value in R3×3. Each

element of Σx is defined as vijx for some vij ∈ R1×3. The entries of A and vij are drawn from standard normal

in advance and remain fixed throughout the experiment. The matrices A′ and Σ′
x are similarly constructed.

Furthermore, W and W ′ are independent three-dimensional standard normal r.v.s, while ζ represents the

toss of a fair coin, independent of X, W , and W ′.

For the purpose of comparison, two different network structures are examined. The first, termed LipNet,

is illustrated in Section 3.1. The second, termed StdNet, is a fully connected feedforward network with

layer-wise residual connections [HZSS16], ReLU activation, and batch normalization immediately following

each affine transformation, without specifically targeting Lipschitz continuity. With a hyper-parameter k

for the k-nearest-neighbor estimator, which we specify later, each network contains 5 hidden layers with 2k

neurons. These networks are trained using the Adam optimizer [KB17] with a learning rate of 10−3. For

StdNet in Model 1 and 2, the learning rate is set to 0.01, as it leads to better performance. Other than the

learning rates, StdNet and LipNet are trained with identical hyper-parameters across all models. We refer

to Appendix B for a summary of hyper-parameters involved.

We generate 104 samples for Models 1 and 2. Given the convergence rate specified in Theorem 10, we

note that the sample size are considered relatively small. For these two models, we chose k = 100 and utilized

neural networks P̃ θ that output atoms of size Natom = k. The choice of k is determined by a rule of thumb.

In particular, our considerations include the magnitude of k suggested by Theorem 10 and the computational

costs associated with the Sinkhorn iterations discussed in Section 3.1.2. The results under Model 1 and 2

are plotted in Figure 2, 3 and 4. Figure 2 provides a perspective on joint distributions, while Figure 3 and 4

focus on conditional CDFs across different x values.
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(a) Model 1, StdNet (b) Model 1, LipNet (c) Model 2, StdNet (d) Model 2, LipNet

Figure 2: Various estimators under Model 1 and 2, joint distributions.

The first row presents the data. Neural networks with different structures are trained on the same set of data for

comparison. The second row shows scatter plots of atoms at various x values. The third row illustrates the evolution

of 20 atoms as x varies. The final row presents the average of the derivative of each atom with respect to x, with a

notable difference in the y axis scale.
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Figure 3: Various estimators under Model 1 and 2, conditional CDFs.

We compare the conditional CDFs at various values of x, derived from StdNet, LipNet, the raw k-nearest estimator

with k = 100 (also used in the training of StdNet and LipNet), and the ground truth. The first row pertains to data

set 1. The second row pertains to data set 2. Subfigure titles display the values of x.
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Figure 4: Errors at different x’s of various estimators under Model 1 and 2.

We compute the W-distance between estimators and the true conditional distribution at different x’s. StdNet and

LipNet are trained based on the raw k-nearest-neighbor estimator with k = 100.
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Figure 2 suggets that both StdNet and LipNet adequately recover the joint distribution. The LipNet’s

accuracy is, however, notably superior and produces smooth movements of atoms (as seen in the third row of

Figure 2). Although further fine-tuning may provide slight improvements in StdNet’s performance, StdNet

will still not achieve the level of accuracy and smoothness observed in LipNet. The average absolute value

of derivative of each atom (fourth row of Figure 2), makes it evident that LipNet demonstrates a capacity

of automatically adapting to a suitable level of Lipschitz continuity locally. In particular, in Model 2, the

atoms of LipNet respond promptly to jumps while remaining relatively stationary around values of x where

the kernel is constant. We emphasize that LipNet is trained using the same hyper-parameters across Models

1, 2, and 3.

Figure 3 shows the estimated conditional distribution at different values of x. Figure 3 indicates that

the raw k-nearest-neighbor estimator deviates frequently from the actual CDFs. This deviation of the raw

k-nearest-neighbor estimator is expected, as it attempts to estimate an unknown CDF with only k = 100

samples given an x. Conversely, the neural estimator, especially the LipNet, appears to offer extra corrections

even if they are trained based on the raw k-nearest-neighbor estimator. This could be attributed to neural

estimators implicitly leveraging information beyond the immediate neighborhood.

Figure 4 compares the W-distance between each estimator and the true conditional distribution at various

values of x, using the following formula (see [PC19, Remark 2.28]),

W(F,G) =

∫
R

∣∣F (r)−G(r)
∣∣dr, (19)

where F and G are CDFs. This quantity can be accurately approximated with trapezoidal rule. In Model

1, the neural estimator generally outperforms the raw estimator with k = 100 across most values of x,

even though the raw estimator is used for training the neural estimators. Furthermore, LipNet continues to

outperform raw estimators with larger values of k – even though LipNet is trained with a raw estimator with

k = 100. In Model 2, LipNet continues to demonstrate a superior performance, except when compared to

the raw estimator with k = 1, 000 at x distant from 0.5, the reason is that, here, the conditional distribution

is piece-wise constant in x, which enhances the performance of the raw estimator at larger k values.

The aforementioned findings indicate superior performance by LipNet. We, however, recognize that

improvements are not always guaranteed, as demonstrated in Figures 3 and 4.

For Model 3, we generate 106 samples and select k = 300. We train both neural estimators using Adam

optimizer with a learning rate of 10−3. Hyperparameters such as L in (18) and τ in Algorithm 2 are consistent

with those used for Models 1 and 2. We refer to Appendix B for the detailed configuration.

In Figure 5, we visualize the outcomes in Model 3: the conditional CDFs at an arbitrarily chosen x

are projected onto various vectors. We observe that the neural estimators considerably outperform the

raw k-nearest-neighbor estimator, likely owing due to their implicit use of global information outside of the

immediate neighbors during training. For further comparisons, we present additional figures in Appendix A:

Figures 14, 15 and 16 feature the exact same neural estimators as shown in Figure 5, but with the raw k-

nearest-neighbor estimators employing different k values, k = 1, 000, 3, 000, 10, 000. Raw k-nearest-neighbor

estimators with k = 1, 000, 3, 000 are superior to that with k = 300, while at k = 10, 000, the accuracy begins

to decline. Upon comparison, the neural estimator trained with k = 300 consistently outperforms the raw

k-nearest-neighbor estimators for all values of k.

For a more comprehensive comparison, we randomly select 10, 000 query points. For each query point, we

randomly generate a vector in R3, normalized under ∥ · ∥1, and project the atoms produced by the estimators

onto said vector. With the same vector, we also compute the corresponding true CDFs of the projected Y

given the query point. We then approximately compute the W-distance between the projected distributions

via (19). The resulting histograms are shown in Figure 6, which suggests that LipNet performs best. The

rationale for employing this projection approach, rather than directly computing the W-distance between

discrete and continuous distributions over R3, is due to the higher cost and lower accuracy of the latter

approach (see also the discussion in Section 5.2). While this projection approach provides a cost-effective
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Figure 5: Various estimators under Model 3, projections of conditional CDFs.

We compare the projected conditional CDFs at x = (0.12,−0.33, 0.1). The estimations are obtained from StdNet,

LipNet, the raw estimator with k = 300 (also used in training StdNet and LipNet), and the ground truth. Subfigure

titles display the vectors used for projection. Note the difference in the x axis scale.

Raw k = 1, 000 Raw k = 3, 000 StdNet LipNet

Figure 6: Histogram of 10, 000 projected Wasserstein-1 errors.

Each histogram consists of 20 uniformly positioned bins between 0 to 0.1. The errors of different estimators

are computed with the same set of query points and projection vectors. Errors larger than 0.1 will be

placed in the right-most bins. Note StdNet and LipNet are trained with k = 300.
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Figure 7: LipNet under Model 3, projected trajectories of 20 atoms.

We illustrate the projected trajectories of 20 atoms by evaluating LipNet at 100 evenly allocated points along the

straight line that intersects the origin and x = (0.12,−0.33, 0.1), situated within [0, 1]3. The x-axis denotes the

specific points along the line, consistent across all subfigures. Subfigure titles display the vectors used for projection.

Note the difference in the y axis scale.
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alternative for performance evaluation, it may not fully capture the differences between the estimations and

ground truth.

Lastly, to demonstrate how atoms, in the neural estimator, move as x varies, Figure 7 shows the projected

trajectories along a randomly selected straight line through the origin. The movement of atoms in LipNet

is smooth, consistent with previous observations. Interestingly, the movement of atoms in StdNet isn’t

excessively oscillatory either, although its continuity is slightly rougher compared to LipNet. The reader

may execute the Jupyter notebook on our github repisitory https://github.com/zcheng-a/LCD_kNN to explore the

projected conditional CDFs and atoms’ trajectories for different x values.

4 Proofs

4.1 Auxiliary notations and lemmas

In this section, we will introduce a few technical results that will be used in the subsequent proofs.

We first define

R(m) := sup
x∈X

∫
Ym

W

(
Px,

1

m

m∑
ℓ=1

δyℓ

)
m⊗
ℓ=1

Px(dyℓ), m ∈ N. (20)

We stipulate that R(0) = 1. By [FG15], we have

R(m) ≤
⌢

C ×


m− 1

2 , dY = 1,

m− 1
2 ln(m), dY = 2,

m
− 1

dY , dY ≥ 3,

(21)

for some constant
⌢

C > 0 depending only on dY. For comprehension, we also point to [Klo20, Fou23] for

results that are potentially useful in analyzing explicit constant, though it is out of the scope of this paper.

The lemma below pertains to the so-called approximation error, which arises when treating data points

Yj with Xj around an query point as though they are generated from the conditional distribution at the

query point.

Lemma 16. Under Assumption 2, for any integer J ≥ 1 and x, x1, . . . , xJ ∈ XJ+1, we have∣∣∣∣∣∣
∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 J⊗
j=1

Pxj
(dyj)−

∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 J⊗
j=1

Px(dyj)

∣∣∣∣∣∣ ≤ L

J

J∑
j=1

∥xj − x∥∞.

Proof. For x, x1, . . . , xJ ∈ XJ+1, note that∣∣∣∣∣∣
∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 J⊗
j=1

Pxj
(dyj)−

∫
YJ

W

(
1

J

J∑
k=1

δyj
, Px

)
J⊗

j=1

Px(dyj)

∣∣∣∣∣∣
≤

J∑
ℓ=1

∣∣∣∣∣∣
∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 ℓ−1⊗
j=1

Px(dyj)⊗
J⊗

j=ℓ

Pxj
(dyj)−

∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 ℓ⊗
j=1

Px(dyj)⊗
J⊗

j=ℓ+1

Pxj
(dyj)

∣∣∣∣∣∣ ,
where for the sake of neatness, at ℓ = 1, J , we set

0⊗
j=1

Px(dyj)⊗
J⊗

j=1

Pxj
(dyj) =

J⊗
j=1

Pxj
(dyj) and

J⊗
j=1

Px(dyj)⊗
J⊗

j=J+1

Pxj
(dyj) =

J⊗
j=1

Pxj
(dyj).
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Regarding the ℓ-th summand, invoking Fubini-Toneli theorem to integrate yℓ first then combining the integrals

on outer layers using linearity, we obtain∣∣∣∣∣∣
∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 ℓ−1⊗
j=1

Px(dyj)⊗
J⊗

j=ℓ

Pxj
(dyj)−

∫
YJ

W

 1

J

J∑
j=1

δyj
, Px

 ℓ⊗
j=1

Pj(dyj)⊗
J⊗

j=ℓ+1

Pxj
(dyj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
YJ−1

∫
Y
W

 1

J

J∑
j=1

δyj
, Px

 (Px − Pxℓ
) (dyℓ)

ℓ−1⊗
j=1

dPx(yj)⊗
J⊗

j=ℓ+1

Pxj
(dyj)

∣∣∣∣∣∣
≤ sup

(yj)j ̸=ℓ∈YJ−1

∣∣∣∣∣∣
∫
Y
W

 1

J

J∑
j=1

δyj
, Px

 (Pxℓ
− Px) (dyℓ)

∣∣∣∣∣∣ ≤ 1

J
W(Pxℓ

, Px) ≤
L

J
∥xℓ − x∥∞,

where in the second last inequality we have invoked Kantorovich-Rubinstein duality (cf. [Vil08, Particular

case 5.16]) and the fact that, for all (yj)j ̸=ℓ ∈ YJ−1, the map yℓ 7→ W
(

1
J

∑J
j=1 δyj , Px

)
is 1

J -Lipschitz, and

where in the last equality, we have used Assumption 2.

We will be using the lemma below, which regards the stochastic dominance between two binomial random

variables.

Lemma 17. Let n ∈ N and 0 ≤ p < p′ ≤ 1. Then, Binomial(n, p′) stochastically dominates Binomial(n, p).

Proof. Let U1, . . . , Un
i.i.d.∼ Uniform[0, 1] and define

H :=

n∑
i=1

1[0,p](Ui), H ′ :=

n∑
i=1

1[0,p′](Ui).

Clearly, H ∼ Binomial(n, p) and H ′ ∼ Binomial(n, p′). Moreover, we have H ≤ H ′, and thus P(H > r) ≤
P(H ′ > r), which completes the proof.

4.2 Proof of Theorem 7

The proof of Theorem 7 relies the technical lemma below that we state and prove now.

Lemma 18. Let p ∈ [0, 1] a real number, and let M ≥ 1 and d ≥ 1 two integers. We then have

M∑
m=1

(
M

m

)
pm(1− p)M−mm− 1

d ≤ ((M + 1)p)
− 1

d + ((M + 1)p)
−1
.

Proof. We compute

M∑
m=1

(
M

m

)
pm(1− p)M−mm− 1

d =
1

(M + 1)p

M∑
m=1

(
M + 1

m+ 1

)
pm+1(1− p)M−m(m+ 1)m− 1

d

=
1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−mm(m− 1)−

1
d

=
1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m(m− 1)1−

1
d

+
1

(M + 1)p

M∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m(m− 1)−

1
d ,
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where we used thatm = m−1+1 in the last equality. Then, using that (m−1)1−
1
d ≤ m1− 1

d and (m−1)−
1
d ≤ 1

for all m ≥ 2, we continue to obtain

M∑
m=1

(
M

m

)
pm(1− p)M−mm− 1

d ≤ 1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−mm1− 1

d

+
1

(M + 1)p

M∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m

≤ 1

(M + 1)p

M+1∑
m=0

(
M + 1

m

)
pm(1− p)M+1−mm1− 1

d +
1

(M + 1)p
,

where the second term in the last equality are derived from the binomial formula. Finally, introducing a

random variable V with binomial distribution B(M + 1, p), and using Jensen inequality for the concave

function R+ ∋ x 7→ x1−
1
d ∈ R+, we obtain

M∑
m=1

(
M

m

)
pm(1− p)M−mm− 1

d ≤ 1

(M + 1)p
E
[
V 1− 1

d

]
+

1

(M + 1)p

≤ ((M + 1)p)
1− 1

d

(M + 1)p
+

1

(M + 1)p
= ((M + 1)p)

− 1
d + ((M + 1)p)

−1
,

which conclude the proof.

We are now ready to prove Theorem 7.

Proof of Theorem 7. For ν ∈ P(X), we obviously have

E
[∫

X
W(Px, P̂

r
x )ν(dx)

]
≤ sup

x∈X
E
[
W(Px, P̂

r
x )
]
,

we then focus on proving the right hand side inequality in Theorem 7. To this end, we fix x ∈ X and, to

alleviate the notations, we let B := Br(x) as introduced in Definition 5. Let NB :=
∑M

m=1 1B(Xm). By

Definition 5 and Assumption 3 (i), we have

E
[
W(Px, P̂

r
x )
]
= E

[
W(Px, µ̂

D
B)
]
=

M∑
m=0

E
[
1NB=mW(Px, µ̂

D
B)
]

=

M∑
m=1

(
M

m

)
E

[
1X1,...,Xm∈B1Xm+1,...,XM ̸∈BW

(
1

m

m∑
l=1

δYl
, Px

)]
+ P [X1, . . . , XM ̸∈ B]W(λY, Px)

≤
M∑

m=1

(
M

m

)
P [Xm+1, . . . , XM ̸∈ B]E

[
1X1,...,Xm∈BW

(
1

m

m∑
l=1

δYl
, Px

)]
+ ξ(Bc)MR(0)

=

M∑
m=1

(
M

m

)
µ(Bc)M−m

∫
(B×Y)m

W

(
1

m

m∑
l=1

δyl
, Px

)
m⊗
ℓ=1

ψ(dxℓ dyℓ) + ξ(Bc)MR(0). (22)

To compute the integral terms, observe that, for fixed m ≥ 1, by definition of R(m) in (20), Lemma 16 and

Remark 6,∫
(B×Y)m

W

(
1

m

m∑
l=1

δyl
, Px

)
m⊗
ℓ=1

ψ(dxℓ dyℓ) =

∫
Bm

∫
Ym

W

(
1

m

m∑
l=1

δyl
, Px

)
m⊗
l=1

Pxl
(dyl)

m⊗
ℓ=1

ξ(dxℓ)

≤
∫
Bm

(∫
Ym

W

(
1

m

m∑
l=1

δyl
, Px

)
m⊗
ℓ=1

Px(dyℓ) +
L

m

m∑
ℓ=1

∥xℓ − x∥∞

)
m⊗
ℓ=1

ξ(dxℓ)

≤
∫
Bm

(R(m) + 2Lr)

m⊗
ℓ=1

ξ(dxℓ) = (R(m) + 2Lr)ξ(B)m.
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This together with (22) implies that, for any x ∈ X,

E
[
W(Px, P̂

r
x )
]
≤

M∑
m=1

(
M

m

)
ξ(Bc)M−mξ(B)m(R(m) + 2Lr) + ξ(Bc)MR(0)

≤ 2Lr +

M∑
m=1

(
M

m

)
ξ(Bc)M−mξ(B)mR(m) + ξ(Bc)R(0) (23)

The remainder of the proof is split into three cases. In order to proceed, we will put together (21), Lemma

18, and (23). Below we only keep track of the rate.

• For dY = 1, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + (ξ(B)(M + 1))

− 1
2 + (ξ(B)(M + 1))

−1
+ (1− ξ(B))M

≤ 2Lr +
(
c(2r)dX(M + 1)

)− 1
2 +

(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .

Controlling the dominating term(s) by setting r ∼ r−
dX
2 M− 1

2 , we yield

r ∼M
− 1

dX+2 and E
[
W(Px, P̂

r
x )
]
≲M

− 1
dX+2 .

• For dY = 2, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + ln(M) (ξ(B)(M + 1))

− 1
2 + (ξ(B)(M + 1))

−1
+ (1− ξ(B))M

≤ 2Lr + ln(M)
(
c(2r)dX(M + 1)

)− 1
2 +

(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .

Since r ∼ ln(M)r−
dX
2 M− 1

2 may not have a closed-form solution, we simply follow the case of dY = 1 to

yield

r ∼M
− 1

dX+2 and E
[
W(Px, P̂

r
x )
]
≲M

− 1
dX+2 lnM.

• For dY ≥ 3, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + (ξ(B)(M + 1))

− 1
dY + (ξ(B)(M + 1))

−1
+ (1− ξ(B))M

≤ 2Lr +
(
c(2r)dX(M + 1)

)− 1
dY +

(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .

By setting r ∼ r
− dX

dYM
− 1

dY , we yield

r ∼M
− 1

dX+dY and E
[
W(Px, P̂

r
x )
]
≲M

− 1
dX+dY .

The proof is complete.

4.3 Proof of Theorem 8

Proof of Theorem 8. We will proceed by using Efron-Stein inequality. Let (X ′
1, Y

′
1) be an independent copy

of (X1, Y1), and define D′ := {(X ′
1, Y

′
1), (X2, Y2), . . . , (XM , YM )}. In view of Assumption 3 (i), by the triangle

inequality of W, it is sufficient to investigate

1

2
M E

[(∫
X
W
(
µ̂D
Br(x), µ̂

D′

Br(x)

)
dν(x)

)2
]
.
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Notice that, by definitions (1),{
µ̂D
Br(x) ̸= µ̂D′

Br(x)

}
⊆
{
X1 ∈ Br(x)

}
∪
{
X ′

1 ∈ Br(x)
}
.

Additionally, by definitions (1) again, on the event that
{
µ̂D
Br(x) ̸= µ̂D′

Br(x)

}
, we have

W
(
µ̂D
Br(x), µ̂

D′

Br(x)

)
≤

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−1

.

The above together with the condition that ν is dominated by λX implies that

E

[(∫
X
W
(
µ̂D
Br(x), µ̂

D′

Br(x)

)
ν(dx)

)2
]
≤ C

2E

(∫
B(X1,2r)∪B(X′

1,2r)

W
(
µ̂D
Br(x), µ̂

D′

Br(x)

)
λX(dx)

)2


≤ C
2E


∫

B(X1,2r)∪B(X′
1,2r)

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−1

λX(dx)

2


≤ 4C
2E


∫

B(X1,2r)

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−1

λX(dx)

2


= 4C
2E

λX(B(X1, 2r))
2

∫
B(X1,2r)

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−1

λX(dx)

λX(B(X1, 2r))

2


≤ 4C
2
(4r)2dXE

E
∫

B(X1,2r)

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−2

λX(dx)

λX(B(X1, 2r))

∣∣∣∣∣X1

 , (24)

where we have used Jensen’s inequality and tower property in the last line. In view of Assumption 3 (i),

expanding the inner conditional expectation into an integral with respect to regular conditional distribution

(cf. [Bog07, Section 10]) then invoking Fubini-Tonelli theorem, we yield

E

∫
B(X1,2r)

(
1 +

M∑
ℓ=2

1Br(x)(Xℓ)

)−2

λX(dx)

λX(B(X1, 2r))

∣∣∣∣∣X1


=

∫
B(X1,2r)

∫
XM−1

(
1 +

M∑
ℓ=2

1Br(x)(xℓ)

)−2 M⊗
ℓ=2

ξ(dxℓ)
λX(dx)

λX(B(X1, 2r))
. (25)

For the inner integral in (25), by Assumption 3 (ii), we have∫
XM−1

(
1 +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−2 M⊗
ℓ=2

ξ(dxℓ)

=

M−1∑
ℓ=0

(
M − 1

ℓ

)
ξ
(
Br(x)

)ℓ(
1− ξr

(
Br(x)

))M−1−ℓ

(1 + ℓ)
−2

=
1

M(M + 1)ξ
(
Br(x)

)2 M−1∑
ℓ=0

(
M + 1

ℓ+ 2

)
ξ
(
Br(x)

)ℓ+2
(
1− ξ

(
Br(x)

))M−1−ℓ ℓ+ 2

ℓ+ 1

≤ 2

M(M + 1)ξ
(
Br(x)

)2 M+1∑
ℓ=2

(
M + 1

ℓ

)
ξ
(
Br(x)

)ℓ(
1− ξ

(
Br(x)

))M+1−ℓ

≤ 2

M(M + 1)ξ
(
Br(x)

)2 .
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This together with (24), (25) and Assumption 3 (ii) implies

E

[(∫
X
W
(
µ̂D
Br(x), µ̂

D′

Br(x)

)
dν(x)

)2
]
≤ 8

22dXC
2

c2M(M + 1)
.

Invoking Efron-Stein inequality, we conclude the proof.

4.4 Proof of Theorem 10

In order to prove Theorem 10, we first establish a few technical lemmas. The following lemma is a first step

toward finding the average rate of k-nearest neigbhor method.

Lemma 19. Suppose Assumption 2 and 3. Let R be defined in Section 4.1. Then, for any x ∈ X, we have

E
[
W
(
Px, P̌

k
x

)]
≤ R(k) +

L

k

k∑
m=1

E
[
Z(m)
x

]
,

where Zx
(m),m = 1, . . . ,M are the order statistics of (∥Xm − x∥∞)Mm=1 in ascending order.

Proof. We fix x ∈ X for the rest of the proof. By Assumption 3, we have

E
[
W
(
Px, P̌

k
x

)]
=M !E

[
1∥X1−x∥∞≤∥X2−x∥∞≤···≤∥XM−x∥∞W

(
Px,

1

k

k∑
ℓ=1

δYℓ

)]

=M !

∫
(X×Y)M

1∥x1−x∥∞≤∥x2−x∥∞≤···≤∥xM−x∥∞W

(
Px,

1

k

k∑
ℓ=1

δyℓ

)
M⊗
ℓ=1

ψ(dxℓ dyℓ)

=M !

∫
XM

1∥x1−x∥∞≤∥x2−x∥∞≤···≤∥xM−x∥∞

∫
Yk

W

(
Px,

1

k

k∑
ℓ=1

δyℓ

)
k⊗

ℓ=1

Pxℓ
(dyℓ)

M⊗
j=1

ξ(dxℓ).

In view of Lemma 16, replacing Pxℓ
above with Px, we have

E
[
W
(
Px, P̌

k
x

)]
≤M !

∫
XM

1∥x1−x∥∞≤∥x2−x∥∞≤···≤∥xM−x∥∞

∫
Yk

W

(
Px,

1

k

k∑
ℓ=1

δyℓ

)
k⊗

ℓ=1

Px(dyℓ)

M⊗
j=1

ξ(dxℓ)

+
L

k

k∑
ℓ=1

M !

∫
XM

1∥x1−x∥∞≤∥x2−x∥∞≤···≤∥xM−x∥∞dX(xℓ, x)

M⊗
j=1

ξ(dxℓ)

=

∫
Yk

W

(
1

k

k∑
l=1

δyl
, Px

)
k⊗

ℓ=1

Px(dyℓ) +
L

k

k∑
ℓ=1

M !

∫
XM

1∥x1−x∥∞≤∥x2−x∥∞≤···≤∥xM−x∥∞dX(xℓ, x)

M⊗
j=1

ξ(dxℓ).

In view of R defined above (21) and Zx
(m) defined in the statement of this lemma, we conclude the proof.

The next lemma provides an upper bound to
∑k

m=1 E
[
Z

(m)
x

]
listed in Lemma 19.

Lemma 20. Let Zx
(m) be defined as in Lemma 19. Under Assumption 3, for any x ∈ X, we have

k∑
m=1

E
[
Zx
(m)

]
≤ 2

c
1
dX dX

M !

Γ(M + 1
dX

+ 1)

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX
)

j!
.
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Proof. For any x ∈ X, we compute, since Zx
(m) ∈ [0, 1],

E
[
Zx
(m)

]
=

∫ 1

0

P
[
Zx
(m) ≥ r

]
dr =

∫ 1

0

(
1− P

[
Zx
(m) < r

])
dr,

and we observe that
{
Zx
(m) < r

}
= {N(x, r) ≥ m} with N(x, r) := ♯ {1 ≤ m ≤M | ∥Xm − x∥ < r}. We

hence have

E
[
Zx
(m)

]
=

∫ 1

0

(1− P [N(x, r) ≥ m]) dr.

Since N(x, r) ∼ Binomial(M, ξ(B(x, r))) and ξ(B(x, r)) ≥ cλX(B(x, r)) ≥ c r
dX

2dX
by Assumption 3 (ii), we

obtain that P [N(x, r) ≥ m] ≥ P [N ′(x, r) ≥ m] with N ′(x, r) ∼ Binomial(M, c r
dX

2dX
) due to Lemma 17. This

implies

E
[
Zx
(m)

]
≤
∫ 1

0

(1− P [N ′(x, r) ≥ m]) dr =

∫ 1

0

P [N ′(x, r) < m] dr

=
m−1∑
j=0

(
M

j

)∫ 1

0

(
c
rdX

2dX

)j (
1− c

rdX

2dX

)M−j

dr =
2

c
1
dX dX

m−1∑
j=0

(
M

j

)∫ c

2dX

0

r
1
dX

+j−1
(1− r)

M−j
dr

≤ 2

c
1
dX dX

m−1∑
j=0

Γ(M + 1)

Γ(j + 1)Γ(M − j + 1)

Γ( 1
dX

+ j)Γ(M − j + 1)

Γ( 1
dX

+M + 1)

=
2M !

c
1
dX dXΓ(

1
dX

+M + 1)

m−1∑
j=0

Γ( 1
dX

+ j)

j!
, (26)

and the proof is over.

We are now in position to prove Theorem 10.

Proof of Theorem 10. By combining Lemma 19 and Lemma 20, noting that the upper bound is constant in

x, we have

sup
x∈X

E
[
W
(
Px, µ̂Nk(x)

)]
≤ R(k) +

L

k

2M !

c
1
dX dXΓ(M + 1

dX
+ 1)

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX
)

j!
. (27)

Below we only investigate the rate of the right hand side of (27) as M → ∞, and do not keep track of the

constant. We first analyze the second term in the right hand side of (27). By Gautschi’s inequality [Mer08,

Eqs (10.6) and (12.2)], we have

Γ(j + 1
dX
)

j!
=

Γ(j + 1
dX
)

Γ(j + 1)
≤ j

1
dX

−1
, j ∈ {0} ∪ N.

Thus,

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX
)

j!
≤

k∑
m=1

m−1∑
j=0

j
1
dX

−1 ≲
k∑

m=1

m
1
dX ≲ k

1+ 1
dX .

By Gautschi’s inequality again, we have

M !

Γ(M + 1
dX

+ 1)
=

Γ(M + 1)

Γ(M + 1
dX

+ 1)
≤M

− 1
dX .

The above implies

sup
x∈X

E
[
W
(
Px, µ̂Nk(x)

)]
≲ R(k) +M

− 1
dX k

1
dX .

We will split the remainder of the proof into three cases.
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• For dY = 1, by letting k−
1
2 ∼M

− 1
dX k

1
dX , we yield

k ∼M
2

dX+2 and sup
x∈X

E
[
W
(
Px, µ̂Nk(x)

)]
≲M

− 1
dX+2

• For dY = 2, since the explicit solution of k−
1
2 ln k ∼M

− 1
dX k

1
dX is elusive, we simply follow the configu-

ration derived in the case of dY = 1 and yield

k ∼M
2

dX+2 and sup
x∈X

E
[
W
(
Px, µ̂Nk(x)

)]
≲M

− 1
dX+2 lnM.

• For dY ≥ 3, by letting k
− 1

dY ∼M
− 1

dX k
1
dX , we yield

k ∼M
dY

dX+dY and sup
x∈X

E
[
W
(
Px, µ̂Nk(x)

)]
≲M

− 1
dX+dY .

The proof is complete.

4.5 Proof of Theorem 11

Proof of Theorem 11. We will proceed by using Efron-Stein inequality. Let (X ′
1, Y

′
1) be an independent copy

of (X1, Y1), and define D′ := {(X ′
1, Y

′
1), (X2, Y2), . . . , (XM , YM )}. In view of Assumption 3 (i), by the triangle

inequality of W, it is sufficient to investigate

1

2
M E

[(∫
X
W
(
µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
ν(dx)

)2
]
.

Note that for W
(
µ̂D
Nk,DX (x)

, µ̂D′

Nk,D′
X
(x)
)
to be positive, the event Ax ∪A′

x is necessary, where

Ax :=
{
X1 ∈ N k,DX(x)

}
and A′

x :=
{
X ′

1 ∈ N k,DX(x)
}
.

Moreover,

W
(
µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
≤ 1

k
.

It follows that

E

[(∫
X
W
(
µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
ν(dx)

)2
]
≤ 1

k2
E

[(∫
X
1Ax∪A′

x
ν(dx)

)2
]

(28)

≤ 1

k2
E
[∫

X
1Ax∪A′

x
ν(dx)

]
≤ 2

k2

∫
X
P [Ax] ν(dx).

where the second inequality is due to the fact that the integral value always fall into in [0, 1], and we have

used Fubini-Tonelli theorem and the subadditivity of probability in the third inequality. Regarding P [Ax],

by the symmetry stemming from Assumption 3 (i) and the random tie-breaking rule in Definition 9, we have

P [Ax] =

(
M − 1

k − 1

)(
M

k

)−1

=
k

M
.

Consequently,

M E

[(∫
X
W
(
µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
ν(dx)

)2
]
≤ 2

k
.
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Invoking Efron-Stein inequality, we conclude the proof of (5).

We now assume additionally that ν ≤ CλX to prove the second statement. Following from (28), by using

the positivity and subadditivity of indicator functions as well as AM–GM inequality, we have

E

[(∫
X
W
(
µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
ν(dx)

)2
]
≤ 4

k2
E

[(∫
X
1Ax

ν(dx)

)2
]
≤ 4C

2

k2
E

[(∫
X
1Ax

λX(dx)

)2
]

≤ 4C
2

k2

∫
[0,1]

P

[(∫
X
1Ax

λX(dx)

)2

> δ

]
dδ,

where in the second inequality we have used the condition that ν is dominated by λX, and in the last one the

alternative expression of expectation for positive random variables. Let CubeιX be the set of cubes within X
with edge length ι. Since ν is dominated by λX, with probability 1 we have

Ax =
{
at most (k − 1) of Xℓ, ℓ = 2, . . . ,M , falls into B∥X1−x∥∞

x

}
,

A′
x =

{
at most (k − 1) of Xℓ, ℓ = 2, . . . ,M , falls into B

∥X′
1−x∥∞

x

}
.

It follows that {
M∑

m=2

1B(Xm) > k, ∀B ∈ CubeιX

}
⊆
{∫

X
1Ax

λ(dx) ≤ (2ι)dX

}
.

By combining the above and setting δ = (2ι)2dX , we yield

E

[(∫
X
W
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µ̂D
Nk,DX (x), µ̂

D′

Nk,D′
X
(x)
)
ν(dx)

)2
]
≤ 4C

2

k2

∫
[0,1]

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ k

M − 1
, ∀B ∈ Cube

1
2 δ

1
dX

X

]
dδ

(29)

In order to proceed, we state and prove a useful technical lemma using the Rademacher complexity technique

(cf. [Wai19, Section 4]). Below we let CubeX be the set of cubes inside X with edge lengths within [0, 1].

Lemma 21. Let X2, . . . , XM be introduced in Assumption 3 (i). For ε ≥ 0,

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ cλX(B)− 8

√
2dX ln(M)

M − 1
− ε, ∀B ∈ CubeX

]
≤ exp

(
−M − 1

2
ε2
)
.

Proof. Let xM = (xM2 , . . . , x
M
M ) ∈ XM−1. To utilize the machinery of Rademacher complexity, we will

upper bound the cardinality of the set {1B(x
M ) : B ∈ CubeX}, where 1B applies entry-wise. More pre-

cisely, 1B(x
M ) = (1B(x

M
2 ), . . . ,1B(x

M
M )). To start with, we first note that for d = 1, . . . , dX, the projected

(xM2,d, . . . , x
M
M,d) at most separates axis-d into M intervals. Additionally, each element in {1B(x

M ) : B ∈
CubeX} corresponds to selecting two intervals (one for starting and one for ending of the cube) on each axis.

Therefore, the cardinality is at most M2dX , i.e., CubeX has polynomial discrimination 2dX. It follows from

[Wai19, Lemma 4.14 and Theorem 4.10] that, for any ε ≥ 0,

P

[
sup

B∈CubeX

∣∣∣∣∣ 1

M − 1

M∑
m=2

1B(Xm)− ξ(B)

∣∣∣∣∣ ≥ 8

√
2dX ln(M)

M − 1
+ ε

]
≤ exp

(
−M − 1

2
ε2
)
.

Finally, in view of Assumption 3 (ii), we conclude the proof of Lemma 21.

In view of (29) and Lemma 21, for δ ∈ [0, 1], we consider ε ≥ 0 such that

k

M − 1
=
cδ

1
2

2dX
− 8

√
2dX ln(M)

M − 1
− ε.
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Note that this is feasible only if 4dX
c2

(
8
√

2dX ln(M)
M−1 + k

M−1

)2

≤ 1.4 It follows that

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ k
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)
, δ ∈

(
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c
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, 1

]
.

The above together with (29) implies
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+
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+

∫ 1

2dX
c

(
8
√

2dX ln(M)
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 2η dη

)
,

where we have performed a change of variable η = δ
1
2 in the last line. Relating to exponential and normal

density functions, we calculate the integral to obtain

1

2
ME
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X
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(
µ̂D
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+
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+

√
2π√
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(
8

√
2dX ln(M)
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+
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)
+

4
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where we note the right hand side is of O

((√
ln(M)

k + 1√
M

)2

+ 1
k

(√
ln(M)

k + 1√
M

)
+ 1

k2

)
. Invoking Efron-

Stein inequality, we conclude the proof.

4.6 Proof of Proposition 13

Proof of Proposition 13. By triangle inequality,

E
[∫

X
W(Px, P̃

Θ
x ) dx

]
≤ E

[∫
X
W(Px, P

Θ
x )

(
λX − 1

N

N∑
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δX̃n

)
(dx)

]
+ E

[
1

N

N∑
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W(PX̃n
, P X̃n

)

]
+ E

[
1

N

N∑
n=1

W(P X̃n
, P̃Θ

X̃n
)

]
.

Then, by Assumption 2 and (7),

E

[∫
X
W(Px, P

Θ
x )

(
λX − 1

N

N∑
n=1

δX̃n

)
(dx)

]
≤ E

[
(L+ LΘ)W

(
λX,

1

N

N∑
n=1

δX̃n

)]
.

4We do not include this condition in the statement of Theorem 11, as the bound presented remains valid, albeit vacuous, if

this condition is not met.
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In view of Assumption 12, we have

E

[
1

N

N∑
n=1

W(PX̃n
, P X̃n

)

]
=

1

N

N∑
n=1

E
[
E
[
W(PX̃n

, P X̃n
)
∣∣∣X̃n

]]
= E

[∫
X
W(Px, P x) dx

]
.

Combining the above, we prove the first statement.

As for the second statement, consider Q,Q′ : X → P(Y) that are Lipschitz-continuous with constants

L,L′. Suppose that

W(Qx∗ , Q′
x∗) = sup

x∈X
W(Qx, Q

′
x) = δ

for some δ > 0 and x∗ ∈ X. This supremum is indeed attainable because X is compact that x 7→ W(Qx, Q
′
x)

is continuous. Consequently, by triangle inequality and the Lipschitz-continuity, we have

W(Qx, Q
′
x) ≥

(
W(Qx, Q

′
x∗)−W(Q′

x, Q
′
x∗)
)
∨ 0 ≥

(
W(Qx∗ , Q′

x∗)−W(Qx∗ , Qx)−W(Q′
x∗ , Q′

x)
)
∨ 0

≥
(
δ − (L+ L′)∥x− x∗∥∞

)
∨ 0, x ∈ X.

We may then lower bound
∫
X W(Qx, Q

′
x) dx with the volume of the cone on right hand side above (note the

worst case is when x∗ = (0, 0)),∫
X
W(Qx, Q

′
x) dx ≥

∫ δ

0

(
δ − z

L+ L′

)dX

dz =
δdX+1

(dX + 1)(L+ L′)dX
.

It follows that

sup
x∈X

W(Qx, Q
′
x) ≤ (dX + 1)

1
dX+1 (L+ L′)

dX
dX+1

(∫
X
W(Qx, Q

′
x) dx

) 1
dX+1

,

which completes the proof.

5 Implementation details and ablation analysis

In this section, we will provide further implementation details and conduct ablation analysis of the components

highlighted in Section 3.1.

5.1 Comparing ANNS-RBSP to exact NNS

Algorithm 3 outlines a single slice of RBSP, which divides an array of x’s into two arrays of a random

ratio along a random axis. Throughout the training, we execute RBSP 5 times during each training epoch,

yielding 25 = 32 parts. Within each part, we then select a small batch of 8 query points, locating the k

nearest neighbors for each query point within the same part. In Table 1, we compare the execution times of

exact NNS and ANNS-RBSP. ANNS-RBSP offers considerable time savings for M = 106, while exact NNS

is more efficient for M = 105 or fewer.

It’s important to note that ANNS-RBSP may introduce additional errors by inaccurately including points

that are not within the k nearest neighbors. As elucidated in the proof of Theorem 10, the magnitude of

this induced error can be understood by comparing the excessive distance incurred to that of exact NNS. For

simplicity, we investigate the difference below

∆ :=
1

Nbatch

Nbatch∑
i=1

1

k

k∑
j=1

∥∥∥X̌ ′
ij − X̃i

∥∥∥
1
− 1

k

k∑
j=1

∥∥∥X̌ij − X̃i

∥∥∥
1

 ,

32



Algorithm 3 Single slice of random binary space partitioning

Input: data DX = (xi)
M
i=1 ⊂ [0, 1]dX , arrays of indexes Sd, d = 1, . . . , dX of length M with the j-th entry indicating the position

of the j-th smallest value in the d-th dimension of DX, a boolean array B of length M with the i-th entry indicating whether

xi is involved in the current slicing, a rectangle R that bounds xi’s involved in the current slicing, i.e., R corresponds to B,

a parameter redge ∈ (1,∞) for avoiding thin rectangles, an interval [p, p] ∈ (0, 1) for random bisecting ratio

Output: two boolean arrays B,B′ of length M indicating the bisected data, two bounding rectangles R,R′ that correspond to

B,B′

1: Randomly pick a dimension d

2: if The edge ratio of R exceeds redge then

3: Replace d with that corresponds to the longest edge

4: end if

5: Rearrange B according to Sd by B̃← B[Sd]
6: Pick out the indexes from Sd involved in ANNS by S̃d ← Sd[B̃]
7: Generate p ∼ Uniform([p, p]) and round p into p̃ so that p̃ len(S̃d) is an integer

8: Bisect S̃d in two arrays with length p̃ len(S̃d) and (1− p̃)len(S̃d), denoted by S̃d and S̃′d
9: Form new bounding rectangles R,R′ using S̃d, S̃

′
d,DX and the original R (may enforce some overlap here)

10: Initialize two boolean arrays B,B′ with length M and all entries being False

11: B[S̃d]← True, B′[S̃′d]← True

12: return B,B′, R,R′

Table 1 Execution times of two NNS methods.

M = 104 M = 105 M = 106

dX = 1 (0.03, 2.2) (0.5, 2.5) (9.4,2.7)

dX = 3 (0.04, 2.2) (0.6, 2.7) (12.8,2.8)

dX = 10 (0.07, 2.2) (0.8, 2.7) (26.8,3.4)

This table compares the execution times for 100 runs of exact NNS versus ANNS-RBSP, both utilizing parallel

computing, facilitated by PyTorch, with an NVIDIA L4 GPU. Each iteration (approximately) finds the 300 nearest

neighbors from M samples for all of 256 randomly generated query points. The values within each parenthesis

denote the seconds consumed by both methods, with the first number corresponding to exact NNS. For faster

processing, exact NNS employs a 3D tensor, except in the case of M = 106, dX = 10, where memory limitations

necessitate using a for-loop over individual query points. ANNS-RBSP regenerates a new partition each run. The

table does not include the time required to sort the data along all dimensions, which takes about 0.2 seconds in the

worst case and is not repeatedly executed.

where X̃i’s are query points, and X̌ij , X̌
′
ij are the k-nearest-neighbor identified by exact NNS and ANNS-

RBSP, respectively. In our experiments, we evaluated scenarios with dX = 3, 10 and k = 300. Regarding

the data, we generated M = 104, 105, 106 samples from Uniform([0, 1]dX). Once the data set is generated,

we fixed the data and conducted 100 simulations of ∆, each with Nbatch = 256 query points. This process

was repeated 10 times, each with a separately generated data. The results are illustrated in Figure 8. It

is expected that ∆ will approach 0 as the sample size M tends to infinity. The convergence rate is likely

influenced by factors such as dX, k, and Nbatch. Further analysis of the convergence of ANNS-RBSP will be

conducted in future studies.

5.2 An implementation of the Sinkhorn algorithm

In this section, we will detail our implementation of the Sinkhorn algorithm and highlight a few novel

treatments that seem to enhance the training of the neural estimator. While the mechanisms are not yet

fully understood, they constitute important improvement in the accuracy of the neural estimator.

Let us first recall the iterative procedure involved in the Sinkhorn algorithm. We follow the setup in

Section 3.1.2. In particular, the row indexes of the cost matrix stand for atoms in the empirical measures,

while the column indexes stand for atoms produced by the neural estimator. We set Natom = k and let

u(0), v(0) be column vectors of size k with all entries being k−1. We will suppress the dependence on y from

33



10
5
sa
m
p
le
s

10
6
sa
m
p
le
s

(a) dX = 3 (b) dX = 10

Figure 8: Empirical CDFs of ∆.

We compare the empirical CDFs of ∆. Each line corresponding to a independently generated set of data. Each plot

includes 10 empirical CDFs. Note the difference in the x axis scale.
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the notation. Upon setting

Kϵ := exp

(
−C

ϵ

)
with entry-wise exponential, the Sinkhorn algorithm performs repeatedly

u(ℓ+1) =
u(0)

Kϵv(ℓ)
and v(ℓ+1) =

v(0)

(Kϵ)⊤u(ℓ+1)
, (30)

where the division is also calculated entry-wise. After a certain number of iterations, denoted as Niter, we

obtain an approximate optimal transport plan for problem (15):

Tϵ = diag(u(Niter))Kϵ diag(v(Niter)).

Let us set ϵ = 1 momentarily. Note that if the entries of C are excessively large, K effectively becomes a

zero matrix, which impedes the computations in (30). This issue may occur at the initiation of the neural

estimator or during training, possibly due to the use of stochastic gradient descent. To tackle this issue, we

employ a rule-of-thump normalization that

K̃ϵ := exp

(
− C

c̃ϵ

)
with c̃ := min

i
max

j
Cij , (31)

and use K̃ϵ instead of Kϵ in (30). Regarding the selection of ϵ and the number of iterations, we currently

lack a method for adaptively determining these values. Instead, we adjust them manually based on training

episodes. This manual adjustment works well for all models discussed in this paper. For more information,

please see Appendix B.

As alluded in Section 3.1.2, we enforce sparsity on the transport plan to improve the performance of the

neural estimator. Let T̃ϵ be the output of the Sinkhorn algorithm. We construct T̂ϵ and Ťϵ by setting the

row-wise and column-wise maximum of T̃ϵ to k−1, respectively, and setting the remaining entries to 0. We

then use

T
ϵ
= γT̂ϵ + (1− γ)Ťϵ, (32)

where γ ∈ [0, 1] is a hyper-parameter, in gradient descent (14). We observe that T̂ϵ relates each atom in

the empirical measure to a single corresponding atom from the neural estimator, and Ťϵ does the same in

reverse. The optimal choice of γ remains an open question, though we have set γ = 0.5 in all three models.

Next, we explore the impact of enforcing sparsity and varying the choices of γ. Figure 9 compares

the performance in Model 1 under different sparsity parameters. When no sparsity is enforced, the neural

estimator tend to handles singularities more adeptly, but may overlooks points located on the periphery of

the empirical joint distribution, potentially resulting in overly concentrated atoms from the neural estimator

(see around x = 0.1, 0.9). Compare Figure 4 and 10 for the extra error due to the lack of enforced sparsity.

This phenomenon is more noticeable in Model 3. We refer to panel (2,3) of Figure 17 in Appendix A for

an example. Moreover, Figure 18, which is obtained without enforced sparsity, indicates a downgrade in

accuracy when compared to Figure 6.

Finally, it is not recommended to use T
ϵ
at the early stages of training, as our empirical experiments

suggest this could deteriorates performance. In training, we start by not enforcing sparsity and then begin

to enforce it in later episodes. We refer to Appendix B for further details of the training configuration.

5.3 More on LipNet

We will investigates the impact of various hyper-parameters on the performance of LipNet. The LipNets

presented in this section are trained with the same hyper-parameters as in Section 3.2 (see also Appendix

B), expect for those specified otherwise.
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(a) No sparsity enforced (b) γ = 0 (c) γ = 0.5 (d) γ = 1

Figure 9: LipNet under Model 1 with different sparsity enforcement.

Figure 10: Errors at different x’s of various estimators under Model 1, LipNet is trained without enforced

sparsity.

We compute the W-distance between estimators and the true conditional distribution at different x’s. The setting is

similar to Figure 4, but LipNet is trained without enforcing sparsity on the transport plan. The errors of LipNet at

around x = 0.1, 0.9 are slightly higher than those in Figure 4.
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5.3.1 Activation function

Switching the activation function from ELU to Rectified Linear Unit (ReLU) appears to retain the adaptive

continuity property. In Figure 11, we illustrate the joint distribution and the average absolute derivatives

of all atoms of LipNet with ReLU activation. The outcomes are on par with those achieved using ELU

activation as shown in Figure 2.

(a) Model 1, all atoms (b) Model 2, ave. abs. der. (c) Model 2, all atoms (d) Model 2, ave. abs. der.

Figure 11: LipNet under Model 1 with ReLU activation.

5.3.2 Value of L in (18)

Note that the LipNets discussed in Section 3.2 were trained with L = 0.1. If the normalizing constants in

LipNet are exactly computed, L reflects the Lipschitz constant of LipNet, upto the discrepancy in the choice

of norms in different layers. The effect of L in our implementation, however, is rather obscure. Figure 12

showcases the performance of LipNets across various L values in Model 1. The comparison in Model 2 is

presented in Figure 19 in Appendix A. The best choice of L appears to depend on the ground truth model.

For Model 3, we compared the performance of L = 0.1 and L = 1 and observed no significant differences.

Generally, we prefer a smaller L; however, smaller values of L tend to exhibit greater sensitivity to other

training parameters. For instance, in Model 3, with L = 0.1, starting enforcing sparsity too soon leads to

significantly poorer performance, while the impact on the outcomes for L = 1 is much less noticeable.
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(a) L = 0.01 (b) L = 0.03 (c) L = 1 (d) L = 3

Figure 12: LipNet under Model 1 with various L’s.
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5.3.3 Momentum τ in Algorithm 2

In our training of LipNet, we use τ = 10−3. Figure 13 demonstrates the impact of various τ values on

neural estimator’s performance in Model 1. It is clear that the performance declines with a τ that is too

large. While we initially speculated that a smaller τ might cause atoms to exhibit more erratic movements

as x changes, observations contradict this hypothesis. We now believe that a suitable τ value helps prevent

neurons from stagnating in the plateau region of the ELU activation function. This is supported by the

outcomes observed with τ = 10−6, where atom movements are overly simplistic. Additional comparisons in

Model 2 are presented in Figure 20.
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(a) τ = 10−1 (b) τ = 10−2 (c) τ = 10−5 (d) τ = 10−6

Figure 13: LipNet under Model 1 with various τ ’s.

Despite considering as a potential improvement the inclusion of batch normalization in the convex poten-

tial layer (16), right after the affine transformation, along with a corresponding offset in the position of ∥W∥2,
our experiments with both ELU and ReLU activations, using the default batch normalization momentum of

0.1, resulted in reduced performance. Lowering said batch normalization momentum often leads to a NaN

network.

6 Weakness and potential improvement

In this section, we provide some discussion on the weakness and possible improvement of our implementation

in Section 3.

Extra correction. In more realistic scenarios, the true conditional distribution is often unknown or

intractable. In such cases, it is unclear whether a neural estimator offers extra correction over raw estimators.

A potential solution to this issue is to train StdNet and LipNet simultaneously. If StdNet and LipNet align

more closely with each other than with the raw estimator involved in their training, it is possible that the

neural estimators are providing extra corrections.

Hyper-parameters for Sinkhorn algorithm. Our implementation of the Sinkhorn algorithm involves

several hyper-parameters: (i) k in Definition 9; (ii) Natom in (10); (iii) ϵ in (31); (iv) γ in (32); and (v)

additional hyper-parameters listed in Section B. The impact of these hyper-parameters is not yet fully un-

derstood. Additionally, an adaptive ϵ that balances the accuracy and stability of the Sinkhorn iteration is

desirable. Furthermore, as illustrated in Section 5.2, enforcing sparsity on the transport plan generally yields
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better approximations at x where the conditional distribution is more diffusive, but may performs worse

where the conditional distribution exhibits atoms. This observation motivates further investigation into a

sparsity policy that adjusts according to the indications from the raw estimator.

Adaptive continuity. The impact of hyper-parameters in LipNet also warrants further investigation.

In addition, despite the results presented in this study, more evidence is needed to understand how LipNet

and its variations perform under various conditions.

Scalability. While the implementation produces satisfactory results when M and k are relatively small

(recall that we set Natom = k), our further experiments indicate a scalability bottleneck. For example, in

Model 1, significantly increasing M and k does not necessarily improve the performance of neural estimators

in a comparable manner. To address this issue, we could experiment with varying the ratios between Natoms

and k, rather than setting them equal, in hopes of reducing the strain on the Sinkhorn algorithm. We note

that varying the ratio between Natoms and k requires adjusting the enforced sparsity accordingly. Another

issue relates to the dimensions of X and Y. In view of the curse of dimensionality in Theorem 10, our method

is inherently suited for low-dimensional settings. Fortunately, in many practical scenarios, the data exhibits

low-dimensional structures, such as: (i) the sampling distribution of X concentrating on a low-dimensional

manifold; and (ii) the mapping x 7→ Px exhibiting low-dimensional dependence. For (i), we might resort to

dimension reduction techniques, although an extension of the results in Section 2 has yet to be established.

For (ii), a data-driven method that effectively leverages the low-dimensional dependence is of significant

interest.

Conditional generative models. Utilizing a conditional generative model could potentially lead to

further improvements. One advantage of conditional generative models is the ease of incorporating various

training objectives. For instance, it can easily adapt to the training objectives in (6) to accommodate

multiple different hyper-parameters simultaneously. We may also incorporate the joint empirical measure in

the training process. This flexibility also allows for the integration of specific tail conditions as needed.

Lastly, we would like to point out an issue observed in our preliminary experiments when utilizing a

näıve conditional generative model: it may assign excessive probability mass to the blank region between two

distinct clusters (for example, in Model 1 around (x, y) = (0.1, 0.5)). This possibly stems from the inherent

continuity of neural networks. One possible solution is to consider using a mixture of multiple conditional

generative models.
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A Additional plots

Figure 14: Various estimators under Model 3, projections of conditional CDFs, k = 1000 for k-NN

estimator.

This follows the setting of Figure 5, expect that we set k = 1000 for the k-NN estimator plotted here. The neural

estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for projection.

Note the difference in the x axis scale.
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Figure 15: Various estimators under Model 3, projections of conditional CDFs, k = 3000 for k-NN

estimator.

This follows the setting of Figure 5, expect that we set k = 3000 for the k-NN estimator plotted here. The neural

estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for projection.

Note the difference in the x axis scale.
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Figure 16: Various estimators under Model 3, projections of conditional CDFs, k = 104 for k-NN

estimator.

This follows the setting of Figure 5, expect that we set k = 104 for the k-NN estimator plotted here. The neural

estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for projection.

Note the difference in the x axis scale.
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Figure 17: Various estimators under Model 3, projections of conditional CDFs, both StdNet and Lipnet

are trained without enforced sparsity.

This follows the setting of Figure 5, expect that we do not enforce sparsity on the transport plan during the training

of the neural estimator. Plot titles display the vectors used for projection. Note the difference in the x axis scale.

Raw k = 1000 Raw k = 3, 000 StdNet LipNet

Figure 18: Histogram of 10, 000 projected Wasserstein-1 errors, no enforced sparsity on transport plan.

This follows the setting of Figure 6, expect that we do not enforce sparsity on the transport plan during the

training of the neural estimator. Histograms for raw estimators remain the same. The histogram consists of

20 uniformly positioned bins between 0 to 0.1. The errors of different estimators are computed with the

same set of query points and projection vectors. Errors larger than 0.1 will be placed in the right-most bins.
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(a) L = 0.01 (b) L = 0.03 (c) L = 1 (d) L = 3

Figure 19: LipNet under Model 2 with various L’s.
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(a) τ = 10−1 (b) τ = 10−2 (c) τ = 10−5 (d) τ = 10−6

Figure 20: LipNet under Model 2 with various τ ’s.
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B Configuration of network components and training parameters

The table below summarizes the configuration of the neural network and the training procedure. It

applies to both StdNet and LipNet in all models.

Network Component
/Training parameters

Configuration Note

Sample size 1e4 for Model 1 & 2, 1e6 for Model 3

k 100 for Model 1 & 2, 300 for Model 3 See Definition 9

Network stucture
StdNet:

Layer-wise residual connection [HZSS16],
batch normalization [IS15] after

affine transformation

LipNet: Layer-wise residual connection [HZSS16]
with convex potential layer [MDAA22]

Input dimension dX

Output dimension dY ×Natom Natom = k, see (10)

Number of hidden layers 5

Number of neurons
each hidden layer

2k k as in Definition 9

Activation function
StdNet: ReLU
LipNet: ELU

See Section 5.3.1

L 0.1 Introduced in (18)

τ 1e-3 See Algorithm 2

Optimizer Adam [KB17] with learning rate 10−3 Learning rate is 0.01
for StdNet in Model 1 & 2

Batch size 100 for Model 1 & 2
256 for Model 3

Number of episodes 5e3 for Model 1 & 2, 1e4 for Model 3

RBSP setting 25 partition, 8 query points each part See Section 3.1.1

Random bisecting ratio ∼ Uniform([0.45, 0.55]) Introduced in Section 3.1.1
See also Algorithm 3

Ratio for mandatory slicing
along the longest edge

5 Introduced in Section 3.1.1
See also redge in Algorithm 3

Number of Sinkhorn iterations 5, if epoch ≤ 500
10, if epoch > 500

ϵ
1, if epoch ≤ 100

0.1, if epoch ∈ [100, 500]
0.05, if epoch > 500

Introduced in (31)

Enforced sparsity Off, if epoch ≤ 500
On, if epoch > 500

See Section 5.2

γ 0.5 Introduced in (32)

C Another set of results on fluctuation

C.1 On r-box estimator

Theorem 22. Under Assumptions 2 and 3, and choosing r as in Theorem 7, let ν ∈ P(X) be dominated by

λX with constant C > 0. Then, there is a constant C > 0 (which depends only on dX, c, C and the constants

involved in r), such that, for any ε ≥ 0, we have

P
[∫

X
W
(
Px, P̂

r
x

)
dν(x) ≥ E

[∫
X
W
(
Px, P̂

r
x

)
dν(x)

]
+ ε

]
≤


exp

(
−CM

2
dX+2 ε2

)
, dY = 1, 2,

exp

(
−CM

dX
dX+dY ε2

)
, dY ≥ 3.
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Proof. Let ν ∈ P(X) as in the statement of the Theorem. We define

Z :=

∫
X
W(Px, P̂

r
x ) dν(x),

and introduce the following discrete time filtration: F0 := {∅,Ω} and Fm := σ(
⋃m

i=1 σ(Xi, Yi)) for m =

1, . . . ,M . We consider the Doob’s martingale Zm := E [Z | Fm] , m = 1, . . . ,M . Note that ZM = Z. We will

apply Azuma-Hoeffding inequality (cf. [Wai19, Corollary 2.20]) to complete the proof.

Let us define

Dm := {(X1, Y1), . . . , (Xm, Ym), (xm+1, ym+1), . . . , (xM , yM )}, m = 1, . . . ,M, (33)

D0 := {(xℓ, yℓ)}Mℓ=0, and DM := D. Note that, for all m < M , we have, by Assumptions 3 (i), conditional

Fubini-Tonelli theorem, and independent lemma,

Zm =

∫
X

∫
(X×Y)M−m

W
(
Px, µ̂

Dm

Br(x)

) M⊗
ℓ=m+1

ψ(dxℓ dyℓ)ν(dx).

This together with the linearity of integral, the fact that ψ is a probability, and the triangular inequality of

W implies that for m = 1, . . . ,M ,

|Zm − Zm−1| ≤
∫
X

∫
(X×Y)M−m+1

W
(
µ̂Dm

Br(x), µ̂
Dm−1

Br(x)

) M⊗
ℓ=m

ψ(dxℓ dyℓ)ν(dx). (34)

Notice that, by definitions (1) and (33),

{
µ̂Dm

Br(x) ̸= µ̂
Dm−1

Br(x)

}
⊆
{
Xm ∈ Br(x)

}
∪
{
xm ∈ Br(x)

}
. (35)

Additionally, by definitions (1) and (33) again, on the event that
{
µ̂Dm

Br(x) ̸= µ̂
Dm−1

Br(x)

}
, we have

W
(
µ̂Dm

Br(x), µ̂
Dm−1

Br(x)

)
≤

(
1 +

m−1∑
ℓ=1

1Br(x)(Xℓ) +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−1

≤

(
1 +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−1

. (36)

Combining (34),(35), (36), and Fubini-Tonelli theorem, we get

|Zm − Zm−1| ≤
∫
X

∫
B(Xm,2r)∪B(xm,2r)

∫
XM+1−m

(
1 +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−1 M⊗
ℓ=m+1

ξ(dxℓ)ν(dx)ξ(dxm)

≤ sup
xm∈X

∫
B(Xm,2r)∪B(xm,2r)

∫
XM+1−m

(
1 +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−1 M⊗
ℓ=m+1

ξ(dxℓ)ν(dx) (37)

where the 2r in the domain of the integral stems from the usage of βr in the definition of Br (see Definition
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5). Now, for fixed x, xm ∈ X, we have

∫
XM−m+1

(
1 +

M∑
ℓ=m+1

1Br(x)(xℓ)

)−1 M⊗
ℓ=m+1

ξ(dxℓ)

=

M−m∑
ℓ=0

(
M −m

ℓ

)
ξ
(
Br(x)

)ℓ(
1− ξr

(
Br(x)

))M−m−ℓ

(1 + ℓ)
−1

=
1

(M −m+ 1)ξ
(
Br(x)

) M−m∑
ℓ=0

(
M −m+ 1

ℓ+ 1

)
ξ
(
Br(x)

)ℓ+1
(
1− ξ

(
Br(x)

))M−m−ℓ

=
1

(M −m+ 1)ξ
(
Br(x)

) M−m+1∑
ℓ=1

(
M −m+ 1

ℓ

)
ξ
(
Br(x)

)ℓ(
1− ξ

(
Br(x)

))M−m+1−ℓ

=
1−

(
1− ξ

(
Br(x)

))M−m+1

(M −m+ 1)ξ
(
Br(x)

) ≤ 1 ∧
(
(M −m+ 1)ξ

(
Br(x)

))−1 ≤ 1 ∧
(
(M −m+ 1)c(2r)dX

)−1
,

where we have used Assumption 3 (ii) in the last inequality. Recall C introduced in Theorem 22. In view of

(37), we have

|Zm − Zm−1| ≤ sup
xm∈X

∫
B(Xm,2r)∪B(xm,2r)

1 ∧
(
(M −m+ 1)c(2r)dX

)−1
ν(dx)

≤ 2C(4r)dX
(
1 ∧

(
(M −m+ 1)c(2r)dX

)−1
)
=
(
C22dX+1rdX

)
∧ C2dX+1

c(M −m+ 1)
:= Cm.

By Azuma-Hoeffding inequality (cf. [Wai19, Corollary 2.20]), one obtains

P(Z − E [Z] ≥ ε) ≤ exp

(
− 2ε2∑M

m=1 C
2
m

)
.

To complete the proof, we substitute in the configuration of Theorem 7. Since we only aim to investigate the

rate of
∑M

m=1 C
2
m as M → ∞, we simply set

r =M
− 1

dX+d with d := 2 ∨ dY.

It follows that

M∑
m=1

C2
m ∼

M∑
m=1

M
− 2dX

dX+d ∧m−2 ≲
∫ ∞

1

M
− 2dX

dX+d ∧ z−2 dz ∼
∫ M

dX
dX+d

1

M
− 2dX

dX+d dz +

∫ ∞

M
dX

dX+d

z−2 dz ∼M
− dX

dX+d ,

which completes the proof.

C.2 On k-nearest-neighbor estimator

Theorem 23. Under Assumptions 2 and 3, and the choice of k as in Theorem 10, there is a constant C > 0

(which depends only on c and the constants involved in k), such that, for any ν ∈ P(X) and ε ≥ 0, we have

P
[∫

X
W
(
Px, P̌

k
x

)
ν(dx) ≥ E

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
+ ε

]
≤


exp

(
−CM

2
dX+2 ε2

)
, dY = 1, 2,

exp

(
−CM

dY
dX+dY ε2

)
, dY ≥ 3.
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Proof of Theorem 23. For notational convenience, we will write µ̂D
Nk(x) for µ̂D

Nk,D(x). Clearly, with D = D,

we recover µ̂D
Nk(x) = µ̂D

Nk,D(x) = P̌ k
x . In what follows, we let

Z :=

∫
X
W
(
Px, P̌

k
x

)
ν(dx).

We also define F0 := {∅,Ω} and Fm := σ(
⋃m

i=1 σ(Xi, Yi)) for m = 1, . . . ,M . The proof relies on an applica-

tion of Azuma-Hoeffding inequality (cf. [Wai19, Corollary 2.20]) to the Doob’s martingale {E [Z|Fm]}Mm=0.

In order to proceed, we introduce a few more notations:

x := (x1, . . . , xM ), X := (X1, . . . , XM ),

Xm := (X1, . . . , Xm, xm+1, . . . , xM ),

Dm := {(X1, Y1), . . . , (Xm, Ym), (xm+1, ym+1), . . . , (xM , yM )},
ηk,xx := the k-th smallest of {∥xm − x∥∞}Mm=1.

By independence lemma, we have

E
[
Z
∣∣Fm

]
=

∫
(X×Y)M−m

∫
X
W
(
Px, µ̂

Dm

Nk(x)

)
ν(dx)

M⊗
ℓ=m+1

ψ(dxℓ dyℓ)

=

∫
(X×Y)M−m

∫
X
W

(
Px,

1

k

(
m∑
i=1

1∥Xi−x∥∞≤ηk,Xm
x

δYi +

M∑
ℓ=m+1

1∥xℓ−x∥∞≤ηk,Xm
x

δyℓ

))
ν(dx)

M⊗
ℓ=m+1

ψ(dxℓ dyℓ),

where we note that (X × Y)M−m and
⊗M

ℓ=m+1 ψ(dxℓ dyℓ) in the right hand side can be replaced by (X ×
Y)M−m+1 and

⊗M
ℓ=m ψ(dxℓ dyℓ) as the integrand is constant in xm and ψ is a probability measure. Therefore,

by Fubini’s theorem and triangle inequality for W, we have∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤
∫
X

∫
(X×Y)M−m+1

W

(
1

k

(
m∑
i=1

1∥Xi−x∥∞≤ηk,Xm
x

δYi
+

M∑
ℓ=m+1

1∥xℓ−x∥∞≤ηk,Xm
x

δyℓ

)
,

1

k

(
m−1∑
i=1

1∥Xi−x∥∞≤ηk,Xm−1
x

δYi
+

M∑
ℓ=m

1∥xℓ−x∥∞≤ηk,Xm−1
x

δyℓ

))
M⊗

ℓ=m

ψ(dxℓ dyℓ) dx.(38)

Above, the only difference between the two measures inside W is the m-th summand. Due to the definition

of W and the boundedness of X, the transport cost induced by altering the m-th summand is at most k−1.

It follows that ∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣ ≤ 1

k
, m = 1, . . . ,M. (39)

Below we further refine the upper bound of the absolute difference in the left hand side of (38) when

m = 1, . . . ,M − k. For the integrand in the right hand side of (38) to be positive, it is necessary that

1∥Xm−x∥∞≤ηk,Xm
x

+ 1∥xm−x∥∞≤ηk,Xm−1
x

≥ 1.

This, together with the tie breaking rule stipulated in Definition 9, further implies that

1Am
1
+ 1Am

2
≥ 1,

where

Am
1 :=

{
at most (k − 1) of xℓ, ℓ = m+ 1, . . . ,M −m, falls into B∥Xm−x∥∞

x

}
,

Am
2 :=

{
at most (k − 1) of xℓ, ℓ = m+ 1, . . . ,M −m, falls into B∥xm−x∥∞

x

}
.
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Combining the above with the reasoning leading to (39), we yield∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤ 1

k

(∫
X

∫
(X×Y)M−m

1Am
1

M⊗
ℓ=m+1

ξ(dxℓ)ν(dx) +

∫
X

∫
(X×Y)M−m+1

1Am
2

M⊗
ℓ=m

ξ(dxℓ)ν(dx)

)

Above, we have replaced ψ in (38) by ξ because Am
1 and Am

2 no longer depend on yℓ, ℓ = m+1, . . . ,M . The

analogue applies to the domain of integral as well. We continue to have∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤ 1

k

(∫
X

∫
(X×Y)M−m

1Am
1

M⊗
ℓ=m+1

ξ(dxℓ)ν(dx) +

∫
X

∫
(X×Y)M−m+1

1Am
2

M⊗
ℓ=m

ξ(dxℓ)ν(dx)

)
=:

1

k
(Im1 + Im2 ).(40)

Regarding I1m defined in (40), note that by Assumption 3,∫
(X×Y)M−m

1Am
1

M⊗
ℓ=m+1

ξ(dxℓ) = P
[
at most (k − 1) of X̌1, . . . , X̌M−m falls into B∥x′−x∥∞

x

] ∣∣∣
x′=Xm

,

where X̌1, . . . , X̌M−m
i.i.d.∼ ξ. Below we define a CDF G(r) := crd, r ∈ [0, c−

1
d ]. By Assumption 3 (ii), for any

x, x′ ∈ X, we have∫
X
1
x̌∈B

∥x′−x∥∞
x

ξ(dx̌) ≥ c

∫
X
1
x̌∈B

∥x′−x∥∞
x

dx̌ ≥ c

∫
X
1
x̌∈B

∥x′−x∥∞
0

dx̌ = G(∥x′ − x∥∞),

where we have used the fact that ∥x′ − x∥∞ ≤ 1 ≤ c−
1
d in the last equality. It follows from Lemma 17 that∫

(X×Y)M−m

1Am
1

M⊗
ℓ=m+1

ξ(dxℓ) ≤
k−1∑
j=0

(
M −m

j

)
G(∥Xm − x∥∞)j

(
1−G(∥Xm − x∥∞)

)M−m−j
,

and thus, by letting U ∼ Uniform(X),

Im1 ≤
∫
X

k−1∑
j=0

(
M −m

j

)
G(∥Xm − x∥∞)j

(
1−G(∥Xm − x∥∞)

)M−m−j
dx

= E

k−1∑
j=0

(
M −m

j

)
G(∥x′ − U∥∞)j

(
1−G(∥x′ − U∥∞)

)M−m−j

 ∣∣∣
x′=Xm

,

where we note that the upper bounded no longer involves ν. For x′ ∈ X, it is obvious that

P
[
∥x′ − U∥∞ ≤ r

]
≥ P

[
∥U∥∞ ≤ r

]
, r ∈ R,

i.e., ∥U∥∞ stochastically dominates ∥x′ − U∥∞. Note additionally that, by Lemma 17 again, below is a

non-decreasing function,

r 7→
k−1∑
j=0

(
M −m

j

)
G(r)j

(
1−G(r)

)M−m−j
.

Consequently,

Im1 ≤ E

k−1∑
j=0

(
M −m

j

)
G(∥U∥∞)j

(
1−G(∥U∥∞)

)M−m−j
dx

 .
49



Since ∥U∥∞ has CDF r 7→ rdX , r ∈ [0, 1] and G(r) = crd, r ∈ [0, c−
1
d ], we continue to obtain

Im1 ≤
k−1∑
j=0

(
M −m

j

)∫ 1

r=0

crdXj(1− crdX)M−m−j drdX ≤ c−1
k−1∑
j=0

(M −m)!

j!(M −m− j)!

∫ 1

0

rj(1− r)M−m−j dr.

With a similar calculation as in (26), which involves beta distribution and gamma function, we arrive at

Im1 ≤ c

k−1∑
j=0

(M −m)!

j!(M −m− j)!

j!(M −m− j)!

(M −m+ 1)!
≤ c−1k

M −m
. (41)

Regarding Im2 defined in (40), we first let X̌0, X̌1, . . . , X̌M−m
i.i.d.∼ ξ. Then, note that∫

(X×Y)M−m

1Am
2

M⊗
ℓ=m+1

ξ(dxℓ) ≤ P
[
at most (k − 1) of X̌1, . . . , X̌M−m falls into B∥X̌0−x∥∞

x

]
≤
(
M −m− 1

k − 1

)(
M −m

k

)−1

=
k

M −m
,

where the inequality in the second line is due to the symmetry stemming from Assumption 3 (i), and the fact

that congestion along with the tie-breaking rule specified in Definition 9 may potentially rules out certain

permutations. Consequently,

Im2 ≤ k

M −m
. (42)

Putting together (39), (40), (41), and (42), we yield

∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣ ≤ Cm :=
C(c−1 + 1)

M −m
∧ 1

k
, m = 1, . . . ,M.

By Azuma-Hoeffding inequality (cf. [Wai19, Corollary 2.20]),

P
[∫

X
W
(
Px, µ̂

D
Nk(x)

)
ν(dx)− E

[∫
X
W
(
Px, µ̂

D
Nk(x)

)
ν(dx)

]
≥ ε

]
≤ exp

(
− ε2

2
∑M

m=1 C
2
m

)
, ε ≥ 0.

To complete the proof, we substitute in the configuration of Theorem 10. Below we only investigate the rate

of
∑M

m=1 C
2
m as M → ∞, and do not keep track of the constant. For simplicity, we set

k = k ∼M
d

dX+d with d := 2 ∨ dY

It follows that

M∑
m=1

C2
m ∼

⌊M−M
d

dX+d ⌋∑
m=1

1

(M −m)2
+
M

d
dX+d

M
2d

dX+d

∼
∫ ∞

M
d

dX+d

1

r2
dr +

1

M
d

dX+d

∼M
− d

dX+d ,

which completes the proof.
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