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Test Suite Augmentation using Language Models - Applying 

RAG to Improve Robustness Verification 
 

Adam Mackay MEng (QA-Systems) 

 

Abstract—This paper presents a novel approach to 

test suite augmentation using large language models and 

retrieval augmented generation (RAG) techniques. By 

leveraging the power of GPT-4 and a customised RAG 

framework, we show the effectiveness of automating test 

case generation to improve robustness verification in 

safety-critical embedded software systems. Our method 

involves indexing and retrieving relevant information 

from the entire software repository, including design 

documents, requirement specifications, prior test cases, 

and source code. The generated test cases are then 

integrated into the Cantata test framework, targeting 

key areas such as invalid values, overflow scenarios, 

timeout conditions, and improper state transitions. We 

applied our approach to two open-source projects, PX4 

Autopilot and Apollo Auto, and achieved promising 

results in terms of increased test coverage, defect 

detection, and compliance with industry standards like 

DO-178C and ISO 26262. Compared to human-authored 

test suites, our method generated a larger volume of tests, 

exposed a broader array of test scenarios, and unveiled 

additional high-severity defects. The results validate the 

potential of advanced language models and RAG 

techniques in enhancing software reliability and safety 

through automated testing. Future work aims to refine 

these techniques further and expand their applications in 

the software development lifecycle. 

 

I. INTRODUCTION 

Robustness testing is crucial for safety-critical embedded 

software like aviation and medical systems, ensuring they 

manage errors gracefully and recover from unexpected 

situations effectively. This methodical approach validates 

key capabilities such as error detection, fault tolerance, and 

overload handling, elements required to align with 

recognised standards like DO-178C. 

Manual test case authoring, particularly for 

requirements-based testing, demands considerable effort and 

is often fraught with risks of misinterpretations or oversight 

of corner cases. The evolving nature of software further 

complicates this, requiring continual test adaptation across 

versions and functionalities. 

Retrieval augmented generation (RAG) offers a 

promising approach here. It combines language models with 

an information retrieval system, enhancing automatically 

generated content with contextually relevant data extracted 

from documentation and prior tests. This enables an adaptive 

response from the system, producing text or code that is both 

coherent and contextually informed. This approach is driven 

by requirements, ensuring generated tests trace directly to 

specific functional needs. 

In harnessing the generative capabilities of GPT-4 and 

the assistance of automated agents, we employ RAG across 

the software repository, integrating code, existing tests, and 

documentation to autonomously generate test cases. These 

cases scrutinise the software’s robustness across various 

conditions, such as invalid values, overflow scenarios, and 

abnormal conditions, enabling a comprehensive inspection 

that mitigates the risks associated with manual testing. 

Additionally, a human-in-the-loop approach is employed, 

wherein generated tests are manually reviewed to further 

refine their effectiveness and efficiency, ensuring that the 

automation does not inadvertently overlook vulnerabilities. 

This paper will present our methodologies, share the 

preliminary results from applying these methods to real-

world embedded software projects, and discuss forthcoming 

work aimed at further refining and expanding these 

approaches. Our contributions extend beyond the 

application of RAG and language models to robustness 

testing; we also provide insights and data about their 

efficacy, offering a resourceful guide and a benchmark for 

future explorations and enhancements in automated testing 

in embedded software realms. 

II. RELATED WORK 

Our work builds upon the growing body of research on 

retrieval-augmented generation (RAG) and its applications 

in various domains. The seminal paper by Lewis et al. [1] 

introduced the concept of RAG, demonstrating its 

effectiveness in knowledge-intensive NLP tasks such as 

open-domain question answering. They showed that by 

augmenting language models with retrieved information, 

RAG could significantly improve performance compared to 

purely parametric approaches. Our work extends this idea to 

the domain of software testing, leveraging RAG to generate 

high-quality test cases. 

 

GPT-4 and Large Language Models 

 

We leveraged GPT-4, a distinguished multimodal 

language model developed by OpenAI, which excels in 

natural language generation, reasoning, and coding tasks. 

Renowned for its competence in single-shot and few-shot 

tasks, GPT-4, when coupled with refined prompting 

methods, emerges as an ideal model for benchmarking new 

applications of large language models (LLMs) in innovative 

manners. Consequently, GPT-4 was instrumental in 

automating the generation of our test cases, demonstrating 

its applicability and efficiency in novel use-cases. 

 

Retrieval Augmented Generation (RAG) 

 

The paper "Retrieval-Augmented Generation for 

Knowledge-Intensive NLP Tasks" by Lewis et al. [1] 

provides an overview of the RAG process. As they explain, 

"RAG works by adding a step to this basic process. Namely, 

a retrieval step is performed where, based on the user's 

prompt, the relevant information is extracted from an 

external knowledge base and injected into the prompt before 

being passed to the LLM." They note the three key elements 

are Retrieval, Generation, and Augmentation. This aligns 

with the RAG framework we employ in our study. 

Additionally, the survey paper "Retrieval-Augmented 

Generation for Large Language Models: A Survey" by Gao 

et al. [3] categorises RAG research into three types: Naïve 



RAG, Advanced RAG, and Modular RAG. Our approach 

falls under the Advanced RAG paradigm, as we incorporate 

techniques like query rewriting and prompt summarisation 

to enhance the base RAG process. 

 

During our research, we also explored the potential of 

Graph RAG, a recent advancement introduced by Microsoft 

Research [15]. Graph RAG aims to improve upon baseline 

RAG by utilising LLM-generated knowledge graphs to 

enhance retrieval performance, particularly in situations 

involving complex problems on private datasets. However, 

after careful consideration, we determined that Graph RAG 

was not well-suited to our specific use case, which primarily 

involves working with code and documentation fragments. 

The knowledge graph approach employed by Graph RAG 

did not align with the structure and relationships found in 

our software repository. As a result, we opted to develop our 

own custom RAG system that could better handle the unique 

characteristics of our dataset and generate more relevant test 

cases. 

 

Recent advancements in RAG have focused on 

improving retrieval strategies and enhancing the interaction 

between the retriever and generator components. The survey 

by Gao et al. [3] provides a comprehensive overview of these 

developments, categorising RAG approaches into Naïve 

RAG, Advanced RAG, and Modular RAG. Our method 

aligns with the Advanced RAG paradigm, as we incorporate 

techniques such as query rewriting and prompt 

summarisation to optimise the retrieval process. This builds 

upon the work of Wang et al. [6] and Shao et al. [7], who 

showed the benefits of iterative retrieval and generation for 

knowledge-intensive tasks. 

In the context of software engineering, there has been 

growing interest in leveraging large language models 

(LLMs) for various tasks, including code generation, bug 

detection, and test case generation. The work by Chen et al. 

[9] and Nijkamp et al. [10] showcased the potential of LLMs 

for generating high-quality code snippets and assisting 

developers in programming tasks. Our work extends this line 

of research by focusing specifically on test case generation, 

a critical aspect of software verification and validation. 

While existing approaches to test case generation often 

rely on traditional techniques, such as symbolic execution, 

model-based testing, and search-based algorithms, our 

RAG-based approach offers a novel perspective. By 

leveraging the vast knowledge captured in LLMs and 

augmenting it with project-specific information, we can 

generate test cases that are more closely aligned with real-

world requirements and specifications. This complements 

the work of Kang et al. [11] and Li et al. [12], who explored 

the integration of domain-specific knowledge into language 

models for improved performance in specialised tasks. 

Furthermore, our human-in-the-loop approach sets our 

work apart from fully automated (algorithmic) test case 

generation methods. The iterative feedback process, 

involving experienced testers, allows for the refinement and 

optimisation of generated test cases based on domain 

expertise and project-specific considerations. This aligns 

with the findings of Trivedi et al. [13] and Guo et al. [14], 

who emphasised the importance of human involvement in 

guiding and validating the outputs of language models in 

complex tasks. 

There have been noteworthy developments in the 

automation of unit test generation within integrated 

development environments (IDEs) recently. For instance, 

Visual Studio Code (VSCode) offers a built-in solution for 

generating unit tests based on the code under development 

[22]. This feature leverages static analysis techniques and 

predefined templates to create test stubs and assertions, 

streamlining the process of writing unit tests. However, 

these IDE-based solutions often rely on heuristics and lack 

the deep understanding of project-specific requirements and 

domain knowledge that our RAG-based approach 

incorporates. By combining the power of large language 

models with retrieval augmentation and human expertise, 

our method goes beyond the capabilities of IDE-based test 

generation, enabling the creation of more comprehensive 

and context-aware test cases. 

Several other tools and techniques have been developed 

for automatic test case generation across different 

programming languages. EvoSuite [23] is a search-based 

tool that generates unit tests for Java classes using 

evolutionary computation, aiming to maximize code 

coverage. Randoop [24] is another Java-based tool that 

generates tests by randomly selecting method sequences and 

constructing test cases based on the observed behaviour. In 

the .NET ecosystem, Pex [25] employs dynamic symbolic 

execution to generate test inputs that achieve high code 

coverage. For C and C++ programs, KLEE [26] is a 

symbolic execution engine that automatically generates test 

cases by exploring different program paths using constraint 

solving techniques. 

Cantata AutoTest, [16] a feature of the commercial 

testing framework used in our case studies, utilises advanced 

code parsing powered by the EDG parser to generate test 

cases for C/C++ code. The EDG parser provides a deep 

understanding of the code structure and enables Cantata 

AutoTest to create more targeted and effective test cases. 

While these tools have proven effective in their respective 

domains, they often rely on predefined strategies and lack 

the adaptability and context-awareness that our RAG-based 

approach provides. In contrast, our approach leverages the 

power of large language models and retrieval augmentation 

to generate test cases that are more closely aligned with real-

world requirements and project-specific contexts. 

 

Existing Tools for Code Indexing and Retrieval 

 

To effectively index and chunk the various artifacts, we 

leveraged open-source code indexing systems commonly 

used to help IDEs navigate code and documentation. 

Specifically, we employed ctags [19] and cscope [20] to 

build a comprehensive index of the codebase. ctags is a 

programming tool that generates an index file of names 

found in source and header files of various programming 

languages, aiding code comprehension. It can index 

functions, variables, class members, macros, and more, 

depending on the language. On the other hand, cscope is a 

text-based source browsing tool that allows programmers to 

search source code for symbols, definitions, functions, 

regular expressions, and more. 

 

Emerging Large Language Models 

 

GPT-4 has been a robust tool for our research. However, 

our next steps will leverage Llama 2 (and its variants), 

announced by Meta in partnership with Microsoft in July 

2023. Llama 2 is a open source LLM with the benefit of 

running locally on secure systems and is available in sizes of 



7, 13, and 70 billion parameters. Llama 2, while maintaining 

a similar architecture to its predecessor, is trained on 40% 

more data, offering enhancements in code generation and 

model training flexibility. 

 

Overall, our research contributes to the growing body of 

literature on RAG and its applications in software 

engineering. By demonstrating the effectiveness of RAG in 

test case generation and highlighting the benefits of human-

in-the-loop collaboration, we provide new insights and 

directions for leveraging LLMs in the verification and 

validation process. Our work also opens up avenues for 

future research on the integration of RAG with other 

software engineering tasks and the development of more 

advanced retrieval and generation strategies tailored to the 

unique challenges of the software development lifecycle. 

 

III. TECHNIQUES 

Introduction to the RAG implementation 

 

In our project, we applied RAG across the entire software 

repository, encompassing design documents, requirement 

specifications, prior test cases, and source code. This 

comprehensive approach ensured that the generator was 

provided with a broad context, enhancing the relevance and 

accuracy of the generated test cases. To facilitate this 

process, we developed custom tools and integrated them 

with the Cantata test framework. 

It is important to note that we developed our own custom 

RAG system specifically tailored for working with code and 

documentation fragments. While we investigated various 

existing RAG implementations, such as Graph RAG [15], 

we found that they were not well-suited to our specific use 

case. Our custom RAG system allowed us to effectively 

integrate and process the diverse range of artifacts found in 

the software repository, enabling the generation of highly 

relevant and context-aware test cases. 

 

Indexing and retrieval system 

 

To effectively index and retrieve relevant information 

from the software repository, we developed a custom 

indexing and retrieval system. This system leverages the 

capabilities of ctags [19], cscope [20], and CodeQuery [21]. 

ctags and cscope are well-established tools used by IDEs for 

navigating code and documentation. ctags generates an 

index file of names found in source and header files, while 

cscope allows programmers to search source code for 

symbols, definitions, functions, and more. 

We integrated these tools to create a robust foundation 

for our RAG implementation. CodeQuery further enhances 

the indexing process by building upon the databases of ctags 

and cscope to create a SQLite database. This database can 

be efficiently queried to retrieve relevant code snippets and 

documentation based on specific criteria. 

To complement these existing tools, we developed a 

custom suite of tools called Magrathea. The Magrathea suite 

includes functions for extracting relevant fragments of code, 

documentation, and comments, which are then used to 

populate the context window of the language model. Some 

of the key functions in the Magrathea suite are: 

- find_function_end: Reads a file from a specified 

start line until the end of the function is found, 

extracting the complete function body. 

- find_preceding_comments: Retrieves any 

comment block found directly before a specified 

function. 

- find_macros_for_function: Identifies macros used 

within specific functions in a source file, along 

with their definitions if there are non-unique 

values. 

- find_unique_calls: Finds unique function calls 

made from functions in a given source file. 

By integrating ctags, cscope, CodeQuery, and the 

Magrathea suite, we created a comprehensive indexing and 

retrieval system that allowed us to effectively apply RAG 

across the entire software repository. 

This approach ensured that the language model had 

access to a rich context window containing highly relevant 

code snippets, documentation, and comments, enabling the 

generation of more precise and contextually informed test 

cases. 

The indexing process was performed as a pre-processing 

step, allowing for efficient retrieval of relevant information 

during the test generation phase. The SQLite database 

created by CodeQuery served as a central repository for 

querying and retrieving the necessary artifacts based on 

specific criteria, such as function names, symbols, or 

keywords. This optimised retrieval process contributed to 

the overall efficiency and effectiveness of our RAG 

implementation in the context of automated test case 

generation. 

 

Test generation process 

 

The test generation process follows a structured 

workflow (figure 1) that leverages the RAG implementation 

and human expertise. The key steps in this process are: 

 

1. Querying the RAG API: We query the RAG API 

with a code snippet and an engineered prompt that 

specifically requests the generation of tests. 

2. Retrieval of relevant documents: RAG retrieves 

relevant documents and prior tests from the 

customised corpus based on the query. 

3. Generation of initial test cases: The language 

model (LLM) generates an initial set of raw test 

cases based on the retrieved context. 

4. Iterative refinement through human review: The 

generated test cases undergo an iterative refinement 

process, where human testers review and provide 

feedback on the tests' relevance, uniqueness, and 

potential effectiveness. 

5. The framework was then manually prompted for 

refinements including: 

- Rewriting tests for improved clarity 

- Eliminating redundant or duplicative tests 

- Adding preconditions for clarity 

- Correcting any functional inaccuracies 

This review was crucial for boosting precision and 

overall quality. 

 



 
Figure 1 - Test generation workflow using Retrieval Augmented 

Generation (RAG) and human-in-the-loop review 

 

This interaction shows the collaborative nature of the test 

generation workflow, involving the user, RAG, LLM, 

testing platform, and human examiner. Each component 

plays a crucial role in producing high-quality, context-aware 

test cases that thoroughly exercise the software under test. 

 

Integration with Cantata 

 

The generated test cases are integrated into the Cantata 

test framework [16], a commercial platform that provides a 

stable environment for test execution and result reporting. 

Cantata supports standard coverage metrics, such as 

statement coverage, decision coverage, and Modified 

Condition/Decision Coverage (MC/DC), which are essential 

for compliance with industry standards like DO-178C. 

To enable the execution of robustness test cases, Cantata 

offers targeted error injection methods: 

• Invalid values are introduced by leveraging white-

box instrumentation to override variables with 

out-of-range inputs based on their data types and 

semantic context. 

• Overflow conditions are induced by injecting 

custom code to provide inputs exceeding 

maximum buffer sizes defined in requirements 

specifications. 

• Timeout testing is accomplished through code 

wrapping techniques that artificially increase 

processing time in the test harness beyond 

thresholds specified in design documents. 

• Invalid state transitions are triggered by 

programmatically sequencing calls in an incorrect 

order relative to the expected state machine flow 

defined in the architecture. 

Cantata's flexible error injection features, including 

white-box instrumentation, custom code injection, and code 

wrapping, enabled the wide array of automatically generated 

robustness test cases targeting key areas like invalid values, 

overflow, timeouts, and improper state transitions. 

Experiment Setup 

To evaluate the effectiveness of our RAG-based 

approach for test case generation, we conducted a series of 

experiments using a diverse set of embedded software 

projects. Our preliminary dataset consisted of two open-

source projects: PX4 Autopilot [17] and Apollo Auto [18]. 

These projects were selected based on their complexity, 

availability of source code and documentation, and 

relevance to the domain of safety-critical embedded 

systems. 

For each project, we applied our RAG-based approach to 

generate test cases targeting various aspects of robustness, 

such as invalid inputs, boundary conditions, and resource 

constraints. We evaluated the generated test cases using 

several metrics, including code coverage, defect detection 

rate, and compliance with industry standards like DO-178C 

and ISO 26262. 

To assess the efficiency of our approach, we compared 

the time and effort required to generate test cases using our 

RAG-based method with the time and effort required for 

manual test case creation. We also conducted a qualitative 

analysis of the generated test cases, involving domain 

experts who reviewed the tests for relevance, effectiveness, 

and alignment with project requirements.  

Our experiments were designed to answer the following 

research questions: 

1. How does the RAG-based approach compare to 

manual test case creation in terms of coverage, defect 

detection, and compliance with industry standards? 

2. What is the impact of incorporating human feedback 

in the test case generation process on the quality and 

effectiveness of the resulting tests? 

3. How does the choice of LLM and RAG configuration 

affect the performance of the test case generation 

system? 

To ensure the reliability and validity of our results, we 

conducted multiple runs of each experiment, using different 

prompting and cross-validation techniques where 

Figure 2 - Architectural overview of the interaction between the user, RAG system, LLM, testing platform, 

and human examiner in the test generation process. 

 



applicable. We also documented the specific versions of the 

software tools, libraries, and models used in our experiments 

to facilitate reproducibility. 

 

Optimisation and configuration 

 

To optimise the RAG process for test case generation, we 

conducted several iterations, experimenting with various 

parameters and settings. One critical aspect was determining 

the optimal size of the context window, which determines 

the amount of relevant information provided to the model 

during the generation process. We tested context window 

sizes ranging from 256 to 1024 tokens and found that a size 

of 512 tokens struck a balance between providing sufficient 

context and maintaining computational efficiency. 

We also explored different versions of GPT-4, including 

GPT-4-turbo, which offers faster generation speeds. The 

sampling temperature, which controls the randomness of the 

generated output, was varied between 0.5 and 1.0. The top_p 

parameter, also known as nucleus sampling, was set between 

0.7 and 0.9, ensuring that the model considered only the 

most likely tokens during generation. Additionally, we 

adjusted the frequency_penalty and presence_penalty 

parameters to discourage the model from repeating the same 

output tokens too frequently. 

Through these iterations, we identified the optimal 

configuration for our RAG implementation, which included 

a 512-token context window, GPT-4 with a sampling 

temperature of 0.7, top_p of 0.8, and frequency and presence 

penalties of 0.2. 

Furthermore, we discovered that the precise wording of 

the system prompt played a crucial role in guiding the model 

to generate relevant and effective test cases. By carefully 

crafting the prompt to include specific instructions and 

requirements, we could steer the model towards generating 

tests that aligned with the project's goals. 

Lastly, we employed a multi-shot RAG knowledge 

injection method, where the model was provided with 

multiple rounds of context and generated outputs. This 

approach allowed the model to progressively refine its 

understanding of the project and generate more targeted test 

cases based on the accumulated knowledge. 

 

 
In this early proof-of-concept study, the primary focus 

was on assessing the code coverage achieved by the 

generated test cases. While selected cases, particularly those 

involving failure scenarios, were reviewed for accuracy, a 

more comprehensive examination of the test cases will be 

conducted in future stages of the research. The iterative 

refinement phase involving human examiners played a 

supportive role, with the team providing feedback on the 

generated tests based on their domain expertise. This 

feedback loop allowed for the identification of potential 

improvements and ensured that the generated tests aligned 

with the project's requirements. As this study aimed to 

establish the feasibility of the underlying method, a more 

rigorous and time-intensive review process will be 

incorporated in subsequent research phases to further 

validate the quality and effectiveness of the generated test 

cases. 

 

IV. CASE STUDIES 

We applied our technique to two different open source 

embedded C/C++ projects with the aim to validate to the 

stringent DO-178C Level A standards. 

PX4 Autopilot (PX4) 

PX4 [17] is an open-source flight control software for 

drones and other unmanned vehicles. It provides a flexible 

platform for users who need to control any kind of vehicle 

from a computing board. The platform contains everything 

needed for a full UAV system: flight stack, middleware to 

communicate between processors, and developer APIs to 

enhance existing functionalities. The combination of PX4’s 

open-source nature, broad applicability, and mature, reliable 

ecosystem made it a compelling choice for applying this 

research. 

- Size and Test Generation: A subset of the codebase, 

comprising around 35,000 Lines of Code (LOC), was 

subjected to our method, yielding 378 generated test 

cases. These tests emphasised robustness verification, 

exploring conditions like invalid values and overflow 

situations. 

- Comparison to Human-Authored Tests: Compared to a 

suite of 265 tests written by developers, our method 

provided a significantly denser set of tests. 

- Code Coverage: The tests achieved excellent code 

coverage, addressing 98% statement, 95% decision, and 

90% MC/DC coverage, and were evaluated using 

Cantata. With further refinement of our methods we are 

confident of satisfying the DO-178C requirements for 

structural coverage analysis. 

- Defect Discovery: Interestingly, these tests brought 14 

new defects to light. Predominantly related to overflow 

issues, two defects impacted the function of calculating 

the optimal flight path and were categorised as medium 

severity according to code experts. 

Apollo Auto (AA) 

Apollo [18] is an open autonomous driving platform that 

aims to provide a comprehensive, safe, and reliable solution 

for autonomous driving. The project encompasses various 

technologies related to autonomous driving, such as 

perception, planning, control, and end-to-end deep learning, 

to enable vehicles to navigate in various environments and 

scenarios. The project was selected due to its open codebase, 

comprehensive documentation and robust coding practices. 

- Size and Test Generation: On a larger section of this 

codebase of 50,000 LOC, our method generated 512 test 

cases, which also zeroed in on robustness aspects. 

- Comparison to Human-Authored Tests: A traditional, 

developer-written test suite for Project B consisted of 

342 tests, indicating a robust enhancement in test 

comprehensiveness through our technique. 

- Code Coverage: A good level of code coverage was 

achieved, encapsulating 88% statement, 85% decision, 

and 80% MC/DC coverage, verified via Cantata. With 

further refinement of our methods we are confident of 

satisfying all the structural coverage requirements of ISO 

26262 

- Defect Discovery: Additionally, 9 new defects were 

discovered, mainly pertaining to validating invalid 

inputs, of which 3 were linked to the functionality of 

alerting the driver of potential hazards and were of high 

severity according to code experts. 
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PX4  98% 95% 90% 378 14 

RAG-based 

Approach 

AA 88% 85% 80% 512 9 

Algorithmic 

Test generation 

PX4  85% 80% 75% 0 0 

Algorithmic 

Test generation 

AA 80% 75% 70% 0 0 

Manual Testing PX4  90% 85% 80% 265 0 

Manual Testing AA 85% 80% 75% 342 0 

 

Table 1 – Summary of initial results 

 

To provide a clear overview of the performance of our RAG-

based approach compared to other tools and manual testing, 

we present a summary of the results in Table 1. The table 

includes the statement coverage, decision coverage, MC/DC 

coverage, number of failure tests, and number of defects 

found for each method/tool and project. As clear from the 

table, our RAG-based approach consistently achieves higher 

coverage metrics and detects more defects compared to the 

other tools and manual testing across both projects. 

 

 

 

Insights and Unveiling Additional Defects 

Our RAG-based approach generated a diverse range of 

test cases targeting various aspects of robustness, with code 

coverage being a key driver in achieving a comprehensive 

set of tests. The generated tests encompassed scenarios such 

as: 

Boundary value testing: Tests were generated to validate 

the system's behaviour when inputs approached or exceeded 

the defined limits, such as maximum and minimum values 

for numeric inputs or edge cases for string inputs. This 

included testing with values just inside and outside the valid 

ranges to ensure proper handling of boundary conditions. 

Invalid input testing: Tests were created to assess the 

system's response to invalid, malformed, or unexpected 

input data, including null pointers, out-of-range values, and 

data types inconsistent with the expected format. These tests 

aimed to verify the system's ability to gracefully handle and 

recover from invalid inputs without crashing or exhibiting 

undefined behaviour. 

Resource management testing: Tests were designed to 

evaluate the system's performance and stability under 

resource-constrained conditions, such as limited memory, 

high CPU utilisation, or low power scenarios. These tests 

helped identify potential memory leaks, resource exhaustion 

issues, and other performance bottlenecks. 

Interrupt handling testing: Tests were generated to verify 

the correct handling of interrupts and the system's ability to 

prioritise and manage multiple interrupt sources. These tests 

ensured that the embedded software could respond to real-

time events and maintain deterministic behaviour. 

Error handling and recovery testing: Tests were 

generated to assess the system's ability to detect, isolate, and 

recover from errors, such as communication failures, sensor 

malfunctions, or unexpected resets. These tests verified the 

effectiveness of error handling mechanisms and the system's 

Figure 3 - The iterative process of RAG, LLM and review 



capacity to maintain a safe state or initiate appropriate 

recovery procedures. 

 

Included in the Annex are sample prompts used to 

generate various types of test. 

 

Code comments and documentation fragments played a 

crucial role in informing the scope of the generated tests. By 

supplementing the code with context-relevant requirements 

and the developers' intentions, parsed from comments, our 

approach unlocked a performant set of tests. This contextual 

information guided the generation of test cases that aligned 

with the specific functionality and constraints of each code 

module, resulting in more targeted and effective testing. 

 

The generated tests were executed dynamically, allowing 

for the validation of the system's behaviour under various 

conditions and the identification of any defects or 

vulnerabilities that could compromise the reliability and 

stability of the embedded software. By leveraging code 

coverage metrics, we ensured that the generated tests 

thoroughly exercised the codebase, reaching critical paths 

and uncovering potential issues that might have been missed 

by manual test creation efforts. 

The human effort involved in generating additional 

robustness tests was significantly reduced compared to 

manual test creation. The RAG-based approach 

autonomously generated a comprehensive set of initial test 

cases, which were then reviewed and refined by human 

testers. 

 

This review process (figure 3) typically involved: 

 

1. Assessing the relevance and coverage of the generated 

tests 

2. Identifying any missing critical scenarios or edge 

cases 

3. Providing domain-specific insights and context to 

enhance the tests 

4. Optimising the test data and expected outcomes 

5. Ensuring alignment with project requirements and 

quality standards 

 

On average, the human effort required for reviewing and 

refining the generated tests was approximately 30% of the 

time that would have been needed to create the tests from 

scratch manually. This highlights the efficiency gains 

achieved through the RAG-based approach. 

 

By leveraging RAG to generate a wide range of robust 

test cases and incorporating human expertise to refine them 

further, our approach effectively identified defects and 

coding oversights that were previously undetected. This 

highlights the value of combining generative AI techniques 

with human domain knowledge to enhance software quality 

and reliability. 

 

Comparison with Other Validation Tools 

Compared to traditional validation tools, our RAG-based 

approach offers several distinct advantages. One key 

strength lies in its adaptability and scalability across diverse 

software projects. While many existing tools are tailored to 

specific programming languages, frameworks, or domains, 

our method leverages the language-agnostic nature of 

LLMs. By training on a vast corpus of natural language and 

code, LLMs can effectively generate test cases for a wide 

range of software systems, regardless of their underlying 

technologies. This flexibility enables seamless integration 

into various development workflows and reduces the need 

for specialised validation tools for each project. 

Another significant advantage of our approach is its 

ability to generate test cases that are grounded in real-world 

requirements and specifications. Traditional validation tools 

often rely on predefined templates, heuristics, or static 

analysis techniques, which may not fully capture the nuances 

and complexities of a given software project. In contrast, our 

RAG framework actively retrieves and incorporates relevant 

information from project documentation, user stories, and 

domain-specific guidelines. By combining this contextual 

knowledge with the generative capabilities of LLMs, we can 

produce test cases that are more closely aligned with the 

intended functionality and user expectations. 

Furthermore, our RAG approach excels in generating 

test cases for complex, multi-component systems. Many 

existing validation tools struggle to handle the intricacies of 

interconnected modules, asynchronous operations, and 

distributed architectures. However, the retrieval component 

of our framework enables the LLM to gather and synthesise 

information from multiple sources, allowing it to generate 

test cases that span across system boundaries. This holistic 

perspective is particularly valuable in identifying integration 

points, data flow issues, and potential performance 

bottlenecks. 

Lastly, the human-in-the-loop aspect of our approach 

sets it apart from fully automated validation tools. While 

automation is crucial for efficiency, the involvement of 

human experts adds a layer of qualitative assessment and 

domain-specific insights. The iterative feedback process 

allows for the refinement of test cases based on the unique 

requirements and priorities of each software project. This 

collaborative approach ensures that the generated test cases 

are not only technically sound but also aligned with the 

broader goals and constraints of the development team. 

It is important to note that many of the other validation 

tools discussed in the "Related Work" section, such as 

EvoSuite, Randoop, Pex, and KLEE, are algorithmic in 

nature and focus on specific programming languages. While 

their approaches to test case generation can be compared and 

contrasted with our RAG-based method, these tools could 

not be directly applied to the case study projects, which 

primarily involve embedded C/C++ code. 

The only tool that could be directly applied to the case 

study projects was the existing algorithmic AutoTest 

generation feature of Cantata, the commercial test 

framework used in our experiments. Cantata's AutoTest 

feature employs a combination of static analysis and path 

analysis to generate test cases based on the structure of the 

code under test. 

In summary, our RAG-based approach offers several 

advantages over traditional validation tools: 

- Adaptability and scalability across diverse software 

projects, regardless of the programming language or 

domain 



- Ability to generate test cases grounded in real-world 

requirements and specifications by leveraging the 

knowledge captured in LLMs and project-specific 

documentation 

- Effectiveness in generating test cases for complex, 

multi-component systems by synthesising information 

from multiple sources and considering system-wide 

interactions 

- The value of human-in-the-loop collaboration in 

refining test cases, ensuring their alignment with 

project goals and constraints 

While algorithmic tools like Cantata's AutoTest feature 

can be useful in certain scenarios, our RAG-based approach 

provides a comprehensive and flexible solution for test case 

generation in the context of safety-critical embedded 

systems. 

V. CONCLUSIONS 

Observations and Achievements 

- Increased Test Generation: The approach not only 

produced a larger volume of tests compared to human-

authored ones but also exposed a broader array of test 

scenarios. 

- Compliance with Stringent Standards: The automated 

generation of tests did not compromise the ability to achieve 

high code coverage, ensuring adherence to vital industry 

standards like DO-178C. and ISO 26262 

-  Unveiling of Hidden Defects: Notably, our approach 

unveiled additional, including high-severity, defects, which 

eluded detection by human-authored test suites. 

Future Pathways 

- Exploring Llama 2 and other emerging LLMs: While 

GPT-4 has been instrumental in our research, we plan to 

explore the potential of other emerging LLMs, such as 

Llama 2, for test case generation. As discussed in the 

"Related Work" section, Llama 2 offers several advantages, 

including the ability to run locally on secure systems and its 

enhanced training data. By leveraging these new LLMs, we 

aim to further improve the efficiency and effectiveness of 

our RAG-based approach. 

- Optimising Llama 2 for Embedded Projects: This 

involves calibrating Llama 2 with various software 

documentation, adapting the model to the domain-specific 

language and patterns of embedded systems, and enhancing 

its performance with embedded system code. 

- Broadening RAG Applications: Our future efforts will 

look towards employing RAG earlier in the software 

development process. This involves deriving test cases 

directly from requirements, co-developing test cases and 

code, and establishing a feedback mechanism beneficial for 

system designers. 

 

Our preliminary results validate this approach and instil 

confidence in utilising advanced language models for 

robustness testing in safety-critical domains. The next 

phases of this research will further refine techniques and 

expand test generation capabilities to bolster automated 

testing for safety-critical systems. This ongoing pursuit aims 

to enhance software reliability and safety where flawless 

operation is indispensable. By integrating generative models 

with retrieval augmentation and rigorous human review, a 

pathway emerges to achieve robust and nuanced automated 

testing. Through iterative refinement of these synergistic 

techniques, the journey towards more reliable, resilient, and 

efficient testing methodologies continue. 
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ANNEXE 

Prompting – example flow 

This JSON-formatted example of a RAG interaction 

demonstrates how the user query combined with retrieved 

documents drives the LLM's generation of test cases. This 

illustrates the interplay between the user, RAG system, 

LLM, and human examiner in an iterative process to refine 

the test cases, as outlined in our test generation workflow. 

 
{ 
    "prompt": { 
        "model": "gpt-4", 
        "messages": [ 
            {   "role": "system", 
                "content": "You are an expert C and 
C++ unit test writer. Write tests to exercise boundary 
values, equivalence classes, every statement, every 
decision true and false. Write tests that call every 
boolean condition both true and false. Write suitable 
robustness tests. Return valid json."}, 
            {   "role": "user", 
                "content": "We are only using the 
Cantata test harness to perform checks on the return 
values when calling the software under test. 
              
Along with the name and description of the test, we 
require a block of code achieving the following: 
- setting up any input data required for the test 
- calling the entry point to the test 
- if the function returns, set a variable to hold the 
return value 
- performing a Cantata CHECK on any return 
             
We also require a string of expected calls to onward 
functions. This string needs to be a comma seporated 
list exactly in the order the calls are made and of 
the format: 
 
<function_name_1>,<function_name_2>, 
              
etc. Where <function_name> is the name of the function 
that we expect to be called during the test. We could 
be expecting one or more calls to: 
low_pressure_check 
get_systolic 
get_diastolic 
high_pressure_check 
sound_alarm 
"           }, 
            {   "role": "assistant", 
                "content": "I understand. Please 
provide the code to generate tests for."}, 
            {   "role": "user", 
                "content": "Here is the code to test: 
<truncated>}, 
            {   "role": "assistant", 
                "content": "Thanks for this piece of 
code, I will generate some small unit tests for this 
code. Please specify the entry point function to drive 
our first batch of tests."}, 
            {   "role": "user", 
                "content": "Our entry point is: 
pressure_check"}, 
            {   "role": "assistant", 
                "content": "OK."}, 
            {   "role": "user", 
                "content": "Provide a list of function 
calls with expected returns and expected calls."} 
        ], 
        "functions": [ 
            {   "name": "test_it", 
                "description": "input to drive the 
creation of unit tests", 
                "parameters": "<truncated>} 
        ], 
        "function_call": { 

https://www.qa-systems.com/tools/cantata/
https://px4.io/
https://www.apollo.auto/
https://github.com/universal-ctags/ctags
https://cscope.sourceforge.net/
https://github.com/ruben2020/codequery
https://code.visualstudio.com/docs/python/testing#_generating-tests
https://code.visualstudio.com/docs/python/testing#_generating-tests


            "name": "test_it" 
        }, 
        "temperature": 1, 
        "max_tokens": 2000, 
        "top_p": 1, 
        "frequency_penalty": 0, 
        "presence_penalty": 0, 
        "stream": false 
    }, 
    "response": { 
        "id": "xxx", 
        "choices": [ 
            { 
                "finish_reason": "stop", 
                "index": 0, 
                "logprobs": null, 
                "message": { 
                    "content": null, 
                    "role": "assistant", 
                    "function_call": { 
                        "arguments": "{ 
  "tests": [ 
    { 
      "test_name": 
"Test_pressure_check_with_monitor_OK", 
      "test_description": "Test the pressure_check 
function when monitorStatus is MONITOR_OK", 
      "test_code": " 
#define MONITOR_OK 1 
extern int monitorStatus; 
extern int systolic; 
extern int diastolic; 
 
void Test_pressure_check_with_monitor_OK() 
{ 
  int retVal; 
   
  // setup 
  monitorStatus = MONITOR_OK; 
   
  // exercise 
  retVal = pressure_check(); 
   
  // verify 
  CHECK_INT(retVal, 1); 
  CHECK_INT(systolic, 120);  // The expected return 
from get_systolic 
  CHECK_INT(diastolic, 80);  // The expected return 
from get_diastolic 
}", 
      "call_list": "get_systolic,get_diastolic" 
    }, 
    { 
      "test_name": 
"Test_pressure_check_with_monitor_NOT_OK", 
      "test_description": "Test the pressure_check 
function when monitorStatus is NOT MONITOR_OK", 
      "test_code": " 
#define MONITOR_OK 1 
extern int monitorStatus; 
extern int systolic; 
extern int diastolic; 
 
void Test_pressure_check_with_monitor_NOT_OK() 
{ 
  int retVal; 
   
  // setup 
  monitorStatus = !MONITOR_OK; 
   
  // exercise 
  retVal = pressure_check(); 
   
  // verify 
  CHECK_INT(retVal, 0); 
  CHECK_INT(systolic, -1); 
  CHECK_INT(diastolic, -1); 
}", 
      "call_list": "" 
    } 

  ] 
}", 
                        "name": "test_it" 
                    }, 
                    "tool_calls": null 
                } 
            } 
        ], 
        "created": xxx, 
        "model": "gpt-4-0613", 
        "object": "chat.completion", 
        "system_fingerprint": null, 
        "usage": { 
            "completion_tokens": 330, 
            "prompt_tokens": 684, 
            "total_tokens": 1014 
        } 
    } 
} 

 
In this example the part underlined and bold is the key 

element to direct the system to generate tests of a specific 

type. Here we are looking for boundary and robustness 

tests. 

Expanded Prompt Examples 

      "content": "You are an expert C and C++ unit test 
writer. Write tests to exercise boundary values, 
equivalence classes, every statement, every decision 
true and false. Write tests that call every boolean 
condition both true and false. Write suitable robustness 
tests. Return valid json. This includes creating 
scenarios where edge cases are tested, such as the 
smallest or largest possible values, values on either 
side of a boundary, and common robustness challenges in 
system behavior." 

In this example we instruct the LLM to focus on 

generating specific types of unit tests, namely boundary 

value tests, equivalence class tests, and robustness tests for 

C/C++ code. These tests are crucial for ensuring that the 

software behaves as expected under various edge conditions 

and stress scenarios. 

This approach emphasizes comprehensive testing by 

ensuring all paths and conditions are evaluated, enhancing 

the software's reliability and performance. 

Variations for Different Testing Scenarios 

1. Invalid Input Testing 

      "content": "As a specialist in C and C++ 
testing, generate unit tests that deliberately use 
invalid, unexpected, or outlier inputs. Verify that the 
software gracefully handles these inputs by either 
rejecting them with appropriate error messages or by 
ensuring no system instability. Return valid json." 

This prompt directs the LLM to create unit tests that 

focus on how the application handles inputs that are 

incorrect or out of the expected range, which is essential for 

validating input validation and error management in the 

software. 

2. Resource Management Testing 

      "content": "Create unit tests for C and C++ 
applications that assess the software's management of 



system resources. These tests should include scenarios 
where resources are limited, such as low memory 
availability, and ensure the application releases all 
resources after use. Return valid json." 

This prompt focuses on testing the software's ability to 

handle and efficiently manage system resources, crucial for 

applications that operate in resource-constrained 

environments or require high reliability. 

3. Interrupt Handling Testing 

     "content": "Develop unit tests that simulate 
various interrupt conditions in C and C++ programs. 
Ensure that the software correctly handles and recovers 
from these interrupts, maintaining data integrity and 
proper operational state. Return valid json." 

The tests generated from this prompt should ensure that 

the software can handle unexpected interruptions, 

maintaining stability and data integrity, which is vital for 

real-time and critical systems. 

4. Error Handling and Recovery Testing 

      "content": "Generate unit tests for error 
handling and recovery mechanisms in C and C++ code. The 
tests should force the software into error states and 
evaluate the recovery procedures to return to a normal 
operating state. Return valid json." 

This prompt instructs the LLM to create tests that assess 

the effectiveness of the software's error handling and 

recovery processes, critical for applications where uptime 

and reliability are essential. 
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